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Abstract: In this study, composite particles of rGO/CoFe2O4 were synthesized using a solvothermal
method to fabricate a low-density magnetorheological (MR) material with enhanced sedimentation
stability. The morphology and crystallographic features of rGO/CoFe2O4 were characterized via SEM,
TEM, and XRD, and its magnetic properties were tested using VSM. The MR fluid was formulated by
blending rGO/CoFe2O4 particles into silicone oil. Under different magnet strengths (H), a rotational
rheometer was used to test its MR properties. Typical MR properties were observed, including shear
stress, viscosity, storage/loss modulus, and dynamic yield stress (τdy) following the Herschel–Bulkley
model reaching 200 Pa when H is 342 kA/m. Furthermore, the yield stress of the MR fluid follows a
power law relation as H increases and the index changes from 2.0 (in the low H region) to 1.5 (in the
high H region). Finally, its MR efficiency was calculated to be about 104% at H of 342 kA/m.
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1. Introduction

Magnetorheological (MR) fluids are usually suspensions of magnetic particles dis-
tributed in a base liquid [1]. As a class of magnetically responsive smart materials, MR
fluids are widely valued for their unique MR effect [2,3]. Upon applying or removing an
external magnetic field (H), MR fluids can convert between a liquid and a solid-like state
within milliseconds [4]. When H is applied, the magnetic particles within MR fluids are
polarized. The magnetic dipoles interact and organize into chain-like structures along the
H direction. These chain-like structures resist flow and increase viscosity, making MR fluids
a solid-like state [5]. When H is removed, MR fluids return to a liquid state. The character-
istics of MR fluids find application across various engineering domains, such as dampers
or shock absorbers [2], polishing [6], vehicle suspension [7,8], biomedical applications [9],
soft robots [10], MR electrolytes in batteries [11], and so on. Moreover, the millisecond
response time of MR fluids makes them one of the most rapid electromechanical inter-
faces [12]. Carbonyl iron (CI) particles are extensively utilized when preparing MR fluids
due to their high saturation magnetization, ease of synthesis, and other favorable proper-
ties [13]. Nevertheless, MR fluids utilizing CI particles face a notable problem of magnetic
particle sedimentation, which causes a considerable reduction in the MR effect [12–14].
Cobalt ferrite (CoFe2O4) is a cubic spinel-structured ferrite widely studied for its excel-
lent electromagnetic properties and application characteristics in electronic products [15].
Meanwhile, CoFe2O4, with low density and excellent magnetic characteristics, has also
attracted widespread attention for its MR performance [16,17].

Graphene, a two-dimensional (2D) material, has been extensively researched for its
excellent electronic transport properties [18–20], mechanical properties [21,22], thermal
conductivity [23], optical transparency [24], and other properties [25]. These properties en-
able graphene to have broad application prospects in important fields, including medicine,
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sustainable energy, composite materials, and so on [26–28]. A highly utilized graphene pro-
duction approach is employing graphene oxide (GO) as a precursor, followed by removing
oxygen-based functional groups from the GO surface through thermal or chemical reduc-
tion methods [29,30]. GO can be obtained by oxidation of natural graphite. This process
introduces reactive oxygen-based functional groups, including hydroxy, carboxyl, epoxide,
and carbonyl groups, onto the basal planes and borders of the graphene-derived layers,
increasing the distance between layers [31,32]. In particular, it has been widely noted that
these reactive functional groups are helpful when synthesizing GO-based composite mate-
rials, such as the synthesis of RGO-Fe3O4 composite [33], graphene oxide/polyethylene
glycol composite [34], Cellulose–Graphite Oxide Composite [35], and so on.

A nanocomposite consisting of CoFe2O4 nanoparticles and rGO, characterized by
outstanding magnetic properties, a large specific surface area, and low density, can enhance
the MR fluid’s sedimentation stability and is expected to demonstrate typical MR behavior.
This study utilized a modified Hummer’s method [36] to synthesize GO. In order to avoid
the difficulty of dispersion in silicone oil caused by oxygen-based functional groups in
GO, GO was reduced to reduced graphene oxide (rGO) [37]. Finally, the rGO/CoFe2O4
composite synthesized via a solvothermal method was dispersed into silicone oil to study
its MR characteristics under different H.

2. Materials and Methods
2.1. Synthesis of Graphene Oxide (GO)

The synthesis of GO followed a modified Hummer’s method [36]. A quantity of 2 g
of sodium nitrate (NaNO3) and graphite (4 g) were dispersed in 280 mL sulfuric acid
(H2SO4) to obtain a homogeneous suspension with intense stirring. Then 12 g of potassium
permanganate (KMnO4) was introduced into the suspension, followed by 30 min of stirring
and 15 min of sonication. The obtained mixture was slowly poured into 700 g of water
in a fume hood, and then a hydrogen peroxide (H2O2) solution (200 g of H2O2 dissolved
in 400 water) was introduced. The reaction solution was slowly stirred for 20 min, and
centrifugation was used to wash the product with water until the pH was constant. Finally,
the resulting GO block was dispersed in water, peeled off into GO sheets via sonication for
4 h, and freeze-dried.

2.2. Fabrication of Reduced GO/Cobalt Ferrite (rGO/CoFe2O4)

GO (0.5 g) was dispersed in H2O (150 mL) following 1.5 h of sonication while stirring.
Next, Fe(NO3)3 (6.875 g) and Co(NO3)2 (2.475 g) were introduced, and the mixture’s pH
was adjusted to 10. The reaction solution was moved to an autoclave and subjected to
heating at 180 ◦C. After an 18 h reaction, it was cooled to room temperature. Then a water
wash was performed with magnetic separation. Finally, the drying process was carried out.

2.3. Preparation of MR Fluid

The MR fluid was formulated by blending 10% volume of rGO/CoFe2O4 particles into
1000 cSt silicone oil. The MR fluid was then subjected to shaking (VORTEX Genius 3, IKA,
Staufen, Germany) and sonication (Powersonic 410, Hwashin, Seoul, Republic of Korea) to
get a uniform suspension. In order to obtain uniformly dispersed MR fluid, sufficient shak-
ing and ultrasonic treatment were performed using a vortex mixer (VORTEX Genius 3, IKA,
Germany) and ultrasonic processor (Powersonic 410, Hwashin, Seoul, Republic of Korea).

3. Results and Discussion
3.1. Characterization of Synthesized Materials

Figure 1a,d depict the GO sheet’s SEM (S-430, Hitachi, Tokyo, Japan) and TEM (CMM-
220, Phillips, Boston, MA, USA) images, respectively.
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Figure 1. SEM images of (a) GO sheet, (b,c) rGO/CoFe2O4, and TEM images of (d) GO sheet,
(e,f) rGO/CoFe2O4 composite. Inset in (d) shows side view of GO sheet.

The GO sheet’s surface appears smooth, and the inset in Figure 1d depicts that the
GO sheet’s thickness is approximately 6 nm. It is noteworthy that the graphite appears
wrinkled after oxidation. This wrinkling phenomenon is due to the oxidation process pro-
moting the introduction of oxygen-containing functional groups, thereby transforming the
sp2 (planar structure) to sp3 (tetrahedral structure) hybridization [38]. Figure 1b,c,e,f depict
the rGO/CoFe2O4 composite’s SEM and TEM images, respectively. The oxygen-based
functional groups on the surface of GO result in a high density of negative charges on
its surface. Cobalt and iron cations are electrostatically attracted and adsorbed onto the
GO surface. Subsequently, CoFe2O4 nanoparticles are formed and anchored onto the GO
surface via the solvothermal reaction. Meanwhile, during the solvothermal reaction, GO
reduction occurs, resulting in the final rGO/CoFe2O4 composite material. As observed, the
rGO/CoFe2O4 composite’s surface exhibits a rougher appearance compared to GO, and
the CoFe2O4 particles are evenly distributed on the rGO without aggregation. The presence
of rGO effectively disperses CoFe2O4 particles and avoids agglomeration, increasing the
composite’s specific surface area [10,39]. In addition, the density of the rGO/CoFe2O4 com-
posite was tested to be 4.05 g/cm3 with a gas pycnometer (AccuPyc 1330, micromeritics),
notably lower than that of the pure phase CoFe2O4 particles (5.29 g/cm3) [40], indicating
that the rGO/CoFe2O4 composite has a considerable advantage in solving the magnetic
particle sedimentation problem in MR fluids.

The sharp diffraction peak indicates a high level of crystallization in the graphite.
According to Figure 2a, the diffraction peak of GO is located at 2θ = 10.4◦, indicating the
(001) lattice plane and a 0.850 nm inter-layer distance. The sharp peak position of GO (001)
shifts to the left relative to graphite (002), and the inter-layer distance increases. The increase
in inter-layer distance is caused by the introduction of oxygen-containing functional groups
during the oxidation of graphite. This indicates that graphite is transformed into GO by
the oxidation process. GO exhibits a broad peak at 2θ = 26.4◦ due to the process efficiency
that results in a small amount of graphite not being wholly converted [41]. According to
Figure 2b, the characteristic peaks of the CoFe2O4 are distinctly observable at 2θ = 18.2◦,
29.8◦, 35.3◦, 37.0◦, 42.9◦, 53.3◦, 56.4◦, 61.2◦, 70.7◦, and 74.0◦, which correspond to the lattice
planes (111), (220), (311), (222), (400), (422), (511), (440), (620), (533). These diffraction
peaks match well with the JCPDS data (#221086) [42]. The positions of the three strongest
peaks are 29.8◦ (220), 35.3◦ (311), and 61.2◦ (440), and the space group is Fd-3m (No.
227) [43], which proves that CoFe2O4 belongs to the spinel structure. Notably, no (001)
GO diffraction peak exists in the rGO/CoFe2O4 XRD patterns, which indicates an efficient
reduction of GO to rGO [44]. The XRD analysis confirms the successful fabrication of the
rGO/CoFe2O4 composite.
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In Figure 2, the inset reveals that the graphite’s XRD (DMAX-2500, Rigaku, Tokyo,
Japan) diffraction peak is at 2θ = 26.4◦, indicating the (002) lattice plane and a 0.336 nm
inter-layer distance.
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Figure 3 depicts the magnetization curve recorded during the vibrating sample mag-
netometry (VSM, Lake Shore Cryotronics, Westerville, OH, USA) test of the rGO/CoFe2O4
composite at 300 K, with H ranging from −800 kA/m to 800 kA/m.
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Figure 3. Magnetization curve of rGO/CoFe2O4 composite.

The composite has a remanence (Mr) of 34.9 emu/g and a coercivity of 67.7 kA/m
(850.7 Oe), which cannot be ignored. Notably, the saturation magnetization (Ms) of the
rGO/CoFe2O4 composite measures 104.6 emu/g, surpassing the typical value of pure
CoFe2O4 of 74.08 emu/g [15]. On the one hand, the higher Ms can be explained by
the larger particle size of the synthesized CoFe2O4 particles [45–48]. On the other hand,
compared to pure CoFe2O4, the composite of rGO/CoFe2O4 affects the super exchange
interaction, consequently influencing Ms [49]. This high Ms value is highly desirable
because it contributes to enhanced yield strength and rapid response for MR fluids.

3.2. Magnetorheological Effect
3.2.1. Shear Stress and Shear Viscosity

The rGO/CoFe2O4-based MR fluid’s MR properties were tested with a rotational
rheometer (MCR 300, Anton-Paar, Stuttgart, Germany). The shear rate (

.
γ) was set across
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a range of 0.01 to 200 1/s, and H in the tests were set to 0, 68, 103, 137, 205, 274, and
342 kA/m. Figure 4a is the log–log graph indicating the relationship between shear stress
(τ) and

.
γ of the rGO/CoFe2O4-based MR fluid at different H.
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When H is applied, the τ of the MR fluid is higher than when H = 0. At the same
.
γ,

the higher the H, the higher the τ. At low
.
γ, the MR fluid at all six H (H ̸= 0) exhibited

high τ, which increased slowly with increasing
.
γ. This is attributed to the strong chain-

like structures formed by magnetic dipole–dipole interactions between the rGO/CoFe2O4
particles, which are resistant to disruption caused by the increasing

.
γ [50]. When

.
γ is high,

the MR fluid’s chain-like structure is gradually disrupted, leading to a faster increase in τ
with increasing

.
γ.

Figure 4b shows the shear viscosity (η) for rGO/CoFe2O4-based MR fluid as a function
of

.
γ. It can be observed that η decreases with increasing

.
γ at different H, suggesting evident

shear-thinning behavior. In addition, η significantly increases after the input of H because
of the alignment of the rGO/CoFe2O4 particles within the MR fluid along the direction
of H, forming a chain-like structure. When H increases, the chain-like structure becomes
more stable, enhancing resistance to breaking under shear and contributing to a higher
η of the MR fluid. However, as

.
γ increases, the MR fluid’s internal structure gradually
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breaks down, causing a decrease in η and showing the shear-thinning characteristic. When
.
γ is high enough, the change in η is insignificant due to the complete collapse of the
chain-like structure.

3.2.2. Storage/Loss Modulus and Relaxation Modulus

To further investigate the rGO/CoFe2O4-based MR fluid’s viscoelastic behavior, dif-
ferent H (0–342 kA/m) were selected for oscillation tests at a steady 6.28 rad/s frequency.
To examine how storage modulus (G′) and loss modulus (G′′) change in response to strain
(γ), γ was set to increase in the range of 0.001–100%. Figure 5a depicts the variation of G′

and G′′ versus γ for the rGO/CoFe2O4-based MR fluid.
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Figure 5. (a) Strain and (b) frequency dependence of storage (closed) and loss (open) modulus for
rGO/CoFe2O4-based MR fluid.

With an increase in γ, both G′ and G′′ exhibit a plateau region over a smaller range
of γ, recognized as the linear viscoelastic (LVE) region [51], where the G′ and G′′ remain
unaffected by γ. In the LVE region, G′ of the rGO/CoFe2O4-based MR fluid surpasses G′′,
indicating the dominance of its elastic properties and a quasi-solid state. Once γ of the
rGO/CoFe2O4-based MR fluid exceeds the critical strain of 0.01% here, G′ and G′′ decrease
quickly. When γ surpasses the critical strain, due to the high γ, the chain-like structure
within the MR fluid gets disrupted, making the MR fluid change from quasi-solid to fluid.
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In response to this transition, there is an irreversible decrease in both G′ and G′′, and G′

even surpasses G′′ when γ is high.
In the LVE region, a constant γ of 0.01% was applied for frequency sweep tests within

the angular frequency (ω) range of 1–100 rad/s. Figure 5b shows the changes of G′ and
G′′ with ω for the rGO/CoFe2O4-based MR fluid. Upon applying H, G′ and G′′ exhibit
a plateau region, showing that the MR fluid’s internal structure makes it exhibit clear
solid-like characteristics rather than liquid ones. The increase in G′ due to the increase in H
indicates that the stronger H leads to enhanced interparticle interactions, and the MR fluid
exhibits a stronger solid-like behavior. Moreover, at a specific H, G′ is consistently higher
than G′′ over a wide ω range, indicating that the rGO/CoFe2O4-based MR fluid is mainly
characterized by its elastic properties rather than its viscous properties [52].

The time-dependent shear relaxation modulus (G(t)) of the rGO/CoFe2O4-based MR
fluid can be calculated using the Schwarzl equation [53] as follows:

G(t) ∼= G′(ω)− 0.560G′′ (ω/2) + 0.200G′′ (ω) (1)

This equation can overcome the limits of mechanical tests and predict the MR fluid’s
ultrafast relaxation behavior. Figure 6 depicts G(t) in relation to time for the rGO/CoFe2O4-
based MR fluid.
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Figure 6. Relaxation modulus calculated from the storage and loss modulus as a function of time.

The evident decrease in G(t) when H = 0 indicates the MR fluid’s liquid-like behavior.
However, the G(t) of the MR fluid demonstrates a plateau state upon application of H,
indicating quasi-solid behavior and no stress relaxation in the MR fluid.

3.2.3. Dynamic and Elastic Yield Stress

To effectively consider the impact of
.
γ on τ, the Herschel–Bulkley model was em-

ployed for fitting. When
.
γ approaches zero, τ can be approximated as the dynamic yield

stress (τdy), as represented in the following equation [54]:

τ = τdy + K
.
γ

n (2)

where K is the consistency index; n is the flow behavior index; and
.
γ is the shear rate.

Table 1 presents the Herschel–Bulkley model’s fitting parameters for τdy, K, and n
under various H.
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Table 1. Fitting parameters of Herschel–Bulkley model.

H/(kA/m) τdy K n

68 12 27 0.78
103 25 41 0.63
137 42 53 0.59
205 84 76 0.58
274 150 89 0.56
342 200 97 0.56

Notably, all fitted parameters for n are less than 1, indicating shear-thinning behavior
in the MR fluid, which aligns with the conclusion drawn from Figure 4b. The solid lines
shown in Figure 7a were fitted based on the data from Table 1.
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The comparison between the fitting lines and experimental data in Figure 7a demon-
strates a high level of agreement, suggesting that the Herschel–Bulkley model effectively
fits the rGO/CoFe2O4-based MR fluid.
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Elastic stress (τe) can be determined by applying the following formula to the dynamic
oscillatory strain amplitude sweep data:

τe = G′ · γ (3)

Figure 7b depicts the functional relationship between τe and γ for the rGO/CoFe2O4-
based MR fluid at various H. Each turning point on the slope of the curve, as indicated
by a red circle in the figure, is called the elastic yield point, corresponding to the elastic
yield stress (τey) at a certain H. On the left side of the elastic yield point, the τe of the
rGO/CoFe2O4-based MR fluid exhibits a linear increase with the rise of γ. However, the
rate of increase in τe notably decelerates on the right side of the elastic yield point.

Figure 8 shows how τdy and τey change with H. Typically, yield stress (τy) and H have
a power law relationship as follows:

τy ∝ Hm (4)
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In the MR fluid, τy rises as H increases. When H is low, due to the magnetic polarization
of particles, τy is directly proportional to H2, following [55], as follows:

τy ∝ ϕµo H2 (5)

where ϕ represents the MR fluid’s volume fraction, and µo is the vacuum magnetic per-
meability. When H increases, the chain-like structure is less affected by H, and local
magnetization saturation dominates τy, which can be represented as follows:

τy =
√

6ϕµ0M1/2
s H3/2 (6)

where Ms represents the saturation magnetization.
From Figure 8, it is evident that as H increases, there exists a critical magnetic field

strength (Hc) where the fitted curve’s slope shifts from 2.0 to 1.5. Due to the presence
of Hc, the relationship between τy and H can be expressed using the following general
equation [56]:

τy(H0) = αH2
0

(
tanh

√
H0/HC√

H0/HC

)
(7)
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where α depends on the MR fluid’s susceptibility, ϕ, and other physical constants. There
are two distinct limiting relations between τy and H0, as follows:

τy = αH2
0 H0 ≪ Hc (8)

τy = α
√

Hc H3/2
0 H0 ≫ Hc (9)

Equations (8) and (9) indicate that in the case of a low value of H, magnetic particles
within the MR fluid are mutually attracted, leading to the creation of chain-like structures.

When H exceeds Hc, the MR fluid gradually becomes saturated, and τy is less af-
fected by H. As depicted in Figure 8, the fitted curve’s slope for τy as a function of H
undergoes a transition as H reaches Hc, demonstrating a high level of agreement with the
experimental data.

According to Equation (7), when H0 = Hc, we can obtain τy(H0) = αH2
0 tanh1, which

simplifies to τy(H0) = 0.762αH2
0 . From this, we can obtain the following relationship:

τ̂ = 1.313Ĥ3/2tanh
√

Ĥ (10)

where τ̂ = τH0 /τHc , Ĥ = H0/HC. As depicted in Figure 9, Equation (10) allows the data to
be integrated into a unified curve.
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3.2.4. MR Efficiency

MR efficiency quantifies the viscosity gain that can be achieved by the MR fluid at a
specific H and

.
γ, which is critical for MR fluids operating in a flow state. The MR efficiency

can be obtained by converting the data of the viscosity curve with the following formula:

MR efficiency =
ηH − η0

η0
× 100% (11)

where ηH and η0 represent η of the MR fluid at H and 0, respectively. Figure 10 depicts the
MR efficiency as a function of

.
γ and H.
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The graph illustrates a decrease in MR efficiency with an increase in
.
γ. This decrease

is due to the gradual disruption of chain-like structures as
.
γ increases, reducing their

resistance to the flow regime. In addition, at a constant
.
γ, increasing H enhances MR

efficiency by forming a stronger internal structure that is more rigid to external shear [57].
MR efficiency is essential in engineering, and for MR devices such as dampers that need to
operate in a flow state, the yield stress metric is no longer appropriate [58].

4. Conclusions

This work synthesized the rGO/CoFe2O4 composite using a solvothermal method.
The synthesized GO and rGO/CoFe2O4 were characterized using SEM, TEM, and XRD, con-
firming the successful combination of rGO with CoFe2O4 particles. The VSM testing shows
an expected high Ms for the rGO/CoFe2O4 composite. The flow curves demonstrated the
rGO/CoFe2O4-based MR fluid’s typical MR behaviors. G′ and G′′ for the MR fluid obtained
from oscillation tests reveal its viscoelastic behavior. G(t) was calculated with a Schwarzl
equation. For the rGO/CoFe2O4-based MR fluid, τ and τdy conformed well to the Herschel–
Bulkley model. Furthermore, τy was found to be proportional to H2 when H ≪ Hc, while
it was proportional to H3/2 when H ≫ Hc. Finally, the rGO/CoFe2O4-based MR fluid’s
MR efficiency was calculated, providing guidance for its potential applications in the flow
state. To summarize, the rGO/CoFe2O4-based MR fluid can achieve a reversible transition
between liquid-like and solid-like states. By applying different magnetic fields, we can
control its rheological properties (τ, η, G′ and G′′). These parameters are the basis for
controlling system variables in engineering applications, such as valves, dampers, vehicle
suspensions, and engine mounts.
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