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Abstract: This study investigates the thermal stress and bolt load distribution in a hybrid panel
structure of an aircraft mechanical joint under extreme temperatures. The hybrid panel structure
comprises two aluminum alloy splices, six T-shaped composite stringers, and two composite skins,
secured together with 96 bolts. This study analyzed the strain induced by thermal stress on composite
materials and metals within the structure across temperatures, employing temperature environment
tests ranging from room temperature to −54 ◦C, alongside a carrying capacity test at −54 ◦C. Fur-
thermore, a three-dimensional simulation model of the panel structure was developed, incorporating
considerations for contact, metal elastoplasticity, and the progressive damage failure of composite
materials. This model facilitated the determination of thermal stress and bolt load distribution
patterns. The results indicate a strong consistency between the finite element analysis outcomes
and the experimental data. Temperature variations exacerbate the uneven distribution of bolt loads,
concentrating the load near the edges of the hybrid structure while diminishing it in the center.
The bolt load distribution parallel to the mechanical load direction forms an “M” shape, with a
maximum load magnitude of approximately 31 kN. Perpendicular to the mechanical load, the bolt
load undergoes significant changes, especially at the edges, reaching a maximum of about 20 kN,
which warrants attention. The bolt-load distribution of the structure with the increase in mechanical
load at −54 ◦C tends to be consistent with that at room temperature.

Keywords: composite; multi-bolt hybrid panel; thermal stress; bolt load distribution; finite element analysis

1. Introduction

Composite materials, noted for their excellent mechanical properties, including high
specific strength, stiffness, fatigue resistance, and temperature tolerance, are extensively
utilized in civil aircraft [1]. The amount of composite materials accounted, respectively, for
50% and 52% of the weight of the body structure in the most representative new generation
of large civil aircraft (e.g., Boeing 787 and Airbus A350) [2]. The main structure of civil
aircraft has evolved into composite–metal hybrid structures, including configurations like
“composite panel + metal beam” and “composite panel + composite beam + metal rib” [3].
In the present study, we investigate a hybrid panel structure for next-generation large civil
aircraft, consisting of two aluminum alloy splices, six T-shaped composite stringers, and
two composite skins, all joined with 96 bolts.

A critical challenge in designing composite and metal hybrid structures is addressing
the thermal stresses arising from the significant differences in the coefficient of thermal
expansion between composite and metal materials. The coefficient of thermal expansion
for metals is 10 to 20 times higher than that of composite materials. This thermal stress can
sometimes constitute about 40% of the mechanical stress, leading to a stress concentration
around the bolt hole area under mechanical connection conditions, thereby impacting
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the load-bearing capacity of the structure [4]. Hence, the design and strength analysis of
composite and metal hybrid structures under thermal load have emerged as pressing issues
that require immediate attention, which are investigated in the current study.

A variety of newly developed finite element models have been applied to the load
distribution analysis of multi-bolt joints, considering the efficiency and the accuracy. Gray
et al. [5] proposed a new bolt simulation method called global bolt joint model, which uses
beam element coupling to analyze rigid surface to simulate bolts, and has the advantages
of robustness, accuracy and high efficiency. Liu et al. [6] proposed an improved 2D finite
element model for bolt load distribution predictions of composite multi-bolt single-lap
joints, which predicts secondary bending well. Sharos et al. [7] developed a user-defined
finite element capable of modeling composite joints at various loading rates, which can
save a lot of computing resources. Belardi et al. [8] developed a composite joint element
that can be used within a pre-existing shell model, considering the different linear and
nonlinear phenomena. These models do not involve temperature changes.

Researchers have conducted studies on small-sized connectors, focusing on how
ambient temperature affects connection performance [9–15]. Eriksson et al. [16] studied
the joint structure of composite materials under thermal load by applying variational
principle and complex potential theory. Kradinov et al. [17] used the same methods to
study the hole side stress of bolts at any position in composite laminates under mechanical
loads and uniform temperature change. They also analyzed the bolt-load distribution
in single- and double-lapping joints. Ekha et al. [18–20] conducted several studies on
secondary bending and bolt-load distribution through tests and finite element analysis. The
results showed that bolt diameter, bolt hole clearance and temperature greatly influenced
load distribution. Yang et al. [21] derived the bolt-load calculation formula of hybrid
structure connectors under the action of temperature, carried out the temperature field test
of composite–metal panel structure in different structural forms and obtained the U-shaped
distribution rule of bolt-load. Lei et al. [22,23] analyzed the influence of parameters such
as the quantity and spacing of bolts on the bolt-load distribution in different structural
forms for a single-lap multi-bolt hybrid structure, and revealed the rule that the maximum
bolt-load is limited by the structural size effect. Kapidzic et al. [24] studied the bolt-load
distribution of wing box structure under bending load and temperature change by using
2D and 3D models. At present, there are few investigations on thermal stress of hybrid
structures from the published research data. The experimental studies mainly focus on the
small-size connection structure with single row of bolts and the research on the complex
large-size structure of multi-row and multi-row of bolts is not involved. The simulation
analysis mainly considers the elastic behavior of the material and the simplified bolt
model, regardless of the influence of metal plasticity and composite damage. In addition,
the magnitude of thermal stress of hybrid structure is affected by the size effect and the
maximum bolt load tends to stabilize after a rapid increase with the increase in the length
and the number of screws.

It is more representative to carry out research on thermal stress and bolt-load distri-
bution of large-size hybrid structures of the new generation civil aircraft. In this study,
the specimen of the multi-bolt hybrid panel structure is described in Section 2, and the
finite element model is established, considering contact, metal elastoplasticity, and the
progressive damage failure of composite materials, in Section 3. The design of tempera-
ture environment test and the test result compared with that by simulation are drawn in
Sections 4 and 5. The influence of temperature change and mechanical load change on
bolt load distribution is discussed in Section 6. Finally, several conclusions are drawn in
Section 7.

2. The Hybrid Panel Structure

This study focuses on a multi-bolt hybrid panel structure in an aircraft center wing,
which is a scheme in the design stage of a certain type of aircraft, as shown in Figures 1 and 2.
The hybrid panel consists of two aluminum alloy splices (upper and lower), six T-shaped
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composite stringers, and two composite skins, interconnected by 96 bolts arranged in 8 rows
and 12 columns. The bolt number and specific row and column spacing are shown in Figure 2.
The bolts in R1 and R8 are single shear with a diameter of 11.1125 mm. The bolts in the
remaining six rows feature double shear, with diameters of 12.7 mm in rows R2, R3, R6, and
R7, and 14.2875 mm in rows R4 and R5. Figure 3 shows the shapes and dimensions of all parts.
Both skin and stringer are made of composite prepreg T800 with a single layer thickness of
0.185 mm. According to the quasi-isotropic principle, the specific ply information is listed in
Table 1.
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Figure 3. The shapes and dimensions of (a) the upper splice, (b) the lower splice, (c) the stringer, and
(d) the skin (unit: mm).

Table 1. Information of composite laminates.

Part Thickness of
Region/mm Ply Information

Skin
12.21 [45/90/−45/90/−45/0/45/0/−45/0/45/0/0/−45/0/0/45/0/0/45/0/0/−45/0/0/45/0/0/−45/−45/0/0/45]s
7.03 [45/90/−45/90/−45/0/0/45/0/0/45/0/0/−45/0/0/−45/0/45]s

10.73 [45/90/−45/90/−45/0/45/0/−45/0/45/0/0/−45/0/0/45/0/0/45/0/0/−45/0/0/−45/0/0/45]s

Stringer

10.36 [45/90/−45/0/0/−45/0/0/45/90/45/0/0/−45/0/0/−45/0/0/45/0/45/0/−45/0/−45/0/45]s
8.88 [45/90/−45/0/0/−45/0/0/45/90/45/0/0/−45/0/0/−45/0/45/0/0/−45/0/45]s
7.4 [45/90/−45/0/0/−45/0/0/45/0/0/−45/0/0/45/0/0/−45/0/45]s
8.14 [45/90/−45/0/0/−45/0/0/45/90/45/0/0/−45/0/0/45/0/0/−45/0/45]s

Targeting the thermal stress analysis of the hybrid structure, such as the wall panel,
a test is designed under a 600 kN mechanical load and at a low temperature of −54 ◦C,
covering a 950 mm range within the mechanical connection area, as illustrated in Figure 4.
The material properties provided by Commercial Aircraft Corporation of China are shown
in Tables 2 and 3. In this study, the temperature induced modulus and thermal expansion
coefficient are not considered in the analysis because they do not change significantly at
−54 ◦C [25]. The specific parameters are shown in Table A1 of Appendix A.
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Table 2. Material properties of T800.

E1/MPa E2/MPa µ12 G12/MPa α1/(10−6·◦C−1) α2/(10−6·◦C−1) α3/(10−6·◦C−1)

163,500 9000 0.319 4140 3.5 32 32

Table 3. Material properties of 2024-T351, Ti-6Al-4V and 4130.

Part Material E/MPa σys/MPa σb/MPa ψ/% µ α/ (10−6·◦C−1)

Splice 2024-T351 73,777 344.7 475.2 12 0.33 22
Bolt Ti-6Al-4V 116,521 820.5 951.5 10 0.31 8.8

Fixture 4130 199,810 985.9 1031.8 12 0.32 11

3. Finite Element Simulation of Hybrid Panel under Temperature Field

Due to the thermal expansion coefficient of various materials in the panel structure
and the size effect of the structure, this study establishes a three-dimensional finite element
solid model based on ABAQUS to simulate the stress caused by temperature load, as shown
in Figure 5. SC8R continuous shell elements were used to discretize the composite stringer
and skin, C3D8I three-dimensional stress elements were used to simulate the upper and
lower splices and bolts. The mesh size of the hole edge was selected at least 1.2 mm after
the mesh independence verification, considering computational accuracy and resources,
and the model calculation results are listed in Table A2 of Appendix A.
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The factors such as contact, metal elastoplasticity and progressive damage failure of
composite materials were considered in the model, and the details are shown in Appendix B.
According to the literature [19], the fastener preload and friction coefficient have little
influence on the connection performance. The preload values to the bolts of different
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diameters are listed in Table A3 of Appendix A. Regardless of the influence of the fastener
preload in the model, the friction coefficient is set at 0.1 [26,27], which is referred to the
composite–metal contact, and the contact property adopts the hard contact and Coulomb
friction model. The failure mode of composite monolayers is simulated by the Hashin
criterion [28–30], and the constitutive relation of metal materials is obtained by material
test. Simple support constraints (U1 = U2 = U3 = 0) were applied to the upper and lower
surfaces of one end of the steel fixture, and displacement constraints (U1 = U3 = 0) were
applied to the upper and lower surfaces of the other end. The installation condition in
both ends of hybrid panel are shown in Figure A1 of Appendix A. Mechanical load was
simulated using a concentrated load, while the temperature field was modeled through a
predefined field in ABAQUS.

4. Experimental Design of Hybrid Panel
4.1. Test Design

Figure 1 shows the size of the test part, and the materials of each component are listed
in Tables 1–3. The testing setup comprises a temperature-controlled cabinet, static testing
machine, strain gauges, strain measurement and acquisition equipment, thermocouples,
supporting inspection instruments, heat compensation plates, and auxiliary fixtures.

A temperature-controlled chamber, with its main structure depicted in Figure 6, was
designed to accommodate the test requirements for a temperature drop to −54 ◦C within
the test area. The inside and outside box of the temperature chamber are made of 304SUS
high-grade stainless steel. The thermal insulation material between the inner and the outer
boxes is high-quality ultra-fine glass fiber thermal insulation foam, and a silicone sealing
structure is used between the door and the door frame. Temperature reduction is achieved
through the vaporization of liquid nitrogen, with double fans facilitating circulation to
ensure uniform temperature distribution throughout the chamber. The temperature box
and studio sizes are 1150 mm × 600 mm × 1380 mm and 950 mm × 400 mm × 980 mm
(length × width × height), respectively. The temperature fluctuation is less than ±2 ◦C,
the temperature uniformity is less than ±2 ◦C.

Materials 2024, 17, x FOR PEER REVIEW 7 of 22 
 

 

  
(a) (b) 

 
(c) 

Figure 6. (a) Upper part of temperature-controlled chamber; (b) lower part of 
temperature-controlled chamber; (c) photograph of temperature-controlled chamber. 

Temperature-resistant strain gauges are affixed to composite and metal plates, 
employing a temperature compensation method to nullify the strain indications resulting 
from the strain gauge’s temperature effects. Eight thermocouples are strategically placed 
on both composite and metal plates to monitor the surface temperature of the test 
specimens, taking into account the non-uniformity of convection and the necessity for 
temperature compensation. The location and number of strain gauge and temperature 
are shown in Figure 7. 

 
Figure 7. Distribution of thermocouple and strain gage in hybrid panel. 

The test was carried out on the 1000 t horizontal test machine for the space and load 
requirements of the test, as shown in Figure 8. The test piece is connected with the chuck 

Figure 6. (a) Upper part of temperature-controlled chamber; (b) lower part of temperature-controlled
chamber; (c) photograph of temperature-controlled chamber.

Temperature-resistant strain gauges are affixed to composite and metal plates, employ-
ing a temperature compensation method to nullify the strain indications resulting from
the strain gauge’s temperature effects. Eight thermocouples are strategically placed on
both composite and metal plates to monitor the surface temperature of the test specimens,
taking into account the non-uniformity of convection and the necessity for temperature
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compensation. The location and number of strain gauge and temperature are shown in
Figure 7.
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The test was carried out on the 1000 t horizontal test machine for the space and load
requirements of the test, as shown in Figure 8. The test piece is connected with the chuck
of the testing machine through an auxiliary fixture. In the left and right gaps between the
specimen and the temperature box, thermal insulation cotton is filled to ensure that the
temperature of the test area meets the test requirements.
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4.2. Test Procedure

After installing the test specimen and completing the preparatory work, a 600 kN
mechanical load is applied to eliminate the initial assembly gap between the test piece and
the fixture. Subsequently, with the mechanical load held constant, low temperature tests are
conducted at various temperatures, including 10 ◦C (room temperature), −10 ◦C, −30 ◦C,
and −54 ◦C. Upon reaching the working temperature, the system was maintained at this
temperature level for approximately two hours, during which strain data was collected at
30 s intervals. The bearing capacity test of structure was carried out at −54 ◦C in the last
set of tests.

5. Comparison between Measured Results and Simulation Results

In this paper, the bolts are numbered to study their load distribution. For example,
R1C5 indicates the bolt in row 1 and column 5, R1 indicates the first row, and C2 indicates
the second column, as shown in Figure 9. The bolt load in the wall panel structure mainly
bears the shear load, and it is divided into X and Y two directions. The X direction indicates
that the direction of the bolt load component is perpendicular to the direction of the
mechanical load and toward the interior of the structure. The Y direction indicates that the
direction of the bolt load component is parallel to the direction of the mechanical load and
along the direction of loading.
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5.1. Strain Distribution with the Decrease in Temperature

The strain data of the panel test specimen fluctuates within 10 µ at each temperature
point, and the data from the thermocouple show fluctuations within 2 ◦C at each position,
indicating the test specimen’s temperature has stabilized. “µ” is a dimensionless unit of
strain measurement.

Taking into account the variability in the testing process and the inherent symmetry
of the structure, the collected strain data are appropriately processed. The strain data is
set as 0 µ under 600 kN mechanical load at 10 ◦C. Then, after the 3σ criterion to determine
whether the data is valid, a group of symmetrical strain gauge measurements in one test
are averaged, and the strain data of the three groups of low temperature tests are averaged.
For example:

εT(1) =
1
3∑3

i=1 (
1
4
(εT,i(1) + εT,i(12) + εT,i(101) + εT,i(112))), (1)

where εT(1) is the treated value of strain gage 1 in the quarter of the structure at T ◦C,
εT,i(1) is the value measured by strain gage 1 at the ith temperature test at T ◦C, εT,i(12),
εT,i(101) and εT,i(112) are similar to εT,i(1).
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Because of symmetry, only one quarter of the structure is discussed in this article, as
shown in Figure 10.
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Figure 11 presents the measured strains generated by thermal stress at each test point
with four different temperatures of 10 ◦C, −10 ◦C, −30 ◦C, and −54 ◦C. The values of
strain gages demonstrate a linear increase with the decrease in temperature in the front
and reverse sides of the far-field region.
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Figure 11. Test values of strain gages in (a) front side of far-field region, (b) reverse side of far-field
region, (c) R1 of upper splice, (d) R1 of lower splice, (e) R2 of upper splice, (f) R2 of lower splice,
(g) R3 of upper splice, (h) R3 of lower splice, (i) R4 of upper splice, and (j) R4 of lower splice.

The changes in strain values are most significant in R3 and least in R4 among the
upper and lower metal splices, exhibiting good linearity in R1, R2, and R3, with less
linearity observed in R4. The strain values maintain a linear relationship with temperature
changes, attributed to the constant coefficient of thermal expansion of the material within
this temperature range and the structure’s stress level remaining within the elastic range
under the applied load.

The thermal expansion coefficient of the metal plate is greater than that of the compos-
ite plate, resulting in tension of the metal splices (lower and upper) and compression of
the composite plate in the connection area with the decrease in temperature, as shown in
Figure 12. The simulated values are in good agreement with the test values on the metal
plate, but the difference is large on the composite laminates because there is a layer of
thermoplastic on the surface of the co-curing composite girder and skin.
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splice and composite laminates at different temperatures.

5.2. Strain Distribution Included by Thermal Stress at a Working Temperature of −54 °C

The finite element simulation outcomes and experimental data from all measurement
points are compared at −54 ◦C, as shown in Figure 13. The distribution of strain values in
Figure 13a,b shows consistency between simulation and test results in the metal splices,
with a gradual decrease observed through the rows R3, R2, R1, and R4 in the upper splice
and through the rows R3, R1 and R2 in the lower splice, which presents an “M”-shaped
distribution from R1 to R8 of the whole structure. Figure 13c shows that the strain difference
between simulation and test results in the far field region of the structure is slightly larger,
which is caused by these strain gauges being close to the gradient region of the room
temperature environment to −54 ◦C temperature environment. Overall, the simulation
results agree with the test values.

5.3. Fracture Load and Mode at a Working Temperature of −54 °C

Figure 14 shows that the experimental failure load of the structure is 4402 kN at −54 ◦C
and the test fracture mode is that the mental splice is stretched and broken in R4 or R5. The
strain–load curves of strain gages in the lower and upper splices are shown in Figure 15a,b.
When the mechanical load is greater than 3000 kN, the values of strain gages in R3 and
R4 of two metal splices begin to appear nonlinear. With the increase in external load, the
values of strain gages in R4 are the largest. Meanwhile, the hole edge stress in R4 reaches
the ultimate strength of the material under the combined action of nailing load and bypass
load and metal splice is broken by pulling. Test results agree with the simulation results
that the fracture load is 4214 kN, as shown in Figures 15c and 16.
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Figure 16. Computed stress distribution of (a) upper splice and (b) lower splice, when the mechanical
load is 4214 kN at −54 ◦C.

6. Effects of Temperature and Mechanical Load on Bolt Load Distribution of
Hybrid Panel
6.1. Analysis of Bolt-Load Distribution at a Working Temperature of −54 °C

Utilizing the finite element model described in Section 3, an external load of 600 kN is
maintained constant, and the room temperature is set at 10 ◦C. Subsequently, the tempera-
ture in the mechanical connection area is reduced to −54 ◦C.

Tables 4 and 5 show the bolt load distribution of hybrid panel structure at 10 ◦C and
−54 ◦C. The load direction of all bolts is almost the same as the loading direction, and the
load value in each row is close and uniform at 10 ◦C. The bolt-load distribution at −54 ◦C
is symmetrical in the X and Y direction of the hybrid panel structure. It indicates that the
internal force caused by the thermal stress is balanced inside the connection area in the
cooling stage due to the different coefficients of thermal expansion between the metal plate
and the composite plate. The total temperature load is zero externally in the connection
area. The load distribution of bolts in each row is not uniform.

Table 4. The value and the angle of bolt load in hybrid panel structure at 10 ◦C.

Row
Number

Column Number
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

R1
load/kN 4.1 5.1 5.0 3.9 4.0 5.1 5.1 4.0 3.9 5.0 5.1 4.1

θ/◦ 13.5 −0.5 4.9 −5.3 9.1 −1.9 1.9 −9.1 5.3 −4.9 0.5 −13.5

R2
load/kN 11.4 12.1 11.9 10.8 11.0 12.1 12.1 11.0 10.8 11.9 12.1 11.4

θ/◦ 7.9 2.8 4.7 2.5 1.0 −1.2 1.2 −1.0 −2.5 −4.7 −2.8 −7.9

R3
load/kN 12.1 12.9 12.7 11.5 11.6 12.8 12.8 11.6 11.5 12.7 12.9 12.1

θ/◦ 0.3 1.2 0.5 1.0 0.3 0.6 −0.6 −0.3 −1.0 −0.5 −1.2 −0.3

R4
load/kN 19.7 20.2 19.8 18.6 18.6 19.8 19.8 18.6 18.6 19.8 20.2 19.7

θ/◦ −6.2 −1.6 −1.0 0.1 0.1 0.7 −0.7 −0.1 −0.1 1.0 1.6 6.2

R5
load/kN 19.7 20.2 19.8 18.6 18.6 19.8 19.8 18.6 18.6 19.8 20.2 19.7

θ/◦ −173.8 −178.4 −179.0 179.9 179.9 179.3 −179.3 −179.9 −179.9 179.0 178.4 173.8

R6
load/kN 12.1 12.9 12.7 11.5 11.6 12.8 12.8 11.6 11.5 12.7 12.9 12.1

θ/◦ 179.7 178.8 179.5 179.0 179.7 179.4 −179.4 −179.7 −179.0 −179.5 −178.8 −179.7

R7
load/kN 11.4 12.1 11.9 10.8 11.0 12.1 12.1 11.0 10.8 11.9 12.1 11.4

θ/◦ 172.1 177.2 175.3 177.5 179.0 −178.8 178.8 −179.0 −177.5 −175.3 −177.2 −172.1

R8
load/kN 4.1 5.1 5.0 3.9 4.0 5.1 5.1 4.0 3.9 5.0 5.1 4.1

θ/◦ 166.5 −179.5 175.1 −174.7 170.9 −178.1 178.1 −170.9 174.7 −175.1 179.5 −166.5
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Table 5. The value and the angle of bolt load in hybrid panel structure at −54 ◦C.

Row
Number

Column Number
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

R1
load/kN 12.4 12.7 14.7 14.0 13.8 14.2 14.2 13.8 14.0 14.6 12.7 12.4

θ/◦ −10.4 8.1 −16.6 −3.7 −1.4 11.6 −11.6 1.5 3.7 16.6 −8.1 10.4

R2
load/kN 31.2 29.0 32.6 32.1 32.2 32.8 32.8 32.2 32.1 32.6 29.0 31.2

θ/◦ −33.3 −10.4 −14.1 −2.6 −3.9 5.7 −5.7 3.8 2.6 14.0 10.4 33.3

R3
load/kN 22.2 14.6 14.5 13.7 14.1 15.0 15.0 14.1 13.7 14.5 14.6 22.2

θ/◦ −64.6 −37.9 −17.0 −1.3 −9.9 0.3 −0.3 9.9 1.3 17.0 37.9 64.6

R4
load/kN 25.2 14.1 7.6 6.4 6.7 5.0 5.0 6.7 6.4 7.6 14.1 25.2

θ/◦ −117.0 −129.0 −152.7 177.5 −152.7 −169.7 170.0 152.9 −177.2 152.9 129.1 117.0

R5
load/kN 25.2 14.1 7.6 6.4 6.7 5.0 5.0 6.7 6.4 7.6 14.1 25.2

θ/◦ −63.0 −51.0 −27.3 2.5 −27.3 −10.3 10.0 27.1 −2.8 27.1 50.9 63.0

R6
load/kN 22.2 14.6 14.5 13.7 14.1 15.0 15.0 14.1 13.7 14.5 14.6 22.2

θ/◦ −115.4 −142.1 −163.0 −178.7 −170.1 179.7 −179.7 170.1 178.7 163.0 142.1 115.4

R7
load/kN 31.2 29.0 32.6 32.1 32.2 32.8 32.8 32.2 32.1 32.6 29.0 31.2

θ/◦ −146.7 −169.6 −165.9 −177.4 −176.1 174.3 −174.3 176.2 177.4 166.0 169.6 146.7

R8
load/kN 12.4 12.7 14.7 14.0 13.8 14.2 14.2 13.8 14.0 14.6 12.7 12.4

θ/◦ −169.6 171.9 −163.4 −176.3 −178.6 168.4 −168.4 178.5 176.3 163.4 −171.9 169.6

Figure 17 shows that the load direction of bolts in C1 of the panel structure is at a
certain angle to the loading direction, indicating that the bolt load caused by temperature
change has an X-direction component at −54 ◦C. In Table 5, the bolt-loads of four columns,
including C1, C2, C11 and C12, are significantly greater than that of other columns, and the
angles in these four columns are more than 30 ◦C, which indicates that close to the edge of
the structure, there is a higher load.
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Figure 17. (a) Load on bolts in C1 at 10 °C; (b) load on bolts in C1 at −54 °C. Figure 17. (a) Load on bolts in C1 at 10 ◦C; (b) load on bolts in C1 at −54 ◦C.



Materials 2024, 17, 1872 15 of 21

Figure 18 shows the corresponding bolt-load ratio in the Y direction at 10 ◦C and
−54 ◦C when the external load is 600 kN. There is a large difference in the bolt-load ratio
at 10 ◦C and −54 ◦C. At 10 ◦C, the bolt-load distribution ratios across rows R1, R2, R3,
and R4 are uniform, approximately 0.8%, 1.9%, 1.9%, and 3.1%, respectively. The bolt-
load distribution of the entire structure exhibits a “∩”-shaped distribution from R1 to
R8. However, the bolt-load proportion increases to 2.3% in R1, significantly increases to
5.4% in R2, reduces slightly to 1.6% in R3, and decreases greatly to −1.5% in R4 as the
temperature drops to −54 ◦C, which presents a “M”-shaped distribution from R1 to R8
of the whole structure. In addition, the maximum bolt-load magnitude is about −31 kN
when the thermal load is included and appears on R4C1 and R4C12. It indicates that the
temperature change will aggravate the uneven distribution of the bolting load in the Y
direction of the structure, which has a greater impact on the edge of the structure and a
smaller impact on the middle part.
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Figure 19 shows the corresponding load on bolts in the X direction at 10 ◦C and −54 ◦C
when the external load is 600 kN. The value of bolt load is small and below 1 kN on all
bolts, except for the bolts in C1 and C12 near the end of the structure, which is slightly
higher to about 2 kN at 10 ◦C. When the temperature drops to −54 ◦C, the bolt load caused
by temperature variation changes little in the middle part of the structure. The load of
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the double shear bolts in C1, C2, C11 and C12 changes significantly, and the maximum
bolt-load magnitude caused by temperature change reaches −20 kN, which cannot be
ignored. The result indicates that the temperature included bolt load in X direction when
the thermal load is included is larger close to the edge of the structure is, and has less effect
in the middle area.
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6.2. Influence of Temperature Change on Bolt-Load Distribution

The influence of the temperature change was investigated with the finite element
model in Section 3, keeping the 600 kN mechanical load unchanged and studying eight
working temperatures of 10 ◦C, 0 ◦C, −10 ◦C, −20 ◦C, −30 ◦C, −40 ◦C, −50 ◦C and −54 ◦C.
According to the analysis in Section 6.1, the load on bolts near the end and middle part
of the structure varies greatly when the temperature decreases. Then, bolts in C1 and C6
are selected for discussion in this section. Figure 20 shows the load distribution of bolts in
C1 and C6 at different temperatures when the external load is 600 kN.

The bolt load in each row changes differently in the Y direction with the decrease in
temperature, gradually increasing in R1 and R2, changing slightly in R3, and gradually
decreasing in R4. It indicates that the mechanical load is strengthened by the temperature
load in R1 and R2 and weakened in R4 when the temperature drops, while the temperature
load has little influence on the mechanical load in R3. In addition, the bolt load of R4C1 and
R4C6 is reduced to 0 kN at about −30 ◦C and −40 ◦C, respectively, and the load direction
begins to be opposite to the mechanical load direction. The temperature change has little
effect on the load on bolts in C6 and the single shear bolt R1C1 in the X direction. The load
of three double-shear bolts in C1 gradually decreases as the temperature drops, and the
amplitude of load variation with temperature is close and −320 N/◦C.

6.3. Influence of Mechanical Load Change on Bolt-Load Distribution

Using the finite element model in Section 3, the mechanical load was first applied to
600 kN, the ambient temperature remained unchanged at −54 ◦C, and the external load
was continued. In this section, bolts in R1 and R6 are chosen for discussion; the nonlinear
behavior of the structure is measured by the ratio of the applied mechanical load Fg to the
failure load Fb of the structure, with Fb = 4402 kN.
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Figure 20. (a) Load on bolts in the Y direction at different temperatures; (b) load distribution of bolts in
the Y direction at different temperatures; (c) load on bolts in the X direction at different temperatures.

Figure 21 shows the bolt-load distribution in C1 and C6 in the process of mechanical
load application at −54 ◦C. When the external load is 600 kN (Fg/Fb = 13.2%), the bearing
capacity of each bolt varies greatly. The load proportion differs from each bolt with the
increase in mechanical load in the Y direction, which increases gradually on R4C1 and
R4C6 bolts, increases slightly on R3C1 and R3C6 bolts, and decreases gradually on R1C1,
R1C6, R2C1 and R2C6 bolts, as shown in Figure 21a. When the ratio Fg/Fb = 21.1%, the
load direction of all bolts is the same. The plastic strain near the bolt hole accumulates, and
the proportion of each bolt load tends to stabilize as the load continues to increase. When
the ratio Fg/Fb ≥ 75%, the load ratio is 2.7% in R4, close to 0.8% in R1, 2.3% in R2, and 2.2%
in R3, respectively. When the ratio Fg/Fb ≥ 85%, the bolt-load distribution ratio on each
row is evenly distributed again, which is similar to the “∩”-shaped distribution at 10 ◦C.
Figure 21b shows that the bolt load in the X direction changes little in C6 at the middle part
of the structure and on the single shear bolt R1C1. However, the load of the double-shear
bolts changes greatly in C1 near the edge of the structure. With the increase in external
load, the load on the bolt increases gradually on R2C1, is almost unchanged on R3C1, and
decreases gradually on R4C1. The load of three bolts is still negative, which indicates the
load direction is toward the outside of the structure. When the ratio Fg/Fb ≥ 85%, a load
drop phenomenon occurs in three bolts.
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Figure 21. (a) Load distribution of bolts in the Y direction as mechanical load increasing at −54 ◦C;
(b) load on bolts in the X direction as mechanical load increasing at −54 ◦C.

7. Conclusions

1. In this study, we conducted thermal and mechanical tests on a multi-bolt hybrid
panel structure. The strain values of each test point at different temperatures indicates that
the strain values and temperature change maintain a linear relationship as expected. The
failure load of the structure is 4402 kN.

2. A three-dimensional finite element model is established considering contact and
nonlinearity of materials. The simulation results agree with the test values and according
with the experimental rules.

3. In the multi-bolt hybrid panel structure for next-generation civil aircraft, thermal
stress is self-balanced within the connection area, yet temperature variations exacerbate the
uneven distribution of bolt load. The load is focused on the bolts near the structure’s edge
and diminishes in the center.

4. In this study, the bolt-load distribution parallel to the mechanical load direction
adopts an “M” shape at −54 ◦C, contrasting with the “∩” shape observed at room tem-
perature. Perpendicular to the mechanical load direction, the bolt load undergoes its
most significant changes at the structure’s edge. The maximum load magnitudes in two
directions, when the thermal load is included, are about 31 kN and about 20 kN, respec-
tively. The bolt-load distribution of the structure tends to be consistent with that at room
temperature with the increase in mechanical load at −54 ◦C. In the structural design, the
size of bolts near the end of the structure should consider the additional load caused by
temperature changes to prevent catastrophic damage at the end.
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Appendix A

The thermal expansion coefficients and the temperature-induced modulus of Ti-6Al-
4V and 2024-T351 are provided by Commercial Aircraft Corporation of China, as shown in
Table A1. The specific material properties are listed in the below table. The elastic modulus
of Ti-6Al-4V at −55 ◦C is 102% of that at ambient, and the elastic modulus of 2024-T351
at −55 ◦C is 104% of that at ambient. The thermal expansion coefficient of the two metal
materials has little difference at −55 ◦C and ambient, respectively.

Table A1. The thermal expansion coefficients and the temperature induced modulus at ambient and
−55 ◦C.

Materials Temperature/◦C E/MPa α/(10−6·◦C−1)

Ti-6Al-4V
21.11 116,521 8.82
−55 118,851 8.46

2024-T351
21.11 73,777 22.17
−55 76,728 21.78

Different seed numbers were selected, including 24, 28, 32, 36, and 40, to calculate
using 40 multiple processors with ABAQUS. Table A2 shows that the maximum stress
tends to be stable when the number of seeds exceeds 32, the bolt load on R4C1 changes little,
and the calculation time increases obviously as the number of seeds increases. Considering
computational accuracy and resources, we selected that the mesh size of the hole edge was
at least 1.2 mm in the article.

Table A2. Calculation results on bolt R4C1 in different seed numbers at room temperature when
mechanical load is 600 kN.

Seed Numbers Maximum Stress at the Hole
Edge/MPa Bolt Load/kN Calculation Time/s

24 195.4 19.2 5164
28 203.5 19.5 6230
32 210.6 19.7 7489
36 212.3 19.8 9024
40 213.5 19.8 10,326

The preload value to the bolts is listed in Table A3. The values in the table are the
tightening torques applied to bolts of different diameters during machining of the specimen.

Table A3. Tightening torques and preload values to bolts of different diameters.

Diameter/mm Torque/Nm Preload Value/kN

11.1125 63.55 19.1
12.7 87.56 23.0

14.2875 121.46 28.3

During the test, both ends of hybrid panel are hinged with the fixture through three
studs of 60 mm diameter, and the nut is tightened through the thread of the stud end as
shown in Figure A1. The distance is 190 mm, and the fixture does not interfere with the bolt
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of the test piece. So, both ends of the hybrid panel are constrained along the x-direction,
which does not affect its movement under the action of the mechanical load.
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Appendix B

The simulation model is established in the commercial finite software ABAQUS 2020.
The model’s details, including boundary conditions, contact property, metal elastoplasticity
and progressive damage failure of composite materials, are realized by the built-in functions
of the software. The Hashin material failure criterion [28–30] considers the influence of
four failure modes: fiber tensile failure, fiber compression failure, matrix tensile failure and
matrix compression failure.

fiber tensile failure σ̂11 ≥ 0: (
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)2
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(
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fiber compression failure σ̂11 < 0: (
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matrix tensile failure σ̂22 ≥ 0: (
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matrix tensile failure σ̂22 < 0:
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where XT is longitudinal tensile strength, XC is longitudinal compressive strength, YT is
transverse tensile strength, YC is transverse compressive strength, ST is transverse shear
strength, SL is longitudinal shear strength, and α is the influence coefficient of shear stress
on the initial tensile criterion of fiber.
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