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Abstract: The interaction between an external action and the order parameter, via a 
dependence described by a so-called Lifshitz invariant, is very important to determine the 
final configuration of liquid crystal cells. The external action can be an electric field 
applied to the bulk or the confinement due to free surfaces or cell walls. The Lifshitz 
invariant includes the order parameter in the form of an elastic strain. This coupling 
between elastic strains and fields, inserted in a Landau-Ginzburg formalism, is well known 
and gives rise to striction effects causing undulations in the director configuration. We 
want to discuss here the role of Lifshitz coupling terms, following an approach similar to 
that introduced by Dzyaloshinskii for magnetic materials. Case studies on nematics in 
planar and cylindrical cells are also proposed. 
 
Keywords: liquid crystals; nematics; confined nematics 

 
 
1. Introduction 

 
The contributions to the free-energy density of terms in the derivatives of order parameter are of 

great importance and recognised to be fundamental in governing the appearance of spatially modulated 
structures in magnetic materials and of periodic patterns in liquid crystals. It is possible to identify the 
same structure in the free energy, when it is represented by a Landau-Lifshitz phenomenological 
theory of phase transitions; this structure has the form of an invariant term, so-called Lifshitz invariant, 
which is linear with respect to the gradient of order parameter. As shown by Landau and Lifshitz [1], a 
system near its phase transition point may be unstable with respect to distortions of the appropriate 
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order parameter. This instability may develop, when the irreducible representation allows a quadratic 
antisymmetric combination, linear in the order parameter components and in their gradients. 

Phases with large-scale space fluctuations of the order parameter were discovered experimentally in 
the 1960’s [2]. Using the approach proposed by Lifshitz, Dzyaloshinskii [3] showed that these 
configurations are associated with the development of instabilities and found the corresponding 
approximate solutions of the phase equations. Presently, the family of experimentally observed 
modulated states has grown both in magnetic and liquid crystal systems [4-7]. 

The aim of this paper is to discuss those properties and behaviours of liquid crystal materials 
originated by Lifshitz contributes to the free energy. Before the discussion of Lifshitz invariants in 
liquid crystals, we prefer to devote a section of the paper to a brief remark on the use of these 
invariants in magnetic systems. After this remark, we show how the flexoelectric effect, the chiral 
elastic term and the saddle-splay surface contribution can be described as Lifshitz contributions. 

A liquid-crystal material, the free-energy of which contains a Lifshitz term coupling elastic strains 
and external fields, can exhibit undulations in the director configuration. Periodic structures in liquid 
crystal materials can be achieved either in cholesteric or ferroelectric liquid crystals, which possess a 
natural periodic helicoidal distribution of the molecular orientation. In a nematic liquid crystal cell, a 
periodic structure can appear spontaneously too, with period that can be controlled by external factors 
such as applied fields and asymmetric anchoring conditions. The electric field controls the instability 
produced by the flexoelectric effect. Flexoelectric domains were first observed by Vistin and 
theoretically studied by Bobylev and Pikin [8,9]. More recently, Lavrentovich and Pergamenshchick 
discovered another interesting instability in nematics, controlled by the saddle-splay surface 
contribution to the free energy [10,11]. 

In the final part of this paper, we propose a detailed discussion of some case studies involving 
flexoelectricity. In particular, we discuss the hybrid nematic cell in planar geometry and show its 
complete phase diagrams. The same we shall do for the cylindrical confinement of nematics. To the 
author’s knowledge, the problem of flexoelectricity in cylindrical confinement has not been discussed 
before: in the framework of its approximate solution, the corresponding phase diagram shows 
instabilities. The discussion on saddle-splay instabilities concludes the paper. 
  
2. The Dzyaloshinskii-Moriya Coupling 
 

Some magnetic structures are characterised by a modulation of the spin arrangements over periods, 
which are long compared to the size of the lattice cell and usually not commensurate with it. The 
existence of such magnetic structures can be due to competition between exchange interactions or to 
relativistic effects like spin-orbit coupling. Relativistic interactions were first considered by 
Dzyaloshinskii [3] and received a microscopic description by Moriya [12]. The Dzyaloshinskii-Moriya 
(DM) interaction can be written as a product of three vectors, ( )jiDM SSDF

rrr
×⋅= , where D

r
 is the DM-

vector and ji S,S
rr

 are spin vectors. The bond symmetry determines the direction of the DM-vector 

whereas the strength of the spin-orbit coupling gives its intensity [12,13].  
The macroscopic manifestation of the antisymmetric DM couplings takes place in non-

centrosymmetric magnetic crystals. Dzyaloshinskii showed that, in this case, the DM interaction 
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stabilises long-periodic spatially modulated structures of the vectors iS
r

, structures with a fixed sense 

of rotation. In antiferromagnets, the DM-interaction favours arrangements of the magnetic moments, 
which result in a weak spontaneous magnetisation. 

Within a continuum approximation for magnetic properties, the interactions responsible for these 
modulations are expressed by inhomogeneous invariants. In Ref. [14], these contributions to the free 
magnetic energy, involving first derivatives of magnetisation with respect to spatial coordinates, are 
defined as the inhomogeneous Dzyaloshinskii-Moriya interactions. These interactions are linear with 
respect to first spatial derivatives of magnetisation M

r
 in an antisymmetric mathematical form, firstly 

studied in the theory of phase transitions by E. M. Lifshitz and known as Lifshitz invariants. Spiral 
structures arise in magnetic systems from the presence of the Lifshitz invariant in the free energy [15]. 

The structure of the Lifshitz invariant is, in the case of the inhomogeneous Dzyaloshinskii-Moriya 
interaction, a product of three vectors: a vector D

r
 representing an internal or external field or a fixed 

direction in the space, a vector M
r

 representing the local order parameter and the ∇
r

 operator on the 
order parameter components. The product has the following form:  

( ) ( )[ ]MMMMDfL
rrrrrrr

∇⋅−⋅∇⋅=  (1) 

In the case of the liquid crystals, we shall see that vector D
r

 can be an external electric field or the 
direction perpendicular to the sample surface. It is better to remark that in Ref.4, we can find another 
choice for the DM interaction, as the pseudoscalar [ ]MMDf DM

rrr
×∇⋅= . We will discuss this form in 

the Sect.5, concerning the chiral nematics. 
We used the DM interactions in 1996 to study the field-induced phase transition of BiFeO3 [16]. 

More recently, the coupling of spin waves with the optical phonons has been discussed in the 
framework of Lifshitz invariant, for the same material [17]. An antiferromagnetic vector L

r
 

characterises the BiFeO3 spin structure. The Landau-Ginzburg energy density [3] of the spin structure 
is the following sum of four terms:  

 ( ) ( ) DM
z,y,xi

zuizyyzxxS,z

MEuexchL

HELKLALLLLP

fffff
rr

⋅β−−∇+∇+∇α−=

=+++=

∑
=

22  (2) 

The first term Lf  in Equation 2 is the magneto-electric coupling as a Lifshitz invariant, where S,zP  

is the z-component of the spontaneous polarization vector, and α  is the inhomogeneous relativistic 
exchange constant (inhomogeneous magneto-electric constant). The Lifshitz invariant is the 
responsible for the spatially modulated spin structure in BiFeO3, as shown in Ref.16. The second term 

exchf  in (2) is the inhomogeneous exchange energy, where A  is a stiffness constant. In the third term, 

Ku is the uniaxial anisotropy. MEf  is the coupling of an external electric field E
r

 with a spatial uniform 
inner field LdHDM

rrr
×= , where ( )zP,,d 00=

r
, and β the homogeneous magneto-electric constant. This 

term is originated from a magneto-electric-like DM interaction.  
The first term of the free energy can be rewritten, using the following vector: 

( ) ( )LLLLA
rrrrrrr

∇⋅−⋅∇=  (3) 

in the form: 



Materials 2009, 2              
 

 

677

 APf SL
rr

⋅α−=   (4) 

as a scalar product of two fields. In our paper [16], we investigated the influence of an electric field on 
the spatially modulated spin structure (SDW state). The electric field has a tendency to prefer a 
homogeneous state and to induce a phase transition to this state. In that paper, we used the analogy 
with nematic liquid crystals to study magnetic materials. Here, we want to enhance the analogy of 
liquid crystal interactions with the two form of the Dzyaloshinskii-Moriya DM interaction. 

 
3. The Flexoelectricity in Liquid Crystals 

 
Let us consider a nematic liquid crystal and assume as order parameter the director field nr , 

describing the local mean orientation of molecules. This is usually a unit vector. Vector A
r

 can be used 
in nematics too, rewritten in the following form: 

 ( ) ( ) nrotnndivnnnnnA rrrrrrrrrrr
×+=∇⋅−⋅∇=  (5) 

Vector A
r

 in Equation 5 is well known in the physics of liquid crystals. A
r

 is encountered in the 
structure of flexoelectric contribution to bulk free energy as EPf Flexo

rr
⋅−= . Flexoelectricity is a 

property of liquid crystals similar to the piezoelectric effect. In certain anisotropic materials, which 
contain molecular asymmetry or quadrupolar ordering with permanent molecular dipoles, an applied 
electric field may induce an orientational distortion. Conversely any distortion will induce a 
macroscopic polarization within the material. The polarization vector P

r
 in the flexoelectric term is 

then described with a distortion in the nematic director field: 

( ) ( ) nrotnendivnennenneP BSBS
rrrrrrrrrrr

×+=∇⋅−⋅∇=  (6) 

The two terms in the polarization vector are due to the splay and the bend contribution. The 
coupling of the polarization P

r
 with an external electric field results in the appearance of a periodic 

distortion of an initial planar orientation of the nematic cell [18]. Meyer showed that the infinite liquid 
crystal must be disturbed, the perturbation is periodic along the director orientation and the period is 
inversely proportional to electric field strength [19]. This is not surprising because the polarization 
vector P

r
 has the same structure of vector A

r
 in Equation 5. 

In flexoelectricity, the polarization is induced by a deformation of the director field. Let us 
remember that in the piezoelectric materials, an applied uniform strain can induce an electric 
polarization or vice versa. Crystallographic considerations restrict this property to non-
centrosymmetric systems. A strain, which is not uniform, can potentially break the inversion symmetry 
and induce polarization in non-piezoelectric materials. While the conventional piezoelectric property is 
different from zero only for certain select materials, the non-local coupling of strain and polarization 
could be potentially found in all dielectrics [20]. As a result, we find that the coupling with an external 
field gives the Lifshitz invariant as a DM non homogenous coupling for the electric field with the 
Lifshitz vector. 
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4. Periodic Distortions in Nematics 
 
Let us discuss more deeply the Meyer result [18,19] of a periodic distortion in the infinite medium. 

The free energy density is given by: 

( ) ( ) ( )[ ] ( )nrotnndivnEenrotnnrotnndivKf rrrrrrrrrr
×+⋅−×+⋅+= 222

2
1

 (7) 

in the uniform elastic approximation, with K elastic constant, and with the dielectric anisotropy 
negligible. Moreover we assume eee SB ≈≈ . Let us consider the director nr  in a uniform 

configuration, as a vector parallel to x -axis and the electric field E
r

 parallel to z -axis as kEE
rr

= , 
where k

r
 is the unit vector of z-axis. Angles θ  and φ  are shown in the Figure 1. 

The components of director nr  are θsinn,nθ,cosn zyx === 0 , if 0=φ . Let us consider a 
deformation of nr  depending on x , to see what happens. In fact, we want to give just a very rough 
approach to the problem. In the case of an infinite nematic medium without deformations of the 
director, the free energy density is zero. If we had a tilt angle variation of the form KxEeθ −= , we 
should have a periodic deformation of director nr .  

 
Figure 1. The frame of reference and the angles used to describe the director, represented 
by the rod-like molecule. 

 
 
The free energy density, including the flexoelectric term, is:  

0
2
1

2
1 22

<−=
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
K
Ee

x
θEe

x
θKfdistorted  (8) 

Then, a periodic distortion in a non-confined nematic is possible because it has a free energy 
density lower than that possessed by the uniform configuration. There is not a threshold for the electric 
field, since the existence of a threshold is a consequence of the medium confinement.  

Let us imagine a nematic material confined in a cell composed by two plane walls, parallel to [x,y] 
plane, at a distance d. The anchoring conditions must be included in the energy balance. We can 
assume a surface energy density of the Rapini-Papoular form θcosWf 2−= , for a surface treatment 
favouring a molecular alignment parallel with the x -axis. If the director field nr  is uniform in the 
planar alignment, Wf −= . Let us choose, as in Ref. [18], the behaviour of the tilt angle in the form 
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KxEαθ −= , with α , a coefficient with dimensions lengthcharge . The free energy density is given 
as in Equation 8. 

Integrating the free energy density on the cell volume LdV Λ= , where d is the cell thickness, L a 
fixed length in y-direction and Λ  the director distortion wavelength along the x-direction, we obtain: 

LWe
K

LdEFdistorted Λ−⎥⎦
⎤

⎢⎣
⎡ α−α

Λ
=

2
1

2
1 22  (9) 

The last term in (9) is the surface energy contribution. In the case of a uniform director field, we 
have a total energy as LWFuniform Λ−= . The behaviour of the two free energies uniformdistorted F,F  is 

given in Figure 2: we can see the existence of a threshold field *E .  
 

Figure 2. Comparison of the free energy behaviours in the case of the uniform 
configuration and for the distorted one. 

 
 
If the electric field has a value *EE < , the stable configuration of the director field is that with 

lower energy, in this case, when the director field is uniform. When *EE > , the stable configuration 
is the distorted one. 

Comparing the two values of the total energy, that is:  

uniformdistorted FF ≈ ,  (10) 

we can approximately find the threshold electric field as:  

( ) KWded*E
22

1 22 −=⎟
⎠
⎞

⎜
⎝
⎛ α−α   (11) 

where ( ) 022 <α−α de/d , to have a real electric field:  

( )
α−α

=
e

K
d
W*E

22
2  (12) 

The threshold field has a value:  
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2
1

2

2
1

2
⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−αα
=

da
KW

ed
KW*E  (13) 

where e2<α . Estimating ( ) 22 2 eea ≈−αα=  and assuming the parameter values 2410 mJW −= , 

NK 1110−= , md μ= 10 , m/Ca 1110−=  we find a threshold voltage of Volt10≈ .  
 

5. The Chiral Nematic and the Smectic Phase 
 
Much research has taken place in the field of liquid crystals to find ferroelectric materials, from the 

earlier studies on the smectic phases till the more recent banana-like materials [20-23]. The smectic 
phases are organised in layers. There are three main smectic phases: A, C and C*. In the smectic C 
(SmC) phase the director nr  is tilted by a fixed angle, with respect to the layer normal νr . The chiral 
smectic (SmC*) phase shows in addition an intrinsic twist of the director from layer to layer. The 
symmetry breaking 22 CC h →  allows molecular electric dipoles to form a spontaneous electric 

polarization P
r

, which lies in the smectic planes. The macroscopic polarization vanishes in the SmC* 
phase, but an electric field parallel to the layers can distort the helicoidal structure, disfavouring SmC* 
and leading to a phase with a macroscopic polarization. In the Landau theory of smectic liquid crystals, 
the free energy is expanded in two order parameters: the projection nr of the director onto the smectic 
layer plane and the layer polarization P

r
 [24]. The chiral term, responsible of the SmC* phase has in 

[20] the structure: 

( )xzyyzxL nnnnDF ∇−∇−= 2  (14) 

This term has in fact a Lifshitz-like structure, if we consider the layer normal νr , parallel to the  
z-axis: 

 ( ) ( ) ( )[ ] ( ) [ ]nrotndivnDnnnDFL
rrrrrrrrrrrrrr

×ν+ν⋅ν×−=∇⋅ν−⋅∇ν⋅ν×−= 22 . (15) 

We can identify this expression as a pseudoscalar inhomogeneous Dzyaloshinskii-Moriya 
interaction, which does not involve an external field but a fixed direction in the space, that is the vector 
ν
r  normal to the smectic layer. 

Chiral molecules can also form nematic phases called chiral nematic phases or cholesteric phases. 
The phase shows a nematic order, with the director rotating throughout the sample. The axis of this 
screw is normal to the director. The distance over which the director rotates by π2  is the chiral pitch, 
generally of the order of the wavelength of visible light. 

If the nematic phase is composed of chiral molecules, all of the same chirality, the material  
does not have symmetry planes and then the free energy has, according to Landau and Lifshitz, a 
pseudoscalar term: 

nnbFchiral
rrv ×∇⋅= . (16) 

This is the pseudoscalar of the DM interaction as in Ref.4, and introduced in Sect.2. If we consider 
the vector νr  as the direction of pitch, then the director nr  lies in a plane perpendicular to it and then 
Equation 16 can be rewritten as: 
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( ) ( ) ( )[ ]nnnbFchiral
rrrrrrrr
⋅∇⋅ν−⋅∇ν⋅ν×=   (17) 

with the same structure that we encountered in the smectic term originating the helix. 
 

6. The Saddle-Splay Elasticity at Surfaces 
 
In nematics, a more general form of the distortion free-energy density, in the framework of the 

usual first-order continuum theory, is given as: 

 ( ) ( ) ( ){ } ( ) [ ]nrotnndivndivKKnrotnnrotnndivKf rrrrrrrrr
×++−×+⋅+= 24

222

2
1

 (18) 

where K  is the bulk elastic constant in the case of elastic isotropy. The last term is the contribution of 
the saddle-splay elasticity. This contribution is not usually inserted in the bulk free energy, because it 
becomes a surface contribution when integration is performed on the cell thickness [25,26]. The 
saddle-splay contribution is then a Lifshitz invariant of the surface energy:  

( ) [ ]nrotnndivnKKfsurface
srrrr

×+⋅ν+−= 24  (19) 

if νr  is the unit vector of direction perpendicular to the surface containing the nematic material. This 
term has the same form of Lifshitz scalar product in Equation 4. 

In addition to the anchoring energy, which is the anisotropic part of surface tension, there is an 
elastic contribution, which has been originally indicated as a part of the bulk elastic energy in the form 
of a divergence [27-29]. This contribution can be viewed as the elastic part of surface energy 
depending on the tangential gradient of director. The 24K  term may induce spontaneous twist 
deformations in hybrid nematic films with azimuthally degenerate anchoring conditions. Such 
deformations are manifested in the formation of periodic stripe domains observed in sufficiently thin 
hybrid NLC cells [25,30]. If the anchoring energy is sufficiently small, the Lifshitz term can produce a 
modulated-tilt state has recently shown by Lelidis and Barbero [31].  

The saddle-splay contribution is necessary, when we have to evaluate the elastic contribution of thin 
films or membranes. In 1973, Helfrich studied the energetic cost of a generic sheet in a three-
dimensional space: we can determine, in each point of the sheet, the radii of curvature 1r  and 2r , and 
local curvatures 11 1 rc =  and 22 1 rc = . Curvatures can be positive or negative. Saddle-shaped 
surfaces have curvature that is positive along one principal axis and negative along the other. The 
energetic cost per unit area associated with bending a membrane, as noted by Helfrich [32], is given by 
the sum of two terms, one dependent on total curvature, 21 cc + , and the other on product 21cc : 

( ) 21
2

21 2
2
1 cckccckF GoCS +−+=  (20) 

In this expression, Ck  is the bending (or curvature) modulus and Gk  is the saddle-splay (or 

Gaussian curvature) modulus. These two modules are set by interactions among membrane molecules. 
The spontaneous curvature is denoted by oc . As reported in [33], biological membranes are sheets that 

can be modelled with a continuum elastic approach. These membranes are two-dimensional fluids 
within which proteins diffuse and interact. Membranes can bend and curve, with deformations 
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controlled by proteins and lipids; the converse is also true, it is the structure created by membrane 
curvature can guide the spatial organisation of membrane molecules. Then the membrane can display 
spatial patterning at length-scales far greater than the scale of individual molecules [33]. 

 
7. The Hybrid Cell and the Flexoelectricity 

 
Let us start the discussion of some case studies. The first is on the role of flexoelectricity in hybrid 

nematic cells. A hybrid cell is a nematic cell where a sample is confined between two parallel walls 
with different anchoring conditions. One surface is treated to favour a planar alignment; the opposite 
one is favouring a homeotropic alignment. The cell is then named HAN, that is Hybrid Aligned 
Nematic cell. The hybrid cell we discuss has the y-axis perpendicular to cell walls (see the upper part 
of Figure 3). 

An electric field can be applied parallel to y-axis: we have then jE E
rr

=  where j
r

 is the unit vector 
of y-axis. j

r
 is the homeotropic direction too. The unit vector i

r
, parallel to the cell walls, gives the 

easy planar direction. The bulk free energy density is given, in the elastic isotropic approximation, by:  

( ) ( )[ ] ( )222  
2

    
2
1  nEnrotndivKf o

Bulk
rrrr
⋅

εΔε
−+=   (21) 

where the last term is due to the dielectric anisotropy εΔ  of the nematic. 
 

Figure 3. Frame of reference for the hybrid cell in the upper part of the figure. In the lower 
part, the free energies as a function of the electric field, in the case of planar and 
homeotropic configurations. Note the presence of a threshold. 
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The surface energy in the Rapini-Papoular form can be used: 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅= 22 j n  W i n W f HPSurf

rrrr
 (22) 

at the two surfaces, for d y =  and for 0=y . HP,WW  are energy densities of the surface anchoring. If 
we have a planar cell with surface S, thickness d, and a uniform director configuration in n

rr
= , the 

total free energy is PPlanar S W   F 2−= . If the director configuration is uniform but homeotropic, 
then j n n

rr
=  and the total free energy is the sum of the energy due to the presence of electric field 

and surfaces: HoHom SW  /EΔε ε  F 222 −−= . 
When 0>HP,WW , we have a homeotropic cell; if 0<HP,WW  the cell is planar. Graphically 

comparing (lower part of Figure 3) the energies of the homeotropic and planar cells, we see the 
possibility of an electric threshold field E* : under this value of the electric field, it is favoured the 
planar configuration, over the threshold value, it is the homeotropic configuration that has a  
lower energy.  

In a hybrid cell, the director changes from a planar configuration at one of the cell wall, to a 
homeotropic configuration at the other cell wall. The tilt angle is then depending on y, as a function 

( )yθθ = . The director field is given by: jθsiniθcosn
rrr

+= . 
If the anchoring is strong, the tilt angle is 2πθ =  at 0=y  - homeotropic wall, and 0=θ  at 

dy = - planar wall. In the one elastic constant approximation, we have the bulk free energy density in 
the form:  

 θsin  E
Δεε

  
y
θ K   f o

Bulk
22

2

22
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=   (23) 

and the surface energy density HPSurf WWf −−= . To represent a hybrid configuration in a very rough 

approach, let us simply choose a linear function of the tilt angle with y. Then: 

22
π  

d
y π  θ +−=  (24) 

with 2π  θo =  and  0= θd . Then dπ  yθ 2−=∂∂  and the total bulk energy is: 

 d S E
Δεε

   
d

SKπ  dyθsin S  E
Δεε

  dy 
 y
 θ K S  F o

d
o

d

Bulk
2

2

0

22

0

2

4822
−=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ∫∫  (25) 

Including the surface energy, the total energy is: 

 ( )HP
o

Tot  W W S  S d  E
 
Δεε

   
d

SKπ  F −−−= 2
2

48
 (26) 

Let us compare this expression with the energy of the cell in homeotropic and planar configurations, 
choosing an anchoring energy favouring planar and hybrid configurations under threshold fields:  

H
o

cHomeotropiPPlanar SW  S d E
Δεε

   F;SW  F 2
2

2 2 −−=−=  (27) 
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( )HP
o

Hybrid  W W S  S d  E
Δεε

   
d

SKπ  F −−−= 2
2

48
 (28) 

What is shown in Figure 4(a) is surely possible, because we can adjust the anchoring parameters. 
We observe then two threshold fields: when the field is lower than E' , the nematic is planar, if the 
field is comprised between E'  and 'E' , the cell is hybrid. Over 'E' , the cell is homeotropic.  

 
Figure 4. (a) Behaviour of the free energies of planar, hybrid (HAN) and homeotropic 
configurations, as functions of the electric field. Note the existence of two thresholds for 
the transition between the planar and the HAN configuration and between the HAN and the 
homeotropic configuration. (b) The two curves in grey show how the energy of the HAN 
configuration changes for the presence of flexoelectricity. According the sign of the 
flexoelectric parameter, the threshold field is raised or lowered. 

 
 
As previously discussed, the electric field can be coupled with a polarization arising from an elastic 

deformation in the flexoelectric effect. In planar and homeotropic configurations, because there are not 
deformations of director, the flexoelectric effect is absent, but in the hybrid cell the deformation gives 
a flexoelectric polarization ( )n rot n e n div n e  P BS

rrrrr
×+= , different from zero. Previous investigations 

on the role of this polarization can be found in Ref. 34. 
Let us add the term EP    fFlexo

rr
⋅−=  to the free energy density, which is:  

( )
y
θθ cosθsin E  e e    EP   f BSFlexo ∂
∂

−−=⋅−=
rr

 (29) 

If θ  is given by Equation (24), after integrating on the cell volume, we have the contribution of 
flexoelectricity to the total free energy as: 

( ) E S e e F BSflexo −−=  (30) 

In principle, the coefficient ( )BS e  e −  could be positive or negative, depending on the value of 
splay and bend parameters. The threshold values 'E',E'  are changed from the contribution of the 
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flexoelectricity. They could be lowered or raised by the induced polarization (see Figure 4(b)). The 
thresholds change according to the shape of the molecules. Comparing the thresholds we can estimate 
the values of the coefficients. The two electric field contributions in the HAN cell are:  

( ) E S ee  F; S d E
Δεε

   F BS
o −−=−= 2

2
1 4

 (31) 

If they were of the same order of magnitude, we could obtain: 

 ( ) E dε  ee o
BS 4

εΔ
≈−  (32) 

In the case of a cell with a thickness of mμ10 , a field of mV μ10 , and an electric anisotropy as 
10.=εΔ  we obtain:  

( )
m
pC e e BS 25≈−  (33) 

in agreement with Ref.35 and with other experimental values [36-40]. Recently a giant flexoelectricity 
has been found with bent-core nematics: a peak of mnC35  was measured in these materials then 
more than 3 orders of magnitude larger than in calamitics [41]. In the next section we will study the 
alignment transitions in the nematic cells; such a problem was studied also in Ref.42.  

 
8. The Phase Diagrams of the Hybrid Cell 

 
Let us consider the hybrid cell as in the previous section. We use the same notation here but we 

solve the Euler-Lagrange equation with the proper boundary conditions, by means of an iterative 
procedure previously used in Ref.43, to investigate the ion densities in corona plasma. The Euler-
Lagrange equation is: 

( )  
yθ 

 f
 

 y
  

 θ
 f BulkBulk

∂∂∂
∂

∂
∂

=
∂

∂
 (34) 

and: 

( )2
2

22
θsinE 

Δεε
 

y
θK  f o

Bulk −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=  (35) 

that is:  

 KEΔεεξ;θcosθsinξ 
y
θ

o
222

2

2
0 ==+

∂

∂
 (36) 

and the surface energy density: 

dPoHsurf θsinWθsin W  f 22 +−=  (37) 

where 0>HW  and 0<PW . The boundary conditions are given by the following equations: 
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( ) ( ) dyP
dy

yH
y

θsin W
y
θ K;θsin W

y
θ K =

=
=

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

− 22 0
0

. (38) 

Equation 36 can be rigorously solved with elliptic functions: in Ref.44, the existence of a critical 
thickness for a hybrid aligned nematic cell was predicted in the framework of a rigours solution. 
Nevertheless, numerical solutions and an approximate analytic theory have been already used, when 
studying the existence of flexoelectric instabilities in the case of asymmetric boundary conditions [45]. 
Here, we use an approximate solution to the non-linear problem of the form: 

( ) ( )yθ'yθθ o +=  (39) 

and then Equation 36 can be written as two equations: 

o
o

θsinξ 
y
θ';

y
θ 20 2

2

2

2

2
−=

∂

∂
=

∂

∂
 (40) 

The second equation in (40) is solved in the following iteration: 

j
j

θ~sinξ 
y
θ 22

2

12
−=

∂

∂ +
 (41) 

where joj θθθ~ +=  and oo θθ~ = . Three steps of the iteration are enough to have the solution within 
0.1 %. Then ( ) ( )yθyθθ jo 1++= , where: 

( ) ( ) ( )∫ ∫−=+= +
y y'

jj
o

o dy'dy''y'θ~sinξyθ;yααyθ
0 0

21
1 2  (42) 

The boundary conditions are: 

( ) ( ) 0202 10
0

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
=

=
=

dy
dy

yo
y

θsin b
y
θd;θsin b

y
θd  (43) 

in which we used the dimensionless parameters 1bKdW;bKdW PoH == . From the first equation 

in the boundary conditions (43):  

( ) 02 1 =α+α oo sinbd  (44) 

Once we chose the value of oα , from Equation (44), we have the value of 1α , and then, after 

iteration, the solution 'θθθ o += . To determine the value of oα  we could use the other boundary 

condition, the second in (43); but, in this case, we are facing a strongly oscillating function. It is better 
to determine the value of parameter oα , minimizing the total free energy. Adding the flexoelectricity, 

the term to include in the free energy density is: 

( )
y
θθcosθsinEeef BSFlexo ∂
∂

−−=  (45) 

and, after integration on the cell thickness, we have a further contribution to the surface energy density 
of the form: 
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( ) [ ]doBSFlexo θsinθsinEeeF −−−= . (46) 

This term can be easily inserted in the numerical calculation, to minimize the total free energy. Let 
us introduce the following dimensionless variables and parameter: 

( )
ΔεKε

ee;dξξ;
d
yy

o
BS

2Π −===
))

 (47) 

to illustrate the results of calculations.  
In Figure 5 we can see the phase diagrams of the HAN cell, for a fixed choice of the surface 

parameter 1=ob . We can change the value of parameter 1b  and find the value of the threshold field 

(the electric field is dimensionless represented by ξ
)

).  
 

Figure 5. Phase diagrams of the HAN cell, for a fixed choice of the surface parameter 
1=ob . We change the value of parameter 1b  and find the value of the thresholds of the 

electric dimensionless field ξ
)

. There are three regions in the diagrams where planar, 
homeotropic and hybrid alignments are allowed. The phase diagram is depending on the 
values of flexoelectric parameter Π . Diagram (d) shows the behaviour of a cell when the 
flexoelectric parameter Π  changes. Note that the hybrid configuration disappears when 
flexoelectric parameter is higher than 1.3. 
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There are three regions in the diagrams where planar, homeotropic and hybrid alignments are 
allowed according to the values of the electric field. The phase diagram is depending on the values of 
flexoelectric parameter Π  (see diagrams (a),(b) and (c) in Figure 5). The last diagram (d) shows the 
behaviour of a cell when we change the flexoelectric parameter Π . Note that the hybrid configuration 
disappears when flexoelectric parameter is higher than value 1.3. 

In Figure 6, we see the behaviour of θcos  as a function of the dimensionless variable dyy =)  in 
the case of positive and negative flexoelectric coefficients, for different values of the electric field. 
Note that, as the field increases, the role of surface is suppressed and the angle at the planar surface 
increases. As the electric field is higher than the threshold value, the cell becomes homeotropic and 

0=θcos .  
 

Figure 6. Behaviour of θcos  as a function of the reduced cell thickness dyy =)  in the 
case of positive and negative flexoelectric coefficients, for different values of the 
dimensionless electric field (some values are reported on the curves). Note that, as the field 
increases, the role of surface is suppressed and the angle at the planar surface increases. As 
the electric field is higher that the threshold value, the cell becomes homeotropic and then 

0=θcos . 

 
To conclude this section on HAN cells, let us remember that we have another Lifshitz invariant, 

that gives the saddle-splay contribution to the surface free energy density, in the form: 
( ) [ ]nrotnndivnvKKf splaySaddle

rrrrr
×+⋅+−=− 24 . In the hybrid cell alignment, where only the tilt angle 

is displayed by the elastic distortion, this contribution is zero. We will see in the last section of the 
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paper, how this term produces a periodic distortion and how the PHAN - the Periodic HAN - texture 
appears. The fact that the saddle-splay contribution is zero in the HAN configuration, is in agreement 
with the conclusion that in the same configuration the flexoelectric contribution 

[ ]nrotnendivneEf BSFlexo
rrrrr

×+⋅−=  is zero too, when BS ee = . As we saw in Sect.4, it is the periodic 
distortion to origin a contribution different from zero, if BS ee = . 

 
9. Nematics in Cylindrical Geometry 

 
Let us consider a cylinder with radius R . In this cylindrical cell we imagine to insert a nematic. We 

use the frame as in Figure 7 and solve the Euler-Lagrange equation in cylindrical coordinates.  
 

Figure 7. Cylindrical cell and frame of references on the left and on the right the angles of 
director chosen for calculations. 

 
 
Let us consider θ(r)θ = , only depending on the radial distance, and moreover, 0=φ . The Euler-

Lagrange is: 

( )  1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂∂

∂
∂
∂

=
∂

∂
rθ 

 f
r 

 r
 

r
 

 θ
 f BulkBulk  (48) 

The bulk density energy is given by: 

( )22

22

2
2

2
θcosE 

Δεoε 
r
θ

r
θcosθsin

r
θsin

r
θK f  Bulk −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

++⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  (49) 

and then the Euler-Lagrange equation turns out to be:  

 1 222
2 KEΔεoεξ;

 r
 θr 

 r
 

r
θcosθsinξ 

r
θcosθsin

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=+  (50) 

The surface energy density is: 

RPRHSurf θsinWθsin W  f 22 +−=   (51) 
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where 0<> PH W;0W . For an anchoring, which favours an homeotropic alignment of the nematic 
perpendicular at the wall of the cylinder, we use: 

RH Surf θsin W f 2−=  (52) 

If we want to avoid the presence of a defect at the axis of cylinder ( −z axis), the director must 
escape in the −z direction. The solution, if the applied electric field is zero, is given by an inverse 
tangent: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛= −

R
rβtanrθo 12  (53) 

where 1=β , for a strong anchoring at the cylinder wall. This is a well-know solution due to Belavin 
and Polyakov [46]. To solve the equation in the case of electric field different from zero, we choose a 
solution as: 

( ) ( ) ( )r'θrθrθ o +=  (54) 

The use of an approximate solution could be questionable. Nevertheless, linearization and 
approximation of Belavin-Polyakov equation are reported in the literature [45,47]. Using (54), we have 
two equations to solve: 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=

 r
' θr 

 r
 

r
 θcosθsinξ

 r
 θr 

 r
 

r
 

r

θcosθsin

oo

ooo

1

1
2

2

 (55) 

The second equation can be solved with iterations. At the fourth step of iteration the solution is 
within 0.1%. In the following way, we have:  

joj
j

jj θθθ~;
 r

 θr 
 r

 
r

 θ~cosθ~sinξ +=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=
+1

2 1
 (56) 

Actually, we arrive at the following solutions: 

( ) ( ) ( ) ( )∫ ∫=⎟
⎠
⎞

⎜
⎝
⎛= +−

r r''
r'dr'r'θ~cosr'θ~sin

r''
dr''ξrθ;

R
rβtanrθ jjjo

0 0
2 211  (57) 

and then at final solution ( ) ( ) ( )rθrθrθ jo 1++= . To determine the value of parameter β  we choose the 
solution minimizing a reduced total free energy: 

∫ +=
d

SurfBulk
Bulk fdrrf
πRL

F

02
 (58) 

where L  is an arbitrary length of the cylindrical cell. 
Let us then consider the contribution of flexoelectricity to Euler-Lagrange equations: 
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( ) ( )
r
θsinEee 

rθ 
 f

r 
 r

 
r

 
 θ

 f
BS

FlexoFlexo
21

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂∂

∂
∂
∂

−
∂

∂
 (59) 

We use again ( ) ξ=− ΠEee BS  and KWRb =  as parameters. The equation to solve is: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=+
+

 r
 θr 

 r
 

r
 

r
θ~sinξθ~cosθ~sinξ

jj
jj

12
2 1Π  (60) 

instead of Equation (56). Figures 8 and 9 show the results of calculations for different values of 
anchoring and flexoelectric coefficients. In the Figure 8 we can see the angle θ  as a function of the 
reduced radial distance Rr , for two values of the flexoelectric coefficient, 0=Π  and 1. The figure 
shows the behaviour in the case of different values of anchoring parameter b and of dimensionless 
electric field parameter Rˆ ξ=ξ . As the electric field is higher that a threshold value, angle θ  goes to 
zero and the director field is parallel to cylinder axis in all the cell. The following Figure 9 shows 

θcos  as a function of reduced radial distance Rr , for different values of Π  and ξ̂ . In this case, the 
value of the anchoring strength is fixed. Note that a negative value of the flexoelectric parameter is 
strongly favouring the alignment of the director parallel to cylinder axis, and then we find a low value 
of the threshold electric field. If flexoelectric parameter Π  is positive and large, the distorted 
configuration is favoured, and the threshold field required for suppressing this configuration is 
increased. Moreover, if the flexoelectric parameter is large, as in the lower image in Figure 9, angle θ  
starts to oscillate as the field increases. We must have a huge electric field to suppress the oscillating 
distortion and have 0=θcos , with all the nematic aligned parallel to the field, in a uniform 
configuration.  

In Figure 10, the phase diagrams are shown, when anchoring parameter b is fixed and equal to 6. 
We see three regions, denoted by: U for uniform alignment of director parallel to z-axis, D if the 
director has a deformed configuration, and O when the director is oscillating and cosine becomes 
negative too. Angle θ  turns more than 2π  on the distance R. As told before, giant flexoelectric 
coefficients are possible and then the oscillation could be experimentally tested in cylindrical cells. 

A last note on the flexoelectric term. The flexoelectric vector is a sum of two contributions: 

( )

( ) ( ) tRenDeuθsinuθcosReuθcosuθsinDe

n rot n  en div n e  P

BSzrBzrS

BS

rrrrrr

rrrrr

+=+−++=

=×+=

 (61) 

where ( )φnrot , Rndiv D rr
== . These two components which are perpendicular each other: when they 

are coupled with the electric field, parallel to the cylinder axis, we have then the two contributions in 
bulk energy with an opposite sign.  

To conclude this section, let us discuss the saddle-splay contribution to the free energy, that is: 

( ) [ ]nrotnndivndivKKf splaySaddle
rrrr

×++−=− 24  (62) 

In the previous assumptions, ( ) 0== ,φrθθ , splaySaddlef −  is simply renormalizing the value of the 

surface energy and then we do not further discuss it.  
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Figure 8. Behaviour of θ  as a function of the reduced radial coordinate Rr  in the case of 
flexoelectric coefficient Π  equal to 0 and 1, for different values of the anchoring 
parameter b and dimensionless electric field (some values are reported on the curves). As 
the electric field is higher that a threshold value, angle θ  goes to zero, that is the director 
field is parallel to the cylinder axis. 
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Figure 9. Behaviour of θcos  as a function of the reduced radial coordinate Rr , for 
different values of the flexoelectric coefficient Π  and of the dimensionless electric field 
(some values of ξ

)
 are reported on the curves). The value of the anchoring strength is fixed 

in all the figures. Note that a negative value of the flexoelectric parameter is strongly 
favouring the alignment of director parallel to cylinder axis, and then the threshold electric 
field is very low. If the flexoelectric parameter is positive and large, the distorted 
configuration is favoured, and the threshold field, needed for suppressing this configuration, 
is increased. As shown in the lower part of the figure, when Π  is very large, θcos  is 
oscillating as the electric field increases. A very large field is required to suppress the 
distortion and have 0=θ . 
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Figure 10. Phase diagram of the cylindrical confinement, when the anchoring parameter b 
is fixed and equal to 6. The three regions are denoted by U for the uniform alignment of 
director parallel to the cylinder axis, D when the director has a deformed configuration, 
and O if director is oscillating and cosine becomes negative too. 

 
 

10. The Saddle-Splay Contribution and the PHAN Cell 
 
Sometimes, it is possible to note a periodicity in the HAN cells observed by the polarised light 

microscope. Because of this periodic configuration, the cell is in the PHAN configuration, that is a 
nematic cell with a period hybrid alignment. Two angles describe the PHAN configuration: θ and φ. 
The last angle is formed by the projection of the director in the plane of the cell with the x-axis.  

The free energy density is that by Nehring and Saupe, and given by Equation (19). The frame of 
reference is [ ]xyz , with [ ]xy  the cell plane and −z axis perpendicular to the cell plane. The 
homeotropic wall is at z0 = 0, where z is the axis perpendicular to the cell plane. The planar wall is at 
z1 = d, where d is the thickness of the cell. The easy-axis of the planar alignment is chosen coincident 
with the x-axis. The director nr  is described as:  

 senθkθ cosφ sin j θ cosφ cosin
rrrr

++=  (63) 

The Euler-Lagrange equations are non-linear. They were solved in Ref.25, with a numerical 
approach to determine the threshold thickness of the cell between the planar and the PHAN. Here, we 
want to grasp the role of the saddle-splay contribution, with just simple calculations. Let us then 
consider the tilt angle θ  depending on z, and the φ angle depending on x, in the following way:  

( ) ( )
Λ

xπ  xφ;
d
π z  zθ 2
2

==  (64) 

The tilt is zero if 0=z , and it is 2π  at z = d. With Λ we denote the wavelength along −x axis. 
The free energy density is: 
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⎥
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⎡
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⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= φ sinθ cos

dΛ
 π φ  sin

Λ
 π  

 d
π K   f Elastic

2
2

2
22 22

22
 (65) 

Let us integrate on the volume DdV Λ= , where D  is a fixed distance on −y axis. We have:  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛Λ=

22 2
2
1

22 Λ
 π 

 d
πdD  K  FElastic  (66) 

Neglecting the anchoring with respect to φ, and assuming just tilt anchoring, with a surface energy 
density of the form: 

2
zSurf  W n   f −=  (67) 

where PWW =  for planar anchoring with 0=θ , and HWW =  at the homeotropic anchoring 2πθ = . 
After integrating on surfaces of the cell:  

( ) D Λ W W  F HPSurf  +−=  (68) 

and then the total free energy is: 

( ) D Λ W W   
Λ
 π 

 d
πd  ΛDK F HP +−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

22 2
2
1

22
 (69) 

Let us evaluate the saddle-splay contribution to free energy density, using Equation 4 of Ref.25, 
that here reduces to: 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡−+=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−+=− Λ
 ππKκ   

 x
 φθK κ  f

H
HsplaySaddle

2
2

1212 44  (70) 

where KK  κ 244 = ; after integration on a surface DS Λ= , we have:  

( )  D K πκ   F splaySaddle
2

412 +−=−   (71) 

The total energy is then:  

( ) ( ) D Kπ κ   DW W  
Λ
 d DKπ

d
 DΛKπ  F HPPHAN

2
4

22
12

8
+−Λ+−+=   (72) 

Comparing with the free energy of HAN configuration: 

 HANPHAN FF ≈   (73) 

and after simple calculations we find: 

( ) 0
8
112 2

4
2 =−Λ+−  Λdκ     d   (74) 

Neglecting the last term, we find a threshold value for the cell thickness: 

( )412 κΛ  dc +≅   (75) 
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If cdd > , then we find a HAN configuration, but if cdd <  the modulated PHAN texture is 

displayed in the cell. In Ref.25, we can see the experimental observation of thickness threshold in a 
nematic sample. This is just a rough discussion on the role of saddle-splay contribution in producing 
periodic instabilities, but enough to understand the origin of a threshold thickness in the sample.  

Let us remember that ( ) [ ]nrotnndivnvKKf splaySaddle
rrrrr

×+⋅+−=− 24  is a Lifshitz invariant, with 

the same structure of flexoelectric contribution [ ]nrotnendivneEf BSflexo
rrrrr

×+⋅−=  when BS ee = . 
We could imagine a surface contribution of the form [ ]nrotncndivncvf BSsplaySaddle

rrrrr
×+⋅−=− , 

where coefficients are different. This could increase the variety of observable configurations. 
 

11. Conclusions 
 
This paper is divided in two parts. In the first we have discussed the analogies among Lifshitz 

invariants in magnetic materials and liquid crystals. We saw that the structure of these invariants is the 
same, and that they are producing periodic instabilities in both cases. In the Lifshitz invariant, the 
interaction is between an external action and the order parameter, in a form that contains the gradient 
of order parameter. The external action can be an electric field applied to the bulk, and in this case the 
relevant effect is the flexoelectricity, or the confinement due to free surfaces or cell walls. The Lifshitz 
invariant related to surfaces gives the saddle-splay contribution to surface energy.  

In the second part of the paper we discussed in depth the role of flexoelectricity in the case of 
confined nematics. We performed detailed calculations in the case of planar and cylindrical geometry. 
Phase diagrams are also shown, to see the alignment phase transitions due to electric field and the role 
of flexoelectric parameter.  
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