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Abstract: Recently, a noncentrosymmetric crystal, KNaNbOFs, has attracted attention due to its
potential to present piezoelectric properties. Although «- and 3-KNaNbOF;5 are similar in their
stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very
different properties. This paper presents, from first-principles calculations, comparative studies of
the structural, electronic, piezoelectric, and elastic properties of the oc and the 3 phase of the material.
Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe
its acoustic prosperities. These results may benefit further applications of KNaNbOFs.
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1. Introduction

Global innovations in electronic devices are driving the demand for new piezoelectric materials
with improved properties. These materials are of great importance for a variety of technological
applications including the production and detection of sound, the generation of high voltages,
positioning in scanning probe microscopes, and the implementation of second harmonic generation
(SHG) devices [1]. Moreover, piezoelectric materials are also known as the “smart” components
in radiation environments, especially in the nuclear industry. During the past several years,
piezoelectric technology has been revolutionizing sensing in reactor and waste vessel environments
for the control and safety protection of nuclear reactors [2,3]. Piezoelectric sensing is important to
the measurement of many control variables, such as temperature, pressure, flow, and neutron flux.
The importance of piezoelectricity in these areas demands the search for novel piezoelectric materials
of different varieties with better performances.

A noncentrosymmetric crystal, KNaNbOFs, has been proposed as a candidate piezoelectric
material. It has exhibited many interesting and intriguing properties. Firstly, oxy-fluoride perovskite
is not a common piezoelectric structure [4] compared to the well-known perovskite materials with the
general formula ABOj [5-8]. The piezoelectric mechanism in KNaNbOFs is very special. The oxygen
and fluorine atoms can co-exist in one framework, [NbOFs]>~. In this framework, each Nb is
surrounded by five fluorine anions and one oxygen anion. These atoms form a distorted octahedron,
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where the distortion is caused by the different bond lengths to the centric Nb>* ion. Thus, a net dipole
is generated by the Nb>* ion moving from the center of the O-F cage to the oxygen side. Secondly,
KNaNbOFs is also a triboluminescent material. It was reported that strong triboluminescence can
be visible to the naked eye under normal lighting conditions [9]. Last but not least, KNaNbOFs
has attracted great interest due to its polymorphism [10,11]. For the same identities of the cations
and anions, KNaNbOF;5 has two different phases that exhibit very different behaviors. One phase,
the a-KNaNbOFs5, is a polar noncentrosymmetric polymorph [12]. The crystalline KNaNbOF5 was
first synthesized by Antokhina et al. [13]. However, the crystal structure was not verified at the time.
The details of the atomistic structure in the x-phase were reported by Poeppelmeier et al. several years
later [12]. The other phase, 3-KNaNbOFs, is centrosymmetric [10,14]. This phase was introduced for
the first time by Vasiliev ef al. [10]. Experimentally, both polymorphic phases can be made from
similar combinations of starting materials. The key difference comes from the different K:Na ratio in
the synthetic route. The x-phase occurs when the ratio of K:Na is greater than 1:1, while a smaller ratio
results in the B-phase. Although the - and p-phases of KNaNbOFs have the same stoichiometry,
the same polar structure of the framework [NbOF5]?~, and very similar synthetic routes, they have
very different properties.

In order to gain a comprehensive understanding of the physical properties of KNaNbOFs5,
detailed investigations are desirable. In this paper, employing the density functional theory (DFT),
detailed computational studies of the electronic, mechanical, piezoelectric, and acoustic properties
of KNaNbOF; are carried out for both the « and 3 polymorphic phases. The property differences
between the two phases are compared and discussed in detail.

2. Theoretical Method

The DFT calculations are performed with the Vienna Ab initio Simulation Package (VASP) [15].
The electron-ion interactions are represented by the projector augmented wave (PAW) method [16].
The electronic exchange correlation energy is treated using the generalized gradient approximation
suggested by Perdew, Burke, and Ernzerhof (GGA-PBE) [17]. The wave functions are expanded
on a plane wave basis with kinetic energy cutoff set to 600 eV. The Brillouin zone is sampled on
a mesh of 6 x 10 x 8 k-points within the Monkhorst-Pack scheme [18] for &«-KNaNbOF5, and a
10 x 10 x 8 k-point mesh for 3-KNaNbOFs5, respectively. The results of the total energy and the
Hellmann-Feynman forces are convergent within 10~4 meV and 1 meV /A, respectively.

It has been reported that the [NbOFs]>~ polar structure results in the special piezoelectric
properties of KNaNbOF5 [12]. In order to describe this special structure, some parameters are used to
describe the distorted octahedral [NbOF5]2~ [19]. The Baur’s distortion index D [20], based on bond
lengths, is defined as:

D =

S| =

=1
Z | 1 l uv| (1)
i=1
where [; is the distance from the central atom to the ith coordinating atom, and [, is the average bond
length. The quadratic elongation, <A> [21], is defined as:
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where [y is the center-to-vertex distance of a regular polyhedron of the same volume. <A> is a
dimensionless quantity that provides a quantitative measurement of the polyhedral distortion in a

crystal, independent of the polyhedral size. The bond angle variance, o3 [21], is calculated by:
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where m is (number of faces in the polyhedron) x 3/2, ¢; is the ith bond angle, and ¢ is the ideal
bond angle for a regular polyhedron.

3. Results and Discussion

The noncentrosymmetric a-KNaNbOF5 belongs to the orthorhombic system with the space
group Pna2;, while the centrosymmetric 3-KNaNbOFj5 is a tetragonal system with a space group of
P4/nmm. The lattice parameters in [10,12] are: a = 11.8653(11) A, b = 5.8826(6) A, ¢ = 8.1258(8) A
for a-KNaNbOFs; a = 5.9352(2) A, ¢ = 8.5487(5) A for p-KNaNbOFs, respectively. Starting from
these experimental parameters, the structures in our calculations are obtained by minimizing the
total energy.

3.1. Atomic Structure and Bonding Properties

Orthorhombic (x-) and tetragonal (3-) KNaNbOFs5 are investigated both within the local density
approximation (LDA) and the generalized gradient approximation (GGA-PBE). Our estimations of
the lattice parameters are listed in Table 1, with LDA, PBE, and experimental results listed for
comparison. It is well known that LDA lever calculations usually underestimate and GGA-lever
calculations overestimate the lattice constants, which also occurs in our calculations. Since the PBE
lattice constants of the (3 phase are closer to the experimental values (the error is around 1.47%-1.77%),
the PBE function is used for further calculations.

Table 1. The calculated lattice constants and the unit-cell volume in «- and (-KNaNbOFs.
Aa, Ab and Ac are the relative errors of the calculated lattice constants compared to the experimental
values. LDA = Local density approximation; PBE = Perdew, Burke, and Ernzerhof approximation;
Exp. = Experimental values.

Phase Method  a(A) b (A) c(A) Volume (A3) Aa (%) Ab(%) Ac(%)

Exp.[12] 11.865 5.883 8.126 567.171 - -
a-phase LDA 11.643 5.779 7.994 537.880 —1.87 —-1.76 —1.63

PBE 12.098 5.982 8.300 600.777 +1.96 +1.70 +2.15

Exp. [10]  5.935 5.935 8.549 301.142 - - -
[-phase LDA 5.816 5.816 8.385 283.629 —2.01 —2.01 -191
PBE 6.040 6.040 8.674 316.502 +1.77 +1.77 +1.47

It can be found that - and 3-KNaNbOFs are very similar to each other, as shown in
Figure 1. Both crystal structures consist of [NbOFs] and [NaOFs] octahedron sharing vertices to form
three-dimensional networks, with the K atoms occupying the interstitial sites. In the framework of
[NaOFs] and [NbOFs5], the Na and Nb atoms are coordinated by five F and one O atoms in a distorted
octahedral arrangement. There are also obvious differences between them in crystal structure. Firstly,
in a-KNaNbOFs5, the alternating NbOFs octahedra share both vertices and F-F edges, while in
3-KNaNDbOFs, all the NbOF5 octahedra share only vertices. Secondly, the K atoms are coordinated
by six F atoms and one O atom in x-KNaNbOFs5, while the K atoms are coordinated by 8 F atoms in
the 3 phase, without any surrounding O atoms in 3-KNaNbOFs. Thirdly, in «-KNaNbOFs, all the
atoms occupy the Wyckoff positions 4a, while in 3-KNaNbOFs, the K atoms occupy the Wyckoff
position 2a; the Na, Nb and O atoms occupy positions 2¢; and the remaining inequivalent fluorides
occupy two kinds of Wyckoff positions (2c and 8§;j).

In order to make a detailed analysis, the Baur’s distortion index D, the quadratic elongation
<A>, and the bond angle variance 02 can be used to evaluate the distortion of the structure, which are
listed in Table 2. The effective charge for each atom (charge difference after bonding) is determined
using Bader charge analysis [22,23], which is given in Table 3 with the corresponding calculated
atomic positions. It can be found that the calculated values agree well with the experimental data.
From these values, several conclusions can be made: (1) The Na-O and Na-F bond lengths are
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larger than that of Nb-O and Nb-E. Thus, the [NaOFs] occupies a larger volume than [NbOFs];
(2) The bond angle variances, 02, are larger in [NaOFs] than [NbOFs] octahedra, both in «- and
3-KNaNbOFs; (3) The Nb-O bond length in the x-phase (1.776 A) is noticeably longer than that
in the B-phase (1.757 A); (4) The ionic formula of both «- and B-KNaNbOFs can be defined as
K*0-90Na*090NbOF]518%; (5) The effective charges on fluorides are different due to their different
surroundings (—0.791-—0.698 for a-phase, and —0.813——0.708 for 3-phase).

To analyze the electronic structure of KNaNbOFs, the electronic density of states (DOS),
is illustrated in Figure 2. Although there are many differences in the structures between - and
-KNaNbOFs, their density of states is similar to each other, indicating that their bonding characters
are similar. The projected density of states (PDOS) of E, O and Nb are localized, indicating their ionic
characteristics. Both a- and 3-KNaNbOF;5 are insulators with band gaps of about 4 eV. Although
the band gap error is generally not definite due to the PBE approximation, the calculation method
usually underestimates the value in most cases. Thus, it is very probable that the actual band gap is
greater than 4 eV. Further experimental investigations might be necessary to confirm this result. From
the PDOS, we find the peak near the Fermi surface (the top of the valence band) mainly consists of
O-2p, F-2p and Nb-4d states. The —0.4 eV peak is mainly contributed by the F-2p state. Compared
with the PDOS of F, O, and Nb, the PDOS of Na and K are negligible between —5 and 6 eV, as shown
in Figure 2d,e. The bottom of the conduction band is mainly contributed by the Nb-4d states, which
splits into two sub-bands. The peaks at 5.4 eV for the a-phase and at 5.5 eV for the 3-phase should
be the anti-bonding states contributed by O-2p and Nb-4d. This reflects a little covalent characteristic
in the O-Nb interaction.

In order to further reveal the bonding properties of KNaNbOFs, the charge differences between
the crystal charge and the atomic charge are depicted in Figure 3. The positive values mainly locate
on the F and the O atoms, while the negative values mainly locate on the Nb atoms. This charge
transfer indicates that the crystal is held together mainly by the ionic interactions between the Nb
cations and the F/O anions. Moreover, the distribution of electrons gained by O-2p is obviously
asymmetric. The electron charge densities on the O-Nb bond are higher, illustrating a little covalent
bonding characteristic between the Nb and the O. All these results are consistent with our previous
DOS analysis.

Figure 1. The crystal structures of KNaNbOFs in different phases. The purple, golden, green, red and
white spheres are K, Na, Nb, O and F atoms, respectively. The Na- and Nb-centered octahedra are
also shown. (a) The orthorhombic noncentrosymmetric phase of KNaNbOFs5 (x-phase, space group
Pna2;); (b) The tetragonal centrosymmetric phase of KNaNbOF;5 (3-phase, space group P4/nmm).
The crystal axes are also shown for clarity.
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Figure 2. The calculated Density of States (DOS) of «- and 3-KNaNbOFs are plotted in (a), while the
Projected Density of States (PDOSs) of Nb, O and F are plotted in (b,c). The negligible PDOSs of K
and Na are also shown in (d,e) for comparison. The Fermi level is set to zero. The PDOSs of different

atoms are plotted by the same colors as in Figure 1.

Figure 3. Deformation charge density (difference between the crystal charge and the atomic charge
distribution) of KNaNbOFs in (a) the a-phase; and (b) the 3-phase. The yellow and blue isosurfaces
(1.5 x 1072 electrons/Bohr?) correspond to the electron increase and the depletion zone, respectively.

Table 2. The geometric properties of the [NbOF5] and [NaOFs] octahedra of «-NaNbOFs and
B-NaNbOFs, including the average bond length I;, (in A), the polyhedral volume V (in A3),
the distortion index D, the quadratic elongation <A>, and the bond angle variance 0?2 (in degreez).
The values calculated from experimental data in [10,12] are listed in brackets.

Phase Octahedra Loy \% D <A> o?
1.985 10.215 0.036 1.017 48.784
ohase [NbOFs] 1 949 (9.592) (0.034) (1.016)  (44.311)
P [NaOFs] 2.342 16.700 0.020 1.018 58.982
ats (2.300) (15.786) (0.027) (1.019) (63.760)
1.990 10.230 0.039 1.023 65.121
B-phase [NbOFs] 1 944 (9.546) (0.040) (1.022)  (63.543)
p [NaOFs] 2.337 16.663 0.010 1.015 51.677

5

(2.310)  (16.118)  (0.011) (1.014)  (48.468)
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Table 3. The calculated atomic positions for KNaNbOF5; with Pna2; symmetry for the «-phase

and P4/nmm for the -phase, respectively. The calculated lattice parameters are listed in Table 1.

WP refers to Wyckoff position, MP refers to multiplicity, and Q refers to the atomic effective charge.

The experimental data in [10,12] are listed in brackets.

Phase Atom WP MP x y z Q(e)
K a 4 0.0398(0.0385)  0.4685(0.4680) 0.0955(0.0927)  0.903
Na a 4 0.1373(0.1389)  0.9509(0.9533) 0.3401(0.3414) 0.896
Nb a 4 0.8480(0.8492) 0.0407(0.0420) 0.3328(0.3334) 2.796
0 a 4 07219(0.7225) 0.8998(0.9016) 0.2919(0.2940) —0.977
a-phase F1 a 4 0.0023(0.0029) 0.2167(0.2169) 0.3701(0.3700) —0.791
F2 a 4 0.8731(0.8725)  0.1485(0.1472) 0.1093(0.1090) —0.702
E3 a 4 0.9529(0.9527)  0.7849(0.7853)  0.2979(0.2976) —0.720
F4 a 4 0.8595(0.8609)  0.9625(0.9650) 0.5655(0.5650) —0.708
F5 a 4 0.7874(0.7879)  0.3353(0.3356)  0.3956(0.3956) —0.698
K a 2 0.5000(0.5000) 0.5000(0.5000) 0.0000(0.0000) 0.903
Na c 2 0.0000(0.0000) 0.5000(0.5000) 0.2668(0.2660) 0.891
B-phase Nb c 2 0.0000(0.0000)  0.5000(0.5000) 0.7348(0.7351) 2.768
O c 2 0.0000(0.0000)  0.5000(0.5000) 0.5322(0.5351) —0.915
F1 c 2 0.0000(0.0000)  0.5000(0.5000) 0.9891(0.9865) —0.813
F2 j 8 0.2304(0.2295)  0.2696(0.2705) 0.7723(0.7719) —0.708

3.2. Piezoelectricity and Acoustic Properties

The crystallographic symmetry of materials plays an important role in the piezoelectric
phenomena. According to the definition of the piezoelectric effect, the piezoelectric tensor of
o-KNaNbOF;s is:

0 0 0 0 es5 O
0 0 0 e4 0 O 4)
€1 €1 €3 0 0 0

The calculated piezoelectric components of x-KNaNbOF; are listed in Table 4, in which the data
of ZnO are also listed. It is well known that ZnO has good piezoelectric properties, and has been
widely used in filters for incoming television signals [24,25]. ZnO ceramics are also widely used as
varistors for surge protection [26]. Compared with ZnO, the piezoelectric constants of o«-KNaNbOFs5
are much lower.
measurement reported in [9], the calculated piezoelectric stress matrix [e] is converted into the
piezoelectric strain matrix [d] by the relationship [e] = [c][d], where [c] is the elastic matrix. Based on
Tables 4 and 5 the calculated d,3 is 1.5 pC/N, which is lower than the experimental value 6.7 pC/N [9].
Since our calculated lattice parameters, atomic positions, and relative permittivity agree well with
experiments, the errors in the calculated d,3 may originate from three aspects: (1) The experiment
was carried out at room temperature—since finite temperatures are not included in the calculation,
the calculated value of d.3 is smaller than that observed in experiments; (2) The value of 4,3 is sensitive
to the crystal structure—the calculated lattice constants deviate from the experimental values by ~1%,
which affects the evaluation of d.3; (3) Compared to other commonly used piezoelectric materials,
such as BaTiO3 (~190 pC/N) and Ky5NagsNbO3 (~160 pC/N) [9], the d,3 value of KNaNbOF;5 is
much lower. Thus, although the relative error of the calculated d.3 is large, the absolute error is
only 4.8 pC/N. From these values, we can conclude that the piezoelectricity of a-KNaNbOF;5 is not
very strong. This is consistent with the fact that the piezoelectricity of x-KNaNbOFs arises from the
competition between primary and secondary distortions [11,12]. In the centrosymmetric structure of
-KNaNbOFs, the calculated piezoelectric components are all zero as expected from the symmetry of
the crystal.

In order to make a comparison to the experimental piezoelectric response
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Table 4. The calculated piezoelectric tensor elements e¢;; of x-KNaNbOFs. The data of ZnO are listed
for comparison. The piezoelectric components of 3-KNaNbOFs are all zero.

ejj (C/m?) exs eyq ez1 ez €z3
«-KNaNbOFs 0.11 0.12 —0.07  —0.08 0.05
ZnO [27] - —-059 —0.61 1.14 -

Table 5. The calculated elastic constants of the two phases of KNaNbOFs (in GPa).

Phase Cii Cip Ci3 Cxp G Gz Cyg GCs5  Cee

«-phase 509 268 138 512 197 642 110 171 202
B-phase 51.1 25.6 225 - - 63.0 103 - 26.7

In experiments, the ultrasonic wave velocities of certain directions can be measured to obtain
the elastic constant by the Christoffel equation [27,28]. The Christoffel equation for 3-KNaNbOFs is
written as:

(likCxelLj — V) (o) = 0 (j, k = 1,2,3) ©)

where Cg is the elastic constant (from Table 5), [ is the propagation matrix, 8 is the Kronercker sign,
p is the density of crystal, «; is the eigenvector, and V is the velocity of acoustic wave.

Since x-KNaNbOFs has piezoelectric property, the quasistatic approximation is used to
transform the conventional Christoffel equation to the stiffened Christoffel equation. In this
approximation, the effect of the quasistatic electric field is saved. The stiffened Christoffel equation is
written as:

(ex;lj)(lLieir)
li (81‘]‘ — €,‘[S]]€3i) l]
where Cg is the elastic constant (from Table 5), S;; corresponds to the components of the elastic

compliance matrix, p is the density of crystal (from Table 1), w is the phase velocity of the acoustic
wave, « is the eigenvector, e is the piezoelectric stress tensor (from Table 4), ¢ is the dielectric

k2 liK Cgkr +

lL]' &j = pwzoci (6)

constant (from Table 6), and ! is the propagation matrix. All of these values are obtained from the
first-principles calculations.

Table 6. Values of electronic and ionic contributions and total value of the relative dielectric
permittivity (g;;) for a- and 3-KNaNbOFs.

Phase €jj Electronic Ionic Total
Exx 4.05 2.24 6.29

a-phase Eyy 3.70 2.16 5.86
€22 3.68 213 5.81

Exx 4.74 2.03 6.77

-phase Eyy 474 2.03 6.77
€2z 2.51 2.19 4.70

The elastic stiffness (Cky,) defines the resistance of the material to undergo strain under the action
of a mechanical stress within the elastic regime. The orthorhombic (x-KNaNbOFs) and the tetragonal
crystal (3-KNaNbOFs) have nine and six independent elastic constants, respectively. The calculated
elastic constants are listed in Table 5. The relative dielectric permittivities for a-KNaNbOF;5 are
€xx = 6.29, ey, = 5.86 and ¢, = 5.81. For the 3 phase, they are ey = ¢,y = 6.77 and ¢, = 4.70, as shown
in Table 6. These calculated results are close to the experimental measured relative permittivity
(e =7.1) for -KNaNbOF;5 [9].
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For a given direction, three velocities are determined by solving the Christoffel and the stiffened
Christoffel equation. By changing the propagation direction, we obtain the velocity as a function
of propagation direction. Usually, in practice, it is more convenient to use the slowness surface
(the inverse of the velocity). We calculate the slowness curves of KNaNbOFs for both the «- and
B-phases and illustrate them in Figure 4 (for the tetragonal phase, the (010) plane is the same as the
(001) plane). It is clear that there are three acoustic waves in each direction: one quasi-longitudinal
mode and two quasi-transverse modes. The velocities of quasi-longitudinal modes are much larger
than those of the other two in both phases of KNaNbOFs. These acoustic properties of KNaNbOF5
significantly change when a phase transition occurs: (1) For a-KNaNbOFs5, the largest velocity is
the quasi-longitudinal mode along the (001) direction, indicating that the velocity reaches maximum
along this direction, while for 3-KNaNbOFs, the velocity is at a maximum along (110) and (001);
(2) For «-KNaNbOFs, the maximum values of the slowness surface are along (100) and (001),
while for 3-KNaNbOFs;, all the directions in the (001) plane have the same maximum values of
slowness; (3) All the acoustic waves of «-KNaNbOFs are anisotropic, however, in the (001) plane of
-KNaNbOFs, the propagation of the outer acoustic wave is obviously isotropic. This mode is a pure
transverse mode, in which the polarization is normal to the direction of propagation. (4) The slowness
curves are very different on the (100) plane between - and 3-phases.

an ‘-..
" '3';‘.‘ " @

[\
TTHEE '.'.E‘“

)
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U e i b D G e U S
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(e) p-phase (016)/(100)

Figure 4. Slowness curves of acoustic waves for a- and 3-KNaNbOFs. The slowness curves of
«-KNaNbOF5 in (001), (010) and (100) planes are (a), (b) and (c), while those of 3-KNaNbOFs
in (001) and (010)/(100) planes are (d) and (e), respectively. The inner blue circle represents
the quasi-longitudinal wave and the middle green and outer red circles represent the other two
quasi-transverse waves. The units of the slowness values are 107 s/m.

3.3. Mechanical Properties

From the elastic constants (Ck;) listed in Table 5, more elastic-relevant properties can
be obtained. The mechanical stability of KNaNbOFs can be determined by the Born-Huang
criterion [29]. For the x-phase, they are:

C]] > 0, sz > 0, C33 > 0,
C44 > 0, C55 > 0, C66 > 0,
[C11 + C + C33 +2(C12 + Ci3 + Cp3)] > 0,
(C11 +Cx2 —2Cy2) >0,
(C11 +C33 —2Cy3) > 0,
(Co2 + C33 —2C3) > 0

@)
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And for the 3-phase, they are:

C11 >0, C33 > 0, C44 >0, C66 > 0,
Ci1 —Ci2>0,
Cy1 + Cs3 —2C13 >0,
2(C11 + Clz) +C33+4C13>0

®)

The calculated elastic constants listed in Table 5 satisfy the mechanical stability criterion. Using
the calculated elastic constants, we further calculate the bulk modulus, shear modulus, Young’s
modulus, and Poisson ratio to obtain a complete description of the mechanical behavior. The Voigt
and the Reuss approximations [30] are used to estimate the bulk modulus and the shear modulus.

Since «-KNaNbOFs belongs to the orthorhombic structure, the bulk and the shear moduli
(B and G) for orthorhombic structures can be obtained from the general expression of the bulk and
the shear modulus in Voigt-Reuss-Hill approximation. For the Voigt approximation, they are:

By = [(C11 + Ca + Cz3) +2(Ci2 + Ci3 + C3)]/9 )

Gy = [(C11 + Co2 + C33) — (C12 + Ci3 4 C23) + 3(Cag + Cs5 + Cep)]/15 (10)

While by the Reuss approximation, they are:

Br = A/[C11(Cap + C33 — 2Cp3) + C2(C33 — 2Cq3) — 2C33Cy2

(11)
+C12(2Co3 — C12) + C13(2C12 — Ci3) + C23(2C13 — Cp3) ]
Gr = 15/ {4[C11(Cx2 + C33 + C23) + C22(Cz3 + C13) + C33C12
—C12(Co3 + C12) — C13(Ci2 + Ci13) — Co3(Ci3 + Co3)]/A (12)
+3(1/Cya +1/Cs5 +1/Ces) }
A = C13(C12Ca3 — C13Ca2) + Ca3(C12C13 — C23C11) + Caz(C11Can — Coy) (13)

where B and G are the bulk and the shear moduli obtained by Voigt or Reuss approximations,
respectively (with subscripts y or g).
The 3-KNaNbOFs5 belongs to the tetragonal structure. Therefore, the formulas become:

By = [(C11 + Cx + C33) +2(Ci2 + Ci3 + C23)]/9 (14)
Gy = [(C11 + Co2 + C33) — (C12 + C13 4 C23) + 3(Cag + Cs5 + Cep)]/15 (15)
Br = A/[C11(Co + C33 —2Cp3) + C2(Ca3 — 2Cq3) — 2C33C12 (16)
+C12(2Co3 — C12) + C13(2C12 — Ci3) + C23(2C13 — C3) ]
Gr = 15/ {4[C11(Ca2 + C33 + C23) 4+ C22(C33 + C13) + C33C12
—C12(Co3 + C12) — C13(Ci2 + Ci3) — Co3(Cy3 + C3)]/A (17)
+3(1/Cys +1/Cs5 +1/Ceg) }
A = C13(C12Ca3 — C13C22) + C3(C12C13 — C23C11) + Ca3(C11Can — C) (18)

Within the Voigt-Reuss-Hill approximation [30], the bulk modulus B and the shear modulus G
are the average of the values by Voigt and Reuss approximations. The Young’s modulus (E), the
Poisson ratio (v), the velocity of the transverse (V;), the longitudinal (V;) acoustic wave, the average
velocity (V;), and the Debye temperature (©p) can be obtained by:

E = 9BG/(3B + G),v = (3B — 2G) /(6B + 2G) (19)
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1.2 1 71
Vi = /(8B +4G)/3p, Vi = \/G/p, Vu = [5(35 + 3] (20)
t l
1/3

1 Napy ™y, @)

=i lant M )
where & is the Planck constant, kg is the Boltzmann constant, # is the number of atoms in the formula
unit, N4 is the Avogadro number, p is the density of the crystal, and M is the molecular weight. The
constants describing the mechanical behavior of KNaNbOFs in the elastic regime are given in Table 7.

The bulk modulus B of a material determines the resistance to compression under a given
hydrostatic pressure [31]. The shear modulus G describes the resistance of a material to deform
under a shear stress. The calculated bulk modulus of KNaNbOFs is only 31.9-34.0 GPa, which is
much lower than steel (approximately 160 GPa) and comparable to glass (35-55 GPa) [32]. Therefore,
neither - nor 3-KNaNbOFs5 are hard materials. The bulk modulus B is twice the shear modulus,
indicating that the parameter limiting the material’s stability is the shear modulus.

For the application of KNaNbOFs5, the brittle or ductile behavior is of great importance. The ratio
of bulk modulus to shear modulus (B/G) is frequently used to discriminate the brittle properties of
materials [33]. According to the criterion given by Pugh [34], a material is brittle if the B/G ratio is
less than 1.75. Otherwise, it behaves in a ductile manner. In the case of KNaNbOFs, the B/G ratio is
1.99-2.31, indicating that KNaNbOFs is predominantly ductile. Since the B/G ratio of the 3-phase is
larger than that of the a-phase, we predict that 3-KNaNbOF;5 is more ductile.

®p

Table 7. The calculated elasticity-relevant properties of three different phases of KNaNbOFs. The bulk
modulus B and the shear modulus G within the Voigt and Reuss approximation (with subscripts
V and R, respectively) are listed. Based on B and G, the Young’s modulus E, the Poisson ration v,
the acoustic wave velocities (V;, Vi, V), and the Debye temperature ©p are calculated (referring to
Equations (9)—(21)).

Property o-Phase {3-Phase
By GPa) 31.9 34.0
Br (GPa) 31.8 33.8
B (GPa) 31.8 33.9
Gy (GPa) 16.7 15.7
Gr (GPa) 15.4 13.7
G (GPa) 16.0 147
E (GPa) 412 38.6
v 0.284 0.310
V, (m/s) 4253.1 4381.4
Vi (m/s) 23355 2297.3
V, (m/s) 2603.3 2569.3
Op (K) 303.3 2942

At low temperatures, the vibrational excitations arise solely from the acoustic modes of the
phonon spectrum. Hence, the Debye temperature calculated using the elastic constants can be
compared to the experimentally measured values. From Table 7, we find that the «-phase has a
higher velocity of the longitudinal acoustic wave and a lower velocity of the transverse acoustic wave
compared to the 3-phase. The calculated velocity of the longitudinal acoustic wave is 4253-4381 m/s
and the transverse acoustic wave is 2297-2336 m/s. The calculated velocities using the classic Debye
model compare well with the velocities calculated from the Christoffel equation discussed above. The
Debye temperature from the calculated acoustic velocities is 303 K for «-KNaNbOFs and 294 K for
B-KNaNbOFs. If the Debye temperature is low, the thermal conductivity is also low for insulators
in general [31]. Heat is transported by two mechanisms in solids: lattice vibrations (phonons) and
free electrons. Since KNaNbOFs is an insulator, the scattering becomes quite large above the Debye
temperature, making the solid a poor thermal conductor. The Debye temperature of KNaNbOF5
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(294-303 K) is much lower than that of diamond (approximately 2230 K), indicating a poor thermal
conductivity of the material.

4. Conclusions

In this work, we used density functional theory to study the electronic, piezoelectric,
mechanical, and acoustic properties of the recently synthesized KNaNbOFs5 crystal. The bonding
and mechanical properties of x- and 3-KNaNbOFs are very similar. KNaNbOFs is found to present
a strong ionic characteristic with weak covalent bonding. The ionic formula can be defined as
K*090Na*00NbOF]5 180, Both «- and B-KNaNbOFs are insulators with an energy band gap of
about 4 eV. The top of the valence band mainly consists of O-2p, F-2p and Nb-4d states, while
the bottom of the conduction band is mainly contributed by the Nb-4d states, which split into
two sub-bands. The B/G ratio of KNaNbOF5 is 1.99-2.31, which is higher than the critical value
of 1.75, indicating that it is predominantly ductile. The calculated bulk modulus of KNaNbOFs
is only 31.8-33.9 GPa, which is comparable to glass. In contrast, the calculated piezoelectric and
acoustic properties of the two phases are very different. The small values of the piezoelectric
components of x-KNaNbOF; illustrate its poor piezoelectricity compared with ZnO, while the values
of 3-KNaNbOFs5 are all zero, as expected from the symmetry of the crystal. Based on the quasistatic
approximation, the slowness surface of the acoustic waves is calculated so as to describe its acoustic
properties. A pure transverse mode is found in the (001) plane of 3-KNaNbOFs, in which the
propagation of the outer acoustic wave is obviously isotropic. These calculated results are an initial
step towards characterizing the properties of KNaNbOFs.
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