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Abstract: The orthogonal design method was used to determine the optimum conditions for
modifying poplar fibers through a high temperature and pressurized steam treatment for the
subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme
difference, variance, and significance analyses were performed to reveal the effect of the modification
parameters on the mechanical properties of the prepared composites, and they yielded consistent
results. The main findings indicated that the modification temperature most strongly affected the
mechanical properties of the prepared composites, followed by the steam pressure. A temperature
of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the
optimum parameters for fiber modification. Compared to the composites prepared from untreated
fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers
increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites
was also investigated by scanning electron microscopy and dynamic mechanical analysis. When
the temperature, steam pressure, and processing time reached the highest values, the composites
exhibited the best mechanical properties, which were also well in agreement with the results of
the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal
stability of the fibers and the storage modulus of the prepared composites improved; however,
the hollocellulose content and the pH of the wood fibers decreased.

Keywords: high temperature-pressurized steam; orthogonal design method; interfacial compatibility;
surface treatment; composite material

1. Introduction

Wood plastic composites (WPCs), a new type of environmentally-friendly material involving
the use of cellulose fibers as reinforcing agents in composite materials based on polymeric matrices,
have already been widely utilized in various fields, such as architecture and parquet. They have
recently attracted a growing interest, as shown by the large number of articles and reviews published
during the past decade [1,2]. Compared to glass, cellulose offers a number of advantages, such as
low density, which leads to lighter material; renewable and ubiquitous character; nonabrasive nature,
causing less wear to the mixing and molding equipment; higher flexibility, which reduces the risk of
fragmentation during processing; and, most importantly, its low cost [3]. Nonetheless, many technical
problems associated with WPCs still exist. For instance, inferior interfacial compatibility between the
wood fibers and the plastic, as well as poor dispersion of the wood fibers [4] and the formation of
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bottlenecks, restrict further enhancement of the physical and chemical properties of WPCs. In order to
improve the interfacial compatibility, a method for the chemical modification of the wood fibers, for
e.g., alkaline treatment [5], acylation [6,7], etherification [8], or graft copolymerization [9], is generally
employed, and the mechanical properties of the composites modified by all of these conventional
treatments increase by 10%-35%, compared to the untreated composites. This improvement is
attributed to the elimination of impurities due to treatment and introduction of compatible molecular
structure onto the wood fiber surfaces. However, the chemical modification of the wood fibers usually
exhibits several disadvantages, such as high cost or complexity of the modification process, and
environmental pollution caused by the processing methods.

Steam treatment is a common and environmentally-friendly method. It has been widely
used to modify solid wood [10,11], particleboard [12], fiberboard [13], and wheat straws [14] to
improve dimensional stability, decrease hygroscopicity, and decrease the ash content of wheat straws,
which further enhances their physical and mechanical properties. However, steam modification to
improve the surface bondability between wood fibers and matrix resin was rarely studied; especially,
the research of high temperature and pressurized steam treatment is much less. In this study, exposing
the wood fibers to a high temperature and pressurized steam treatment can induce degradation of
the semi-cellulose with a poorer thermal stability [15,16], leading to a significantly lower number of
free hydroxyl groups on the fiber surface, decreased surface polarity, increased surface roughness,
and higher crystallinity of the cellulose [17], which further improves the interfacial bondability between
the fibers and the plastic matrix and, therefore, enhances the mechanical properties of WPCs [18,19].
The orthogonal design method efficiently deals with multifactor design and screening optimum levels
by using the orthogonal design table [20,21]. The main objective of this study was to modify the
wood fibers via different temperature and pressurized steam treatments using the orthogonal design
method [22] to determine the optimum parameters for the steam modification process. This study,
in particular, aimed at improving the dispersion of the poplar fibers in a high-density polyethylene
(HDPE) melt to enhance the interfacial bondability between the two components. Furthermore,
the modification mechanism was described, and its effect on the mechanical properties of the fabricated
WPCs was comprehensively investigated.

2. Material and Methods

2.1. Raw Materials

Commercially available poplar veneers were purchased from Yong Xv Industrial Wood
Composites Factory (Harbin, China). High-density polyethylene (HDPE) (density 950 kg-m 3
and melt flow index 1.95 g/10 min) was provided by Dagqing Petrochemical Co. (Dagqing, China).
Industrial-grade paraffin, acetone, sodium chlorite, ethanol, and glacial acetic acid (Quanxi Chemical
Co., Ltd., Nanjing, China) were used as received without further purification.

2.2. Modification of Wood Fibers

The poplar fibers were subjected to high temperature and pressurized steam generated by a steam
generator at different pressures and steam temperatures. After exposure to the steam for 5-20 min,
the samples were placed in a drying oven at 105 °C to decrease the moisture content to about 3%-5%.

The orthogonal experimental design is a popular method to deal with the experiments, including
multiple factors and levels [23]. It has been successfully applied to several fields, and it saves a
large amount of time for acquiring the optimum level group [24,25]. For the high temperature
and pressurized steam modification of wood fibers, three parameters were mainly considered, i.e.,
the steam temperature (120, 140, 160, and 170 °C), the steam pressure (0.2, 0.4, 0.6, and 0.8 MPa),
and the processing time (5, 10, 15, and 20 min). An orthogonal array of three factors and four levels,
as listed in Table 1, was determined to investigate the effects of modification on the tensile, flexural,
and impact strengths of the HDPE composites reinforced with modified poplar fibers. According to
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the factors and levels listed in Table 1, an L16 (45) orthogonal experimental design listed in Table 2 was
obtained, where sixteen experimental conditions were conducted [26].

Table 1. Factors and levels of the orthogonal array.

Levels
Number Factors
1 2 3 4
1 Temperature (°C) 120 140 160 170
2 Steam pressure (MPa) 0.2 0.4 0.6 0.8
3 Time (min) 5 10 15 20

Table 2. Orthogonal experimental design for the L16 (45) orthogonal array.

Temperature (°C)  Steam Pressure (MPa) Time (min)
Piece Number Test Battery
A B C
1 120 0.2 5 AlB1C1
2 120 0.4 10 AlB2C2
3 120 0.6 15 A1B3C3
4 120 0.8 20 AlB4C4
5 140 0.2 10 A2B1C2
6 140 0.4 5 A2B2C1
7 140 0.6 20 A2B3C4
8 140 0.8 15 A2B4C3
9 160 0.2 15 A3B1C3
10 160 0.4 20 A3B2C4
11 160 0.6 5 A3B3C1
12 160 0.8 10 A3B4C2
13 170 0.2 20 A4B1C4
14 170 0.4 15 A4B2C3
15 170 0.6 10 A4B3C2
16 170 0.8 5 A4B4AC1

2.3. Characterization of Wood Fibers

2.3.1. Hollocellulose Extraction

The sodium chlorite method was used to measure the hollocellulose content according to the
GB/T 2677-1995 standard [27]. A mixture of toluene and ethanol was used to extract the substance
from the wood fibers, and then sodium chlorite and glacial acetic acid were added to the extracted
substance for the delignification process. After washing, the extracted wood fibers were dried at 105 °C
in a drying oven until the weight remained constant. The hollocellulose content was calculated based
on the oven-dried weight.

2.3.2. The pH Value

Three grams of wood fibers were weighed using an analytical balance and placed in a beaker.
Then, 30 mL of distilled water, freshly boiled and cooled to room temperature, was added. The mixture
was further thoroughly stirred. The pH of the wood fibers was measured according to the GB/T
6043-1999 standard [28].

2.3.3. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectroscopic measurements were performed using a Nicolet 6700 FTIR spectrometer
(Thermo Fisher Scientific Co., Ltd., Waltham, MA, USA) in the range 3500-400 cm~ 1 with a scanning
rate of 32 scans per minute. The resolution for the spectra was 4 cm~!. All of the steam-modified fiber
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samples were dried in an oven at 40 °C for 48 h and cooled to 20 °C before placing them in the sample
chamber. Three replicated measurements were recorded for each condition.

2.3.4. Wide-Angle X-ray Diffraction (WXRD)

Wide-angle X-ray diffraction (WXRD) patterns of the fiber samples before and after modification
were obtained using a D/MAX 2200 X-ray diffractometer (Rigaku Corporation, Sendagaya, Japan).
Prior to the measurement, the sample was placed onto the supporter and compactly pressed.
The WXRD data were generated by a diffractometer with CuK« radiation (A = 1.542 A) at 40 kV
and 30 mA over the angular range 20 = 5°-40°, and a step size of 5°min~!. The degree of crystallinity
or crystallinity index (CI, %) for each sample was evaluated by using Equation (1):

Cl = 1002 — Iam (1)

Iam

where Iy, is the maximum diffractive strength of the 002 crystalline plane and I, is the diffractive
strength of the non-crystalline plane.

2.3.5. Thermogravimetric Analysis (TGA)

The weight loss during the pyrolysis of the poplar wood fibers was assessed by using a TA
309F3 thermal gravimetric analyzer (TA Instruments, New Castle, DE, USA). Samples around 5 mg
were heated from 20 to 600 °C at a heating rate of 10 °C-min~! under a constant nitrogen flow of

30 mL-min—1.

2.4. Preparation of Wood Fiber/HDPE Composites

To prepare the wood fiber/HDPE composites, the wood fiber samples were first placed in an
oven and dried at 105 °C to decrease the moisture content to 3%-5%. The wood fibers, HDPE,
and paraffin were then mixed in a 50:48:2 ratio and then stirred in a high-speed mixer. The uniform
mixture was subsequently placed in a two-stage plastic extruder (SJSH30/5J45, Nanjing Rubber and
Plastic Mechanic Co., Ltd., Nanjing, China) with a rotation speed of 60 rpm. The temperatures of the
twin-screw extruder were controlled at 160, 165, 170, 170, 185, 170, and 165 °C from the feeding zone
to the die, respectively; however, those of the single-screw extruder were 150 (feeder), 155, 165, 165,
and 155 °C (die), respectively.

2.5. Characterization of the Prepared Wood Fiber/HDPE Composites

2.5.1. Mechanical Properties

Five specimens were randomly selected for each mechanical test. Samples for flexural, tensile,
and impact tests were prepared with sizes of 80 mm x 13 mm X 4 mm, 165 mm x 20 mm x 4 mm,
and 80 mm x 10 mm x 4 mm, respectively. Mechanical properties of the samples were tested using an
RGT-20A electronic mechanics testing machine (Shenzhen REGER Instruments Co., Ltd., Shenzhen,
China). The flexural, tensile, and impact tests were conducted according to the GB/T 9341-2000 test,
the GB/T 1040-1992 test, and the GB/T 1043-1993 test [29], respectively. The final measurements were
obtained by taking the arithmetic mean of the five specimens.

Dynamic mechanical analysis (DMA) of the composites was performed using a TA Q800 analyzer
(TA Instruments Inc., New Castle, DE, USA). The measurements were performed from —40 to 130 °C
at a constant frequency of 1 Hz, and a heating rate of 3 °C-min~!. Five replicates with dimensions
of 35 mm in length, 12 mm in width, and 3 mm in thickness were tested for each type of composite.
The storage moduli of the composites prepared under different modification conditions were analyzed.
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The interfacial bonding between the wood fiber and the polymer matrix can be evaluated using the
adhesion factor (A), which is determined from DMA data at 40 °C based on the study of Kubat et al. [30]
by using Equation (2):

A= (1/(1-V)) (tand./tandy) — 1 2)

where ¢ and m subscripts denote composite and matrix, respectively, and V is the fiber volume fraction.
A low value of A is an indicator of good adhesion or high degree of interaction between the two phases
and vice versa.

2.5.2. Scanning Electron Microscopy (SEM)

Morphologies of the wood fiber/HDPE composites were analyzed by a QUANTA 200 electron
microscope (FEI Company, Eindhoven, The Netherlands) at the 300x magnification. To study the
micro-morphology, the specimens were completely frozen in liquid nitrogen to impede the plastic
deformation of the matrix and to obtain a well-defined fiber-matrix interface. A cross-section with
a thickness lower than 3 mm was selected for scanning electron microscopy (SEM) investigations.
The samples were coated with platinum prior to the observation to improve the surface conductivity,
and observed at an acceleration voltage of 15 kV. The samples were mounted on the aluminum sample
holder and placed in the specimen chamber in a vacuum condition of 0.06 mbar at room temperature.

3. Results and Discussion

3.1. Range Analysis

The range analysis method is based on calculating the range (R value) of each column in the
orthogonal Table 2 through statistical methods. This method can be used to determine the major and
minor orders between the processing parameters, in order to obtain the optimum combination of
levels. For determining the optimum combination, we assumed that a greater range corresponds to
a factor with a greater impact. When constructing the optimum combination of levels, the § values
determine the pros and cons of each factor. The calculation results are listed in Table 3. With respect to
the impact strength of the prepared WPCs, the R value corresponding to the steam temperature, steam
pressure, and processing time are 4.08, 1.42, and 0.18, respectively. Clearly, the R value corresponding
to the steam temperature is the maximum, and it is the minimum for the processing time, and the
results were consistent with those of the tensile and flexural strength of the prepared WPCs. Thus,
the following major and minor relationships between the processing parameters and the mechanical
properties of the prepared WPCs exit: the steam temperature (A) is predicted to have the strongest
effect; the steam pressure (B) has the second-strongest effect; and the processing time (C) has the
weakest effect on the mechanical properties.

Table 3. Results of the range analysis of the effect of the processing parameters on the mechanical
properties of the prepared wood plastic composites (WPCs).

Impact Strength (kJ-m~2) Tensile (MPa) Flexural (MPa)

Temperature Pressure  Time Temperature Pressure  Time Temperature Pressure  Time
i1 38.04 41.02 43.87 80.04 80.70 83.64 187.59 190.71 193.58
82 42.68 44.41 44.77 83.36 83.80 83.63 192.49 195.23 195.81
53 46.10 45.65 45.49 85.59 85.65 84.93 198.47 197.87 197.39
dj4 54.35 50.09 47.04 89.72 88.56 86.51 208.28 203.02 200.05
o1 9.51 10.26 10.97 20.01 20.18 20.91 46.90 47.68 48.40
S 10.67 11.10 11.19 20.84 20.95 20.91 48.12 48.81 48.95
dj3 11.53 11.41 11.37 21.40 21.41 21.23 49.62 49.47 49.35
djs 13.59 12.52 11.76 22.43 22.14 21.63 52.07 50.76 50.01
R 4.08 142 0.18 242 1.19 0.33 517 1.95 0.40

Flexural A>B>C A>B>C A>B>C
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The orthogonal design method strives to estimate the overall experimental results from a small
number of experiments. Therefore, the optimum result may occur for a parameter combination
not used in the experiments. In order to determine the best result that might exist, a level trend
analysis was performed on the simulated results. The level trends obtained for the different factors
are illustrated in Figure 1, which indicate that increasing the temperature, the steam pressure, and
the processing time can all enhance the mechanical properties of the WPCs, with the modification
temperature exhibiting the strongest effect, followed by the steam pressure and the processing time.
According to the trends shown in Figure 1, the theoretical optimal combination is A4B4C4. Through
comprehensively analyzing the relationship between the modification temperature, the steam pressure,
and the processing treatment, the following optimal processing conditions were obtained for the
high temperature and pressurized steam modification of wood fibers: a steam temperature of 170 °C,
a steam pressure of 0.8 MPa, and a processing time of 20 min.
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Figure 1. Range analysis of the effect of the process parameters on the impact, tensile, and flexural
strengths of the wood fiber /high-density polyethylene (HDPE) composites. (a) Range analysis of wood
plastic composite (WPC) impact; (b) Range analysis of WPC tensile; (c) Range analysis of WPC flexural.

3.2. Variance Analysis

The results of variance analysis are listed in Table 4. The analysis of the variance indicated that
the order of the impact of the three factors is A > B > C, which is consistent with the results of the range
analysis, objectively verifying the rationality of the variance analysis [31]. The maximum differences
in S of the three factors were 0.03, 0.02, and 0.06, respectively, with errors of only 2.6%, 0.32%, and
0.16%, compared to the variance values. The small errors indicated that the level step selection and the
experimental error of each factor did not have a large influence and that the range analysis and the
variance analysis basically yielded consistent results. Therefore, the range analysis objectively verifies
the rationality of the variance analysis.
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Table 4. Variance analysis of the impact, tensile, and flexural strengths of the wood fiber/

HDPE composites.
Impact Strength (kJ-m~2) Tensile Strength (MPa) Flexural Strength (MPa)

Ax10® Bx10® Cx103 Ax10® Bx10® Cx10® Ax10> Bx10® Cx10°
6]21 1.45 1.68 1.92 6.41 6.51 7 35.19 36.37 37.47
6]22 1.82 1.97 2.01 6.95 7.02 6.99 37.05 38.11 38.34
6]23 2.23 2.08 2.07 7.33 7.34 7.21 39.39 39.15 38.92
6]24 2.95 2.51 221 8.05 7.84 7.48 43.38 41.22 40.02
p 8.35 8.25 8.21 28.73 28.71 28.69 155.01 154.85 154.79
Q 2.09 2.06 2.05 7.18 7.18 7.17 38.75 38.71 38.69
S 1.17 1.15 1.14 6.27 6.26 6.25 37.84 37.8 37.78

Impact A>B>C A>B>C A>B>C

16 5.2
P = 6]21 + 5/22 + 6]23 + 5]24; Q= g ;S =0-— ():1:11651) ; 8; is the experimental indicator of each simulation
@i=1,... ,16).

3.3. Significance Analysis

In order to determine the impact of the different factors, a significance analysis was carried
out [32]. According to mathematical statistics, the p value is considered as the significance probability.
When p < 0.05, a factor is considered having a significant effect on the experimental results. The values
listed in Tables 5-7 show that the significance probabilities of A and B are only slightly higher than 0.05,
with p(A) < p(B). This indicates that factor A (the modification temperature) has the strongest effect
on the mechanical properties of WPCs, followed by factor B (the steam pressure). The significance of
factor C (the processing time) is not obvious. The results of the significance analysis are consistent with
the results of the range and variance analyses, which indicate that the selected levels in the orthogonal
design plan are reasonable and that the error is also reasonable at a certain level.

Table 5. Significance analysis for the factors affecting the impact strength.

Factor Degree of Sum of Deviation Mean Square F p Significance
Freedom Square Error
A 3 35.53 11.84 59.82 0.000073 i
B 3 10.54 3.51 17.75 0.00218 **
C 3 1.35 0.45 2.27 0.18
Error 6 0.0003 0.00110 - -
Model 15 0.0170 0.00005 - -
“—" means not significant, p > 0.05; “**”means very significant, 0.001 < p < 0.01; “***” means highly significant,
p <0.001.
Table 6. Significance analysis for the factors affecting the tensile strength.
Factor Degree of Sum of Deviation Mean Square r p Significance
Freedom Square Error
A 3 12.38 4.13 13.83 0.004194 **
B 3 8.15 2.72 9.11 0.01186 *
C 3 1.40 0.47 1.56 0.01186 *
Error 6 0.0003 0.00110 - -
Model 15 0.0170 0.00005 - -

“—” means not significant, p > 0.05; “*”means significant, 0.01 < p < 0.05; “**”

0.001 <p <0.01.

means very significant,
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Table 7. Significance analysis for the factors affecting the flexural strength.

Degree of Sum of Deviation Mean Square

Factor Freedom Square Error F P Significance
A 3 59.49 19.83 57.26 0.000083 ok
B 3 19.84 6.61 19.10 0.0018 **
C 3 5.56 1.85 5.53 0.047 *
Error 6 0.0003 0.00110 - -
Model 15 0.0170 0.00005 - -

“u_r

means not significant, p > 0.05; “*”means significant, 0.01 < p < 0.05; “**”means very significant,
0.001 < p < 0.01; “***” means highly significant, p < 0.001.

The mechanical properties of the wood fiber/HDPE composites were enhanced due to the fact that
through high temperature and pressurized steam treatment, the surface roughness of the wood fibers
increased, the polarity on the fibers decreased, the in-depth diffusion and the mechanical interlock
capability enhanced, and the interfacial compatibility between the wood fibers and the plastic matrix
improved. The effect of the modification treatment increased with the increase of the modification
temperature, pressure, and processing time. Compared to the WPCs prepared from untreated fibers,
the WPCs prepared from fibers modified at 170 °C and 0.8 MPa for 20 min showed 20.17%, 18.5%,
and 19.3% increases in tensile, bending, and impact strengths, respectively. In the high temperature
and pressurized steam equipment, the operation for increasing temperature and pressure is simple
and rapid, the energy cost is relatively low, and the enhancement in mechanical properties of WPCs is
significantly high. Therefore, the modification condition combination can be considered as a better
modification scheme with the advantages of low cost and high benefit.

3.4. Effect of the High Temperature and Pressurized Steam Treatment on the Hollocellulose Content of the
Wood Fibers

Figure 2 shows the hollocellulose content of wood fibers as a function of steam temperature,
pressure, and retention time. The hollocellulose content of the wood fibers was found to decrease
with increasing temperature and pressure because the high-temperature and high-pressure steam
could remove the acetyl group of the semi-cellulose and induce the formation of acetic acid. Under
the resulting acidic conditions, the glycoside bond breaks and a more thorough degradation occurs,
whereas the lignin only experiences a slight softening rather than degradation due to its higher
thermal stability.

80

76

N ~
“ \ \ \'\

64

Holo-cellulose content

v

60 +——————— T T T T 1 LI S B S|
40 80 120 160 0102 04 06 08 0 5 10 15 20

Tempreture (°C) Pressure (MPa) Time (min)

Figure 2. Effect of high temperature and pressurized steam on the hollocellulose content of wood fibers.
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3.5. Effect of Steam Treatments on pH of Wood Fibers

The results of pH of wood fibers under various steam treatments are shown in Figure 3. The pH
of untreated wood fibers (control sample) was 7.25. After high temperature and pressurized steam
treatments, the pH of wood fibers decreased remarkably. The pH of the treated fibers under 160 °C for
15 min was reduced to 6.5 from 7.25 of the control sample. Moreover, the pH of the fibers decreased
with increasing temperature, pressure, and retention time of the treatment. This result indicated that
the acidic properties of wood fibers increased after steam treatment. It was also observed that the
color of the modified fibers became more intense [33]. During the treatment, the semi-cellulose with
its comparatively poor heat resistance partially degrades, losing its acetyl group, resulting in the
formation of acetic acid. During the modification process, an increase in either temperature, pressure,
or processing time leads to the generation of a higher amount of acidic substances and, thereby, a
higher acidity.

8.0
7.5
». v '\
7.0 \ \ N
jusi v. .
a. '\.\ \v\v S,
L]
\ ™~
6.5
6'() T T T T T T T T T T T T T
40 80 120 160 0102 04 06 038 0 5 10 15 20
Tempreture (°C) Pressure (MPa) Time (min)

Figure 3. Effect of the high temperature and pressurized steam on the pH of the wood fibers.

3.6. Fourier Transform Infrared Analysis

The surface infrared spectra for the untreated wood fibers and the wood fibers modified through
high temperature and pressurized steam treatment are shown in Figure 4. Compared to the untreated
wood fibers (Figure 4a), the intensities of the adsorption peaks centered at 3430 cm ™! (-OH) and
1738 cm~! (C=0) [34] decreased for the treated wood fibers. The intensity of the hydroxyl group
absorption peak showed obvious decrease. Owing to the exposure to the high-temperature and
high-pressure steam, a “bridging” reaction might occur between pairs of free hydroxyl groups.
This resulted in the formation of an ether bond and a reduced number of free hydroxyl groups.
Moreover, the chemical structure of the semi-cellulose was subjected to severe degradation. During
degradation, in the presence of a certain amount of adsorbed water, the number of carbonyl groups
(C=0) decreases because the acetyl groups on the polysaccharide chain can easily hydrolyze to
form acetic acid. When either the steam temperature, steam pressure, or the modification time was
increased, the intensity of the C=0O adsorption peak significantly declined. Furthermore, the intensities
of the adsorption peaks at 1424 cm~! (CH, vibration) [35], 1375 cm~! (CH bending vibration) [36],
1159 ecm ™! (C-O-C stretching vibration), and 1055 cm ! (C-O stretching vibration) [37] were all found
to slightly decrease.
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Figure 4. Comparison of the fourier transform infrared (FTIR) spectra obtained for untreated wood
fibers and wood fibers modified through a high temperature and pressurized steam treatment under
different conditions: a: untreated fibers; b: T =120 °C, p = 0.2 MPa, t =5 min; c: T =160 °C, p = 0.6 MPa,
t=15min;and d: T =170 °C, p = 0.8 MPa, t = 5 min.

3.7. X-ray Diffraction Analysis

The crystallinity of wood materials is one of the primary factors affecting their strength and
mechanical properties. Figure 5 illustrates the X-ray diffraction (XRD) patterns obtained for the
untreated and modified wood fibers [38]. Figure 5 and Table 8 show that the (002) diffraction peaks
recorded for the untreated and the modified wood fibers are both centered at around 22° (ranging
from 21.32° to 22.88°). This result indicates that the modification process resulted in a limited change
of the crystalline regions of wood fibers, exhibiting an insignificant effect on the distance between the
crystal layers. However, the modification process had a profound impact on the degree of crystallinity
of the wood fibers, as shown in Table 8.

7000
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5000 4

4000

Kl .

b c d e
“The sample number

3000 +

2000 +

Diffractive strength

1000 4

O ;7</<|/r T T T T T T T ];77/:77 ‘l‘r‘ T T T
0 10 15 20 25 30 35 40 45

26 ()

Figure 5. X-ray diffraction (XRD) patterns obtained for the untreated wood fibers and the wood fibers
modified through a high temperature and pressurized steam treatment under different conditions:
a: untreated fibers; b: T =120 °C, p = 0.2 MPa, f =5 min; ¢: T = 160 °C, p = 0.6 MPa, ¢ = 5 min;
d: T=140°C,p =0.6 MPa, t =15 min; and e: T =170 °C, p = 0.8 MPa, = 5 min.

Figure 5 demonstrates that, compared to the untreated wood fibers, the crystallinity of the
modified wood fibers gradually increased with the steam temperature, steam pressure, and the
processing time. The untreated wood fibers had a crystallinity of 46.68%. The crystallinity of the
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modified wood fibers increased significantly when they were exposed to high temperature and
pressurized steam. The crystallinity of the treated fibers under 170 °C and pressure of 0.8 MPa for
5 min was increased to 68.94% from 46.68% corresponding to the control sample, showing an increase
in amplitude by 31.2%. During the steam treatment, the hydroxyl groups in the quasi-crystalline
amorphous regions of the cellulose molecular chains can react with each other to form ether bonds,
which induce the micro-fibrils to arrange in a more orderly fashion, move close to the crystallized
regions and re-orientate. Therefore, high-temperature and pressurized steam modification can be used
to increase the crystallinity of wood fibers, and the crystallinity increases with both the temperature
and the pressure.

Table 8. Comparison of the crystal properties and degrees of crystallinity of the unmodified and
modified wood fibers.

Category Piece Number 002 Crystal Plane Angle Crystallinity
b 22.62° 54.02%
High temperature and c 22.82° 58.80%
pressurized steam treatment d 22.79° 52.74%
e 21.67° 68.94%
Control sample a 22.88° 46.68%

3.8. Thermal Analysis

Figure 6a,b show the themogravimetric (TG) and derivative thermal gravimetric (DTG) curves
for the untreated and treated wood fibers, respectively. Figure 6 and Table 9 show that when the
temperature increases from room temperature to 600 °C, the pyrolysis of the wood fibers undergoes
three stages, with the second stage (210-400 °C) being the main pyrolysis stage.

Compared to the untreated fibers, the wood fibers exposed to the high temperature and
pressurized steam showed a higher pyrolysis peak temperature, i.e., a better heat stability. When the
reaction temperature was 200 °C or higher, the required pyrolysis temperature and the weight loss
rate both increased with the temperature, pressure, and/or the processing time. When subjected to
high temperature and pressurized steam with high moisture content, parts of the structure of the
hemicellulose reorganized, which resulted in a slight increase in lignin content. Notably, the methoxy
group, one of the characteristic functional groups of lignin, is relatively stable; therefore, the increased
lignin content enhances the thermal stability of the wood fibers [39]. Furthermore, the hydroxyl groups
in the cellulose can get oxidized into relatively stable aldehyde, carbonyl, and carboxyl groups to form
oxidized cellulose. Therefore, a higher steam temperature and a greater pressure resulted in a better
heat stability.
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Figure 6. (a) TG and (b) DTG curves obtained for the unmodified and modified wood fibers;
a: untreated fibers; b: T =120 °C, p = 0.2 MPa, f =5 min; ¢: T = 170 °C, p = 0.8 MPa, ¢ = 5 min;
d: T=170°C, p = 0.8 MPa, t = 15 min; and e: HDPE.
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Table 9. Comparison of the pyrolysis characteristics of the unmodified and modified wood fibers.

TGA Analysis
Material Code First Stage Second Stage Third Stage
Temperature Weight Loss Temperature Weight Loss Temperature Weight Loss
Range Ratio Range Ratio Range Ratio
a 30%-205% 4.4% 205%-315% 56% 315%—-600% 9.3%
b 30%—-220% 4.7% 220%-340% 59% 340%-600% 6.6%
c 30%-230% 4.6% 230%-350% 64% 350%—-600% 8.5%
d 30%-250% 4.6% 250%-370% 66% 370%—-600% 7.3%
e 0% 0% 0% 0% 375%—475% 91%

3.9. Dynamic Mechanical Analysis

The storage moduli of wood fiber/HDPE composites at different steam treatment conditions
are shown in Figure 7a. The storage modulus of the WPCs increased with the steam temperature,
steam pressure, and processing time. Compared to the WPCs prepared from untreated wood fibers,
the storage moduli of the WPCs prepared from modified fibers showed a higher increase in amplitude.
When the fibers were modified through exposure to steam at a temperature of 170 °C and a pressure of
0.8 MPa for 20 min, the resulting WPCs showed the highest storage moduli.

Figure 7b reveals the variation of the loss modulus and the loss factor of the prepared WPCs as a
function of temperature. The peaks in these two curves have been used to identify the glass-transition
temperature (Tg), and use the temperature corresponding to the maximum loss modulus as Tg, which
corresponds to the temperature at which the polymer chain begins to move or freeze [40]. In this
experiment, the increase of Tg indicates that the length of the HDPE resin molecular chains is limited
and that the high temperature and pressurized steam modification can improve the compatibility
between the wood fibers and the HDPE resin. Figure 7b demonstrates that the loss modulus curves
obtained for the WPCs prepared from modified fibers are all single-peak curves, indicating that
the modification leads to a good compatibility between the wood fibers and the HDPE. When the
processing temperature was 170 °C, the steam pressure was 0.8 MPa, and the modification time was
5 min, the loss modulus of the WPCs prepared from the modified fibers acquired the maximum value.
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Figure 7. Variation of (a) the storage modulus and (b) the loss modulus and the loss factor with the
steam temperature: a: untreated fibers; b: T = 120 °C, p = 0.2 MPa, t =5 min; ¢: T =160 °C, p = 0.6 MPa,
t=5min; d: T=160 °C, p = 0.6 MPa, t =15 min; and e: T =170 °C, p = 0.8 MPa, ¢ = 5 min.

As mentioned above, the interfacial bonding between the wood fibers and the polymer matrix can
also be evaluated using the adhesion factor (A). Strong interactions between the fibers and polymer
matrix at the interface tend to reduce the macromolecular mobility in the vicinity of the filler surface
compared to that in the bulk matrix [41,42]. The A values for the WPCs at 40 °C are calculated by
using Equation (2). The WPCs prepared from unmodified fibers exhibited the highest A values of
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0.757 (the weakest interfacial interaction); however, the WPCs prepared from fibers modified by
high temperature and pressurized steam treatment (170 °C, 0.8 MPa, 20 min) exhibited the strongest
interactions (lowest A value: 0.486). This result demonstrated that high temperature and pressurized
steam strongly affected the interfacial bonding between the wood fibers and the polymer matrix,
and also the properties of the prepared composites.

3.10. Analysis of the Micro-Morphology

Figure 8 shows SEM micrographs of wood fiber/HDPE composites prepared from the wood fibers
modified by exposure to high temperature and pressurized steam. Figure 8a shows that the fractured
surface of the WPCs prepared from untreated fibers is not smooth. The pull-out of fibers occurred more
frequently, which resulted in a large number of voids on the fractured surface. The interfaces between
the plastic matrix and the wood fibers are clear, with obvious signs of agglomeration. When the fibers
were modified through exposure to steam at a temperature of 120 °C and a pressure of 0.2 MPa for 5 min,
the polarity of the fibers decreased, which contributed to the improved interfacial bonding between
wood fibers and plastic matrix. Although the pull-out was not completely suppressed and voids
still existed on the fractured surface, the interfacial bonding was better compared to the composites
prepared from untreated fibers, as illustrated in Figure 8b. Clearly, the interfacial bonding between the
steam-modified wood fibers and the plastic matrix significantly improved with the increase of steam
temperature and pressure. Therefore, the pull-out phenomenon was hardly observed on the fractured
surface; however, the pulling fracture phenomena occurred instead. The pulling fracture phenomena
led to an increased number of holes, smaller holes, and a rougher surface. However, when the fibers
were modified through exposure to steam at a temperature of 120 °C and a pressure of 0.8 MPa for
5 min, fibrils were found on the surface of the modified wood fibers. The interface between the wood
fibers and the resin matrix was relatively vague; the remaining empty slots were smaller and more
irregular after the fibers were pulled out. These results indicated that the prepared WPCs showed
better mechanical properties, as revealed in Figure 8d.

Figure 8. Scanning electron microscopy (SEM) micrographs of WPC prepared from untreated wood
fibers and fibers modified through high-temperature high-pressure steam under different conditions:
(a) untreated fibers; (b) T = 120 °C, p = 0.2 MPa, t = 5 min; (¢) T = 170 °C, p = 0.8 MPa, t = 5 min;
and (d) T =170 °C, p = 0.8 MPa, t = 15 min.
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4. Conclusions

Adopting the orthogonal design method, the mechanism of high temperature and pressurized
steam modification of wood fibers and the effect of the modification process on the performance of
composite materials fabricated from the modified fibers were investigated in this study. The results
can be summarized as follows:

It proved feasible to apply the orthogonal design method to the preparation of WPCs from
fibers modified by high temperature and pressurized steam. The orthogonal design method could
be effectively used to optimize the processing parameters. The results of the variance, range, and
significance analysis were consistent with the SEM and DMA results. The steam temperature was
found to have the greatest effect on the mechanical properties of WPCs, followed by the steam pressure.
A temperature of 170 °C, a vapor pressure of 0.8 MPa, and processing time of 20 min were determined
as the optimum parameters. Compared to the WPCs prepared from untreated fibers, the tensile,
bending, and impact strengths of the WPCs prepared from modified fibers increased by up to 20.17%,
18.5%, and 19.3%, respectively.

When exposed to a high temperature and pressurized steam treatment, the number of hydroxyl
groups and the surface polarity of the wood fibers decreased; however, the crystallinity of wood fibers
increased. When the processing temperature, pressure, and time were 170 °C, 0.8 MPa, and 20 min,
respectively, the crystallinity of the cellulose increased to 62.95%, with a 31.2% increase in magnitude
compared to the untreated wood fibers. With increasing steam temperature, pressure, and processing
time, the thermal stability, storage moduli of the prepared WPCs, and the mechanical properties of
the wood fiber significantly improved; however, the hollocellulose content and the pH of wood fibers
gradually decreased.
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