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Abstract: In the present work, the nanostructured bainitic microstructures were obtained at the
surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the
two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication.
Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the
high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate
thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of
the two steels under roughly similar conditions. The excellent RCF performance of the carburized
nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion
distribution in the top surface, the higher residual compressive stress values in the carburized layer,
the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of
retained austenite transforming into martensite at the surface and the more stable untransformed
retained austenite left in the top surface of the steel.
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1. Introduction

The phase transformation theories, composition design, microstructure characteristics, and
conventional mechanical properties of nanostructured bainitic steels have been widely studied by
numerous material researchers in the past decade [1–10]. The extraordinarily fine bainitic ferrite plates
are responsible for the excellent strength, and the carbon-enriched retained austenite films account
for the high toughness of the nanostructured bainitic steels. Most of these nanostructured bainitic
steels are high-carbon (C) and high-silicon (Si) steels [1–3,7–9]. The high content of Si, which is usually
more than 1.4 wt.% and has very low solubility in cementite, can greatly suppress the precipitation
of cementite during bainitic transformation and retard its growth from austenite. The carbon that
is rejected from the bainitic ferrite enriches the retained austenite, thereby stabilizing it down to
ambient conditions. The resulting microstructure consists of fine plates of bainitic ferrite separated
by carbon-enriched regions of austenite. Kim et al. [11] reported that the Si-modified 100Cr6 bearing
steel is 3–4 times superior in terms of rolling contact fatigue (RCF) characteristics compared with
the conventional steel when the Si content is increased from 0.25 wt.% to 1.50 wt.%. The excellent
RCF performance is attributed to the reduced maximum size of the non-metallic inclusions and the
increased stabilization of retained austenite due to the fact that no carbide precipitation occurs during
tempering when a higher amount of Si was added to the steel.
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In recent years, the fatigue performances of nanostructured bainitic steels have attracted a large
number of material researchers. In 2011, Peet et al. [12] first studied the axial fatigue behavior of
nanostructured bainitic steel which was smelted in air. The fatigue limit of ~855 MPa for no failure
in 107 cycles estimated by extrapolating data of the maximum cycle number of 105 is generally
consistent with published work on iron alloys of similar hardness. Subsequently, a study by Yang et
al. suggests that the high-C Si–Al-rich nanostructured bainitic steel has an outstanding high-cycle
bending fatigue performance, whose fatigue limits for no failure in 107 cycles are 1033–1156 MPa [13].
They presented that the plastic deformation and martensitic transformation of the retained austenite
under stress or strain can blunt the crack by absorbing more energy than necessary for fatigue
crack propagation. The nanostructured bainitic microstructure, retained austenite, and secondary
cracks resulting from crack branching on ferrite/austenite interfaces, rather than just the hardness or
strength, play an important role in improving the fatigue performance. Recently, an investigation on
rotating bending fatigue behavior of nanostructured low-temperature bainitic steel was performed
on a 0.76 wt.% C steel [14]. Fatigue strength has been shown to be increased by reducing the bainitic
transformation temperature where fatigue limits were measured to be 820, 945 and 1005 MPa for the
samples isothermally transformed at 300, 250 and 200 ◦C, respectively. They observed that shear strain
and secondary crack initiation seem to occur inside the austenite phase for the samples transformed
at 300 ◦C because of a lower C content and lower stability of the austenite in the center of this
phase. In addition, the nanostructured bainitic microstructure, which was obtained in the surface
layer of low-carbon steel based on carburization and subsequent low-temperature austempering,
achieved a service life about twice that of the traditional martensite carburizing steel, exhibiting
an excellent resistance to RCF [15]. Studies have shown that traditional 1C–1.5Cr bearing steel
with the lower bainite microstructure exhibits an enhanced RCF performance in a contaminated
lubricating environment [16,17]. Solano-Alvarez et al. [18] have studied the RCF phenomena and
proposed the damage mechanism of a nanostructured bainitic steel without undissolved carbides.
They pointed out that the degradation mechanism is ductile void formation at the interfaces, followed
by growth and coalescence into larger voids that cause fracture along the direction of the softer
phase. This mechanism is similar to the crack formation mechanism during RCF in Hadfield steel
crossing [19] but different from the conventional damage mechanism, which involves crack initiation
at inclusions and propagation in typical bearing steels. However, the damage mechanism of the
nanostructured bainitic steel with undissolved carbides is still an interesting topic and needs to be
further studied. Liu et al. [20] have recently reported that the RCF life of an ultrahigh carbon steel
with a mixed microstructure composed of nanobainite, martensite, retained austenite, and undissolved
spherical carbides is approximately 3.3 times longer than that of the steel with tempered martensite.
The improvement in the RCF life of the steel is attributed to nanobainite and stable film-like retained
austenite. The nanobainite can delay crack initiation by alleviating the stress concentration at the hard
phases (such as non-metal inclusions or carbide particles), and the stable film-like retained austenite
can retard crack propagation. These research findings provide a theoretical basis and technical support
for the eventual usage of nanostructured bainitic steels in the rolling bearing field.

RCF is a very complicated failure process, and the RCF life of steels is the result of the synergistic
effect of many factors [17]. In recent years, with the development of steelmaking technology, the size
and amount of inclusions are greatly reduced by the successful development of high-purity steel with
low oxygen content. The number of inclusions with the diameter bigger than 10 µm in 1 cm3 was
reduced from 6 × 105 to 6 × 104 when the oxygen content was reduced from 50 ppm to 5 ppm in the
steel [21]. With this background, studying the other influencing factors on RCF life from the point
of view of the material itself is significant. In the present study, the RCF performances of carburized
and high-C nanostructured bainitic steels were comparatively studied from various aspects, such as
residual stress distribution, undissolved carbide morphology, hardness value, and retained austenite
content of the two steels.
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2. Experimental Procedure

The carburized steel and high-C steel, which were designated as CC steel and HC steel in this
paper, respectively, were smelted with an arc-furnace followed by electroslag remelting. Their chemical
compositions are listed in Table 1. First, the CC steel was machined into the specimens for RCF tests
according to Figure 1. Then, the specimens were carburized. The carburizing process and the carbon
content distribution from the top surface to the center are the same as those in [22]. The carbon content
at the top surface was determined to be ~0.88 wt.% using a spectrometer model PAD-5500 II. Based on
the following equation [23], the martensite-start (Ms) temperatures of the core and the surface of the
CC steel were calculated to be ~371 and ~150 ◦C, respectively. The Ms temperature of the HC steel was
calculated to be ~168 ◦C.

Ms = 512 − {453 × (%C)} − {16.9 × (%Ni)} + {15 × (%Cr)} − {9.5 × (%Mo)} +
{217 × (%C)2} − {71.5 × (%C) × (%Mn)} − {67.6 × (%C) × (%Cr)}

(1)

Table 1. Chemical compositions of the experimental steels (wt.%).

Steel C Si Cr Mo Mn Ni P S O Fe

CC 0.23 1.43 1.55 0.30 0.34 2.30 0.01 5 × 10−3 6 × 10–4 balance
HC 0.99 1.29 1.56 0.33 0.34 - 0.01 5 × 10−3 6 × 10−4 balance
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After carburizing, the specimens of the CC steel were tempered at 650 ◦C for 3 h, which is in fact
a spheroidizing annealing process and the carbides would be precipitated in the microstructure of
the surface during the tempering process. Then, the specimens were austenitized at 860 ◦C for 1 h
and austempered at 200 ◦C for 8 h in molten salt composed of sodium nitrite and potassium nitrate
(1:1 in weight).

For the HC steel, the specimens for the RCF tests were machined from the spheroidized annealed
steel bars. The spheroidizing annealing process is the same as that used in [24]. Then, the specimens
were austenitized at 860 ◦C for 1 h and austempered at 210 ◦C for 4 h in the molten salt. Finally,
all specimens of the two steels were tempered at 200 ◦C for 1 h to relieve the quenching stress and
improve the toughness of the microstructure.

The CC steel after carburizing and all the HC steel specimens were sealed with an anti-oxidation
and anti-decarburization protective coating at high temperature (500 ◦C–1200 ◦C) model KOC-15 to
prevent decarburization during heat treatment. After the above heat treatments, almost the same
hardness values of 730 ± 10 HV0.5 and 727 ± 8 HV0.5 were obtained at the surfaces of the CC steel
and the HC steel, respectively.

Before the RCF test, the surfaces of all specimens were ground with SiC abrasive paper and
polished with a diamond paste model W 0.5 µm. The RCF test was carried out with a point contact
RCF testing machine model TLP-1. All tests were performed at a rotational speed of 2040 rpm and
a Hertzian pressure of 4500 MPa. The N32 mechanical oil was used as lubricant at room temperature.
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The oil was filtered by a filter model QU-A10 × 10 with the filter element model 7ZX2-10 × 10Q. The oil
was individually recirculated for each specimen. The sketch of the RCF testing principle in this study
is shown in Figure 2. Vibration levels were monitored through an accelerometer, which automatically
stopped tests if the thresholds were surpassed, caused normally only by flaking or spalling. Data of
the RCF lives of 12 specimens for each steel were acquired and used in a Weibull distribution.
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The microstructure observations were carried out using scanning electron microscopy (SEM,
Hitachi-4800) and transmission electron microscopy (TEM, JEM-2010). The foils of CC steel for TEM
observation were ground to ~30 µm thickness and acquired only from the backside of the carburization
surface using different SiC abrasive papers to ensure that the top surface of the carburization layer
was investigated. The foils of HC steel for TEM observation were also ground to ~30 µm. Then,
all the foils were thinned to perforation on a TenuPol-5 twin-jet unit with an electrolyte consisting of
7 vol.% perchloric acid and 93 vol.% glacial acetic acid. The volume fraction of retained austenite of the
surface after different RCF testing cycles was analyzed on a Brucker-D8 Advance™ micro-region X-ray
diffractometer (XRD) system with Cu Kα radiation at 40 kV and 40 mA. The angular resolution of the
D8 Advance XRD is less than 0.037◦. The diffraction profiles were obtained by varying 2θ from 35◦ to
105◦ with a step size of 0.02◦. The time spent collecting the data per step was 2.4 s. The specimens
for XRD analysis were carefully prepared and the surfaces were carefully protected. The surfaces
of the specimens were ultrasonically cleaned with ethanol after the RCF test, and dried by a blower.
Then, the smoother area within the contact track was chosen for the XRD test. The residual stress
distribution with depth from the surface of the specimen before RCF testing was measured by an
X-350A X-ray stress meter using Cr Kα radiation at 28 kV and 8 mA. Scans were performed from 146◦

to 168◦, with a step size of 0.05◦ and a dwell time of 0.5 s. The classical sin2ψ method was applied
to evaluate the stress by using ψ = 0◦ and 45◦ for the 211 reflection, which corresponds to the ferrite
phase. The microhardness of the surface and microhardness distribution just below the rolling contact
surface of the specimen after different RCF testing cycles were measured using the Vickers tester model
HVS-1000 under an applied load of 500 g and a dwelling time of 10 s. The specimen for microhardness
distribution testing was cut out along the axial direction, which is perpendicular to the plane that
the rolling contact surface locates. Then, the cross-section was ground with SiC abrasive paper and
polished with diamond paste. The hardness values at different depths were obtained just below the
rolling contact surface on the cross-section.

3. Results and Discussion

Figure 3 shows the Weibull plots of RCF lives of CC and HC steels, and Table 2 summarizes the
Weibull statistic results, such as the Weibull slope, L10 life, L50 life, and characteristic life. It can be
clearly seen that the L10 life of the CC steel is approximately the same with that of the HC steel, but the



Materials 2016, 9, 960 5 of 12
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Table 2. RCF lives of CC and HC steels.

Steel β L10 × 107 L50 × 107 Vs × 107

CC 1.58 1.3751 4.5339 5.7143
HC 2.12 1.3342 3.2269 3.8354

Note: L10—rated life, L50—median life, Vs—characteristic life, β—Weibull slope.

Figure 4 shows the typical SEM images of the top surface of the two steels. Fine undissolved
carbide particles were dispersed in the matrix of the two steels, which can improve the wear resistance
of the steel [5]. Most of the carbides have a spherical shape, and only a few are irregularly shaped.
The average volume percentages of the undissolved carbides in the surfaces of CC steel and HC steel
were estimated to be 6.5% ± 0.4% and 6.8% ± 0.2%, respectively, through extensive SEM observations
and measurements by Image-Pro-Plus software. In addition, all the carbides were assumed to be
spherical to assess the average equivalent diameters. Then, the average equivalent diameters of the
carbides of CC steel and HC steel were estimated to be 0.25 ± 0.02 and 0.48 ± 0.03 µm, respectively.
The volume percentages of the undissolved carbides in the surfaces of the two steels are almost the
same, yet a significant difference between the sizes of the carbides was observed.
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The undissolved carbide is a hard and brittle phase in steel. Under the action of alternating
stress, stress concentration easily occurs at the sites where the undissolved carbides are located. Thus,
the undissolved carbides would become the source of fatigue crack, and the fatigue life is reduced.
The undissolved carbides in bearing steels must be fine, spherical, and uniform in distribution in the
matrix to prevent reduction of the RCF life [17,25,26]. In fact, the carbon concentration in the location
near the undissolved carbide is different from that in the location remote from the undissolved carbide
in the steel [27]. The carbon concentration difference is great when the carbide particles are large,
and the carbon concentration difference is small when the carbide particles are small. The large carbon
concentration difference in the matrix reduces the average RCF life of the steel [27]. Also, the outline
of the smaller carbide is rounder, and the roundness of the larger carbide is poor [27]. A large number
of carbides were employed to measure the ratio of the long axis to the short axis. The smaller the
ratio, the rounder the carbide. The results showed that the ratios were 1.34 ± 0.12 for the carbides in
the surface of CC steel and 1.63 ± 0.13 for the carbides in the surface of HC steel, which is consistent
with [27]. Generally, stress concentration easily occurs at the sharp edges or uneven edges of the larger
carbide, whose roundness is poor. As a result, micro-crack initiation occurs, and the toughness and
RCF life of the steel is reduced. Furthermore, the bonding interfaces between the finer carbides and the
matrix are less than those between the larger carbides and the matrix. Thus, the matching degree of the
finer carbide with the matrix is higher than that of the larger carbide with the matrix. Therefore, stress
concentration is harder to induce when the finer carbides are dispersed in the matrix, and it is more
difficult for the finer carbides to become the source of fatigue crack, resulting in spalling. To sum up,
the much finer undissolved carbides’ dispersion distribution in the top surface of the CC steel is very
beneficial in improving the RCF life.

The TEM micrographs of the surfaces of the two steels after the heat treatments are presented
in Figure 5. The figure shows that a multiphase microstructure composed of nanostructured bainite,
martensite, undissolved spherical carbides, and retained austenite were obtained at the top surface of
the two steels after austempering. Carbide precipitation did not occur within the bainitic ferrite plate
of the two steels as indicated by a large number of TEM observations. This is mainly associated with
high Si content of the steels, which prevents cementite precipitation during bainitic transformation.
A report has shown that adding 1.2–1.5 wt.% Si in bearing steel can inhibit carbide precipitation during
low-temperature austempering [24]. From the TEM micrographs, the actual plate thickness of the
bainitic ferrite (tBF) can be determined by measuring the mean lineal intercept

_
LT in a direction normal

to the plate length and stereologically correcting the value in terms of
_
LT = πt/2 [28]. The measured

mean thicknesses (tBF) of plates in the CC steel and the HC steel were about 68 ± 11 and 80 ± 14 nm,
respectively. The formation of nanostructured bainite in the surface layers of the two steels is due to
the high C and Si content, together with the very low phase transformation temperature [2,3,7,9].
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As compared with martensite and carbide, the nanostructured bainite is a ductile phase in the steel,
which is beneficial in improving the RCF performance, because it can alleviate stress concentration at
the hard phases and relax the stress located at the crack tip [20]. Thus, the initiation and propagation of
fatigue cracks would be hindered. The TEM photographs of the two steels showed that there were both
blocky retained austenite and film-like retained austenite between the bainitic ferrite plates existing in
the microstructure. The blocky retained austenite is metastable and transforms into martensite under
stress, whereas the film-like retained austenite is relatively stable [29,30].

Figure 6 shows the residual stress distributions of the two steels before the RCF test. The residual
stresses in the surfaces of the two steels are both compressive stress, and the stress values are almost
similar. Except for the top surface layer, the stress values in the compressive stress layer of the CC steel
are much higher than that of the HC steel. During the RCF testing, the maximum shear stress was
located below the surface. The depth of the maximum shear stress was calculated to be 0.263 mm
below the contact surface based on the following equation [31]:

Z = 0.786b (2)

where b is the length of the short half axis of the contact ellipse. From Figure 6, we can work out that
the residual stresses at the depth of 0.263 mm are −300 MPa and −74 MPa for CC steel and HC steel,
respectively. The much higher residual compressive stress at the depth of 0.263 mm below the contact
surface of the CC steel can alleviate the maximum shear stress more effectively. Thus, the RCF life of
the steel is improved. The depths of the residual compressive stress layers of the CC steel and the
HC steel are about ~2.5 and ~1.5 mm, respectively. The deeper residual compressive stress layer of
the CC steel is caused by two important factors. One is the chemical composition difference between
the carburizing layer and the core of the steel after carburizing. The other reason is that the phase
transformation of the carburizing layer lags behind the martensitic transformation of the core when
the CC steel is austempered at 200 ◦C [22]. The austempering process at 200 ◦C, which is much lower
than the Ms temperature of the core and higher than the Ms temperature of the surface, ensures that
the martensite transformation first occurs in the core. Because of the almost same residual compressive
stress in the surfaces of the two steels, the differences in RCF life are mainly due to the depth of the
residual compressive stress layer and the stress value level in the compressive stress layer.
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It is well known that the tensile stress can help the crack open, and the compressive stress is
helpful to the crack closure. Sadeghi [32] proposed that the cumulative fatigue damage rate is inversely
proportional to the residual stress in the RCF test. Because the stress state of the surfaces of the
two steels are both compressive stress (σm < 0), the cumulative fatigue damage rate is decreased
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according to Sadeghi and the RCF life is prolonged. A report has shown [33] that the formation of the
residual compressive stress layer in the steel can enhance the fatigue life by increasing the fatigue crack
propagation threshold ∆Kth and reducing the fatigue crack growth rate da/dN. On one hand, the higher
residual compressive stress value in the carburizing layer of CC steel causes the absorption of more
energy for crack formation, thereby increasing the difficulty of crack initiation. On the other hand,
the deeper residual compressive stress layer of CC steel greatly reduces the fatigue crack propagation
rate in the carburizing layer, further improving the fatigue life.

XRD patterns of the contact surface of the two steels after RCF testing are shown in Figure 7.
In the patterns observed from the original surfaces (0 cycle) of the two steels, the peaks of ferrite (α)
and austenite (γ) are visible. After different RCF testing cycles, the peaks of austenite of the two steels
are weakened. The γ peaks are still visible in the CC steel. However, they nearly disappeared in the
HC steel, thereby indicating that the volume fraction of the retained austenite under these conditions
cannot be quantitatively calculated. The volume fraction of the retained austenite (Vγ, vol.%) was
determined according to Equation (3) in [34] using the 200, 211, and 220 reflections for the ferrite
phase and the 200, 220 and 311 reflections for the austenite phase. The calculated results are shown
in Table 3. Furthermore, the Vγ in the original surface of the HC steel is calculated to be 8.9 vol.%.
These results indicate that there was retained austenite transforming into martensite on the surface of
the two steels during the RCF testing. The volume fraction of retained austenite in the surface of the
CC steel remained almost unchanged after 1.40 × 107 cycles. The retained austenite on the surface
of HC steel transforms almost completely after 1.21 × 107 cycles. That is to say that the amount of
retained austenite in the CC steel decreased by almost ~20% after the RCF testing whereas the HC
steel lost almost all of the retained austenite. Therefore, we can infer that the untransformed retained
austenite left in the surface of the CC steel after the RCF testing is very stable and its amount is about
12.4% ± 2.2%, which is much more than that of the HC steel.
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Table 3. The Vγ in the contact surface of the two steels after different RCF testing cycles.

Cycle (N) 0 1.21 × 107 1.40 × 107 1.23 × 108

Vγ

(vol.%)
CC steel 33.2 ± 1.5 - 13.0 ± 1.9 12.4 ± 2.2
HC steel 8.9 ± 2.6 <2.0 - -

The amount of the retained austenite transforming into martensite at the surface of the CC
steel is much larger than that of the HC steel. On one hand, a compressive stress is produced when
the retained austenite in the surface transforms into martensite because of volume expansion [17].
A greater amount of retained austenite transformed into martensite produces a greater compressive
stress value. The greater residual compressive stress in the contact surface plays an important role in
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improving the RCF life. On the other hand, a higher amount of retained austenite that is transformed
into martensite leads to absorption of more strain energy, which enhances the RCF life by delaying the
crack initiation and propagation. However, the volume expansion caused by the retained austenite
transforming into martensite significantly affects the dimensional stability of the bearing, especially
for the precision bearing. The observed strain is about 10−3 per percent of retained austenite that
decomposes in a 52,100 type steel [17].

Furthermore, more stable untransformed retained austenite left in the contact surface of the
CC steel, which does not transform into martensite during the RCF testing, is very beneficial in
improving the RCF life of the steel. First, the stable retained austenite in the contact surface can
delay crack initiation via absorption of the plastic deformation energy generated by the contact stress.
Second, the retained austenite, as a soft phase in the steel, increases the difficulty of crack initiation
by alleviating the stress concentration at the hard phases (such as non-metal inclusions or carbide
particles). Finally, the stress in the crack tip is relaxed when the tip of the fatigue crack encounters the
soft phase of the retained austenite, thus more energy is needed to allow the crack to pass through the
retained austenite. Therefore, the more stable untransformed retained austenite left in the surface of
the CC steel can effectively prevent the crack initiation and propagation, which is different from the
damage mechanism of the nanostructured bainitic steel without undissolved carbides in [18]. Thus,
the RCF performance can be further improved.

The hardness distributions of the CC steel and the HC steel after different RCF testing cycles are
given in Figures 8 and 9, respectively. The initial hardness values of the surfaces of the CC steel and the
HC steel are 730 ± 10 HV0.5 and 727 ± 8 HV0.5, respectively. The hardness value of the contact surface
of the CC steel increased significantly with increasing rolling cycles. The surface hardness value of the
CC steel reached 840 ± 15 HV0.5 after rolling for 1.23 × 108 cycles. However, the extent of the increase
in surface hardness of the HC steel was significantly less than that of the CC steel after different rolling
cycles. Moreover, the hardness values of the contact surface of the HC steel after different rolling cycles
were nearly the same, all of which were within 780 ± 10 HV0.5. The depths of the hardened layer are
about 1.0 mm for the CC steel and 0.4 mm for the HC steel, as shown in Figures 8 and 9. The harder
matrix of the HC steel prevents the continuous deformation of the subsurface layer during the RCF
test, whereas the plastic deformation zone in the subsurface layer of the CC steel continuously enlarges
because of the softer subsurface layer. The depth of the hardened layer is determined by the range
of the plastic deformation zone during the RCF test. The increase in the contact surface hardness is
mainly caused by the transformation of the retained austenite to martensite under the stress-strain
effect during the RCF test. Bhadeshia [7] reported that the work-hardening capacity of the steel can be
enhanced when the retained austenite undergoes stress- or strain-induced martensitic transformation.
The work-hardening capacity of the CC steel is better than that of the HC steel because of the higher
amount of retained austenite transforming into martensite in the surface and the better plasticity of the
subsurface of the CC steel.
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Surface hardness is often regarded as one of the criteria for evaluating the RCF life of steel.
Zaretsky [35] proposed the empirical equation for the hardness value and the RCF life within a certain
range of hardness value. The equation is expressed as follows:

L2
10/L1

10 = Exp[m(RC2 − RC1)] (3)

where L2
10 and L1

10 are the corresponding rated lives when the surface hardness values of the steels are
RC2 and RC1, respectively, and m is a material constant with a value of 0.1. Because of the almost same
surface hardness of the two steels, the value of LCC

10 /LHC
10 is approximately 1 according to this empirical

equation. However, the value of LCC
10 /LHC

10 is approximately 1.03 according to the experimental results
in Table 2. Therefore, we can conclude that the rated lives of the two steels are approximately the same
based on the almost similar initial surface hardness, which is consistent with the experimental results
in Table 2. Reports have shown [11,36] that the higher hardness of high-C–Cr bearing steel prolongs
the RCF life. Thus, the RCF life of the specimen, which does not fail after 1.38 × 107 cycles, is further
increased by the hardness increasing. The work-hardening capacity directly depends on the degree of
the hardness increase. The work-hardening capacity of the CC steel is significantly greater than that of
the HC steel, which is one of the reasons for the longer median life and characteristic life of the CC steel
than that of the HC steel. According to the above analysis, the RCF rating lives of the two steels mainly
depend on the initial surface hardness values of the steels, whereas the median life and characteristic
life are closely related to the work-hardening capacity of the steel during the RCF test.

4. Conclusions

The following conclusions can be drawn from the present work:

(1) The L10 life of the carburized nanostructured bainitic steel is approximately the same as that of
the high-C nanostructured bainitic steel, but the L50 life and characteristic life of the former are
1.4 times and 1.5 times longer than those of the latter, respectively.

(2) The finer carbides’ dispersion distribution in the top surface, the higher residual compressive
stress values in the carburized layer, the deeper residual compressive stress layer, the higher
work-hardening capacity, the larger amount of retained austenite transforming into martensite
at the surface and the more stable untransformed retained austenite left in the top surface play
important roles in improving the RCF performance of carburized nanostructured bainitic steel.

(3) The RCF L10 lives of the carburized and high-C nanostructured bainitic steel mainly depend on
the initial surface hardness values of the steels, whereas the L50 life and characteristic life are
closely related to the work-hardening capacity of the steel during the RCF test.
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