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Abstract: Control of gene regulatory networks is one of the fundamental topics in systems biology.
In the last decade, control theory of Boolean networks (BNs), which is well known as a model of gene
regulatory networks, has been widely studied. In this review paper, our previously proposed methods
on optimal control of probabilistic Boolean networks (PBNs) are introduced. First, the outline of
PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The
finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore,
another finite-time optimal control problem, which can be reduced to an integer programming
problem, is also explained.

Keywords: integer programming; gene regulatory network; polynomial optimization; probabilistic
Boolean network

1. Introduction

It is important to understand biological behavior as a system. For this purpose, systems biology
has been established as a new research field [1,2]. One of the practical applications in systems biology
is gene therapy technologies (see, e.g., [3]). In gene therapy, the expression of certain genes must be
controlled, and such a problem can be formulated as a control problem. In other words, control of gene
regulatory networks corresponds to therapeutic interventions realized by radiation, chemotherapy,
and so on. Thus, control theory of gene regulatory networks is important for developing medical
services in the future. Furthermore, from the viewpoint of experimental study, several results on
control of gene regulatory networks have been obtained in [4–7]. For example, in [5], it was shown that
cellular behavior can be regulated by control. These results suggest that feedback control of biological
systems can be implemented. Motivated by the above background, we are developing theory of control
methods for gene regulatory networks.

In developing a control method of gene regulatory networks, first, it is important to consider
what mathematical model is utilized. A gene regulatory network is modeled by discrete dynamical
systems (e.g., Bayesian networks, Boolean networks (BNs) [8]), continuous dynamical systems (e.g.,
differential/difference equations), or hybrid dynamical systems (e.g., piecewise affine models) (see,
e.g., [9] for further details). In control theory, BNs and piecewise affine models are frequently utilized
(see, e.g., [10] for control of a biological system modeled by a piecewise affine model). The control
problem of hybrid systems is generally reduced to a mixed integer programming problem, in which
continuous variables and binary variables are decision variables, and the computation time to solve
it is frequently too long. Hence, a class of gene regulatory networks is limited to those with a small
network. A BN is a mathematical model whose interactions between genes are expressed by Boolean
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functions [8]. That is, gene expression is approximated by a binary value (0 or 1). Since a BN is too
simple, there is a possibility that biological behavior is not precisely modeled (see, e.g., [11]). On the
other hand, this model can be relatively applied to large-scale systems. This advantage is focused
on, and a BN is utilized in the first step of developing control theory of gene regulatory networks.
Furthermore, a probabilistic Boolean network (PBN) [12] and a context-sensitive PBN [13,14] have
been proposed as the extended models of BNs. In a PBN, at each discrete time, a Boolean function is
randomly chosen from the candidates of Boolean functions. In a context-sensitive PBN, the time of
choosing a Boolean function is also selected randomly. Hence, a context-sensitive PBN is a generalized
version of a PBN.

In the last decade, many results on control of BNs and PBNs have been obtained so far (see,
e.g., [15–32]). Especially, analysis and control methods using the semi-tensor product (STP) method
have been widely studied (see, e.g., [33–43]). In the review paper [44], many methods for PBNs, e.g.,
construction and inference methods, structural intervention methods, and control methods, have been
explained in a comprehensive manner. Of course, it is difficult to understand details of individual
methods by reading only [44]. It is also significant to restrict topics and explain details. In this review
paper, our previously proposed methods [23,24] in optimal external control of PBNs, i.e., a polynomial
optimization approach and an integer programming approach are explained. Comparing our methods
with other existing methods, the main advantage of our methods is that a relatively large-scale PBN can
be handled. In many existing control methods (e.g., [19–21,30,32,36]), transition probability matrices
with 2n × 2n must be manipulated (n is the number of genes). As a result, a class of PBNs is restricted
(see also Section 5 for further details). In our methods, transition probability matrices are not used.
Moreover, since several solvers are available, optimization-based approaches are useful. To the best
of our knowledge, such approaches have not been studied sufficiently, and their development in the
future is necessary.

First, we introduce an optimal control method using polynomial optimization. In this method, the
expected value of the state in PBN is modeled by a polynomial system, which can be directly obtained
by Boolean functions and information on probabilities. Then, the finite-time optimal control problem
is reduced to a polynomial optimization problem. Using e.g., SparsePOP [45], which is available on
MATLAB R2006b or later, the polynomial optimization problem can be easily described and can be
solved. However, there is a weakness that the polynomial optimization problem for large-scale PBNs
cannot be solved owing to memory (but, comparing this method with other methods, a relatively
large-scale PBN can be handled). In addition, the computational complexity of the finite-time optimal
control problem of a PBN is Σp

2 -hard [17], which is harder than NP-hard (Non-deterministic Polynomial
time hard). Next, we introduce an optimal control method using integer programming. Instead of the
expected value of the cost function, we focus on upper and lower bounds of the cost function under a
certain constraint on probabilities. Then, the optimal control problem is reduced to an integer linear
programming problem.

This review paper is organized as follows. In Section 2, PBNs are briefly explained. In Section 3,
a control method using polynomial optimization is explained. In Section 4, a control method using
integer programming is explained. In Section 5, discussion on numerical experiments is done. In
Section 7, we conclude this review paper.

Notation: LetR denote the set of real numbers. Let {0, 1}n denote the set of n-dimensional vectors,
which consists of elements 0 and 1. For a matrix/vector X, let X> denote the transpose of X. Let I and 0
denote the identity matrix with an appropriate size and the zero matrix/vector/scalar, respectively. For
an event A, let P(A) denote the probability that A occurs. For two events A, B, let P(A|B) denote the
conditional probability of A given B. For two events A, B, let E[A|B] denote the conditional expected
value of A given B.
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2. Probabilistic Boolean Networks

In this section, we introduce a probabilistic Boolean network (PBN).
Consider the following PBN:

x1(k + 1) = f (1)(x(k), u(k)),
x2(k + 1) = f (2)(x(k), u(k)),
...
xn(k + 1) = f (n)(x(k), u(k)),

(1)

where x = [x1 x2 · · · xn]> ∈ {0, 1}n is the state (e.g., the expression of genes), and
u = [u1 u2 · · · um]> ∈ {0, 1}m is the control input (e.g., the expression of genes), i.e., the value
of u can be arbitrarily determined, k ∈ {0, 1, 2, . . . } is the discrete time. The function
f (i) : {0, 1}n × {0, 1}m → {0, 1}1 is a given Boolean function consisting of logical operators such as
AND (∧), OR (∨), XOR (⊕), and NOT (¬). In deterministic Boolean networks, x(k + 1) is uniquely
determined for given x(k) and u(k). In PBNs, the candidates of f (i)(x(k), u(k)) are given, and for each
xi, selecting one Boolean function is probabilistically independent at each time. The candidates of
f (i)(x(k), u(k)) are denoted by f (i)j (x(k), u(k)), j = 1, 2, . . . , l(i), and the probability that f (i)j (x(k), u(k))
is selected is denoted by

c(i)j = P
(

f (i)(x(k), u(k)) = f (i)j (x(k), u(k))
)
∈ [0, 1].

Then, the relation
l(i)

∑
j=1

c(i)j = 1 (2)

must be satisfied.
First, we present a biological example of (deterministic) Boolean networks (BNs).

Example 1. Consider the following BN of an apoptosis network (see also Figure 1):
x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x2(k) ∨ u(k),

(3)

where x1 is the concentration level (high or low) of the inhibitor of apoptosis proteins (IAP), x2 is the concentration
level of the active caspase 3 (C3a), and x3 is the concentration level of the active caspase 8 (C8a). The control
input u corresponds to the concentration level of the tumor necrosis factor (TNF, a stimulus). This model is
introduced in [46], and is a simplified version of an apoptosis network model in [47]. In this model, x2(k) = 0
implies cell survival, and x1(k) = 0, x2(k) = 1 imply cell death.

Figure 1. Simplified model of an apoptosis network.

Next, we present a simple example of PBNs.
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Example 2. Consider the PBN with three states and single control input. Boolean functions and probabilities
are given by

f (1) =

{
f (1)1 = x3(k) ∧ u(k), c(1)1 = 0.8,

f (1)2 = ¬x3(k), c(1)2 = 0.2,

f (2) = f (2)1 = x1(k) ∧ ¬x3(k), c(2)1 = 1.0,

f (3) =

{
f (3)1 = x1(k) ∧ ¬x2(k), c(3)1 = 0.7,

f (3)2 = x2(k) ∧ u(k), c(3)2 = 0.3,

where l(1) = 2, l(2) = 1 and l(3) = 2 hold, and we see that the relation (2) is satisfied. Next, consider the state
trajectories. Then, for x(0) = [ 0 0 0 ]> and u(0) = 1, we can obtain

P
(

x(1) = [ 0 0 0 ]> | x(0) = [ 0 0 0 ]>
)
= 0.8,

P
(

x(1) = [ 1 0 0 ]> | x(0) = [ 0 0 0 ]>
)
= 0.2.

In this example, the cardinality of the finite state set {0, 1}3 is given by 23 = 8, and we can obtain the
state transition diagram of Figure 2 by computing the transition from each state under u(0) = 0. In Figure 2,
the number assigned to each node denotes x1, x2, x3 (elements of the state), and the number assigned to each
arc denotes the transition probability from some state to other state. Note here that, for simplicity, the state
transitions from only x(k) = [ 0 0 0 ]>, [ 0 0 1 ]>, [ 0 1 0 ]>, [ 1 1 0 ]> are illustrated in Figure 2.

Figure 2. State transition diagram under u(0) = 1.

3. Polynomial Optimization Approach

In this section, a polynomial optimization approach to optimal control of PBNs is reviewed. The
advantage of this approach is that implementation is easy by using e.g., MATLAB.

3.1. Problem Formulation

For PBN (1), consider the following finite-time optimal control problem.

Problem 1. Suppose that, for PBN (1), the initial state x(0) = x0 and the control time N are given. Then, find
a control input sequence u(0), u(1), . . . , u(N − 1) minimizing the following cost function:

J = E

[
N−1

∑
k=0
{Qx(k) + Ru(k)}+ Q f x(N)

∣∣∣∣∣ x(0) = x0

]
, (4)
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where Q, Q f ∈ R1×n, R ∈ R1×m are weighting vectors whose element is a non-negative real number.

In this problem, we use some linear function with respect to the state and the control input as a
cost function. Noting that the relation δ2 = δ holds for a binary variable δ, it is unnecessary to add
the quadratic term such as x2

i (k). Moreover, one of the main purposes in control of gene regulatory
networks is that the expression of a certain gene is inhibited or activated (see e.g., [20]). Hence, simple
linear cost function (4) is sufficient.

3.2. Transformation of a PBN into a Polynomial System

Consider modeling the dynamics of the expected value of the state by a polynomial system. First,
the relation between a Boolean function and a polynomial is explained as a preparation. Next, the
result for a general PBN is explained. Finally, a simple example is shown.

As a preparation, the following lemma [48] is introduced.

Lemma 1. Consider two binary variables δ1 and δ2. Then, the following relations hold:

(i) ¬δ1 is equivalent to 1− δ1,
(ii) δ1 ∧ δ2 is equivalent to δ1δ2,

(iii) δ1 ∨ δ2 is equivalent to δ1 + δ2 − δ1δ2,
(iv) δ1 ⊕ δ2 is equivalent to δ1 + δ2 − 2δ1δ2.

By Lemma 1, a given Boolean function can be transformed into a polynomial on the real number
field. For example, δ1 ∨ ¬δ2 is equivalently transformed into δ1 + (1− δ2)− δ1(1− δ2) = 1− δ2 + δ1δ2.

Next, a recursive representation of a general PBN is explained. Let f̂ (i) denote the polynomial that
can be obtained from the Boolean function f (i). Let f̂ (i)j denote the polynomial that can be obtained

from the Boolean function f (i)j . Hereafter, for simplicity of notation, the condition in E[xi(k)|∗] is
omitted.

In [24], the following theorem was obtained.

Theorem 1. Suppose that, for the PBN (1), the initial state x(0) = x0 is given. Then, the expected value of the
state, E[xi(k)], is expressed as the following polynomial system:

Σi : E[xi(k + 1)] =
l(i)

∑
j=1

c(i)j f̂ (i)j (E[x(k)], u(k)). (5)

The outline of the proof is explained as follows. Since a Boolean function is independently
switched for each state, E[xixj] = E[xi]E[xj], i 6= j holds. In addition, there exists no second-order term

of xi in f̂ (i)j . Then, noting that E[u(k)] = u(k) holds, we can obtain the system (5).

Noting that f̂ (i)j (x(k), u(k)) is a polynomial, the right-hand side of the system (5) is also a
polynomial. Therefore, from Theorem 1, we see that time evolution of the expected value of the
state is modeled by a polynomial system.

We present a simple example.

Example 3. Consider the PBN in Example 2 again. Suppose that, for this PBN, x(0) and u(0) are
given by x(0) = x0 = [ 0 0 0 ]> and u(0) = 0, respectively. Then, from Figure 2, we can obtain
E[x1(1)] = 0.8 · 0 + 0.2 · 1 = 0.2. We can also obtain it in other way. By Lemma 1, x3(k) ∧ u(k) and ¬x3(k)
are transformed into x3(k)u(k) and 1− x3(k), respectively. Hence, we can obtain

E[x1(1)] = 0.8(x3(0)u(0)) + 0.2(1− x3(0))

= 0.2.
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In a similar way, E[x2(1)] and E[x3(1)] can be obtained as

E[x2(1)] = x1(0)(1− x3(0))

= 0,

E[x3(1)] = 0.7{x1(0)(1− x2(0))}+ 0.3(x2(0)u(0))

= 0,

respectively.
Next, suppose that u(1) is given by u(1) = 0, and consider deriving E[x(2)]. Then, noting that a Boolean

function is independently switched for each state, we can obtain

E[x1(2)] = E[ f (1)(x(1), u(1))]

= 0.8E[ f (1)1 (x(1), u(1))] + 0.2E[ f (1)2 (x(1), u(1))]

= 0.8E[x3(1)u(1)] + 0.2E[1− x3(1)]

= 0.8E[x3(1)]u(1) + 0.2− 0.2E[x3(1)]

= 0.2,

E[x2(2)] = E[ f (2)(x(1), u(1))]

= 1.0E[x1(1)(1− x3(1))]

= E[x1(1)]− E[x1(1)]E[x3(1)]

= 0.2,

E[x3(2)] = E[ f (3)(x(1), u(1))]

= 0.7E[x1(1)− x1(1)x2(1)] + 0.3E[x2(1)u(1)]

= 0.14.

By recursively repeating, we can obtain E[x(k)], k ≥ 3.

From this example, we see that the expected value of the state can be expressed as a polynomial
system using Theorem 1.

3.3. Reduction to a Polynomial Optimization Problem

Consider reducing Problem 1 to a polynomial optimization problem. Then, the following theorem
was obtained in [24].

Theorem 2. Problem 1 is equivalent to the following polynomial optimization problem:

find E[x(k + 1)] ∈ Rn, u(k) ∈ Rm, k = 0, 1, . . . , N − 1

min Cost function (4)

subject to System Σi, i = 1, 2, . . . , n,

x(0) = x0,

ui(k)(ui(k)− 1) = 0.

This theorem is immediately obtained from the following two properties: (i) the relation
E[u(k)] = u(k) holds; (ii) the fact that ui(k) is a binary variable is equivalent to the constraint
ui(k)(ui(k)− 1) = 0. We remark here that this constraint is non-convex. From the practical viewpoint,
it is desirable to relax this constraint to 0 ≤ ui(k) ≤ 1. Furthermore, from Theorem 1, we see
that E[x(k + 1)] ∈ [0, 1]n always holds. Hence, we set E[x(k + 1)] ∈ Rn in the above polynomial
optimization problem. Finally, E[x(k + 1)] may be eliminated from decision variables in the above
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problem, but its elimination is not easy. Hence, E[x(k + 1)] is included in a decision variable of the
above problem.

A polynomial optimization problem can be solved by using e.g., SparsePOP [45], which is
available on MATLAB. In SparsePOP, polynomials can be directly described.

4. Integer Programming Approach

The effectiveness of the polynomial optimization approach is restricted because the computational
complexity of Problem 1 is Σp

2 -hard [17], which is harder than NP-hard. In this section, an integer
programming approach is explained. Instead of the expected value of the cost function, we focus
on upper and lower bounds of the cost function. Then, the optimal control problem is reduced to
an integer linear programming (ILP) problem. This method is a simplified version of our previously
proposed method in [23].

4.1. Problem Formulation

First, preparations are given. Suppose that for PBN (1), j̄(i, k) ∈ {1, 2, . . . , l(i)} is given for fixed
i ∈ {1, 2, . . . , n} and k ∈ {0, 1, . . . }. Then, we define

π j̄(k) :=
n

∏
i=1

c(i)j̄(i,k).

The parameter π j̄(k) implies the probability that the Boolean functions f (1)j̄(1,k), f (2)j̄(2,k), . . . , f (n)j̄(n,k) are
selected at time k. Furthermore, we define

π j̄(k1, k2) :=
k2

∏
q=k1

π j̄(q).

The parameter π j̄(k1, k2) implies the probability that certain Boolean functions are selected in the
time interval [k1, k2].

Example 4. Consider the PBN in Example 2 again. Suppose j̄(1, 0) = 1, j̄(2, 0) = 1, and j̄(3, 0) = 2. In other
words, f (1)1 , f (2)1 , f (3)2 are given as a Boolean function at time 0. Then, we can obtain

π j̄(0) = c(1)1 · c
(2)
1 · c

(3)
2 = 0.8 · 1 · 0.3 = 0.24.

Furthermore, suppose that j̄(1, 1) = 2, j̄(2, 1) = 1, j̄(3, 1) = 1 j̄(1, 2) = 1, j̄(2, 2) = 1, and j̄(3, 2) = 1.
Then, we can obtain

π j̄(1) = 0.2 · 1 · 0.7 = 0.14,

π j̄(2) = 0.8 · 1 · 0.7 = 0.56,

π j̄(0, 2) = π j̄(0) · π j̄(1) · π j̄(2) = 0.018816.

Under these preparations, two problems (i.e., the optimal control problem and the performance
evaluation problem) are formulated. First, the optimal control problem is formulated as follows.

Problem 2. Suppose that, for PBN (1), the initial state x(0) = x0, ρ satisfying 0 ≤ ρ ≤ 1, the control time N,
and the weighting vectors Q, Q f ∈ R1×n, R ∈ R1×m whose element is a non-negative real number are given.
Then, solve the following two problems.
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Problem 2-A: Find a control input sequence u(0), u(1), . . . , u(N − 1) minimizing the lower bound of the
cost function

J =
N−1

∑
k=0
{Qx(k) + Ru(k)}+ Q f x(N) (6)

satisfying the following constraint
π j̄(0, N − 1) ≥ ρ. (7)

Problem 2-B: Apply the control input sequence obtained in Problem 2-A to the PBN. Then, find an upper
bound of the cost function (6).

Let Js and Js denote the obtained upper and lower bounds, respectively. In a similar way to
Problem 1, a linear function with respect to x and u is considered as a cost function. Using the target
value of the state (the offset vector) xd ∈ {0, 1}n, x(i) may be replaced to x̂(i) := x(i)− xd. Then, the
cost function (6) must be changed to J = ∑N−1

i=0 {|Qx̂(i)|+ Ru(i)}+ |Q f x̂(N)|. Furthermore, by the
inequality constraint (7), combinations of Boolean functions selected with the low probability can
be excluded.

Each element of the control input sequence obtained solving Problem 2 is in general different.
In gene regulatory networks, it is difficult to implement such control input sequence. In this case,
we must impose constraints for control input sequences. For example, one of the simple methods is
that the control input is given by always 1 (active) or 0 (inactive). That is, Problem 2-A is modified as
follows: find u0(= u(0) = u(1) = · · · = u(N− 1)) minimizing the lower bound of the cost function (6)
under the constraint (7).

We present a simple example.

Example 5. Consider the PBN with a single control input. Boolean functions and probabilities are given by

f (1) =

{
f (1)1 = x3(k) ∧ ¬u(k), c(1)1 = 0.8,

f (1)2 = ¬x3(k) ∧ ¬u(k), c(1)2 = 0.2,

f (2) = f (2)1 = x1(k) ∧ ¬x3(k), c(2)1 = 1.0,

f (3) =

{
f (3)1 = x1(k) ∧ ¬x2(k), c(3)1 = 0.7,

f (3)2 = x2(k) ∨ u(k), c(3)2 = 0.3,

respectively, where u(k) ∈ {0, 1}1. The initial state and the cost function are given by

x(0) = x0 =

 1
1
1

 , J =
1

∑
k=0
{x3(k) + u(k)}+ x3(2),

respectively. For simplicity of discussion, ρ is given by ρ = 0, i.e., the constraint (7) is not imposed.
Consider calculating the cost function explicitly. First, x3(0) = 1 holds. Next, we can obtain the following

relations at time 1: {
P(x1(1 | x(0) = x0) = ¬u(0) = 0.8,
P(x1(1) = 0 | x(0) = x0) = 0.2,

P(x2(1) = 0 | x(0) = x0) = 1.0,{
P(x3(1) = 0 | x(0) = x0) = 0.7,
P(x3(1) = 1 | x(0) = x0) = 0.3.



Algorithms 2017, 10, 31 9 of 16

Furthermore, x3(2) can be derived as
P(x3(2) = ¬u(0) | x(0) = x0) = 0.7 · 0.8 = 0.56,
P(x3(2) = 0 | x(0) = x0) = 0.7 · 0.2 = 0.14,
P(x3(2) = u(1) | x(0) = x0) = 0.3 · 1.0 = 0.3.

Noting that ¬u(0) is equivalent to 1− u(0) (see Lemma 1), we can obtain

P(J = 2 + u(1) | x(0) = x0) = 0.392,

P(J = 1 + u(0) + 2u(1) | x(0) = x0) = 0.210,

P(J = 1 + u(0) + u(1) | x(0) = x0) = 0.098,

P(J = 3 + u(1) | x(0) = x0) = 0.168,

P(J = 2 + u(0) + 2u(1) | x(0) = x0) = 0.090,

P(J = 2 + u(0) + u(1) | x(0) = x0) = 0.042.

First, consider solving Problem 2. We can obtain the optimal solution of Problem 2-A as u(0) = u(1) = 0.
The minimum value of the lower bound of the cost function is Js = 1. The minimum value of the upper bounds
can be obtained as Js = 3 (this is the solution of Problem 2-B). Next, consider the case of u(0) = u(1) = 1 as an
example of other constant input. Then, the upper and lower bound of the cost function can be obtained by 2 and
5, respectively. From this result, we see that a solution for Problem 2-A should be applied to the system.

Problem 2 for a simple PBN can be easily solved. However, solving this problem for a large-scale
PBN is hard. Here, we introduce an integer programming approach for solving Problem 2.

4.2. Solution Method for Problem 2-A

In this subsection, a solution method for Problem 2-A is derived. The solution method for
Problem 2-B will be explained in the last part of this subsection.

As a preparation, we explain one lemma. The product of multiple binary variables such as δ1δ2

can be linearized by using the following lemma [49].

Lemma 2. Suppose that binary variables δj ∈ {0, 1}, j ∈ J are given, where J is some index set. Then,
z = ∏j∈J δj is equivalent to the following linear inequalities

∑
j∈J

δj − z ≤ |J | − 1, − ∑
j∈J

δj + |J |z ≤ 0,

where |J | is the cardinality of J .

From Lemmas 1 and 2, we see that any Boolean function can be equivalently transformed into a
pair of linear functions and linear inequalities. See [48,49] for further details.

Consider transforming Problem 2-A into an ILP problem. Using Lemma 1, f (i)j (x(k), u(k)) in the

PBN (1) can be equivalently transformed into a certain polynomial. Let f̂ (i)j (x(k), u(k)) denote the
obtained polynomial. Then, consider the following system:

xi(k + 1) =
l(i)

∑
j=1

{
δi,j(k) f̂ (i)j (x(k), u(k))

}
, (8)
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where i = 1, 2, . . . , n and δi,j(k) ∈ {0, 1}1. For δi,j(k), we impose the following constraint:

l(i)

∑
j=1

δi,j(k) = 1. (9)

Next, using c(i)j and δi,j(k), we define

Li :=
[

ln c(i)1 ln c(i)2 · · · ln c(i)l(i)

]
,

L :=
[

L1 L2 · · · Ln

]
,

δi(k) :=
[

δi,1 δi,2 · · · δi,l(i)

]>
∈ {0, 1}l(i),

δ(k) :=
[

δ1(k) δ2(k) · · · δn(k)
]>
∈ {0, 1}l ,

where l := ∑n
i=1 l(i). Then, the following lemma was obtained in [23].

Lemma 3. Problem 2-A is equivalent to the following problem.

Problem 2-C:

find u(k), δ(k), k = 0, 1, . . . , N − 1

min Cost function (6)

subject to System (8), x(0) = x0,

Inequality constraint
N−1

∑
k=0

Lδ(k) ≥ ln ρ,

Equality constraint (9).

The outline of the proof is explained as follows. By deciding δ(k), Boolean functions at each time
are uniquely determined. Then, we can obtain ln π j̄(k) = Lδ(k). That is, using the logarithm of the
probability, π j̄(k) can be expressed by a linear form with respect to δ(k). Hence, we can obtain

ln π j̄(0, N − 1) =
N−1

∑
k=0

ln π j̄(k) =
N−1

∑
k=0

Lδ(k).

Thus, Problem 2-A is equivalent to Problem 2-C.
We consider further rewriting Problem 2-C. Since the system (8) is a polynomial system, the

system (8) can be equivalently transformed into a linear system by using Lemma 2. Hence, the
system (8) can be transformed into the following system:{

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k),
Cx(k) + D1u(k) + D2δ(k) + D3z(k) ≤ E,

(10)

where z(k) ∈ {0, 1}p is an auxiliary variable, and the dimension p can be determined from the
number of the product of binary variables. For simplicity of notation, we define B := [ B1 B2 B3 ],
v(k) := [ u>(k) δ>(k) z>(k) ]>. In addition, under x(0) = x0 ∈ {0, 1}n and v(k) ∈ {0, 1}m+l+p, x(k)
becomes a binary variable automatically. Hence, we set x(k) ∈ Rn, k ≥ 1.

We present a simple example.
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Example 6. Consider the PBN in Example 5 again. Then, the system (8) can be derived as

x1(k + 1) = δ1,1(k)
{

x3(k)(1− u(k))
}
+ δ1,2(k)

{
(1− x3(k))(1− u(k))

}
,

x2(k + 1) = δ2,1(k)
{

x1(k)(1− x3(k))
}

,

x3(k + 1) = δ3,1(k)
{

x1(k)(1− x2(k))
}
+ δ3,2(k)

{
x2(k) + u(k)− x2(k)u(k)

}
.

The equality constraint (9) can be derived as

2

∑
j=1

δ1,j(k) = 1, δ2,1(k) = 1,
2

∑
j=1

δ3,j(k) = 1.

The state equation in the system (10) can be derived as

x1(k + 1) = z1,1(k)− z1,2(k) + δ1,2(k)− z1,3(k)− z1,4(k) + z1,5(k),

x2(k + 1) = x1(k)− z2,1(k),

x3(k + 1) = z3,1(k)− z3,2(k) + z3,3(k) + z3,4(k)− z3,5(k),

where

z1,1 = δ1,1x3, z1,2 = δ1,1x3u, z1,3 = δ1,2u, z1,4 = δ1,2x3, z1,5 = δ1,2x3u,

z2,1 = x1x3,

z3,1 = δ3,1x1, z3,2 = δ3,1x1x2, z3,3 = δ3,2x2, z3,4 = δ3,2u, z3,5 = δ3,2x2u.

Using Lemma 2, these relations can be equivalently transformed into a set of linear inequalities. Then,
p = 11 holds. Thus, the linear inequality in the system (10) can be derived.

Using the system (10), consider rewriting Problem 2-C as an ILP problem. First, equality
constraint (9) is embedded in the inequality constraint in the system (10). From the state equation in
the system (10), we can obtain

x(k) = Akx0 +
k

∑
i=1

Ai−1Bv(k− i).

Using this expression, we can obtain

x̄ = Āx0 + B̄v̄, (11)

where x̄ := [ x>(0) x>(1) · · · x>(N) ]>, v̄ := [ v>(0) v>(1) · · · v>(N − 1) ]> and

Ā =


I
A
A2

...
AN

 , B̄ =



0 0 · · · 0
B 0 · · · 0

AB
. . . . . .

...
...

. . . . . . 0
AN−1B · · · AB B


.

From the linear inequality in the system (10), we can obtain

C̄x̄ + D̄v̄ ≤ Ē, (12)
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where

C̄ =

C 0
. . .

...
C 0

 , D̄ =

D
. . .

D

 , Ē =

E
...
E

 .

Next, consider the linear inequality ∑N−1
k=0 Lδ(k) ≥ ln ρ in Problem C. From δ(k) = Wv(k),

W := [ 0l×m Il 0l×m ], this inequality can be rewritten as

−L̄W̄v̄ ≤ −ln ρ,

where L̄ = [ L · · · L ] and

W̄ =

W
. . .

W

 .

Cost function (6) can be rewritten as

J = Q̄x̄ + R̄v̄, (13)

where Q̄ := [ Q · · · Q Q f ] and R̄ := [ R · · · R ]. By substituting the state Equation (11) into
the inequality (12) and the cost function (13), we can obtain the ILP problem. In [23], this result was
obtained as the following theorem.

Theorem 3. Problem 2-C is equivalent to the following ILP problem.

Problem 2-D:

find v̄ ∈ {0, 1}(m+l+p)N

min (R̄ + Q̄B̄)v̄ + Q̄Āx0

subject to

[
C̄B̄ + C̄
−L̄W̄

]
v̄ ≤

[
Ē− C̄Āx0

−ln ρ

]
.

Problem 2-D can be solved by using a suitable free/commercial solver.
Finally, we explain a solution method for Problem 2-B. In Problem 2-B, we assume that u(k) (i.e.,

certain elements of v̄) is given. Under this assumption, Problem 2-B can be transformed into an ILP
problem by replacing “min” with “max” in Problem 2-D.

5. Discussion

In this section, from the viewpoint of numerical experiments, we compare two introduced
methods [23,24] with other existing methods.

In many existing methods, transition probability matrices with 2n × 2n in discrete-time Markov
chains must be manipulated (see, e.g., [19–21,30,32,36]). In Example 2, the transition probability matrix
with u(0) = 0 can be obtained as

0.8 0 0 0 0.2 0 0 0
0.2 0 0 0 0.8 0 0 0
0.56 0.24 0 0 0.14 0.06 0 0
0.14 0.06 0 0 0.56 0.24 0 0

0 0 0.24 0.56 0 0 0.06 0.14
0.06 0.14 0 0 0.24 0.56 0 0

0 0 0.56 0.24 0 0 0.14 0.06
0.14 0.06 0 0 0.56 0.24 0 0


.
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See also the state transition diagram in Figure 1. In recent years, analysis and control methods for
BNs and PBNs using the semi-tensor product approach have been widely studied (see, e.g., [34,36]). In
this approach, matrices with 2n × 2n must be manipulated. It is hard to manipulate matrices with such
size. In MATLAB, matrices with 216 × 216 cannot be generated. Although matrices with 215 × 215 can
be generated, computation of the product of matrices requires a long time. This is a weakness of many
existing methods.

In two methods introduced in this review paper, matrices with such size are not manipulated. As
a result, we can compute the optimal control problem. In [24], we presented a numerical experiment
for the polynomial optimization approach. Then, we reported that for a PBN with 15 states and
three control inputs, the computation times for solving Problem 1 in the cases of N = 2, 3, 4, 5 were
0.6 s (N = 2), 19.6 s (N = 3), 218.8 s (N = 4), and 334.4 s (N = 5), respectively. In this numerical
experiments, we used SparsePOP [45] for solving a polynomial optimization problem. The computer
environment is CPU: Intel Core i7 1.2 GHz, Memory: 4 GB, Windows 7 Professional 64 bit. In the
integer programming approach, we presented in [23] a numerical experiment for a context-sensitive
PBN with 15 states and three control inputs. Then, we reported that the computation time for solving
Problem 2-A with N = 10 was 18.96 s. In this numerical experiments, we used ILOG CPLEX 11.0 for
solving an ILP problem. The computer environment is CPU: Intel Core 2 Duo CPU 3.0 GHz, Memory:
4 GB, Windows 7 Professional 64 bit. We remark that it is hard to solve the optimal control problem of
a PBN with such size by using the other existing methods such as [20,21,34,36]. Thus, two methods
introduced here enable us to compute the optimal control input for relatively large-scale PBNs.

6. Open Problems in Control Theory of Probabilistic Boolean Networks

We have explained our previously proposed methods, and we have compared these methods
with other existing methods. In this section, we suggest open problems in control theory of PBNs.
Here, we consider not only optimal control methods but also other control methods.

Although our previously proposed methods can handle large-scale PBNs, these methods are
not scalable. Developing scalable control methods is important. Then, decomposition of networks
is important (see, e.g., [50,51]). For BNs, we consider only one network structure (directed graph)
such as Figure 1. On the other hand, for PBNs, we must consider a set of directed graphs. Hence, the
problem of decomposing given networks in a PBN is more difficult than that in a BN. This is one of the
challenging problem in control of PBNs. Moreover, the optimal control problems for PBNs obtained
from decomposed graphs can be solved fast, but their solutions may not be an optimal solution for the
optimal control problem of a given PBN. As a result, the optimality of the cost function is degraded.
Now, some analysis of the approximation accuracy is required.

It is also important to consider what can be obtained from graph structure alone. In [22],
controllability of BNs is characterized using a time sequence of graph structure. In [16], singleton
attractors (fixed points) of BNs are characterized from graph structure only. In [52,53], a feedback
vertex set of a graph is focused. A feedback vertex set of a graph is a set of vertices whose removal
results an acyclic graph. For a given graph, several feedback vertex sets can be obtained, but in
particular, a minimum feedback vertex set in which the number of vertices is minimum is important.
A minimum feedback vertex set is also not given uniquely. It was shown in [52,53] that in the system
given by a differential equation, a certain property of all states can be characterized by analyzing the
states relating to a certain feedback vertex set. However, the related results for BNs and PBNs have not
been obtained so far.

In our previously proposed methods explained in this paper, a controller must be implemented by
the personal computer that can solve a polynomial optimization problem and an integer programming
problem (of course, actuators for interacting genes are necessary, but this topic is out of scope of
this review paper). We may consider the case where a controller must be described by a certain
Boolean function. In such a case, the algebraic representation using the STP and the matrix-based
representation [54,55] are useful. Details are one of the open problems.
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Since BNs and PBNs are synchronous models, an extension to asynchronous models is important.
Then, it is appropriate to utilize a Petri net representation. A Petri net is well known as a model of
asynchronous behavior (see, e.g., [56] for further details), and is also used as a model of biological
networks (see, e.g., [9,57]). In [58], the authors have proposed a Petri net representation for modeling
asynchronous BN. In the case of PBNs, a stochastic Petri net may be used as a model of asynchronous
PBNs, but further discussion is required.

Finally, the state and the control input in BNs and PBNs are binary. There is a possibility that
biological behavior is not precisely modeled (see, e.g., [11]). Then, it may be appropriate that some of
states/inputs are given by continuous-valued variables. A dynamical system with binary variables
and continuous variables is called a hybrid dynamical system (see, e.g., [59]). Further research on
modeling and control methods is needed.

Thus, in control theory of PBNs, there are many remaining open problems. Further development
of many control methods is required.

7. Conclusions

The optimal control problem of PBNs is one of the significant problems in systems biology. This
problem can be rewritten as the optimal control problem of discrete-time Markov chains, which has
been extensively studied. However, the size of Markov chains exponentially grows with the state of
PBNs. Hence, it is important to consider a solution method in which Markov chains are not computed.
In this review paper, our previously proposed methods (i.e., the polynomial optimization approach
and the integer programming approach) in control of PBNs were explained as computation methods
that do not require Markov chains. In addition, we compared these methods with the other existing
methods. Finally, we explained open problems in control theory of PBNs.
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