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Abstract: In this paper, to overcome the innate drawbacks of some old methods, we present a new
quintic spline method for integro interpolation. The method is free of any exact end conditions, and it
can reconstruct a function and its first order to fifth order derivatives with high accuracy by only
using the given integral values of the original function. The approximation properties of the obtained
integro quintic spline are well studied and examined. The theoretical analysis and the numerical tests
show that the new method is very effective for integro interpolation.
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1. Introduction

Assume that y = y(x) is an unknown univariate real-valued function over [a, b]. Let:
Ar={a=x<x1< - <x,=0} 1)

be the uniform partition of [a, b] with step length h := -2, and let:

Xj+1 .
I ::/ y(x)dx (j=0,1,...,n—1) )
i
be the known integral values of y = y(x) over the subintervals.
The interpolation function p = p(x) that satisfies:

X1
/x p(x)dx=1; (j=0,1,...,n—1)

j
is called integro interpolation. The problem arises in many fields, such as numerical analysis,
mathematical statistics, environmental science, mechanics, electricity, climatology, oceanography,
and so on. We refer to [1-19] for its applied backgrounds and some recent developments.

In this paper, we will mainly focus on the quintic spline methods; see [2,14,17-19] for the
existing ones.

The method in [2] was based on the quintic Hermite-Birkhoff polynomials. The method was
very complicated because it mainly required solving two linear systems. Furthermore, besides the
integral values (2), the method must use seven additional exact end conditions in terms of y(xo), y, (x0),
v (x1),y (xa_1), v (xn),y" (x0) and y” (x,). Later, a new algorithm was given in [18] to simplify the
construction of integro quintic spline. It mainly required solving two linear three-diagonal systems.
It was kind of simpler than that of [2]. However, the algorithm needed five special and proper exact
end conditions in terms of y(xo), v (x1), ¥ (x,—1),y" (x1) and y” (x,_1). The method in [14] was based
on quintic B-splines. It was also very simple because it took advantage of the good properties of
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quintic B-splines. However, five additional exact end conditions in terms of y(xg), y(x1), y(x2), y(x,_1)
and y(x,) must be provided. In other words, these methods all need exact end conditions. This is
an obvious drawback of them. New simple methods that are not dependent on exact end conditions
are desired.

In [17], we have studied an effective method that was not dependent on any exact end conditions.
We first obtained n 4 1 approximate function values at the knots and four approximate boundary
derivative values from the integral values (2) and then used them to study a modified quintic spline
interpolation problem. However, the method also had its own drawbacks. On the one hand, it needed
n + 5 artificial values, which brought higher computational cost; on the other hand, the obtained
quintic spline did not agree with the given integral values (2) over the subintervals. In [19], a local
integro quintic spline method was given. It was also not dependent on exact end conditions and was
able to produce good approximations. However, the obtained local integro quintic spline also did
not agree with the given integral values (2) over the subintervals. Hence, these methods also need
improvements. New attempts on this problem are still necessary.

In this paper, we aim to develop a new effective method to overcome the above-mentioned
drawbacks. We will first construct six artificial end conditions by using a similar technique to [17] and
use them together with the integral values (2) to get a new kind of integro quintic spline; then, we will
theoretically analyze and numerically examine the approximation properties of the new integro quintic
spline. The new method is very effective, and it has the following advantages.

() The method is free of any exact end conditions, and it only requires five artificial end conditions,
which can be easily obtained by simple computations from several integral values.

(I) The computational procedure of the method is concise and easy to implement.

(IlT) The obtained quintic spline agrees with the given integral values (2) over the subintervals.

(IV) The obtained quintic spline can provide satisfactory approximations to y) (x), k = 0,1,2,3,4,5.

Hence, this method is very applicable for the integro interpolation problem.

The remainder of this paper is organized as follows. In Section 2, we compute some artificial
end conditions by using several integral values; in Section 3, we construct our new integro quintic
spline with five artificial end conditions; the approximation abilities of the integro quintic spline are
theoretically studied in Section 4 and numerically tested in Section 5; finally, we conclude our paper in
Section 6.

2. Artificial End Conditions

In this section, we study some new artificial end conditions for integro interpolation.

It is assumed that y = y(x) is a function of class C’[a, b] throughout this paper. In order to get
the highest error orders, we will use seven boundary integral values to construct some proper linear
combinations of them as the artificial end conditions. By expanding y = y(x) at x = x( by using the
Taylor formula and computing the integral on [xo, x|, m = 1,2,...,7, we obtain:

0

m—1 Xim
Yl = [y
(=0 X

= yo(mh) + L0 (mh)? + Y0 ()3 1+ YO (1)t @)
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For?¢=1,2,...,7,1let Ay, wy and py be three parameters, such that:
12 3 4 5 6 7 A w1 M 1 00
1 22 32 4 52 6 77 Ay wy o 010
1 28 3 4 5 6 7 A3 w3 H3 00 1
12t 3t 4t 5t ¢t 7 Ay wy pg | =)0 0 0
122 3 4 5 6 7 A5 ws s 000
1 26 35 46 55 66 76 Ao We e 000
1 27 3 4 5 ¢ 7 Ay wy oy 000
Explicitly,
21 35 35 21 7 1
A1_7/ Az_iil A3_§/ /\4_711 /\5_€/ )\6_76/ )\7 ?r
B S i TN B O R 4
WI=Tp0r 2T a0 BT TR MT g ST TR0 YT B0 7T oo
319 3929 389 2545 134 1849 29
M= 2770 BT MT T BT s FeT T g
By using (4) and using these parameters Ay, wy and yy, £ = 1,2,...,7, as the linear combination
coefficients, we obtain:
7 m—1
Y (Aw Y 1)
m=1 (=0
1
= @(108910 — 185117 + 25591, — 234113 + 133414 — 43015 + 601) 4)
= yoh+O(h®),
7 m—1
E (cwm Z Iy)
m=1 (=0
1
= %(—93810 + 307617 — 48351, + 465515 — 272514 + 89315 — 1261) (5)
1.,
= §y0h2+o(h8)/
7 m—1
Z (m Z Iy)
m=1 (=0
1
= %(96710 — 413711 4+ 76501, — 791015 + 481514 — 161715 + 2321¢) (6)
1 n
= 8y0h3+0(h8).

Similarly, we also can get some corresponding results at the right end point. Based on (5)—(7) and

the corresponding results at the right end point, let:

Jo = g5 (10891 — 185111 +25501, — 234115 + 13341, — 43015 + 6015,
7o = Tao (~93810 + 307611 — 48351, + 46551 — 27251, + 89315 — 1261),
! 1

Jo = ——— (967Iy — 413711 + 76501, — 79101 + 481515 — 161715 + 2321,

120h3

@)
®)
©)
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and:

1
Yn = 0h (10891, _1 — 18511, _p + 25591, _3 — 23411, 4 + 13341,,_5 — 430[,,_¢ + 60I,_7), (10)

: 1

In = Tggjz (9381u—1 — 30761, + 48351, — 46551, 4 + 27251, 5 — 893L, +1261,7),  (11)
I 1

In = Doz (967In—1 — 413715 + 76501, 3 — 791014 + 48151, 5 — 16171, + 2321, 7) . (12)

It is straightforward to prove that:

"

Jo—yo=0(), Go—yy=O0(K°), To—yy=O(), (13)
In—yn = O("), Gy —yn =000, ¥, -y, =O0(K). (14)

Let 0, = yn + 11—0112]7;;, by using (10) and (12); then, we get:

0y 285491, _1 — 659791, _» + 1047301,_3 — 1021901, _4 + 60385I,,_5 — 199191,,_¢ + 28241, _7) (15)

= 3200% ¢

and it holds: .
_ L0 " _ 7

0, <yn + 5t yn> 0 (h ) (16)

In the next section, (7)—(9), (11) and (15) will be used as the artificial end conditions for integro
interpolation; see (18) and (19).

3. Integro Quintic Spline Interpolation with Five Artificial End Conditions

In this section, we will use the given integral values (2) and the artificial end conditions in Section 2
to construct an integro quintic spline. Five additional independent conditions are needed. To use the
results of (10) and (12) sufficiently, we will directly use the hybrid result of (15).

We look for the quintic spline s, which satisfies the following conditions:

Y+ .
/ s()dx =1, j=01,...,n—1, (17)
Xj

s(a) = Yo, s (@) =¥o, s (a) =Y, (18)

and:
!

1 " /J

s(b) + Ehzs (b) =04, s (b) =7, (19)

It belongs to the spline space of C* quintic piecewise polynomial functions on the uniform

partition A (1), so s can be expressed as a linear combination of the quintic B-splines associated with
the extended partition of A (1) with knots a +ih, =5 <i <n+5,ie.,

n+2
S = 2 CiBi/
=2
where (see, e.g., [6,14,20,21]):
(x— xi73)§r 5 ifx € [x;-3,%i-2),
(x—xi3)° —6(x—xi)", ifx € [xi2,xi-1),
1 (x— xi—3)§ —6(x— xi—Z)z +15(x — xi—l): ,ifx € [xiog,x),
Bi (%) = oo | (¥ivs — x)5 —6(xip2 — X)5 +15 (xi41 —x)7, ifx € [x;,xi11),
(Xiys — X)S =6 (xit2 —x)7, if x € [Xiy1,Xi42),
(Xiy3 —x)°, if x € [Xi42,Xi43),
0, otherwise.
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For the sake of completeness, we give in Table 1 the values of B; at the knots in (x;_3,x;13).
Furthermore, we have the following integro properties:

Chdy = [ Bi(x)dx = —h 20
/XF3 i(x)dx = /xi+2 i(V)dx = 5 h, (20)
Xi—1 Xit2 57
B; dx = Bi(x)dx = —h 21
/ j (x) dax / (x)dx = —h, (21)
X Xi1 302
/XH Bi(x)dx = /xi B;(x)dx = ﬁoh’ (22)
Yj+1 S .
/ Bi(x)dx = 0,j>i+3o0orj<i—4 (23)
X

j

Table 1. The values of Bl.(k), k=0,1,2,3,4, at the knots lying in the interior of the support of B;.

X Xi—2  Xi-1 Xi Xi4+1 Xi42
B, 1 26 66 26 1
L 120 120 120 120 120
! 1 10 10 1
By wm o 0 —o  —om
B’ 1 2 _6 2 1
i 6h? 6h? 6h 6h2 6h?
G 1 2 2 _ 1
Bi 2h3 2h3 0 2h3 2h3
g 1 _4 6 _4 1
i h* h* h* h* h*

From (17) and (23), we have:

/Xj+1 s(x)dx =
X

j i=j—

j+3

Hence, for j =0,1,...,n — 1, by using (20)-(22), we get:

h

ﬁ()(CJ;Z + 57C];1 + 302C]' + 3026]‘+1 + 57C]'+2 + C]‘+3) = I]‘. (24)

Since s(a) = 1, it holds:
c_p +26¢_1 + 66co + 26¢1 + ¢ = 120%).
The condition s (a) = 7, provides the equality:
—c_p —10c_1 4 10¢1 + cp = 24hij,.
Similarly, from s’ (a) = ]?g, it follows that:
220
C_p+2c_1—6¢co+2c1 + cp = 6h7Y.

Taking into account that s(b) + f—ohzs” (b) = 6,, we get:

1
o0 (Cn—2 +26€u-1 + 66y +26¢5 41 + Cn2)

o1

E - 6?(&1—2 +2¢,1 — 60y + 2Cn+1 + C”+2) =0,
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that is:

20 (Cn-2 +10en 1 + 1864 +10¢, 1 + Cy2) = On.

Finally, from s’ (b) = 7,, it follows that:
—Cy_n — 10Cy_1 + 10C,41 + Cnyo = 24h7],.

Therefore, we get the linear system:

AC =Y,
where
1 26 66 26 1
-1 =10 O 10 1
1 2 -6 2 1
1 57 302 302 57 1
1 57 302 302 57 1
A:
1 57 302 302 57 1
1 57 302 302 57 1
1 10 18 10 1
-1 -10 0 101 (n+5)x (n+5)
and:
C= (C—Zr C_1,€0,C1," " ,Cn+1,s Cn+2)T/

720

- I,_1,400,,24hij,)T.

Theorem 1. The coefficient matrix A (27) is invertible.

Proof. We will prove that the determinant of matrix A is nonzero. We will perform

6 of 17

(25)

(26)

, (27)

some proper

elementary transformations to A in order to verify |A| # 0. Let C(i) denote the i-th column and R(7)
denote the i-th row of a matrix obtained by an elementary row or column transformation.

We first perform n + 4 elementary column transformations to A.
Step1: Fori=n+4,n+3,...,1,C(i) := C(i) — C(i +1).

Then, we get:

16 —-15 41 25 1

o -1 -9 9 1

-8 9 =7 1 1

0 1 56 246 56 1

0 1 56 246 56 1
A=
1 56 246 56 1

1 56 246 56 1
0 1 9 9 1
o -1 -9 9 1

(n+5)x (n+5)
We continue to perform the following elementary row transformations to A;.

Step 2: R(3) := 2R(3) + R(1);
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Step 3: R(3) := R(3) + R(2),and R(n +4) := R(n +4) — R(n +5);
Step 4: R(4) := R(4) + R(2),and R(n +3) := R(n+3) — R(n+5);
Step 5: R(5) := R(5) — ;,R(4),and R(n +2) := R(n +2) — ,R(n +3);
Step 6: R(3) = R(4),and R(n +4) = R(n + 3).

(=)

I

—_

[

O

O

—
=N eNe)
—oocoo

2377 11505 2631
47 47
56 246 56 1
1 56 246 56 1
Ay =
1 56 246 56 1
1 56 246 56 1

1 2631 11505 2377

a7 17 a7
0 0 18 0 0
0 1 57 255 47 0
0 0 -1 -9 9 1

(n+5)x (n+5)
By the basic knowledge of linear algebra, we have:
|Az| =16 X (—1) x 47 X |Cpp| x 47 x 1,

where Cy, is the central block matrix of Aj. Cpy is strictly diagonally dominant, and so, |Cpy| # 0.
It implies that |A;| # 0 and, hence, |A| # 0. In other words, A (27) is invertible, and the theorem
is proven. [
n+2
Theorem 1 guarantees the existence and uniqueness of the integro quintic splines = Y ¢;B;(x)
i=—2
determined by (17)—(19). It can be constructed as follows:
(I: Compute iy, %, ﬁg, 77, and 6, by using (7)-(9), (11) and (15), respectively;
(I): Solve the system (26) to get ¢, j=-2-10,...,n+2.
Evidently, the new method is free of exact end conditions and is easy to implement. Furthermore,
the obtained quintic spline s satisfies the conditions given in (2).

4. Approximation Properties

In this section, we study the approximation properties of the integro quintic spline s obtained in
Section 3.
Fork=0,1,...,5 we use y]<k) to denote y(k)(xj),j =0,1,...,n. Fork=0,1,2,3,4, we use s;

M;, T; and F; to denote slk )( ]-),]' =0,1,...,n. In addition, we define:

jr s

Wi Fip1—F

e 2h

in order to approximate y(S) (xj),j =12,...,n—1Forj=0,1,...,n,

s; = 1;0 (€j2 +26¢j_1 + 66¢; +26¢j11 + Cj42),
m; ﬁ(—cj,z —10¢j_1 +10cj11 + ¢j12),
M; = 6212 (€j—2+2cj_1 — 6¢j +2¢j41 +Cjy2),

T; 21113( —Cj_o +2¢j 1 —2¢j11 +¢j12),

1
Fj = ﬁ(cj',z *46]',1 +6Cj *46‘]41 +Cj+2)-
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Moreover,

W, =

1 )
i %(—cj_3 +4C]'_2 - 5C]'_1 + 5Cj+1 - 4C]'+2 + Cj+3), i=12...,n—-1

8 of 17

By using (24), (25) and the above results, we can get some important relations between sj, mj, M,

T;, Fj, W; and [; of the integro quintic spline. We list the relations as follows.

(Set 1)

347mg + 1044m; + 225my + 4mz = 12(12012 + 111014 — 690Iy) — 20— sanMy,;

h h
forj=2,3,...,n-2,
30
Mmj_p + 56mj_q +246m; + 56m; 1 + mjp = ﬁ(*ljfz =91 +9+ Ij+1);
1 540
4my,_3 + 225m,,_» + 1044m,,_1 + 347m, = ﬁ(6901n,1 —1110I,_p — 120I,_3) + 79,1.

(Set II)
Forj=0,1,...,n-3,

20

2
T, = (28m; +245m;, 1 + 56mj 5 +mjy3) + p

] 3h2
forj=23,4,...,n,

2 20
Tj = 3?(711]‘,3 + 567?1]',2 + 245771]‘,1 + 28111]) - h—4(101j,1 - 91]',2 - I]‘,3).
(Set III)
1 h
$1 = —S0+ — 130 (471 — 10 — L) + 540( 61mg + 363my + 57my + ms);
h
Sy = Sg + 3?(—810 +8L) + §(m0 — 8my +my);
forj=23,4,...,n,
§j = —8j-3 + 1;7(471]—3 — 581]_2 + 471]_1)
+ o (—61m;_5 + 423mj_p — 423m;_q1 + 61m;).
(Set IV)
,J/ 10 10 13 2 h h
forj=1,2,...,n,
10 10 7 8 h 5h
M] = _ﬁlj—l -+ ﬁsj_l + %m]’_l -+ @m] — E’T]'_l + %T]

(Set V)
120 120 40 20 11 4

Fp=—"21 Ty - Ty
0= "G5 ot gasot gttt s = g to g
forj=1,2,...,n,
120 120 40 20 5 10
b= gl gasi i ity it g b
(Set VI)
60 60 10 1
Wi = 3 (In+ L) — 5 (sp+s1) — ﬁ(2m0+3m1 + my) -0—6?(11T0+9T1 +10Ty);

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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forj=2,3,...,n—1,

60 60 20
Wi = ﬁ(Ij —Ij2) — ﬁ(sj —Sj2) — hj(mj —mj_3)
10 5
_ﬁ(mj-&-l —mj_q) +@(—Tj—2—2Tj—1 + Tj 4 2Tj41). (41)

Theorem 2. Let s be the integro quintic spline determined by (17)—(19) with the artificial end conditions given
in Section 2. For j = 0,1, ...,n, we have:

sj=y;+O(®), (42)
mj = y}- + O(h®), (43)
M; = yj + O (1), (34
T =y; +00r), (45)
E=yY +0(1?). (46)
Forj=1,2,...,n—1, we have:
W =y}Y +0(1?). (47)

Proof. We first prove (43). We define e;- = m;- — y;, j=0,1,...,n From (28) and (13), we get:

347¢, + 1044e; + 225, + 4e;

= (347mg + 1044my + 225my + 4m3z) — (347y, + 1044y, + 225y, + 4ys)

1 4 " ! ! ! !
= 15(1201 + 11101 — 690Io) — %go — 54hij, — (347y, + 1044y, + 225y, + 4y5)

1
= ﬁ{—180010 +990(Ip+ L) +120(Ip+ L + 1)}

=22 (yo + O()) — 54h(yg + O(KF))
—(347y, + 1044y, + 225y, + 4y3)
(continue to expand it at x( by using (4) and the Taylor formula)
= O(K).
Similarly, from (30) and (14), it follows that:
de, 5 +225¢, ,+ 104de, | + 347, = O(h%).
Besides, for j = 2,3,...,n — 2, from (29), it follows that:

ej o+ 56¢; 1 +246¢; +56¢;, 1 +ej,

= (mj_o+56m;_1 +246m; +56m;.1 +mji2) — (Y;_p +56y;_1 +246y; + 56Y; 1 + ;o)
30 / / / / /

= 2l =9 + 90+ L) — (yjp + 56y + 246y, +56Y1 +Yj12)
30

= ﬁ{81j72 — 18(1]',2 + I]',l) + 8(1]',2 +1Ii 1+ I]') + (I]?Z +1Ii g+ i+ I]‘+1)}

—(Yj_ +56y;_1 + 246y, + 56y;,1 + Yj.2)
(continue to expand it at x;_» by using a similar formula of (4) and the Taylor formula)
= O(n®).
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Take into account:
i

ey = mo — Yo = o — yo = O(K°),

€y = My _yln = y\/n _y; = O(hé)/

we get:
1 69 O(hé)
347 1044 225 4 ¢ O(h®
1 56 246 56 1 e, Oo(n®
1 56 246 56 1 e, O(h°)
4 225 1044 347 K o(K®)
1 Zr_l O(hé

n

The coefficient matrix is strictly diagonally dominant. The infinity norm of its inverse is bounded.

Hence, (43) is proven.
By using (31) and (43), we get:

" 2 ! ! ’
T—y; = a8+ O(K®)) +245(y; 1 + O(h°)) +56(y; 5 + O(h°))

! 20 "

+Wjss +0(1%))) + hj(lmj =941 — Ij42) —y;

o), j=0,1,...,n—3.

It shows that (45) holds for j = 0,1, ...,n — 3. Similarly, by using (32) and (43), we get that (45)
holdsforj=n—-2,n—1,n.

From (13), it follows that sp = 7o = yo + O(h’). By using (33)~(35), (43) and (45), we get
sj—yj = O(K®),j=1,2,...,n. Therefore, (42) is proven.

From (13), it follows that My = % = yg + O(h®). Moreover, by using (37), (42), (43) and (45),
we have:

1 10 10 7
Mj—y; = —liat ﬁ(yj—l +0(h°)) + 371(%‘—1 +O(K°))
8 I 6 _ h n 4 5h " 4 _ "

+371(yj+o(h ) E(yj—l +O(K")) + %(yj +0(1%)) —y;
O(h*), j=12,...,n

Therefore, (44) is proven. In addition, (46) and (47) can be proven similarly by using (38)—(41) and
(42), (43) and (45). O

Theorem 2 shows that the new integro quintic spline has super convergence in locally

a matine v
pproximating y:

i k =1,3,5, and full convergence in locally approximating y](.k), k=0,24.

Theorem 3. Let s be the integro quintic spline determined by (17)—(19) with the artificial end conditions given
in Section 2; we have:

Is%) (x) — y®) (x)lo = O(K®¥), k=0,1,2,3,4,5, (48)
where || - || := alg?i(b| |, and s)(x) is defined as follows:
5(5)(35) = Fth_Fj, xj<x<x41, j=0,12...,n-1,
F - K
5O (xg) = = 7 e,
5(5)(xn) _ Fy _h n—l/

SO (x) =W, j=1,2,...,n—1.
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Proof. By using (46), for x € (x]-, xj+1),j =0,1,2,...,n—1,

s®) (x) —y® (x) T

= O(h),

where 7;,; € (xj,xj11). Moreover, we have sO) (x0) — y(()S) = O(h), sO)(x,) — yS,S) = O(h) and
5(5)(xj) - y}s) =0(h?),j=1,2,...,n— 1. Hence,

15 (x) =y (x) [0 = O(h).

Next, for x € [Xj,Xj+1],j =0,1,2,...,n—1,

Oy @) = (B L ) o+ (x-x) +00)
F_.1—F
= o)+ (Lo =y (x—x)
NG

Hence, we get

154 (x) =y (2) oo = O(1?).
The others also can be proven similarly. We omit the proof. [

Theorem 3 shows that the new integro quintic spline has full convergence in globally
approximating y(k) (x),k=0,1,...,5.

5. Numerical Tests

In this section, we test the approximation properties of the new integro quintic spline. Our tests

are performed by MATLAB.
We take:
yp=¢€5, x€][0,1],
and:
sinx, ifx € [-05,0),
Yo = X3 x5 7 ]
x—y‘l‘ﬁ—ﬁ, ifx € [0,05],

as two illustrative examples. Furthermore, y; will be used in the comparison of our method with some
other methods.
The absolute errors at the knots are defined as follows:

Ee(xin) = [y® () —s®(x;), k=0,1,2,3,4 i=01,...,n,

and:
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The numerical convergence orders of the absolute errors at the knots are defined by:

_ log(Ex(x;,n1)/Ex(x;,n2))

Ok(xi/nl/ 7’12) = 10g(7’12/7’l1) ’ k= 0, 1,. . .,5.

(k)

Tables 2-7 show the absolute errors Ei(x;, 1) of y;"'(x) at the chosen knots and the numerical

(k)

convergence orders Ok(x;, 111, n2), where n = 10,20,40,k = 0,1, ...,5. The results of y, ' (x) are given

in Tables 8-13.

The numerical convergence orders in these tables accord with the theoretical expectation.
By Theorem 2, Ey(x;,n) and E;(x;,n) are of sixth order convergent (see Tables 2, 3, 8 and 9 for the
numerical convergence orders), E;(x;, ) and E3(x;,n) are of fourth order convergent (see Tables 4, 5,
10 and 11 for the numerical convergence orders), E4(x;, 1) and Es(x;, 1) are of second order convergent
(see Tables 6,7, 12 and 13 for the numerical convergence orders).

Table 2.

convergence orders.

Xi E()(xi, 10) Eo(xi, 20) E() (x,-, 40) O()(xi, 10, 20) Oo(x,-, 10, 40)
00 1711x1078% 1.141x10719 7.632x 10713 7.2 7.2
0.1 2512x107° 4480x 10712 2887 x 10715 9.1 9.8
02 7533x10710 1.627%x10712 7.105x%x 10715 8.9 8.3
03 4974x10710 1433x10712 1.998 x 10~15 8.4 8.9
04 3287x10710 1351x10712 1.799 x 10~14 7.9 7.1
05 4105x10710 1277 x10712 5107 x 10715 8.3 8.1
0.6 2701x10710 1187 x10712 5773x 10715 7.8 7.7
0.7 2914x10°10 1.075x10712 1954 x 10~ 14 8.1 6.9
0.8 3233x10710 7208x1071% 1.643x 10714 8.8 7.1
09 2535x107? 4.620x 10712 3.108 x 10~ 15 9.1 9.7
1.0 2403x10°8 2195x10°10 1.720 x 10712 6.8 6.9

The absolute errors of the function values of y; at the knots and the numerical

Table 3. The absolute errors of the first order derivatives of y; at the knots and the numerical

convergence orders.

X Eq (x,', 10) Eq (xi, 20) Eq (xi, 40) Oq (xi, 10, 20) Oq (x,', 10, 40)
0.0 8837x1077 1.181x10°8 1.599 x 10~10 6.2 6.2
01 7198x10°% 1.782x10710 6.932x10"13 8.7 8.4
02 1321x1078 5626x10712 9104 x 10715 11.2 10.1
0.3 3.138x107° 3.064x10712 6.535x%x 10713 10.0 6.1
04 4357x10710 3753 x10712 2014 x 10713 6.9 5.5
05 6.093x10710 4163x10712 2633x10°13 7.2 55
0.6 6225x10710 4451 x10712 4776 x 10713 7.1 5.1
0.7 4399 x107° 4471x10712 1275x 10713 9.9 7.5
0.8 1.839x10°% 1.034x10711 2132x10°13 10.8 8.1
09 1.020x1077 3315x10710 9912 x 10713 8.3 8.3
1.0 1300x107® 2363x10°% 3.788 x 10710 5.8 5.8
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Table 4. The absolute errors of the second order derivatives of y; at the knots and the numerical

convergence orders.

x; E>(x;,10) E3(x;,20) E>(x;,40) 02(x;,10,20)  O2(x;,10,40)
00 2647 x107° 7.099 x 107  1.949 x 108 5.2 5.2
0.1 4.869x1077 1.820x 1072 3.831x 10710 8.1 5.1
02 2978x1077 1957 x10~? 4.236 x 10~10 7.2 47
03 5713x1077 3211x107? 5213 x10°10 7.5 5.0
04 1569 %1077 4.450x10~? 3.785x 1010 5.1 43
05 5.861x1077 5.800x107? 6.002x 10710 6.7 49
0.6 9784 x1078 7297x107? 7.447 x 1010 3.7 35
0.7 6.007x1077 8972x10~2 5578 x 10710 6.1 5.0
08 1.011x1077 1.108x10°% 7.138x 10" 10 32 35
09 7946x1077 1.825x10"% 8472 x 10710 54 49
1.0 4.041x107° 1.462x107% 4772 x10°8 48 48

Table 5. The absolute errors of the third order derivatives of y; at the knots and the numerical

convergence orders.

X E3(x;,10) E3(x;,20) E3(x;,40) 03(x,10,20)  O3(x;,10,40)
0.0 5275x10% 2780 x107° 1.471x10°° 42 4.2
0.1 7.466x107° 1.054x107® 5170 x 1077 6.1 6.8
02 1955x107° 2196x10~% 2.435x 10~ 9.8 6.4
0.3 5.064x107°% 3244x10"% 2362 x107? 7.3 55
04 4352x1077 3.852x 1078 2592 x10~10 35 5.3
05 1209x107° 4265x10°8 5.388x 1077 48 3.9
0.6 6714x1077 4702x10~% 1.748 x107? 3.8 42
07 7116 x107% 4759 x10~% 1.095 x 1077 7.2 6.3
0.8 2705x107° 4.163x10"% 4917 x107? 9.3 6.1
09 1.027x107*% 1.950x107® 9570 x 1072 5.7 6.6
1.0 8400x10~* 6.182x107° 4229 x10°° 3.8 3.8

Table 6. The absolute errors of the fourth order derivatives of y; at the knots and the numerical
convergence orders.

Xi E4 (xi, 10) E4(x,-, 20) E4(xl-, 40) 04 (xi, 10, 20) 04(xi, 10, 40)
0.0 6.139%x1073 5.105x10~% 2.006 x 10~° 3.6 4.0
0.1 1.166x1073 2577 x10~* 5397 x 105 22 22
02 1219x107% 2171x10~% 5919 x 10> 25 2.0
03 1414x1073 2406x107* 6.602 x 107> 2.6 2.1
04 8417x107* 2700x10~* 7.006 x 10~ 1.6 1.8
05 1.806 x1073 3.026 x107* 8.012x 107> 2.6 22
0.6 1.046 x 1073 3387 x10~%* 8963 x 10~° 1.6 17
0.7 2303x1073 3783 x107% 9521 x10°° 2.6 22
0.8 5430x107* 4.165x10~* 1.067 x 10~ 0.4 1.1
09 5952x107% 3.446x10~% 1.174x 1074 41 2.8
1.0 1311x1072 2204 x10"% 3.719 x 10~* 2.6 2.6
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Table 7. The absolute errors of the fifth order derivatives of y; at the knots and the numerical

convergence orders.

x; Es(x;,10) Es(x;,20) Es(x;,40) Os5(x;,10,20)  Os(x;,10,40)
0.1 3494x1072 2340x10~3 3.900 x 10~° 39 6.5
02 1.086x1072 1.096 x 10~* 6.875 x 107> 6.6 3.6
0.3 4136 x1073 2740 x10~* 4483 x10°° 3.9 33
04 5293x107% 3.101x107%* 6563 x 1075 0.8 1.5
05 1.727x107% 3430x10~* 1.049 x10* 2.3 2.0
0.6 5522x107% 3787 x107% 6581 x 1075 0.5 1.5
0.7 5.874x107° 4.064x10"%* 8943 x10°° 3.9 3.0
0.8 1453 x 1072 1946 x10~% 1.241x10°* 6.2 34
09 5871x1072 4198x1073 1.931x10°° 3.8 57

Table 8.

convergence orders.

X Eo(x;,10) Eo(x;,20) Eo(x;,40) O0(x,10,20)  Og(x;,10,40)
—05 1224x1078 9.184x 10711 7.080x 10713 7.1 7.0
—04 1748x1077 4.632x10712 1.765x10714 8.6 8.2
—0.3 5906 x 10710 2425%x 10712 1.460x 10714 7.9 7.6
—02 3360x10710 2273x10712 5940 x 10715 7.2 7.8
—01 2934x10°10 2220x10712 1.117x 10~ 1 7.0 7.3
00 2761x10710 2167x10712 6559 x 10~ 7.0 7.6
01 2586 x10710 2116 x10712 6.231x10°1° 6.9 7.6
02 2150x 10710 2057 x10712 4469 x 1071 6.7 7.7
0.3 4428 x10711 1.895x10712 4.385x 10715 45 6.6
04 1225x1077 4481 x10713 2498 x 10715 11.4 94
05 1.194x10°8 9.321x10711 7356 x 10713 7.0 6.9

Table 9. The absolute errors

convergence orders.

The absolute errors of the function values of y, at the knots and the numerical

of the first order derivatives of y, at the knots and the numerical

Xi El (x,-, 10) El (x,-, 20) El (x,-, 40) 01 (x,-, 10, 20) 01 (x,-, 10,40)
—05 6342x1077 9518 x107? 1.470x10°10 6.0 6.0
—04 5.069x1078 1374x10710 7450x 10714 8.5 9.6
—03 9230x1072 4217x10712 2941 x10°13 11.0 7.4
—02 2200x107? 2199x10712 7.871x 10714 9.9 7.3
—0.1 3.042x10710 2467 x10712 1.760 x 10713 6.9 5.3
0.0 3.641x10710 2618%x10712 1416x 10713 7.1 5.6
01 3119x10710 2557x10712 5085 x 10714 6.9 6.2
02 2242x1077 2245x10712 6439 x 10715 9.9 9.2
0.3 9406 x1077 4439x10712 1.124x10°13 11.0 8.1
04 5172x1078 1459 x 10710 4774 x 10714 8.4 10.0
05 6482 x1077 1.013x1078 1.584x 10710 6.0 5.9
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Table 10. The absolute errors of the second order derivatives of y; at the knots and the numerical

convergence orders.

Xj E; (x,-, 10) E, (x,', 20) E; (x,',40) Oz(xi, 10, 20) Oz(xi, 10, 40)
—05 1909%x10° 5731x1077 1.765x 1078 5.0 5.0
—04 1.899x1077 1.429x10~8 4.735x 10710 3.7 43
—0.3 3931x107 1.135x107% 3.656 x 10710 5.1 5.0
—02 2.668x1077 1.039x1078 2.035x 10710 4.6 5.1
—0.1 2939%x107 9536x10"? 1.882x 1010 49 53

00 2761x1077 8669x1077 1213 x 10710 49 55

0.1 2583x1077 7.801x10~? 5797 x10~1 5.0 6.0

02 2853x1077 6.926x10? 2573 x 10712 53 8.3

03 1572x1077 5933x1077 3.983x10~1 47 5.9

04 3659%x1077 2799 %1077 1.204 x 10°10 7.0 5.7

05 2010x107° 6.285x1077 1954 x 108 49 5.0

Table 11. The absolute errors of the third order derivatives of y, at the knots and the numerical

convergence orders.

X E3(x;,10) E3(x;,20) E3(x;,40) 0O3(x;,10,20)  O3(x;,10,40)
—05 3940x10~% 2394x10~° 1.498 x 10~° 4.0 4.0
—04 5180x105 8104x10~7 5.789 x 1010 59 8.2
—03 1.362x1075 1.640x 1078 4.348 x 10~? 9.6 5.8
—0.2 3555x107° 2343x1078 2673 x107° 7.2 5.1
—0.1 3114x1077 2567 x10~% 8109 x 10~11 3.6 59

00 7246x1077 2607 x1078% 2454 x107° 47 4.1

0.1 3225x1077 2594x1078% 1.845x10~° 3.6 3.7

02 3.624x107% 2396 %1078 1.008 x 10~? 7.2 59

03 1.387x107° 1.768 x10~%  2.106 x 10~? 9.6 6.3

04 5279x107° 8602x1077 6.609 x 10~10 59 8.1

05 4.043x107% 2555x107° 1.637 x10°° 39 39

Table 12. The absolute errors

convergence orders.

of the fourth order derivatives of y; at the knots and the numerical

X; E4(x,', 10) E4(x,-, 20) E4 (x,-, 40) 04(x,', 10, 20) 04(x,-, 10, 40)
—05 5.824x107% 7.682x10"%* 1.098 x 1074 29 2.8
—04 1743x1073 7.014x107° 2500 % 10~° 4.6 3.0
—03 1.364x107% 1.006 x10~* 1.931x10°° 0.4 1.4
—02 6769x107° 8285x107° 1.238x10°° -0.3 1.2
—0.1 3940x107% 6240x107° 7.654 x 107° 2.6 2.8

0.0 3315x107% 4161x107° 2369 x 107 29 35

0.1 2691x107% 2078x107° 3.074 x 107° 3.6 32

0.2 5980x107% 718 x10"% 8315x10°° 13.0 3.0

03 5313x107% 1816x10° 1.326x10°° 48 2.6

04 2448 x1073 1.408x107° 1.853x10°° 7.4 35

05 5332x107% 7329x107% 1.119x 1074 2.8 2.7
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Table 13. The absolute errors of the fifth order derivatives of y, at the knots and the numerical

convergence orders.

X E5(x,-, 10) Es(xl', 20) Es (x,', 40) 05(x,-, 10, 20) Os(x,', 10, 40)
—04 2797 x1072 2832x10"% 1.036x 1073 33 2.3
—03 7.801x1073 2489 x10"* 2.683x 1074 49 24
—02 2.854x103 1320x10~* 7.551x10°° 44 42
—0.1 3345x107% 2027 x107* 3.936x10°° 0.7 15
0.0 1.042x107% 2083 x10~% 5.694x 10> 2.3 2.0
0.1 3340x107% 2081x107% 5.359 x 105 0.7 1.3
0.2 2978x107% 2027 x10~% 4.824x10°° 3.8 29
03 7583x107% 9.012x107° 5461 x 1075 6.3 35
04 2765x1072 1.876 x 1073 2563 x 1075 3.8 5.0

Moreover, all of the absolute errors in these tables are very satisfactory and well accepted.
Making a further observation on these tables, we find that the errors at the inner knots are much
better than the errors at the left endpoint and the right endpoint. The numerical phenomenon is
natural and reasonable, because we only make use of n integral values (2) and do not make use of
any exact end conditions. It shows that the influence of the artificial end conditions on the inner
errors is limited. In fact, the inner approximation errors are mainly determined by the given n integral
values in (2), while the boundary errors are mainly effected by the artificial end conditions. It is
checked that our inner errors of y; in Tables 2—6 are similar to the ones in [2,14,18], which are obtained
by using five or seven additional exact end conditions. It shows that our new method can obtain
satisfactory approximation results by using fewer data than the methods in [2,14,18]. The performance
is very encouraging.

Finally, we give some discussion on fifth order derivative approximation. We remark that we use:

W — sW(xip1) —sW(xi1) _ By —Fg
2h 2h

to approximate %) (x;) in this paper, i = 1,2,...,n — 1. See Tables 7 and 13 for our numerical results
of the fifth order derivatives. Take y1 as a comparison example. See Table 14 for the comparison of the
maximum absolute errors of the fifth order derivatives y§5) (x;) obtained by our current method and the
methods in [18,19]. Obviously, our results are very accurate and surprising because they are obtained
by only using the integral values (2) with no exact end conditions, while the results of [18] are obtained
by using the integral values (2) and five additional exact end conditions (y(xo), v (x1), ' (x4—1),y" (x1)
and ym (x4—1)), as well. Hence, our approximation method for the fifth order derivatives at the inner

knots is more preferable.

Table 14. Comparison of the maximum absolute errors of the fifth order derivatives of y;.

n—= 10 n— 20 n— 40
Current Method 5.871 x 1072 1.752x 1072 5.021 x 1073
[18] 1365 x 107! 6794 x 1072 3.427 x 1072
[19] 315x 1071 149 %1071  7.15x 1072

6. Conclusions

In this paper, an effort that is different from the ones in [1,2,13-19] is made to construct a new
kind of integro quintic spline without exact end conditions. The demands of exact end conditions
in many old methods, such as [1,2,14,15,18], for integro interpolation have been relaxed and deleted
in the new method. The good feature makes the current method possess wider applications than
many other methods. Moreover, the method is easy to apply, and the obtained integro quintic spline
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has satisfactory approximation abilities in approximating a function and its first order to fifth order
derivatives. Hence, the new method is very effective for integro interpolation.
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