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Abstract: The main goal of this paper is to improve the performance of the Fireworks Algorithm
(FWA). To improve the performance of the FWA we propose three modifications: the first modification
is to change the stopping criteria, this is to say, previously, the number of function evaluations was
utilized as a stopping criteria, and we decided to change this to specify a particular number of
iterations; the second and third modifications consist on introducing a dispersion metric (dispersion
percent), and both modifications were made with the goal of achieving dynamic adaptation of the
two parameters in the algorithm. The parameters that were controlled are the explosion amplitude
and the number of sparks, and it is worth mentioning that the control of these parameters is based on
a fuzzy logic approach. To measure the impact of these modifications, we perform experiments with
14 benchmark functions and a comparative study shows the advantage of the proposed approach.
We decided to call the proposed algorithms Iterative Fireworks Algorithm (IFWA) and two variants of
the Dispersion Percent Iterative Fuzzy Fireworks Algorithm (DPIFWA-I and DPIFWA-II, respectively).

Keywords: fuzzy logic; dynamic adaptation; dispersion percent; FWA; IFFWA; DPIFWA

1. Introduction

At the present time, computer science is used for solving problems through its different areas
(fuzzy logic, neural networks, evolutionary computing, among others). Depending on the type of
problem, the aim may be minimizing or maximizing (optimization) the expected results, which is the
main idea in this area. There are many bio-inspired metaheuristics that are based on behaviors found
in nature, for example, swarm behavior of birds and insects [1].

As with all things in life, the optimization algorithms have advantages and disadvantages. One of
the disadvantages of these algorithms is that in early versions, or conventional versions, almost all the
parameters are constant, that is, relevant parameters in the mathematical formulas of each algorithm
remain statics during their performance. Thus, the performance of the exploration and exploitation
into the algorithm is chaotic, that is, the static parameters do not allow for control of the balance
between exploration and exploitation. Sometimes the algorithms just explore, and so, move away from
the goal, or the algorithm could just exploit and become stagnate without allowing for a search for
better solutions to achieve of the goal.

We know that in a computational algorithm, the mathematical representation is very important;
this is why we opted for representations (formulas) based on existing mathematics to modify the
fireworks algorithm (FWA). We decided to use one of the dispersion measures that already exists in
the mathematical area, which is the standard deviation, and based on this dispersion measure, we
obtained a parameter which we call the dispersion percent that will be explained in Sections 4 and 5.
The dispersion percent is one of the parameters that were used as an input variable in the fuzzy
inference system to achieve the dynamic adaptation of the two parameters (explosion amplitude and
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number of sparks). We achieved this adaptation based on fuzzy logic, because nowadays fuzzy logic
has been shown to have a relevant impact in the area of control.

With the intention to overcome the inconveniences above mentioned, we present the
implementation of two fuzzy inference systems (FIS); in the first FIS, we have two input variables
(Iteration and Dispersion Percent) and one output variable (Amplitude Explosion), and in the second
FIS, we have the same two input variables as that of the first FIS, but we have two output variables
(Amplitude Explosion and Sparks). With this work, we simulate the control, both automatically and
sequentially, of the balance between exploration and exploitation into the algorithm.

The remainder of the paper is organized as follows: we start with a literature review in Section 2.
In Section 3 we present the original Fireworks Algorithm (FWA), and the Iterative Fireworks Algorithm
is proposed and explained in Section 3. In Sections 4 and 5 we describe the proposed modifications
(Dispersion Percent Iterative Fuzzy Fireworks Algorithm (DPIFFWA-I and II, respectively)), the
obtained results are presented in Section 6, and finally, we conclude the paper by mentioning
possible future work in Section 7.

2. Literature Review

Swarm intelligence is the study of computational systems inspired by ‘collective intelligence’.
Collective intelligence emerges through the cooperation of large numbers of homogeneous agents in the
environment. Examples include schools of fish, flocks of birds, and colonies of ants. Such intelligence
is decentralized, self-organizing, and distributed throughout an environment. In nature, such systems
are commonly used to solve problems such as effective foraging for food, prey evasion, or colony
re-location. The information is typically stored throughout the participating homogeneous agents,
or is stored or communicated in the environment itself such as through the use of pheromones in ants,
dancing in bees, and proximity in fish and birds [2].

In recent years, swarm intelligence (SI), has been very popular among researchers working on
optimization problems around the world [3]. Some examples of SI are the following algorithms [4]:

• PSO (Particle Swarm Optimization)
• ACO (Ant Colony Optimization)
• ABC (Artificial Bee Colony)
• GA (Genetic Algorithm)

Particle Swarm Optimization (PSO) is inspired by the social foraging behavior of some animals
such as flocking behavior of birds and the schooling behavior of fish. The goal of the algorithm is
to have all the particles locate the optima in a multi-dimensional hyper-volume. This is achieved by
assigning initially random positions to all particles in the space and small initial random velocities.
The algorithm is executed like a simulation, advancing the position of each particle in turn based on its
velocity, the best known global position in the problem space, and the best position known to a particle.
The objective function is sampled after each position update. Over time, through a combination of
exploration and exploitation of known good positions in the search space, the particles cluster or
converge together around optima, or several optima [5].

The Ant Colony System (ACO) algorithm is inspired by the foraging behavior of ants, specifically
the pheromone communication between ants regarding a good path between the colony and a food
source in an environment. Ants initially wander randomly around their environment. Once food is
located, an ant will begin laying down pheromone in the environment. Numerous trips between the
food and the colony are performed, and if the same route is followed that leads to food, then additional
pheromone is laid down. Pheromone decays in the environment, so that older paths are less likely to
be followed. Other ants may discover the same path to the food and in turn may follow it and also lay
down pheromone. A positive feedback process routes more and more ants to productive paths that are
in turn further refined through use [6].
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The Bees Algorithm (ABC) is inspired by the foraging behavior of honey bees. Honey bees collect
nectar from vast areas around their hive (more than 10 km). Bee Colonies have been observed to
send bees to collect nectar from flower patches relative to the amount of food available at each patch.
Bees communicate with each other at the hive via a waggle dance that informs other bees in the hive
as to the direction, distance, and quality rating of food sources. The strategy of this algorithm is
the information processing to achieve the objective, which is to locate and explore good sites within
a problem search space. Scouts are sent out to randomly sample the problem space and locate good
sites. The good sites are exploited via the application of a local search, where a small number of good
sites are explored more than the others. Good sites are continually exploited, although many scouts
are sent out in each iteration in search of additional good sites [7].

The Genetic Algorithm (GA) is inspired by population genetics (including heredity and gene
frequencies) and evolution at the population level, as well as the Mendelian understanding of the
structure (such as chromosomes, genes, alleles) and mechanisms (such as recombination and mutation).
This is the so-called new or modern synthesis of evolutionary biology. The objective of the Genetic
Algorithm is to maximize the payoff of candidate solutions in the population against a cost function
from the problem domain. The strategy for the Genetic Algorithm is to repeatedly employ surrogates
for the recombination and mutation genetic mechanisms on the population of candidate solutions,
where the cost function (also known as objective or fitness function) applied to a decoded representation
of a candidate governs the probabilistic contributions a given candidate solution can make to the
subsequent generation of candidate solutions [5].

On the other hand, we should mention in a general way that fuzzy logic is a methodology that
provides a simple way to obtain a conclusion from ambiguous, imprecise, or linguistic information
inputs. Of course, it is well known that in 1965, Zadeh proposed the formal definition of fuzzy sets [8].

A fuzzy set A in X is characterized by a membership (characteristic) function fA(x), which associates
with each point in X a real number in the interval [0, 1], with the value of fA(x) at x representing the
“degree of membership” of x in A. Thus, the closer the value of fA(x) to unity, the higher the degree of
membership of x in A. When A is a set in the ordinary sense of the term, its membership function can
take on only two values, 0 or 1, with fA(x) = 1 or 0 according to whether x does or does not belong
to A. Thus, in this case, fA(x) reduces to the familiar characteristic function of a in set A. When there
is a need to differentiate between such sets and fuzzy sets, the sets with two-valued characteristic
functions will be referred to as ordinary sets or simply sets [9].

3. Fireworks Algorithm (FWA)

The Fireworks Algorithm (FWA) is a swarm intelligence method, which was developed by Ying
Tan and Yuanchun Zhu in 2009, based on the explosion behavior of fireworks [10].

For each firework, we begin a process of explosion, and a shower of sparks fill the local space
around the firework. The recently generated sparks represent possible solutions in the search space [11].

To mimic the above mentioned process, the algorithm is represented mathematically as
described below.

4. Number of Sparks

Minimize f (xi) ∈ R, ximin ≤ xi ≤ ximax (1)

where xi, i = 1, 2, . . . , d indicates a location in the search space, ximin ≤ xi ≤ ximax represents the
bounds of the same space, and f (xi) refers to the objective function [12].

After, using the following equation, the number of sparks for each firework is generated.

Si = m.
ymax − f (xi) + ε

∑n
i=1

(
ymax) − f (xi)

)
+ ε

(2)
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where m represents a constant parameter which controls the numbers of sparks of the n fireworks and
ymax = max( f (xi))(i = 1, 2, 3, . . . , n) is the maximum value, that is, the worst value of the objective
function in the n fireworks and ε indicates a constant representing the smallest number in the computer,
and it is utilized with the goal that an error with a division by zero cannot occur [13].

With Equation (3), we can define the bounds for the number of sparks, with the goal of keeping
a balance within a range of number of sparks. The bounds are defined for si as follows:

Ŝi =


round(a.m) i f Si < am

round (b.m) i f Si > bm,
round (Si) otherwise

a < b < 1, (3)

where a and b are constant parameters [14].

5. Amplitude of Explosion

On the contrary, to calculate the number of sparks, an explosion is better if the amplitude is small.
The explosion amplitude for each firework is calculated as follows:

Ai = Â.
f (xi)− ymin + ε

∑n
i=1( f (xi)− ymin) + ε

(4)

where Â is a constant parameter that controls the maximum amplitude of each firework,
ymin = min( f (xi)) (i = 1, 2, 3, . . . , n) indicates the minimum value (best) of the objective function
among n fireworks, and ε indicates the smallest constant in the computer, and it is used with the goal
of not making an error with the division by zero [15].

6. Generating Sparks

In this part of the algorithm (FWA), we consider two other more specific algorithms, called
Algorithms 1 and 2, which are used to obtain the location of the sparks, and these algorithms are
described in previous works of the authors [16,17]. However, before obtaining the location of the
sparks, we should know that the sparks can take on different directions (in random dimensions),
and these dimensions are obtained as expressed below:

z = round(d .rand(0, 1)) (5)

Here, d is the dimension of the location for each spark x and rand(0, 1) is a random value between
0 and 1.

7. Selection of the Locations

Below, we present the equations that are used in this algorithm to select the best current location.

R(xi) = ∑
j∈K

d
(
xi, xj

)
= ∑

j∈K
||xi − xj || (6)

where K is the set of all current locations from both fireworks. Then, the probability for selection of a
location at xi is defined as:

p(xi) =
R(xi)

∑j∈K R
(

xj
) (7)

When calculating the distance, any distance measure can be used including the Manhattan
distance, Euclidean distance, or Angle-based distance, among others [18–20].

Figure 1 shows the pseudocode of the conventional Fireworks Algorithm (FWA).
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Randomly select:݊ locations for the Fireworks; 

While stop criteria = false do 

    Set off ݔ fireworks at the ݊ locations: 

for each firework݅ݔdo	
Calculate the number of sparks  ݅ܵ෡ 	  for the fireworks, Eq. 3 

         Obtain locations of the ݅ܵ෡  sparks using Algorithm 1; 

end for 

fork = 1: ෝ݉do 

Randomly select a firework ݆ݔ ; 

        Generate sparks (Gaussian distribution) using Algorithm 2; 

end for 

   Select the best location and keep it for the next explosion; 

   Randomly select ݊ − 1 locations from the two types of               

sparks and the current fireworks according to the probability         

given in Eq. 7 

end while 

Figure 1. Pseudo code of Fireworks Algorithm (FWA).

8. Iterative Fireworks Algorithm

Some optimization algorithms use the number of iterations as the stopping criteria, alternatively,
other algorithms use the number of function evaluations. Based on the literature, we have noticed that
some algorithms do not take into account that both stopping criteria are not exclusive, the number of
iterations is based on the number of solutions to evaluate for each iteration.

We should also mention that in some algorithms the number of solutions to evaluate are static per
iteration, and in others, the number of solutions to evaluate changes, such is the case of the Fireworks
Algorithm (FWA) in which the number of sparks (solutions) changes per iteration.

If we want to compare two or more methods, we must consider the methods under equal
circumstances. For example, if we compare two methods with 200 iterations, an important point is
to show how many function evaluations are made per iteration and in total. In other words, if in
one method we used 100 solutions per iteration and a total of 20,000 function evaluations, and in the
other method we used 50 solutions per iteration and a total of 50,000 function evaluations, then these
would not be equivalent to do a comparison between both methods. It is important mention that the
total number of function evaluations is calculated by multiplying the total number of iterations by the
number of solutions per iteration.

Before going into a detailed explanation of the methods that we propose, we mentioned the
previous algorithm (Iterative Fireworks Algorithm) because it was the first modification that we
proposed. However, now we change the stopping criteria; before, it was the number of function
evaluations, now, it is the number of iterations. The reason for making this change is because in this
form, we can now control parameters in a more sequential form, and it is worth mentioning that this is
the conventional fireworks algorithm but with the unique change in the stopping criteria.

9. Dispersion Percent Iterative Fuzzy Fireworks Algorithm (DPIFFWA-I)

The Dispersion Percent Iterative Fireworks Algorithm (DPIFFWA-I) is what we call the second
modification that we performed to the conventional Fireworks Algorithm (FWA) and the Fuzzy
Fireworks Algorithm (FFWA) to control the explosion amplitude of each firework using fuzzy
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logic [16,17]. Figure 2 illustrates the proposed DPIFFWA using a flow chart that illustrates the
information processing in this algorithm.Algorithms 2017, 10, 83 6 of 21 
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Figure 2. Flow chart of Dispersion Percent Iterative Fireworks Algorithm (DPIFFWA).

In this modification, we have added a parameter that we can calculate by using the following
equation:

DP =
CSD× 100

CM
(8)

where DP is the Dispersion Percent, CSD is the Current Standard Deviation and CM is the Current
Mean of each iteration, and every above mentioned parameter is calculated based on the fitness of
each seed (sparks). We introduced this parameter with the goal of evaluating the separation of each
seed (spark) to confirm that the exploration and exploitation are working in a balanced way [21,22],
in other words, in the initial iterations we explore and in the last iterations we exploit.

To show the current mean (CM), we illustrate this in Figure 3 with a plot in two dimensions.
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In some cases, DP is greater than 100, and then to avoid an unbalanced situation, we can keep
a range of DP between 1 and 100, and for this reason we have added the following requirement shown
in Figure 4.Algorithms 2017, 10, 83 7 of 21 
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Figure 4. Requirement for dispersion percent (DP).

With the requirement for DP shown in Figure 4, we can obtain a value between 0 and 1; this value
(DP) is an input variable of the fuzzy inference system (Figure 5), which is explained in more detail in
the following sections.

Another input variable is the “Iteration”, and to streamline and enhance the process of the fuzzy
inference system and of course the general process of the algorithm, we normalized the input variable,
which is called the Iteration; the normalization is calculated with the following equation [23].

Iteration =
Current Iteration Number

Total Iteration Number
(9)

Figure 5 shows the general structure of the fuzzy system for DPIFFWA-I:
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Figure 5. Graphical representation of the Fuzzy System for DPIFFWA-I.

The system that we used has the following characteristics: two input variables, the number of
iterations (Iteration) and DP (DispersionPercent), and one output variable. The output variable is
defined to control the amplitude explosion (AmplitudeExplosion) of each firework; this fuzzy inference
system is of Mamdani type [24].

As we can note in Figure 6, the input variable (Iteration) has five linguistic values, called LOWER
[−0.25 0 0.25], LOW [0 0.25 0.5], MEDIUM [0.25 0.5 0.75], HIGH [0.5 0.75 1], and HIGHER [0.75 1 1.25]
(membership functions), of triangular form in a range of [0, 1]. We used the range between 0 and 1
(because of the normalization) to work with smaller numbers, and in this way, the calculations of the
fuzzy system are faster, as we mentioned above and was represented in Equation (9).

Figure 7 shows the input variable (DispersionPercent), and this linguistic variable has five values
that are called SMALLER [−0.25 0 0.25], SMALL [0 0.25 0.5], MEDIUM [0.25 0.5 0.75], HIGH [0.5 0.75 1],
and HIGHER [0.75 1 1.25], and the partition is formed by the membership functions of triangular form
with a range of [0, 1].
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Figure 8 illustrates the output variable (AmplitudeExplosion) that has five linguistic values in
a range of [2, 45], and the reason we use this range is for keeping the amplitude explosion between 2
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MEDIUM [12 23 34], BIG [23 34 45], and BIGGER [34 45 56], and the form of each linguistic value is
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As we mentioned above, the fuzzy inference system is used to control the explosion amplitude of
each firework, and this control consists of 25 fuzzy rules that are listed in Table 1.

With the 25 rules described in Table 1, we can sequentially control the exploration and exploitation
within the algorithm (DPIFFWA). The exploration will be performed when the Iteration is Lower and
DP is Smaller, Small, etc. (rules 1 to 5), the DPIFFWA algorithm also will explore when the Iteration is
Low and DP is Smaller, Small, etc. (rules 6 to 10). The rule numbers 10, 11, 12, 13, 14, and 15 will enable
having a balance between exploration and exploitation. With the last rules (16 to 25), the DPIFFWA
algorithm will exploit. Although we have 25 fuzzy rules, we consider only 5 fuzzy rules as the main
rules, and these are the rules 1, 7, 13, 19, and 25. The reason why we have 25 fuzzy rules and we only
consider 5, is because the fuzzy inference system is symmetric, this is to say, it has 5 membership
functions in each variable.
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When we introduce the fuzzy inference system and are able to control the explosion amplitude,
we can also eliminate Equation (4) of the conventional fireworks algorithm (FWA); in this form, we can
dynamically control the parameter (explosion amplitude) and omit Equation (4) so that we do not
have the extra computational overhead.

Table 1. Fuzzy rules of DPIFFWA-I.

1. if (ITERATION is Lower) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Bigger)
2. if (ITERATION is Lower) and (DispersionPercent is Small) then (AmplitudeExplosion is Bigger)
3. if (ITERATION is Lower) and (DispersionPercent is Medium) then (AmplitudeExplosion is Bigger)
4. if (ITERATION is Lower) and (DispersionPercent is Big) then (AmplitudeExplosion is Bigger)
5. if (ITERATION is Lower) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Bigger)
6. if (ITERATION is Low) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Big)
7. if (ITERATION is Low) and (DispersionPercent is Small) then (AmplitudeExplosion is Big)
8. if (ITERATION is Low) and (DispersionPercent is Medium) then (AmplitudeExplosion is Big)
9. if (ITERATION is Low) and (DispersionPercent is Big) then (AmplitudeExplosion is Big)
10. if (ITERATION is Low) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Big)
11. if (ITERATION is Medium) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Medium)
12. if (ITERATION is Medium) and (DispersionPercent is Small) then (AmplitudeExplosion is Medium)
13. if (ITERATION is Medium) and (DispersionPercent is Medium) then (AmplitudeExplosion is Medium)
14. if (ITERATION is Medium) and (DispersionPercent is Big) then (AmplitudeExplosion is Medium)
15. if (ITERATION is Medium) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Medium)
16. if (ITERATION is High) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Small)
17. if (ITERATION is High) and (DispersionPercent is Small) then (AmplitudeExplosion is Small)
18. if (ITERATION is High) and (DispersionPercent is Medium) then (AmplitudeExplosion is Small )
19. if (ITERATION is High) and (DispersionPercent is Big) then (AmplitudeExplosion is Small)
20. if (ITERATION is High) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Small)
21. if (ITERATION is Higher) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Smaller)
22. if (ITERATION is Higher) and (DispersionPercent is Small) then (AmplitudeExplosion is Smaller)
23. if (ITERATION is Higher) and (DispersionPercent is Medium) then (AmplitudeExplosion is Smaller)
24. if (ITERATION is Higher) and (DispersionPercent is Big) then (AmplitudeExplosion is Smaller)
25. if (ITERATION is Higher) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Smaller)

10. Dispersion Percent Iterative Fuzzy Fireworks Algorithm II (DPIFFWA-II)

DPIFFWA-II is the third modification that we have made to the FWA and FFWA. This modification
is almost the same as the second modification, but the unique difference is that we have now added
another output variable to the fuzzy inference system; the new output variable is called “Sparks”.
This output variable (Sparks) will allow controlling the number of sparks for each firework during the
exploitations phase. Figure 9 illustrates the general structure of the fuzzy system for the DPIFFWA-II:
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Figure 9. Graphical representation of the Fuzzy System for DPIFFWA-II.

The following values are the linguistic values: VERYFEW [−11.25 1 13.25], FEW [1 13.25 25.5],
SOME [13.25 25.5 37.75], MANY [25.5 37.75 50], and ENOUGH [37.75 50 62.25]. In Figure 10, we show
the “Sparks” output variable.
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In Table 2 we present the fuzzy rules of the third modification (DPIFFWA-II).

Table 2. Fuzzy rules of DPIFFWA-II.

1. if (ITERATION is Lower) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Bigger) (Sparks is VeryFew)
2. if (ITERATION is Lower) and (DispersionPercent is Small) then (AmplitudeExplosion is Bigger)(Sparks is VeryFew)
3. if (ITERATION is Lower) and (DispersionPercent is Medium) then (AmplitudeExplosion is Bigger) (Sparks is VeryFew)
4. if (ITERATION is Lower) and (DispersionPercent is Big) then (AmplitudeExplosion is Bigger) (Sparks is VeryFew)
5. if (ITERATION is Lower) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Bigger) (Sparks is VeryFew)
6. if (ITERATION is Low) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Big) (Sparks is Few)
7. if (ITERATION is Low) and (DispersionPercent is Small) then (AmplitudeExplosion is Big) (Sparks is Few)
8. if (ITERATION is Low) and (DispersionPercent is Medium) then (AmplitudeExplosion is Big) (Sparks is Few)
9. if (ITERATION is Low) and (DispersionPercent is Big) then (AmplitudeExplosion is Big) (Sparks is Few)
10. if (ITERATION is Low) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Big) (Sparks is Few)
11. if (ITERATION is Medium) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Medium) (Sparks is Some)
12. if (ITERATION is Medium) and (DispersionPercent is Small) then (AmplitudeExplosion is Medium) (Sparks is Some)
13. if (ITERATION is Medium) and (DispersionPercent is Medium) then (AmplitudeExplosion is Medium) (Sparks is Some)
14. if (ITERATION is Medium) and (DispersionPercent is Big) then (AmplitudeExplosion is Medium) (Sparks is Some)
15. if (ITERATION is Medium) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Medium) (Sparks is Some)
16. if (ITERATION is High) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Small) (Sparks is Many)
17. if (ITERATION is High) and (DispersionPercent is Small) then (AmplitudeExplosion is Small) (Sparks is Many)
18. if (ITERATION is High) and (DispersionPercent is Medium) then (AmplitudeExplosion is Small) (Sparks is Many)
19. if (ITERATION is High) and (DispersionPercent is Big) then (AmplitudeExplosion is Small) (Sparks is Many)
20. if (ITERATION is High) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Small) (Sparks is Many)
21. if (ITERATION is Higher) and (DispersionPercent is Smaller) then (AmplitudeExplosion is Smaller) (Sparks is Enough)
22. if (ITERATION is Higher) and (DispersionPercent is Small) then (AmplitudeExplosion is Smaller) (Sparks is Enough)
23. if (ITERATION is Higher) and (DispersionPercent is Medium) then (AmplitudeExplosion is Smaller) (Sparks is Enough)
24. if (ITERATION is Higher) and (DispersionPercent is Big) then (AmplitudeExplosion is Smaller) (Sparks is Enough)
25. if (ITERATION is Higher) and (DispersionPercent is Bigger) then (AmplitudeExplosion is Smaller) (Sparks is Enough)

As we mentioned in previously, of the 25 rules, only 5 rules have a weighting (rule 1, 7, 13, 19,
and 25), which we will explain in more detail below.

We start the Sparks with a small value and an “ExplosionAmplitude” with a big value, this is to
say, while the range of the Iteration is maintained in LOWER [−0.25, 0.25] and the “DispersionPercent”
is SMALLER [−0.25, 0.25], the “ExplosionAmplitude” will be BIGGER in a range of [34, 56], and the
sparks are VERYFEW in a range of [−11.25, 13.25].

The rule number 7 states that if iteration is LOW [0, 0.5] and “DispersionPercent” is SMALL
[0, 0.5], the “ExplosionAmplitude” is BIG [22, 45] and the sparks will be FEW [1, 25.5]. In the same way,
we can achieve the exploration in the algorithm with rules 1 and 7, following with the rules, the next
rule (number 13) provides a balance between exploration and exploitation in the algorithm, because if
the Iteration is MEDIUM [0.25, 0.75] and the “DispersionPercent” is also MEDIUM [0.25, 0.75], then the
“ExplosionAmplitude” will be MEDIUM [11, 34] and the Sparks will be SOME [13.25, 37.75], and this
will make the algorithm sometimes explore and other times exploit.

Finally, the algorithm only exploits with rules 19 and 25, knowing that if the Iteration is HIGH
[0.5, 1] and the “DispersionPercent” is SMALL, then the “ExplosionAmplitude” will be SMALL [2, 2 3]
and the Sparks is MANY [25, 50] (rule 19), and the last rule (rule 25) states that if the Iteration is HIGHER
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[0.75, 1.25] and the “DispersionPercent” is BIGGER [0.75, 1.25], then the Sparks will be ENOUGH
[37.75, 62.25] and the “ExplosionAmplitude” is SMALLER [−8.5, 12.5] having great relevance in the
explosion amplitude from each firework, thus, we can omit both Equations (2) and (4).

11. Results and Discussion

To evaluate the performance of the calculations involved for a new number of sparks and the new
explosion amplitude, in Equations (2) and (4) we performed tests with 14 benchmark functions, with
different ranges (search and initialization) and optimal values.

In Table 3 we list the names of all functions that were used with optimal values equal to 0, as well
as their ranges of initialization and number of dimensions.

Table 3. Benchmark functions utilized for the experiments (optimum equal to zero).

Function Optimum Range of Initialization Dimensions

f1 0 [80, 100]D 30
f2 0 [30, 50]D 30
f3 0 [80, 100]D 30
f4 0 [30, 50]D 30
f5 0 [15, 30]D 30
f6 0 [80, 100]D 30

Where f1 is the Ackley function, f2 is the Griewank function, f3 is the Rastrigin function, f4 is
the Rosenbrock function, f5 is the Schwefel function, and f6 is the Sphere function, and the function
numbers 1 to 6 are presented in Table 3.

Table 4 illustrates the equations and surfaces of every benchmark function with optimal values
equal to zero.

In Table 5 we show the surface of every benchmark function with optimal values different
from zero.

Table 4. Equations and plots of the benchmark functions with optimal values equal to zero.

Function Equation and Surface

f1

f1(x) = −20 exp
(
−0.2

√
1
n

n
∑

i=1
xi

2
)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e
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ENOUGH [37.75, 62.25] and the “ExplosionAmplitude” is SMALLER [−8.5, 12.5] having great 
relevance in the explosion amplitude from each firework, thus, we can omit both Equations (2) and 
(4). 

11. Results and Discussion 

To evaluate the performance of the calculations involved for a new number of sparks and the 
new explosion amplitude, in Equations (2) and (4) we performed tests with 14 benchmark functions, 
with different ranges (search and initialization) and optimal values.  

In Table 3 we list the names of all functions that were used with optimal values equal to 0, as 
well as their ranges of initialization and number of dimensions. 

Table 3. Benchmark functions utilized for the experiments (optimum equal to zero). 

Function Optimum Range of Initialization Dimensions ଵ݂ 0 ሾ80, 100ሿ஽ 30 ଶ݂ 0 ሾ30, 50ሿ஽ 30 ଷ݂ 0 ሾ80, 100ሿ஽ 30 ସ݂ 0 ሾ30, 50ሿ஽ 30 ହ݂ 0 ሾ15, 30ሿ஽ 30 ଺݂ 0 ሾ80, 100ሿ஽ 30 

Where ଵ݂ is the Ackley function, ଶ݂ is the Griewank function, ଷ݂ is the Rastrigin function, ସ݂ 
is the Rosenbrock function, ହ݂ is the Schwefel function, and ଺݂ is the Sphere function, and the 
function numbers 1 to 6 are presented in Table 3.  

Table 4 illustrates the equations and surfaces of every benchmark function with optimal values 
equal to zero.  

Table 4. Equations and plots of the benchmark functions with optimal values equal to zero. 

Function Equation and Surface 

ଵ݂ 

ଵ݂(ݔ) 	= ݌ݔ݁	20−	 ቌ−0.2ඨ1݊ ෍ ௜ଶ௡ݔ
௜	ୀ	ଵ ቍ − ݌ݔ݁ ൭1݊ ෍ cos(2ݔߨ௜)௡

௜	ୀ	ଵ ൱ + 20 + ݁ 

 
 

ଶ݂ ଶ݂(ݔ) = 14000෍ ଵଶ௡ݔ
௜ ୀ ଵ −ෑcos ൬ݔ௜√݅൰ + 1௡

௜ ୀ ଵ  
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Table 4. Cont.

Function Equation and Surface

f2

f2(x) = 1
4000

n
∑

i=1
x1

2 −
n
∏
i=1

cos
(

xi√
i

)
+ 1Algorithms 2017, 10, 83 12 of 21 
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ଷ݂(ݔ) = ෍ሾݔ௜ଶ − 10 cos(2ݔߨ௜) + 10ሿ௡
௜	ୀ	ଵ  

 
 

ସ݂ 

ସ݂(ݔ) = ෍ሾ100(ݔ௜ାଵ − ௜ଶ)ଶݔ + ଵݔ) − 1)ଶሿ௡ିଵ
௜	ୀ	ଵ  

 
 

ହ݂ ହ݂(ݔ) = ෍ ௜ݔ− sin ቀඥ|ݔ௜|ቁ௡
௜ ୀ ଵ  

f3

f3(x) =
n
∑

i=1

[
xi

2 − 10 cos(2πxi) + 10
]
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∑
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n
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−xi sin

(√
|xi|
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Function Equation and Surface

f8

f8(x) = −
n
∑

i=1
sin(xi) sin2m

(
ix2

i
π

)
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଼݂  

଼݂ (ݔ) = − ෍ sin(ݔ௜) sinଶ௠௡
௜	ୀ	ଵ ቆ݅ݔ௜ଶߨ ቇ 

 ܦ2
 

ଽ݂ 

ଽ݂(ݔ) = − ෍ sin(ݔ௜) sinଶ௠௡
௜	ୀ	ଵ ቆ݅ݔ௜ଶߨ ቇ 

 ܦ10
 

ଵ݂଴ 

ଵ݂଴(ݔ) = −cos(ݔ௜) cos(ݔ௜)(݁ݔ)݌ݔଵ − ଶ(ߨ − ଶݔ) −  (ଶ(ߨ

 
 

ଵ݂ଵ ଵ݂ଵ(ݔ) 	= 		 ሾ1 + ଵݔ) + ଶݔ + 1)ଶ(19 − ଵݔ14 + ଵଶݔ3 − ଶݔ14 + ଶݔଵݔ6 + ×		ଶଶ)ሿݔ3 	 ሾ30 + ଵݔ2) − 3 ଶ)ଶ(18ݔ − ଵݔ32 + ଵଶݔ12 − ଶݔ48 − ଶݔଵݔ36 +  		ଶଶ)ሿݔ27

2D

f9

f9(x) = −
n
∑

i=1
sin(xi) sin2m

(
ix2

i
π

)
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10D

f10

f10(x) = − cos(xi) cos(xi)(exp (x1 − π)2 − (x2 − π)2)
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Function Equation and Surface

f11

f11(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)
]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 − 48x2 − 36x1x2 + 27x2
2
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Table 5. Cont.

Function Equation and Surface

f14

f14(x) =
n
∑
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(xi − 1)2 −

n
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xixi − 1Algorithms 2017, 10, 83 16 of 21 

 
 

In Table 6 we can find functions 7 to 14, where ଻݂ is the Styblinski-Tang function, ଼݂  is the 
Michalewicz (2-D) function, ଽ݂ is the Michalewicz function (10-D), ଵ݂଴ is the Easom function, ଵ݂ଵ is 
the Goldstein Price function, ଵ݂ଶ is the Penalized P16 function, ଵ݂ଷ is the Six Hump Camel-back 
function, and ଵ݂ସis the Trid Function [25,26]. 

Table 6. Benchmark functions utilized for the experiments (optima different from zero). 

Function Optimum Range of Initialization Dimensions ଻݂ −39.659 ሾ−5, 5ሿ஽ 30 ଼݂  −1.8013 ሾ30, 50ሿ஽ 2 ଽ݂ −9.66 ሾ30, 50ሿ஽ 10 ଵ݂଴ −1 ሾ−100, 100ሿ஽ 2 ଵ݂ଵ 3 ሾ−2, 2ሿ஽ 2 ଵ݂ଶ −330 ሾ−50, 50ሿ஽ 30 ଵ݂ଷ −1.0316 ሾ−5, 5ሿ஽ 2 ଵ݂ସ −200 ሾ−݀ଶ, ݀ଶሿ஽ 10 

For each function, the initial range was set to ሾܺ௠௔௫௞ /2, ܺ௠௔௫௞ ሿ, where ܺ௠௔௫௞  is the upper bound 
of the search space in the kth dimension. In the experiments, a number of shift values were added to 
these basic functions in order to shift the global optimum. We used three different shift indices in 
order to analyze the influence of different shift values on the performance of the algorithms as can be 
found in Table 7. The SI is the shift index and SV is the shift value used [11]. 

Table 7. Shift Index (SI) and Shift Value (SV) [27]. 

SI SV

1 0.05 × ܺ௠௔௫௞ − ܺ௠௜௡௞2  

2 0.1 × ܺ௠௔௫௞ − ܺ௠௜௡௞2  

3 0.2 × ܺ௠௔௫௞ − ܺ௠௜௡௞2  

In Tables 8 and 9, we performed comparisons of the averages and standard deviations among 
Iterative Fireworks Algorithm (IFWA) and the two variations of FFWA with 0.05 and 0.1 for the Shift 
Index values, respectively. 
  

In Table 6 we can find functions 7 to 14, where f7 is the Styblinski-Tang function, f8 is the
Michalewicz (2-D) function, f9 is the Michalewicz function (10-D), f10 is the Easom function, f11 is the
Goldstein Price function, f12 is the Penalized P16 function, f13 is the Six Hump Camel-back function,
and f14 is the Trid Function [25,26].

Table 6. Benchmark functions utilized for the experiments (optima different from zero).

Function Optimum Range of Initialization Dimensions

f7 −39.659 [−5, 5]D 30
f8 −1.8013 [30, 50]D 2
f9 −9.66 [30, 50]D 10
f10 −1 [−100, 100]D 2
f11 3 [−2, 2]D 2
f12 −330 [−50, 50]D 30
f13 −1.0316 [−5, 5]D 2
f14 −200

[
−d2, d2]D 10

For each function, the initial range was set to
[

Xk
max/2, Xk

max

]
, where Xk

max is the upper bound
of the search space in the kth dimension. In the experiments, a number of shift values were added to
these basic functions in order to shift the global optimum. We used three different shift indices in order
to analyze the influence of different shift values on the performance of the algorithms as can be found
in Table 7. The SI is the shift index and SV is the shift value used [11].

Table 7. Shift Index (SI) and Shift Value (SV) [27].

SI SV

1 0.05× Xk
max−Xk

min
2

2 0.1× Xk
max−Xk

min
2

3 0.2× Xk
max−Xk

min
2
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In Tables 8 and 9, we performed comparisons of the averages and standard deviations among
Iterative Fireworks Algorithm (IFWA) and the two variations of FFWA with 0.05 and 0.1 for the Shift
Index values, respectively.

Table 8. Means and standard deviations of the fourteen benchmark functions with SI = 1. IFWA =
Iterative Fireworks Algorithm.

Number IFWA IFWA DPIFFWA-I DPIFFWA-I DPIFFWA-II DPIFFWA-II

Function Mean STD Mean STD Mean STD

1 4.79 1.57 4.54 8.20 × 10−1 4.68 1.13
2 9.24 × 10−1 1.08 × 10−1 5.73 × 10−1 2.10 × 10−1 5.26 × 10−1 2.98 × 10−1

3 2.35 × 102 8.14 × 101 1.81 × 102 6.85 × 101 1.66 × 102 6.93 × 101

4 2.87 × 104 2.75 × 104 6.27 × 103 6.24 × 103 6.32 × 103 7.51 × 103

5 6.48 × 10−2 1.89 × 10−1 3.26 × 10−2 7.75 × 10−2 2.67 × 10−2 5.86 × 10−2

6 5.06 × 101 2.75 × 101 2.21 × 101 9.74 1.84 × 101 1.51 × 101

7 −9.53 × 102 6.54 × 101 −9.10 × 102 2.13 × 101 −1.08 × 103 5.69 × 101

8 −1.80 2.91 × 10−4 −1.80 1.12 × 10−3 −1.80 5.89 × 10−4

9 −7.81 5.73 × 10−1 −7.22 2.23 × 10−1 −8.64 7.12 × 10−1

10 −1.00 3.36 × 10−4 −9.98 × 10−1 2.94 × 10−3 −9.99 × 10−1 2.39 × 10−3

11 3.01 8.40 × 10−3 3.03 2.69 × 10−2 3.00 8.13 × 10−3

12 1.59 8.09 × 10−1 1.49 4.76 × 10−1 7.39 × 10−1 3.52 × 10−1

13 −1.03 3.48 × 10−4 −1.03 9.21 × 10−4 −1.03 5.26 × 10−4

14 −1.85 × 102 1.56 × 101 −2.03 × 102 4.24 −2.09 × 102 1.48

Table 9. Means and standard deviations of the fourteen benchmark functions with SI = 2.

Number IFWA IFWA DPIFFWA-I DPIFFWA-I DPIFFWA-II DPIFFWA-II

Function Mean STD Mean STD Mean STD

1 8.40 1.67 4.87 1.07 5.20 1.48
2 9.82 × 10−1 1.93 × 10−1 7.17 × 10−1 2.53 × 10−1 5.90 × 10−1 3.12 × 10−1

3 3.89 × 102 9.38 × 101 2.72 × 102 6.96 × 101 2.31 × 102 1.27 × 102

4 2.15 × 105 1.96 × 105 3.50 × 104 3.29 × 104 4.30 × 104 6.14 × 104

5 1.26 × 10−1 2.83 × 10−1 1.54 × 10−2 2.39 × 10−2 6.06 × 10-2 1.78 × 10−1

6 1.61 × 102 7.72 × 101 4.18 × 101 2.47 × 101 4.17 × 101 3.43 × 101

7 −9.96 × 102 5.98 × 101 −9.16 × 102 2.21 × 101 −1.07 × 103 7.97 × 101

8 −1.80 8.48 × 10−5 −1.80 7.63 × 10−4 −1.80 6.25 × 10−4

9 −7.86 5.98 × 10−1 −7.27 2.32 × 10−1 −8.85 6.56 × 10−1

10 −1.00 6.29 × 10−4 −9.95 × 10−1 5.88 × 10−3 −9.97 × 10−1 7.49 × 10−3

11 3.01 1.21 × 10−2 3.05 5.56 × 10−2 3.00 7.55 × 10−3

12 7.15 6.27 6.39 2.15 2.72 1.92
13 −1.03 4.00 × 10−4 −1.03 8.94 × 10−4 −1.03 5.10 × 10−4

14 −1.86 × 102 1.98 × 101 −2.01 × 102 6.51 −2.08 × 102 2.38

Table 10 shows a comparison among the IFWA, DPIFFWA-I, and DPIFFWA-II algorithms.
Tables 8–10 were obtained from the means of 30 independent runs; we considered the best result

in each iteration, and, finally, we calculated the means of the 30 better obtained results.
For comparing the performance of every algorithm, we performed hypothesis tests (Z-test) with

the following parameters: µ1 = NewMethod, µ2 = IFWA, the mean of the new method is lower
than the mean of the centroid method (claim), H0 : µ1 ≥ µ2, Ha : µ1 < µ2(Claim), α = 0.05, and
Z0 = −1.645. We show some Hypothesis tests results in Tables 11–16, where we compare IFWA vs.
DPIFFWA-I and II. In Tables 11 and 12 we compare with SI = 1, in Tables 13 and 14 we compare with SI
= 2, and in Tables 15 and 16 we illustrate a comparison between the methods with SI = 3. We indicate
in bold the cases where there is significant evidence that the proposed method is better.
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Table 10. Mean and standard deviation of the fourteen benchmark functions with SI = 3.

Number IFWA IFWA DPIFFWA-I DPIFFWA-I DPIFFWA-II DPIFFWA-II

Function Mean STD Mean STD Mean STD

1 1.19 × 101 1.64 6.57 1.38 6.07 2.42
2 1.16 7.62 × 10−2 8.35 × 10−1 2.43 × 10−1 8.60 × 10−1 2.66 × 10−1

3 9.46 × 102 3.08 × 102 2.83 × 102 1.07 × 102 2.76 × 102 1.68 × 102

4 5.26 × 106 9.30 × 106 7.66 × 104 9.80 × 104 1.42 × 105 2.63 × 105

5 5.64 × 10−1 1.19 1.20 × 10−1 3.12 × 10−1 4.11 × 10−2 9.22 × 10-2

6 6.41 × 102 2.92 × 102 7.12 × 101 4.70 × 101 7.44 × 101 5.79 × 101

7 −9.78 × 102 7.98 × 101 −9.24 × 102 2.76 × 101 −1.09 × 103 5.38 × 101

8 −1.80 4.11 × 10−4 −1.80 8.79 × 10−4 −1.80 4.18 × 10−4

9 −7.87 4.41 × 10−1 −7.33 2.52 × 10−1 −8.88 4.71 × 10−1

10 −9.66 × 10−1 1.82 × 10−1 −9.92 × 10−1 8.79 × 10−3 −9.99 × 10−1 1.38 × 10−3

11 3.03 4.68 × 10−2 3.04 3.61 × 10−2 3.01 2.19 × 10−2

12 6.70 × 103 1.91 × 104 1.09 × 102 2.34 × 102 1.08 × 101 1.25 × 101

13 −1.03 2.31 × 10−3 −1.03 1.71 × 10−3 −1.03 2.45 × 10−4

14 −1.86 × 102 8.22 −2.03 × 102 4.26 −2.08 × 102 3.42

Table 11. Hypothesis test between IFWA and DPIFFWA-I with SI = 1.

Number IFWA IFWA IFFWA DPIFFWA-I DPIFFWA-I DPIFFWA-I

Function Mean STD Z-Value Mean STD Z-Value

1 4.79 1.57 −1.645 4.54 8.20 × 10−1 −0.7731
2 9.24 × 10−1 1.08 × 10−1 −1.645 5.73 × 10−1 2.10 × 10−1 −8.1412
3 2.35 × 102 8.14 × 101 −1.645 1.81 × 102 6.85 × 101 −2.7801
4 2.87 × 104 2.75 × 104 −1.645 6.27 × 103 6.24 × 103 −4.3567
5 6.48 × 10−2 1.89 × 10−1 −1.645 3.26 × 10−2 7.75 × 10−2 −0.8634
6 5.06 × 101 2.75 × 101 −1.645 2.21 × 101 9.74 −5.3507
7 −9.53 × 102 6.54 × 101 −1.645 −9.10 × 102 2.13 × 101 −3.4242
8 −1.80 2.91 × 10−4 −1.645 −1.80 1.12 × 10−3 0
9 −7.81 5.73 × 10−1 −1.645 −7.22 2.23 × 10−1 −5.2557
10 −1.00 3.36 × 10−4 −1.645 −9.98 × 10−1 2.94 × 10−3 −3.7019
11 3.01 8.40 × 10−3 −1.645 3.03 2.69 × 10−2 3.8872
12 1.59 8.09 × 10−1 −1.645 1.49 4.76 × 10−1 −0.5835
13 −1.03 3.48 × 10−4 −1.645 −1.03 9.21 × 10−4 0
14 −1.85 1.56 × 101 −1.645 −2.03 × 102 4.24 6.0986

Table 12. Hypothesis test between IFWA and DPIFFWA-II with SI = 1.

Number IFWA IFWA IFFWA DPIFFWA-II DPIFFWA-II DPIFFWA-II

Function Mean STD Z-Value Mean STD Z-Value

1 4.79 1.57 −1.645 4.68 1.13 −0.3115
2 9.24 × 10−1 1.08 × 10−1 −1.645 5.26 × 10−1 2.98 × 10−1 −6.8775
3 2.35 × 102 8.14 × 101 −1.645 1.66 × 102 6.93 × 101 −3.5352
4 2.87 × 104 2.75 × 104 −1.645 6.32 × 103 7.51 × 103 −4.3000
5 6.48 × 10−2 1.89 × 10-1 −1.645 2.67 × 10−2 5.86 × 10−2 −1.0546
6 5.06 × 101 2.75 × 101 −1.645 1.84 × 101 1.51 × 101 −5.6216
7 −9.53 × 102 6.54 × 101 −1.645 −1.08 × 103 5.69 × 101 8.0243
8 −1.80 2.91 × 10−4 −1.645 −1.80 5.89 × 10−4 0
9 −7.81 5.73 × 10−1 −1.645 −8.64 7.12 × 10−1 4.9742
10 −1.00 3.36 × 10−4 −1.645 −9.99 × 10−1 2.39 × 10−3 −2.2694
11 3.01 8.40 × 10−3 −1.645 3.00 8.13 × 10−3 −4.6854
12 1.59 8.09 × 10−1 −1.645 7.39 × 10−1 3.52 × 10−1 −5.2832
13 −1.03 3.48 × 10−4 −1.645 −1.03 5.26 × 10−4 0
14 −1.85 1.56 × 101 −1.645 −2.09 × 102 1.48 8.3888
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Table 13. Hypothesis test between IFWA and DPIFFWA-I with SI = 2.

Number IFWA IFWA IFFWA DPIFFWA-I DPIFFWA-I DPIFFWA-I

Function Mean STD Z-Value Mean STD Z-Value

1 8.40 1.67 −1.645 4.87 1.07 −9.7483
2 9.82 × 10−1 1.93 × 10−1 −1.645 7.17 × 10−1 2.53 × 10−1 −4.5613
3 3.89 × 102 9.38 × 101 −1.645 2.72 × 102 6.96 × 101 −5.4865
4 2.15 × 105 1.96 × 105 −1.645 3.50 × 104 3.29 × 104 −4.9607
5 1.26 × 10−1 2.83 × 10−1 −1.645 1.54 × 10-2 2.39 × 10-2 −2.1330
6 1.61 × 102 7.72 × 101 −1.645 4.18 × 101 2.47 × 101 −8.0548
7 −9.96 × 102 5.98 × 101 −1.645 −9.16 × 102 2.21 × 101 −6.8731
8 −1.80 8.48 × 10−5 −1.645 −1.80 7.63 × 10−4 0
9 −7.86 5.98 × 10−1 −1.645 −7.27 2.32 × 10−1 −5.0381
10 −1.00 6.29 × 10−4 −1.645 −9.95 × 10−1 5.88 × 10−3 −4.6311
11 3.01 1.21 × 10−2 −1.645 3.05 5.56 × 10−2 3.8503
12 7.15 6.27 −1.645 6.39 2.15 −0.6280
13 −1.03 4.00 × 10−4 −1.645 −1.03 8.94 × 10−4 0
14 −1.86 × 102 1.98 × 101 −1.645 −2.01 × 102 6.51 3.9418

Table 14. Hypothesis test between IFWA and DPIFFWA-II with SI = 2.

Number IFWA IFWA IFFWA DPIFFWA-II DPIFFWA-II DPIFFWA-II

Function Mean STD Z-Value Mean STD Z-Value

1 8.40 1.67 −1.645 5.20 1.48 −7.8546
2 9.82 × 10−1 1.93 × 10−1 −1.645 5.90 × 10−1 3.12 × 10−1 −5.8524
3 3.89 × 102 9.38 × 101 −1.645 2.31 × 102 1.27 × 102 −5.4812
4 2.15 × 105 1.96 × 105 −1.645 4.30 × 104 6.14 × 104 −4.5868
5 1.26 × 10−1 2.83 × 10−1 −1.645 6.06 × 10−2 1.78 × 10-1 −1.0714
6 1.61 × 102 7.72 × 101 −1.645 4.17 × 101 3.43 × 101 −7.7351
7 −9.96 × 102 5.98 × 101 −1.645 −1.07 × 103 7.97 × 101 4.0678
8 −1.80 8.48 × 10−5 −1.645 −1.80 6.25 × 10−4 0
9 −7.86 5.98 × 10−1 −1.645 −8.85 6.56 × 10−1 6.1087
10 −1.00 6.29 × 10−4 −1.645 −9.97 × 10−1 7.49 × 10−3 −2.1861
11 3.01 1.21 × 10−2 −1.645 3.00 7.55 × 10−3 −3.8404
12 7.15 6.27 −1.645 2.72 1.92 −3.7003
13 −1.03 4.00 × 10−4 −1.645 −1.03 5.10 × 10−4 0
14 −1.86 × 102 1.98 × 101 −1.645 −2.08 × 102 2.38 6.0423

Table 15. Hypothesis test between IFWA and DPIFFWA-I with SI = 3.

Number IFWA IFWA IFFWA DPIFFWA-I DPIFFWA-I DPIFFWA-I

Function Mean STD Z-Value Mean STD Z-Value

1 1.19 × 101 1.64 −1.645 6.57 1.38 −13.6205
2 1.16 7.62 × 10−2 −1.645 8.35 × 10−1 2.43 × 10−1 −6.9899
3 9.46 × 102 3.08 × 102 −1.645 2.83 × 102 1.07 × 102 −11.1373
4 5.26 × 106 9.30 × 106 −1.645 7.66 × 104 9.80 × 104 −3.0526
5 5.64 × 10−1 1.19 −1.645 1.20 × 10−1 3.12 × 10−1 −1.9768
6 6.41 × 102 2.92 × 102 −1.645 7.12 × 101 4.70 × 101 −10.5523
7 −9.78 × 102 7.98 × 101 −1.645 −9.24 × 102 2.76 × 101 −3.5028
8 −1.80 4.11 × 10−4 −1.645 −1.80 8.79 × 10−4 0
9 −7.87 4.41 × 10−1 −1.645 −7.33 2.52 × 10−1 −5.8231

10 −9.66 × 10−1 1.82 × 10−1 −1.645 −9.92 × 10-−1 8.79 × 10−3 0.7815
11 3.03 4.68 × 10−2 −1.645 3.04 3.61 × 10−2 0.9267
12 6.70 × 103 1.91 × 104 −1.645 1.09 2.34 × 102 −1.8899
13 −1.03 2.31 × 10−3 −1.645 −1.03 1.71 × 10−3 0
14 −1.86 × 102 8.22 −1.645 −2.03 4.26 10.0572
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Table 16. Hypothesis test between IFWA and DPIFFWA-II with SI = 3.

Number IFWA IFWA IFFWA DPIFFWA-I DPIFFWA-I DPIFFWA-I

Function Mean STD Z-Value Mean STD Z-Value

1 1.19 × 101 1.64 −1.645 6.57 1.38 −10.9231
2 1.16 7.62 × 10−2 −1.645 8.35 × 10−1 2.43 × 10−1 −5.9385
3 9.46 × 102 3.08 × 102 −1.645 2.83 × 102 1.07 × 102 −10.4599
4 5.26 × 106 9.30 × 106 −1.645 7.66 × 104 9.80 × 104 −3.0130
5 5.64 × 10−1 1.19 −1.645 1.20 × 10−1 3.12 × 10−1 −2.3996
6 6.41 × 102 2.92 × 102 −1.645 7.12 × 101 4.70 × 101 −10.4251
7 −9.78 × 102 7.98 × 101 −1.645 −9.24 × 102 2.76 × 101 6.3740
8 −1.80 4.11 × 10−4 −1.645 −1.80 8.79 × 10−4 0
9 −7.87 4.41 × 10−1 −1.645 −7.33 2.52 × 10−1 8.5737

10 −9.66 × 10−1 1.82 × 10−1 −1.645 −9.92 × 10−1 8.79 × 10−3 0.9931
11 3.03 4.68 × 10−2 −1.645 3.04 3.61 × 10−2 −2.1201
12 6.70 × 103 1.91 × 104 −1.645 1.09 × 102 2.34 × 102 −1.9182
13 −1.03 2.31 × 10−3 −1.645 −1.03 1.71 × 10−3 0
14 −1.86 × 102 8.22 −1.645 −2.03 × 102 4.26 13.5345

As we can note from Tables 11 and 12, the new methods (DPIFFWA-I and II) are better because in
7 benchmark functions we obtain better results. In Tables 13 and 14 we achieve better results because
DPIFFWA I and II are better in 8 benchmark functions, and in the last two, Tables 15 and 16, we are
better in 9 and 8 of 14 benchmark functions, respectively.

The parameters used to test the Iterative Fireworks Algorithm (IFWA) are the same that were used
by the original author of the fireworks algorithm (FWA) and in the two variations of IFWA (DPIFFWA-I
and DPIFFWA-II), we have only modified the explosion amplitude and number of sparks, that is
to say, as we mentioned above, a static parameter was changed to be dynamic (in a specific range).
The parameters are as follows: n = 5, Si = [1, 50], Ai = [2, 40], and 150 iterations. These parameters
were utilized to test and show the simulation results.

12. Conclusions

In this paper, we presented the Iterative Fireworks Algorithm (IFWA), which is an improvement
to the original fireworks algorithm (FWA), and other variations, such as DPIFFWA-I and DPIIFWA-II.

We have witnessed the ability of fuzzy logic in control applications, however, in this work, fuzzy
rules were used to control parameters within a metaheuristic algorithm, FWA in this case, with two
proposed modifications: the first is a small modification to the FWA algorithm; we changed the
stopping criteria of the function evaluations to iterations (IFWA). In the second modification, we took
as input variables the iterations and the DP to obtain two output variables, which are the explosion
amplitude and sparks mentioned in the previous section. This second modification is the more relevant
and important one. As described above, the modifications can be justified as the results (Tables 11–16)
are better with benchmark functions with optimums that are both zero and nonzero.

We can also state that the goal of this paper, which was to demonstrate that the Fireworks
Algorithm works better (better results) based on iterations and when complemented by a fuzzy
inference system, was successfully achieved.

The future work will be to test the Dispersion Iterative Fuzzy Fireworks Algorithm in neural
networks to find the optimal number of neurons and layers, and in this way, optimize the
neural network, inasmuch as the Fireworks Algorithm was optimized in this paper and previous
papers [16,17].
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