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Abstract: Convolutional neural networks have achieved remarkable improvements in image and
video recognition but incur a heavy computational burden. To reduce the computational complexity
of a convolutional neural network, this paper proposes an algorithm based on the Winograd minimal
filtering algorithm and Strassen algorithm. Theoretical assessments of the proposed algorithm show
that it can dramatically reduce computational complexity. Furthermore, the Visual Geometry Group
(VGG) network is employed to evaluate the algorithm in practice. The results show that the proposed
algorithm can provide the optimal performance by combining the savings of these two algorithms.
It saves 75% of the runtime compared with the conventional algorithm.
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1. Introduction

Deep convolutional neural networks have achieved remarkable improvements in image and
video processing [1–3]. However, the computational complexity of these networks has also increased
significantly. Since the prediction process of the networks used in real-time applications requires very
low latency, the heavy computational burden is a major problem with these systems. Detecting faces
from video imagery is still a challenging task [4,5]. The success of convolutional neural networks in
these applications is limited by their heavy computational burden.

There have been a number of studies on accelerating the efficiency of convolutional neural
networks. Denil et al. [6] indicate that there are significant redundancies in the parameterizations of
neural networks. Han et al. [7] and Guo et al. [8] use certain training strategies to compress these
neural network models without significantly weakening their performance. Some researchers [9–11]
have found that low-precision computation is sufficient for the networks. Binary/Ternary Net [12,13]
restricts the parameters to two or three values. Zhang et al. [14] used low-rank approximation to
reconstruct the convolution matrix, which can reduce the complexity of convolution. These algorithms
are effective in accelerating computation in the network, but they also cause a degradation in accuracy.
Fast Fourier Transform (FFT) is also useful in reducing the computational complexity of convolutional
neural networks without losing accuracy [15,16], but it is only effective for networks with large kernels.
However, convolutional neural networks tend to use small kernels because they achieve better accuracy
than networks with larger kernels [1]. For these reasons, there is a demand for an algorithm that can
accelerate the efficiency of networks with small kernels.

In this paper, we present an algorithm based on Winograd’s minimal filtering algorithm which
was proposed by Toom [17] and Cook [18] and generalized by Winograd [19]. The minimal filtering
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algorithm can reduce the computational complexity of each convolution in the network without losing
accuracy. However, the computational complexity is still large for real-time requirements. To reduce
further the computational complexity of these networks, we utilize the Strassen algorithm to reduce
the number of convolutions in the network simultaneously. Moreover, we evaluate our algorithm with
the Visual Geometry Group (VGG) network. Experimental results show that it can save 75% of the
time spent on computation when the batch size is 32.

The rest of this paper is organized as follows. Section 2 reviews related work on convolutional
neural networks, the Winograd algorithm and the Strassen algorithm. The proposed algorithm is
presented in Section 3. Several simulations are included in Section 4, and the work is concluded in
Section 5.

2. Related Work

2.1. Convolutional Neural Networks

Machine-learning has produced impressive results in many signal processing applications [20,21].
Convolutional neural networks extend the machine-learning capabilities of neural networks by
introducing convolutional layers to the network. Convolutional neural networks are mainly used in
image processing. Figure 1 shows the structure of a classical convolutional neural network, LeNet.
It consists of two convolutional layers, two subsampling layers and three fully connected layers.
Usually, the computation of the convolutional layers occupies most of the network.
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Convolutional layers extract features from the input feature maps via different kernels. Suppose
there are Q input feature maps of size Mx × Nx and R output feature maps of size My × Ny. The size
of the convolutional kernel is Mw × Nw. The computation of the output in a single layer is given by
the equation

yr,x,y =
Q

∑
q=1

Mw

∑
u=1

Nw

∑
v=1

wr,q,u,vxq,x+u,y+v, (1)

where X is the input feature map, Y is the output feature map, and W is the kernel. The subscripts x
and y indicate the position of the pixel in the feature map. The subscripts u and v indicate the position
of the parameter in the kernel. Equation (1) can be rewritten as Equation (2).

yr =
Q

∑
q=1

wr,q ∗ xq (2)

Suppose there are P images that are sent together to the neural network, which means the batch
size is P. Then the output Y in Equation (2) can be expressed by Equation (3).

yr,p =
Q

∑
q=1

wr,q ∗ xq,p (3)
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If we regard the yr,p, wr,q and xq,p as the elements of the matrices Y, W and X, respectively, the
output can be expressed as the convolution matrix in Equation (4).

Y = W ∗ X (4)

Y =


y1,1 · · · y1,P

...
. . .

...
yR,1 · · · yR,P

 W =

 w1,1 · · · w1,Q
...

. . .
...

wR,1 · · · wR,Q

 X =

 x1,1 · · · x1,P
...

. . .
...

xQ,1 · · · xQ,P

 (5)

Matrix Y and matrix X are special matrices of feature maps. Matrix W is a special matrix of kernels.
This convolutional matrix provides a new view of the computation of the output Y.

2.2. Winograd Algorithm

We denote an r-tap FIR filter with m outputs as F(m, r). The conventional algorithm for F(2, 3) is
shown in Equation (6), where d0, d1, d2 and d3 are the inputs of the filter, and h0, h1 and h2 are the
parameters of the filter. As Equation (6) shows, it uses 6 multiplications and 4 additions to compute
F(2, 3).

F(2, 3) =

[
d0 d1 d2

d1 d2 d3

] h0

h1

h2

 =

[
d0h0 + d1h1 + d2h2

d1h0 + d2h1 + d3h2

]
(6)

If we use the minimal filtering algorithm [19] to compute F(m, r), it requires (m + r – 1)
multiplications. The process of the algorithm for computing F(2, 3) is shown in Equations (7)–(11).

m1 = (d 0 − d2)h0 (7)

m2 = (d1 + d2)
1
2
(h0 + h1 + h2) (8)

m3 = (d2 − d1)
1
2
(h0 − h1 + h2) (9)

m4 = (d 1 − d3)h2 (10)

F(2, 3) =

[
d0h0 + d1h1 + d2h2

d1h0 + d2h1 + d3h2

]
=

[
m1 + m2 + m3

m2 − m3 − m4

]
(11)

The computation can be written in matrix form as Equation (12).

F(2, 3) =

[
1 1 1 0
0 1 −1 −1

]



1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1


 h0

h1

h2


•




1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1




d0

d1

d2

d3



 (12)

We substitute A, G and B for the matrices in Equation (12). Equation (12) can then be rewritten as
Equation (13).

Y = AT((Gh)•(BTd)), (13)

A =


1 0
1 1

1 −1
0 −1

, G =


1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

, B =


1 0 0 0
0 1 −1 1
−1 1 1 0
0 0 0 −1

 (14)

In Equation (13), • indicates element-wise multiplication, and the superscript T indicates the
transpose operator. A, G and B are defined in Equation (14).



Algorithms 2018, 11, 159 4 of 11

We can see from Equation (7) to Equation (11) that the whole process needs 4 multiplications.
However, it also needs 4 additions to transform data, 3 additions and 2 multiplications by a constant
to transform the filter, and 4 additions to transform the final result. (To compare the complexity easily,
we regard the multiplication by a constant as an addition.)

The 2-dimensional filters F(m × m, r × r) can be generalized by the filter F(m, r) as
Equation (15) [22].

Y = AT((GhGT)•(BTdB))A (15)

F(2 × 2, 3 × 3) needs 4 × 4 = 16 multiplications, 32 additions to transform data, 28 additions to
transform the filter, and 24 additions to transform the final result. The conventional algorithm needs
36 multiplications to calculate the result. This algorithm can reduce the number of multiplications
from 36 to 16.

F(2 × 2, 3 × 3) can be used to compute the convolutional layer with 3 × 3 kernels. Each input
feature map can be divided into smaller feature maps in order to use Equation (15). If we substitute
U = GwGT and V = BT × B, then Equation (3) can be rewritten as Equation (16).

yr,p =
Q
∑

q=1
wr,q ∗ xq,p

=
Q
∑

q=1
AT((GwGT)(BT × B))A

=
Q
∑

q=1
AT(Ur,q•Vq,p)A

(16)

2.3. Strassen Algorithm

Suppose there are two matrices A and B, and matrix C is the product of A and B. The numbers of
the elements in both rows and columns of A, B and C are even. We can partition A, B and C into block
matrices of equal sizes as follows:

A =

[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
, C =

[
C1,1 C1,2

C2,1 C2,2

]
(17)

According to the conventional matrix multiplication algorithm, we then have Equation (18).

C = A × B =

[
A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2

A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

]
(18)

As Equation (18) shows, we need 8 multiplications and 4 additions to complete matrix C.
The Strassen algorithm can be used to reduce the number of multiplications [23]. The process of
the Strassen algorithm is shown as follows:

I = (A1,1 + A2,2)× (B1,1 + B2,2), (19)

II = (A2,1 + A2,2)× B1,1, (20)

III = A1,1 × (B1,2 − B2,2), (21)

IV = A2,2 × (B2,1 − B1,1), (22)

V = (A1,1 + A2,2)× B2,2, (23)

VI = (A2,1 − A1,1)× (B1,1+B1,2), (24)

VII = (A1,2 − A2,2)× (B2,1 + B2,2), (25)
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C1,1 = I + IV − V + VII, (26)

C1,2 = III + V, (27)

C2,1 = II + IV, (28)

C2,2 = I − II + III + VI, (29)

where I, II, III, IV, V, VI, VII are temporary matrices. The whole process requires 7 multiplications and
18 additions. It reduces the number of multiplications from 8 to 7 without changing the computational
results. More multiplications can be saved by using the Strassen algorithm recursively, as long as the
numbers of rows and columns of the submatrices are even. If we use N recursions of the Strassen
algorithm, then it can save 1 − (7/8)N multiplications. The Strassen algorithm is suitable for the special
convolutional matrix in Equation (4) [24]. Therefore, we can use the Strassen algorithm to handle a
convolutional matrix.

3. Proposed Algorithm

As we can see from Section 2.2, the Winograd algorithm incurs more additions. To avoid repeating
the transform of W and X in Equation (16), we calculate the matrices U and V separately. This can
reduce the number of additions incurred by this algorithm. The practical implementation of this
algorithm is listed in Algorithm 1. The calculation of output M in Algorithm 1 is the main complexity
of multiplication in the whole computation process. To reduce the computational complexity of output
M, we can use the Strassen algorithm. Before using the Strassen algorithm, we need to reform the
expression of M as follows.

The output M in Algorithm 1 can be written as the equation

Mr,p =
Q

∑
q=1

(
AT(Ur,q•Vq,p)A

)
, (30)

where Ur,q and Vq,p are temporary matrices, and A is the constant parameter matrix. To show the
equation easily, we ignore matrix A. (Matrix A is not ignored in the actual implementation of the
algorithm.) The output M can then be written as shown in Equation (31).

Mr,p =
Q

∑
q=1

(
Ur,q•Vq,p

)
(31)

We denote three special matrices M, U and V. Mr,p, Ur,q, and Vq,p are the elements of the matrices M,
U and V, respectively, as shown in Equation (33). The output M can then be written as a multiplication
of matrix U and matrix V.

M = U × V (32)

M =

 M1,1 · · · M1,P
...

. . .
...

MR,1 · · · MR,P

 U =

 U1,1 · · · U1,Q
...

. . .
...

UR,1 · · · UR,Q

 V =

 V1,1 · · · V1,P
...

. . .
...

VQ,1 · · · VQ,P

 (33)

In this case, we can partition the matrices M, U and V into equal-sized block matrices,
and then use the Strassen algorithm to reduce the number of multiplications between Ur,q and Vq,p.
The multiplication in the Strassen algorithm is redefined as the element-wise multiplication of matrices
Ur,q and Vq,p. We name this new combination as the Strassen-Winograd algorithm.
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Algorithm 1. Implementation of the Winograd algorithm.

1 for r = 1 to the number of output maps
2 for q = 1 to the number of input maps
3 U = GwGT

4 end
5 end
6 for p = 1 to batch size
7 for q = 1 to the number of input maps
8 for k = 1 to the number of image tiles
9 V = BTxB
10 end
11 end
12 end
13 for p = 1 to batch size
14 for r = 1 to the number of output maps
15 for j = 1 to the number of image tiles
16 M = zero;
17 for q = 1 to the number of input maps
18 M = M + AT(U•V)A
19 end
20 end
21 end
22 end

To compare theoretically the computational complexity of the conventional algorithm, Strassen
algorithm, Winograd algorithm, and Strassen-Winograd algorithm, we list the complexity of
multiplication and addition in Table 1. The output feature map size is set to 64 × 64, and the kernel
size is set to 3 × 3.

Table 1. Computational complexity of different algorithms.

Matrix Size Conventional Strassen Winograd Strassen-Winograd

N Mul Add Mul Add Mul Add Mul Add
2 294,912 278,528 258,048 303,104 131,072 344,176 114,688 401,520
4 2,359,296 2,293,760 1,806,336 2,416,640 1,048,576 2,294,208 802,816 2,908,608
8 1.89 × 107 1.86 × 107 1.26 × 107 1.81 × 107 8.39 × 106 1.65 × 107 5.62 × 106 2.15 × 107

16 1.51 × 108 1.50 × 108 8.85 × 107 1.31 × 108 6.71 × 107 1.25 × 108 3.93 × 107 1.62 × 108

32 1.21 × 109 1.20 × 109 6.20 × 108 9.39 × 108 5.37 × 108 9.69 × 108 2.75 × 108 1.23 × 109

64 9.66 × 109 9.65 × 109 4.34 × 109 6.65 × 109 4.29 × 109 7.63 × 109 1.93 × 109 9.37 × 109

128 7.73 × 1010 7.72 × 1010 3.04 × 1010 4.68 × 1010 3.44 × 1010 6.06 × 1010 1.35 × 1010 7.19 × 1010

256 6.18 × 1011 6.18 × 1011 2.13 × 1011 3.29 × 1011 2.75 × 1011 4.83 × 1011 9.45 × 1010 5.55 × 1011

512 4.95 × 1012 4.95 × 1012 1.49 × 1012 2.31 × 1012 2.20 × 1012 3.86 × 1012 6.61 × 1011 4.29 × 1012

We can see from Table 1 that, although the algorithms cause more additions when the matrix size
is small, the number of extra additions is less than the number of decreased multiplications. Moreover,
multiplication usually costs more time than addition. Hence the three algorithms are all theoretically
effective in reducing the computational complexity.

Figure 2 shows a comparison of the computational complexity ratios. The Strassen algorithm
shows less reduction of multiplication when the matrix size is small, but it incurs less additions.
The Winograd algorithm shows a stable performance. Moreover, the number of additions slightly
decreases as the matrix size increases. For small-sized matrices, the Strassen-Winograd algorithm
shows a much better reduction in multiplication complexity than the Strassen algorithm. Although
it incurs more additions, the number of extra additions is much less than the number of decreased
multiplications. The Strassen-Winograd algorithm shows a similar performance to the Winograd
algorithm. When the matrix size is small, the Winograd algorithm shows a slightly better performance,
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whereas the Strassen-Winograd algorithm and Strassen algorithm perform much better as the matrix
size increases.
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4. Simulation Results

Several simulations were conducted to evaluate our algorithm. We compare our algorithm with
the Strassen algorithm and Winograd algorithm, measuring performance by the runtime in MATLAB
R2013b (CPU: Inter(R) Core(TM) i7-3370K). For objectivity, we apply Equation (18) to the conventional
algorithm and use it as a benchmark. Moreover, all the input data x and kernel w are randomly
generated. We measure the accuracy of our algorithm by the absolute element error in the output
feature maps. As a benchmark, we use the conventional algorithm with double precision data, kernels,
middle variables and outputs. The other algorithms in this comparison use double precision data and
kernels but single precision middle variables and outputs.

The VGG network [1] was applied to our simulation. There are nine different convolutional layers
in the VGG network. The parameters of the convolutional layer are shown in Table 2. The depth
indicates the number of times a layer occurs in the network. Q indicates the number of input feature
maps. R indicates the number of output feature maps. Mw and Nw represent the size of the kernel.
My and Ny represent the size of the output feature map. The size of the kernel in the VGG network is
3 × 3. We apply F(2 × 2, 3 × 3) to the operation of convolution. For the computation of the output
feature map with size My × Ny, the map is partitioned into (My/2) × (Ny/2) sets, each using one
computation of F(2 × 2, 3 × 3).

Table 2. Parameters of the convolutional layers in the Visual Geometry Group (VGG) network.

Convolutional Layer 1 2 3 4 5 6 7 8 9

Parameters

Depth 1 1 1 1 1 3 1 3 4
Q 3 64 64 128 128 256 256 512 512
R 64 64 128 128 256 256 512 512 512

Mw(Nw) 3 3 3 3 3 3 3 3 3
My(Ny) 224 224 112 112 56 56 28 28 14

As Table 2 shows, the numbers of rows and columns are not always even, and the matrices are
not always square. To solve this problem, we pad a dummy row or column in the matrices once
we encounter an odd number of rows or columns. The matrix can then continue using the Strassen
algorithm. We apply these nine convolutional layers in turn to our simulations. For each convolutional
layer, we run the four algorithms with different batch sizes from 1 to 32. The runtime consumption of
the algorithms is listed in Table 3, and the numerical accuracy of the different algorithms in different
layers is shown in Table 4.
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Table 3. Runtime consumption of different algorithms.

Layer Batch Size 1 2 4 8 16 32

Layer1

Conventional 24s 48s 94s 187s 375s 752s
Strassen 24s 56s 95s 191s 383s 768s

Winograd 14s 29s 57s 115s 230s 462s
Strassen-Winograd 14s 33s 58s 117s 234s 470s

Layer2

Conventional 493s 986s 1971s 3939s 7888s 15821s
Strassen 492s 861s 1508s 2636s 4625s 8438s

Winograd 299s 598s 1196s 2396s 4787s 9935s
Strassen-Winograd 299s 543s 992s 1818s 3348s 6468s

Layer3

Conventional 245s 490s 980s 1962s 3916s 7858s
Strassen 247s 433s 759s 1328s 2325s 4076s

Winograd 128s 256s 513s 1025s 2049s 4102s
Strassen-Winograd 128s 229s 411s 737s 1335s 2417s

Layer4

Conventional 488s 978s 1954s 3908s 7819s 15639s
Strassen 494s 864s 1513s 2648s 4626s 8140s

Winograd 254s 509s 1017s 2033s 4075s 8168s
Strassen-Winograd 254s 455s 814s 1466s 2645s 4811s

Layer5

Conventional 250s 502s 1007s 2004s 4012s 8076s
Strassen 248s 436s 761s 1328s 2317s 4078s

Winograd 118s 236s 471s 942s 1881s 3776s
Strassen-Winograd 118s 209s 370s 656s 1167s 2085s

Layer6

Conventional 498s 1001s 1998s 3995s 7948s 15892s
Strassen 494s 868s 1507s 2646s 4643s 8102s

Winograd 231s 462s 923s 1844s 3693s 7382s
Strassen-Winograd 231s 410s 725s 1286s 2296s 4089s

Layer7

Conventional 244s 487s 980s 1940s 3910s 7820s
Strassen 241s 421s 739s 1283s 2250s 3961s

Winograd 116s 231s 461s 920s 1839s 3680s
Strassen-Winograd 116s 204s 358s 630s 1111s 1961s

Layer8

Conventional 479s 955s 1917s 3833s 7675s 15319s
Strassen 474s 829s 1453s 2546s 4447s 7811s

Winograd 222s 443s 884s 1766s 3524s 7068s
Strassen-Winograd 223s 391s 686s 1210s 2129s 3772s

Layer9

Conventional 118s 237s 474s 951s 1900s 3823s
Strassen 117s 206s 362s 631s 1107s 1937s

Winograd 65s 128s 254s 507s 1009s 2010s
Strassen-Winograd 65s 113s 197s 345s 606s 1063s

Table 4. Maximum element error of different algorithms in different layers.

Conventional Strassen Winograd Strassen-Winograd

Layer1 1.25 × 10−6 3.03 × 10−6 2.68 × 10−6 4.01 × 10−6

Layer2 2.46 × 10−5 7.59 × 10−5 4.62 × 10−5 9.50 × 10−5

Layer3 2.65 × 10−5 7.23 × 10−5 4.83 × 10−5 9.51 × 10−5

Layer4 4.94 × 10−5 1.50 × 10−4 9.40 × 10−5 1.78 × 10−4

Layer5 5.14 × 10−5 1.46 × 10−4 1.00 × 10−4 1.74 × 10−4

Layer6 9.80 × 10−5 2.94 × 10−4 1.88 × 10−4 3.50 × 10−4

Layer7 9.92 × 10−5 2.82 × 10−4 1.79 × 10−4 3.39 × 10−4

Layer8 2.09 × 10−4 5.89 × 10−4 3.51 × 10−4 6.99 × 10−4

Layer9 1.84 × 10−4 5.76 × 10−4 3.50 × 10−4 6.16 × 10−4

Table 4 shows that the Winograd algorithm is slightly more accurate than the Strassen algorithm
and Strassen-Winograd algorithm. The maximum element error of these algorithms is 6.16 × 10−4.
Compared with the minimum value of 1.09 × 103 in the output feature map, the accuracy loss incurred
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by these algorithms is negligible. As we can see from Section 2, theoretically, the processes in all of
these algorithms do not result in a loss in accuracy. In practice, a loss in accuracy is mainly caused by
the single precision data. Because the conventional algorithm with low precision data is sufficiently
accurate for deep learning [10,11], we conclude that the accuracy of our algorithm is equally sufficient.

To compare runtime easily, we use the conventional algorithm as a benchmark, and calculate the
saving on runtime displayed by the other algorithms. The result is shown in Figure 3.

The Strassen-Winograd algorithm shows a better performance than the benchmark in all layers
except layer1. This is because the number of input feature maps Q in layer1 is three, which limits the
performance of the algorithm as a small matrix size incurs more additions. Moreover, odd numbers of
rows or columns need dummy rows or columns for matrix partitioning, which causes more runtime.Algorithms 2018, 11, x FOR PEER REVIEW  10 of 12 

 
Figure 3. Comparisons with different batch sizes. 

5. Conclusions and Future Work 

The computational complexity of convolutional neural networks is an urgent problem for real-
time applications. Both the Strassen algorithm and Winograd algorithm are effective in reducing the 
computational complexity without losing accuracy. This paper proposed to combine these algorithms 
to reduce the heavy computational burden. The proposed strategy was evaluated with the VGG 
network. Both the theoretical performance assessment and the experimental results show that the 
Strassen-Winograd algorithm can dramatically reduce the computational complexity. 

There remain limitations that need to be addressed in future research. Although the algorithm 
reduces the computational complexity of convolutional neural networks, the cost is an increased 
difficulty in implementation, especially in real-time systems and embedded devices. It also increases 
the difficulty of parallelizing an artificial network for hardware acceleration. In future work, we aim 
to apply this method to hardware accelerator using practical applications. 

Author Contributions: Y.Z. performed the experiments and wrote the paper. D.W. provided suggestions about 
the algorithm. L.W. analyzed the complexity of the algorithms. P.L. checked the paper. 

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China 
under Granted 61801469, and in part by the Young Talent Program of Institute of Acoustics, Chinese Academy 
of Science, under Granted QNYC201622. 

Figure 3. Comparisons with different batch sizes.

The performance of the Winograd algorithm is stable from layer2 to layer9. It saves 53% of the
runtime on average, which is close to the 56% reduction in multiplications. The performances of the
Strassen algorithm and Strassen-Winograd algorithm improve as the batch size increases. For example,
in layer7, when the batch size is 1, we cannot partition the matrix to use the Strassen algorithm,
and there is almost no saving on runtime. The Strassen-Winograd algorithm saves 52% of the runtime,
a similar saving as the Winograd algorithm. When the batch size is 2, the Strassen algorithm saves



Algorithms 2018, 11, 159 10 of 11

13% of the runtime, which equates to the 13% reduction in multiplications. The Strassen-Winograd
algorithm saves 58% of the runtime, which is close to the 61% reduction in multiplications. As the
batch size increases, the Strassen algorithm and Strassen-Winograd algorithm can use more recursions,
which can further reduce the number of multiplications and save more runtime. When the batch size
is 32, the Strassen-Winograd algorithm saves 75% of the runtime, while the Strassen algorithm and
Winograd algorithm save 49% and 53%, respectively.

Though experiments with larger batch sizes were not carried out due to limitations on time and
memory, we can see the trend in performance as the batch size increases. This is consistent with the
theoretical analysis in Section 3. We conclude therefore that the proposed algorithm can provide the
optimal performance by combining the savings of these two algorithms.

5. Conclusions and Future Work

The computational complexity of convolutional neural networks is an urgent problem for real-time
applications. Both the Strassen algorithm and Winograd algorithm are effective in reducing the
computational complexity without losing accuracy. This paper proposed to combine these algorithms
to reduce the heavy computational burden. The proposed strategy was evaluated with the VGG
network. Both the theoretical performance assessment and the experimental results show that the
Strassen-Winograd algorithm can dramatically reduce the computational complexity.

There remain limitations that need to be addressed in future research. Although the algorithm
reduces the computational complexity of convolutional neural networks, the cost is an increased
difficulty in implementation, especially in real-time systems and embedded devices. It also increases
the difficulty of parallelizing an artificial network for hardware acceleration. In future work, we aim to
apply this method to hardware accelerator using practical applications.
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Funding: This research received no external funding.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
Granted 61801469, and in part by the Young Talent Program of Institute of Acoustics, Chinese Academy of Science,
under Granted QNYC201622.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

2. Liu, N.; Wan, L.; Zhang, Y.; Zhou, T.; Huo, H.; Fang, T. Exploiting Convolutional Neural Networks with
Deeply Local Description for Remote Sensing Image Classification. IEEE Access 2018, 6, 11215–11228.
[CrossRef]

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural Information Processing Systems, 3–6 December
2012; Volume 60, pp. 1097–1105.

4. Le, N.M.; Granger, E.; Kiran, M. A comparison of CNN-based face and head detectors for real-time video
surveillance applications. In Proceedings of the Seventh International Conference on Image Processing
Theory, Tools and Applications, Montreal, QC, Canada, 28 November–1 December 2018.

5. Ren, S.; He, K.; Girshick, R. Faster R-CNN: Towards real-time object detection with region proposal networks.
In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC,
Canada, 8–13 December 2014; pp. 91–99.

6. Denil, M.; Shakibi, B.; Dinh, L. Predicting Parameters in Deep Learning. In Proceedings of the International
Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013;
pp. 2148–2156.

http://dx.doi.org/10.1109/ACCESS.2018.2798799


Algorithms 2018, 11, 159 11 of 11

7. Han, S.; Pool, J.; Tran, J. Learning both Weights and Connections for Efficient Neural Networks.
In Proceedings of the International Conference on Neural Information Processing Systems, Istanbul, Turkey,
9–12 November 2015; pp. 1135–1143.

8. Guo, Y.; Yao, A.; Chen, Y. Dynamic Network Surgery for Efficient DNNs. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2016; pp. 1379–1387.

9. Qiu, J.; Wang, J.; Yao, S. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network.
In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

10. Courbariaux, M.; Bengio, Y.; David, J.P. Low Precision Arithmetic for Deep Learning. arXiv 2014,
arXiv:1412.0724.

11. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision.
In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015.

12. Rastegari, M.; Ordonez, V.; Redmon, J. XNOR-Net: ImageNet Classification Using Binary Convolutional
Neural Networks. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 525–542.

13. Zhu, C.; Han, S.; Mao, H. Trained Ternary Quantization. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

14. Zhang, X.; Zou, J.; Ming, X.; Sun, J. Efficient and accurate approximations of nonlinear convolutional
networks. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2014; pp. 1984–1992.

15. Mathieu, M.; Henaff, M.; Lecun, Y.; Chintala, S.; Piantino, S.; Lecun, Y. Fast Training of Convolutional
Networks through FFTs. arXiv 2013, arXiv:1312.5851.

16. Vasilache, N.; Johnson, J.; Mathieu, M. Fast Convolutional Nets with fbfft: A GPU Performance Evaluation.
In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA,
7–9 May 2015.

17. Toom, A.L. The complexity of a scheme of functional elements simulating the multiplication of integers.
Dokl. Akad. Nauk SSSR 1963, 150, 496–498.

18. Cook, S.A. On the Minimum Computation Time for Multiplication. Ph.D. Thesis, Harvard University,
Cambridge, MA, USA, 1966.

19. Winograd, S. Arithmetic Complexity of Computations; SIAM: Philadelphia, PA, USA, 1980.
20. Jiao, Y.; Zhang, Y.; Wang, Y.; Wang, B.; Jin, J.; Wang, X. A novel multilayer correlation maximization model

for improving CCA-based frequency recognition in SSVEP brain-computer interface. Int. J. Neural Syst. 2018,
28, 1750039. [CrossRef] [PubMed]

21. Wang, R.; Zhang, Y.; Zhang, L. An adaptive neural network approach for operator functional state prediction
using psychophysiological data. Integr. Comput. Aided Eng. 2015, 23, 81–97. [CrossRef]

22. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the Computer
Vision and Pattern Recognition, Caesars Palace, NV, USA, 26 June–1 July 2016; pp. 4013–4021.

23. Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
24. Cong, J.; Xiao, B. Minimizing Computation in Convolutional Neural Networks. In Proceedings

of the Artificial Neural Networks and Machine Learning—ICANN 2014, Hamburg, Germany,
15–19 September 2014.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0129065717500393
http://www.ncbi.nlm.nih.gov/pubmed/28982285
http://dx.doi.org/10.3233/ICA-150502
http://dx.doi.org/10.1007/BF02165411
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Convolutional Neural Networks 
	Winograd Algorithm 
	Strassen Algorithm 

	Proposed Algorithm 
	Simulation Results 
	Conclusions and Future Work 
	References

