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Abstract: Location recommendation is essential for various map-based mobile applications. However,
it is not easy to generate location-based recommendations with the changing contexts and locations
of mobile users. Skyline operation is one of the most well-established techniques for location-based
services. Our previous work proposed a new query method, called “area skyline query”, to select
areas in a map. However, it is not efficient for large-scale data. In this paper, we propose a parallel
algorithm for processing the area skyline using MapReduce. Intensive experiments on both synthetic
and real data confirm that our proposed algorithm is sufficiently efficient for large-scale data.

Keywords: area skyline; grid structure; MapReduce

1. Introduction

With the development of mobile device technologies and GPS systems, various map-based mobile
applications such as Google Maps and Apple Maps have become popular in recent years. Since
the limitations of display size and processing power of mobile devices, we need to recommend
the appropriate information such as good locations for users. However, it is difficult to generate
location-based recommendations in mobile devices with the changing contexts and locations of
mobile users.

1.1. Skyline Query

Skyline operation [1] is a well-established technique which can select interesting items from a
large database. Let D be a d-dimensional database. Given a set of points {p1, p2, ..., pn}, @ point p; is said
to dominate another point p;(i # j) if p; is not worse than p; in any of the d-dimensions and p; is better
than p; in at least one of the d-dimensions. Then, the skyline query returns a small number of points,
each of which is not dominated by other points in D. The excellent ability in filtering the uninteresting
objects makes the skyline query a good candidate for the location recommendation problem.

In general, a good location should be close to preferable facilities such as shopping malls,
sightseeing spots, bus/train stations, etc. and be far away from unpreferable facilities such as factories,
open landfills, etc. Table 1 and Figure 1 demonstrate an example for location selection by using the
skyline queries. Recommenders aim to find a low-cost hotel with a shorter distance to the bus/train
station. However, hotels with convenient transportation are usually relatively higher for the room
prices. For example, there are five candidate hotels {/1, 1y, ..., h5} in Table 1. Each k; has two-dimensions,
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which are the room price and the distance to the nearest bus/train station. 1 has the lowest room
price but the longest distance from the bus/train station. In contrast, the most convenient 14 has the
highest room price. Figure 1 shows that the hotel /i and the hotel /5 are dominated by k3, while h1, hi3
and hy are not dominated each other. Therefore, the skyline objects are {h1, h3, h4}.

Table 1. A Hotel Example.

ID Price Distance

h 3 8

hy 5 4

h3 4 3

hy 9 2

hs 7 3
B M
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Figure 1. A Conventional Skyline Example.

Skyline queries have attracted much attention recently since the queries can be formulated
as an intuitive process. There exist many skyline query algorithms, which are recorded in [2—4].
However, most of the existing skyline queries are zero-dimensional data. Since locations are typical
two-dimensional data, the general skyline queries cannot solve the spatial relationships between objects.
Based on such consideration, we consider using the spatial skyline queries to solve such problem.

1.2. Spatial Skyline Query

Figure 2 and Table 2 demonstrate an example of spatial skyline queries. In Figure 2, we use square
symbols, triangle symbols and star symbols to indicate the location of facilities. Notice that “+” mark
on the facility symbol represent preferable facilities such as bus/train stations, while “—"” mark on the
facility symbol for unpreferable ones such as open landfills. We represent the star symbols and triangle
symbols as the preferable facilities, while the square symbols for unpreferable facilities. The star
symbols and the triangle symbols are denoted as F1* = {f1], 17, f17 } and F2* = {f2], 25, f21},
while the square symbols are denoted as F3~ = {f3, f3,, f35 }.
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Figure 2. Some Facilities in a Map.

In Table 2, there are three candidate points p1, p2, p3. The values represent the distance of the
candidate point p;(i = 1,2, 3) to the nearest facilities. For example, the nearest facilities of the candidate
point p; are 17, f2{, 35 for facility type F1, F2 and F3. The distances are 3,5 and 10 respectively.
We assume that the smaller value is better, so that we multiply -1 to each distance value of unpreferable
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facilities F~. In this example, point p; dominates point p,, since the values of F17, F2* and F3~ of
point p; are smaller than the values of point p. p3 is not dominated by p; and p», since pj3 is closer
to F27 than py, p, but farther to F3~ than p,. So the skyline objects are p; and p3. In general, we can
address the spatial skyline problem by conventional skyline queries after calculating the data table
such as Table 2.

Table 2. Distance Table.

Point F1T F2% F3~

1 3 5 —10
P 4 9 -7
P3 8 1 -8

However, in some real-world scenarios, the candidate points like py, ..., p, are not given for the
location recommendation problem. In this situation, we need to find a two-dimensional area with
more preferable facilities around it and away from the unpreferable facilities. To address such problem,
we proposed the “Area Skyline Query” in our previous work [5], which is a new selection method of
areas in a map.

1.3. Area Skyline Query

Assume that A is a square region in a map. Let F = {F1,F2,..,Fm} be a set of facility types.
A traveler wants to find an excellent touristic place in a map where is close to some preferable facilities
and is far from some unpreferable facilities. In this scenario, we define area skyline and area dominance
as follows:

Definition 1. (Area Skyline) We divide a square region A into n x n grids G = {g11,..,nn}. A grid g;
is said to be in skyline if there is no other grid g;(i # j) in a map such that the distance of g; to the nearest
preferable facilities are smaller than that of g; and the distance to the nearest unpreferable facilities are larger
than that of g;.

Definition 2. (Area Dominance) If there exists such gird g;, we say that g; is dominated by g; or g; dominates g;.

Figure 3 demonstrates an example of area skyline queries. We compute the area skyline objects by
the algorithm proposed in [5] which we call it grid-based area skyline (GASKY). In the map, the area
skyline objects are the shaded grids which are not dominated by each other. In other words, the shaded
grids are closer to the preferable facilities and are farther from the unpreferable facilities than the
unshaded grids. The unshaded grids are the dominated grids which can be eliminated from candidates.
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Figure 3. An Area Skyline Example.

We use GASKY algorithm as the selection method of areas in a map. However, the time complexity
of the GASKY algorithm is worse than those conventional skyline queries. Furthermore, the average
processing time increases linearly with the growth of facilities. In this paper, we propose a novel
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algorithm to resolve the poor performance problem of GASKY in the MapReduce framework, which
we call “MRGASKY”.
The main contributions of this paper are as follows:

1. We develop MapReduce-based area skyline query computation, which is a distributed algorithm
to address the poor performance problem for the grid-based area skyline queries.

2. We propose an efficient algorithm of the MapReduce-based computation.

3. We conduct an extensive performance evaluation, which shows the high efficiency and scalability
of our proposed algorithm.

The remainder of the paper is organized as follows. Section 2 surveys the related works.
In Section 3, we formally define the problem and propose our efficient MRGASKY algorithm. Section 4
demonstrate the experimental validation of our proposed algorithm. Finally, Section 5 concludes
the paper.

2. Related Works

2.1. Skyline Query

Studies on skyline computation have a long history. Brozsonyi et al. [1] first introduced skyline
queries in large database applications and proposed Block Nested-Loop (BNL), Divide-and-Conquer
(D&C) and B-tree based algorithms. Chomicki et al. [2] proposed an efficient skyline computation
algorithm, Sort-Filter-Skyline (SFS), which improved BNL by presorting. Tan et al. [3] proposed two
progressive algorithms, called Bitmap and Index, to improve the computation of skyline queries.
Currently, Brach and Bound Skyline (BBS) has been the most effective algorithm, proposed by
Papadias et al. [4], which is a progressive algorithm based on the Best First Nearest Neighbor (BFNN)
algorithm. Due to the increase of the data dimensionality, many research are proposed to address the
dimensionality problem of skyline queries such as skyline frequency [6], k-dominant skyline [7] and
k-representative skylines [8]. These research works focused on the non-spatial database. However,
spatial relationships between data points are playing an important role in our real life.

2.2. Spatial Skyline Query

Sharifzadeh et al. [9] first addressed the problem of spatial skyline queries. They proposed two
algorithms for static query points said B2S? and V'S?, and one algorithm for dynamic query points
said VCS? which exploited the pattern of change in query points to avoid unnecessary re-computation
of the skyline.

There exists other literature relating to the spatial skyline problem [10-13]. Kodama et al. [10]
considered that the candidates should be close to the facilities. In [11], Kodama et al. considered
non-spatial preferences, facility types, which had an impact on spatial skyline computation. Sometimes
the retrieved data points should be far from those unpreferable facilities. Based on this consideration,
You et al. [12] first studied TFSS algorithm and proposed a new progressive method, called
Branch-and-Bound Farthest Spatial Skyline (BBFS) to compute the farthest spatial skyline queries.
The results outperformed TFSS by exploiting spatial locality. In [13], Lin et al. considered that
the retrieved data objects not only should be close to preferable facilities but also should be far from
unpreferable facilities by using EFFN algorithm.

In some cases, the candidate points may not exist in the real world. Annisa et al. [14] proposed
Unfixed-Shape Areas Skyline (UASKY) to make location recommendations without candidate points.
Specifically, they used a Voronoi Diagram to divide a given region into disjoint subregions. For each
subregion, they executed the previous process again by other facility types. Finally, they computed
the distance to the nearest surrounding facilities in each sub-subregion. In [5], Annisa et al. proposed
another location-based skyline query, called Grid-based Area Skyline (GASKY), which outperformed
UASKY by partition a given region into n X n grids.
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Most of the existing research for skyline computations rely on some centralized indexing structures.
However, with the development of Internet technology, the amount of data increases exponentially.
The centralized indexing structures cannot work well.

2.3. MapReduce Based Skyline Computation

In recent year, distributed skyline computations for big data has received more attention.
Hose et al. [15] provided a good survey of skyline processing in highly distributed environments.
MapReduce is a programming model and an associated implementation for processing a massive
volume of data. It is widely used for computing skyline in recent years [16-20].

Three MapReduce based algorithms for skyline query processing, MR-BNL, MR-SFS, and
MR-Bitmap, are proposed by Zhang et al. [16]. Experiments illustrated the effectiveness and efficiency
of these algorithms compared to conventional skyline algorithms. Chen et al. [17] proposed a new
MapReduce skyline method to compute skyline queries. The new angular partitioning of the data
space significantly reduced the processing time. Papadias et al. [18] developed a MapReduce-based
computation algorithm to implement k-dominant skyline query processing. In [19], Wu et al.
proposed a novel distributed skyline query processing algorithm (DSL) that discovers skyline points
progressively based on the grid structure. Wang et al. [20] adapted skyline computation to the
MapReduce framework and they recursively divided the dimensions of data into some parts on a
grid-based partitioning scheme. Unfortunately, few works implemented the spatial skyline queries in
such distributed way. In this paper, We develop MapReduce-based area skyline query computation,
which is a distributed algorithm for spatial skyline queries.

3. MapReduce-Based Area Skyline

We first divide a given region A into n X n grids on average by using a grid structure. To distinguish
the grids, we assign IDs to all the grids from bottom-left g; ; to top-right g, » (see Figure 3). Next, for
each row, we calculate the distance of each grid to each type of facilities in the Map function. Then,
we calculate the distance for each column in Reduce function. Using the distances for each type of
facilities, we retrieve non-dominated grids. To simplify the problem, we assume that the distance
between a facility and a grid is approximate to the distance of the center of the two grids when the
length of the grid is small enough.

MRGASKY Algorithm

Step 1 Map function mainly calculates the distance to the closest facilities of each type in the same
TOW.

Step 1.1 A map is firstly separated to n rows. For each row, the Map function reads the grids from
both sides to calculate the distance between grids and facilities. We assume that the initial values
of all grids are infinite before facilities are encountered. When facilities are encountered, the
values of the grids are considered as 0. Then, the value of the next grid is updated based on the
former grid plus one until the next facility is encountered. An example of 7th row of Figure 3
demonstrates in Figure 4. The shaded grids are the facilities of F1*. The values of these shaded
grids are 0. From left to right side, the values of the 5th, 6th and 8th grids are updated to 1, 2 and
1. Similarly, we can also compute the values from right to left side.

left—right:| oo | oo | o . 12 . 1
lefteright:| 3 | 2 | 1 . 211 . oS

P |
<

Figure 4. An Example of Step 1.1.
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Step 1.2 After calculating the values from both sides, we select the minimum value of every grid as
the output of the Map function, as illustrated in Figure 5.

minimum:| 3 | 2 1.1 1.1

Figure 5. An Example of Step 1.2.

Algorithm 1 shows the algorithm of Map function. The map is stored in Hadoop distributed
file system (HDFS) which is formed as a binary image. Specifically, for a binary image of size n x n,
m;;(1 < i,j < n) is an array which includes every type of facilities in the grid of ith row and jth
column. m; ;[k|(k < m) is the kth element of array m; ;, where m is the total number of facility types.
m; i[k] = 1 represents the facility of kth type is inside the grid g; ; and m; ;[k|] = 0 represents that there
are no facilities of kth facility type inside grid g; ;. The Map output are the key — value pairs. The key is
the column ID j and row ID i of grid g; j, and the value is the distance we calculated in step 1.

Algorithm 1 Map Function for Step 1 Process

Input: A binary image

Output: (key, value)=(type x-coordinate of grids. y-coordinate of grids, distance)
1: for each line in HDFS do

2 calculate the Euclidean Distance from left to right: distjf; .yignt
3 calculate the Euclidean Distance from right to left: distjofic yignt
4: end for

5: for each grid in the same row do

6 dist iy = min (diStlefteright/ disheft(—right)

7: end for

We show the results of key — value pairs after calculating step 1 process of facility type F17 in
Figure 6.

8|18 |w|[8[|8]|8|w|8
8|18 |~[8(8]8 |8
8|18|~|8|8|8([~]|8
S ERERERE %8
8(8|~[8|8|8|~|8

88 |8 |8]|8]|—]8

8[8|w|8|8|8|p|8

818 |~[8[8[8]|~]|8

Figure 6. An Example of Step 1.

Step 2 Again, we calculate the distance of every grid to the nearest facilities in the same column in
Reduce function.

Step 2.1 The key — value pairs of step 1 process are sorted and shuffled by column. The Reduce
function reads the key — value pairs in the ith column from bottom to up and saves the values
into a stack. Notice that every column is saved in its corresponding stack. We project the grids in
the same column into a two-dimensional coordinate where x-axis represents the column IDs of
grids, which we count them from bottom to up, and the values of y-axis are the results in step 1.2.
We name all n points as p1, p2, ..., pn. Then, we bisect the adjacent two points p; = (x;,y;), and
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pj = (xj,y;) where (1 <i < j < n). x;; is the intersection of the vertical bisector p;p; and x-axis.
We compute x;; by formula (1):

(02— y2) + (7 — )
2(3(]' — Xl')

)

xl']‘ =

Assume that p;, pj and py are three adjacent points and (i < j < k). We delete p; from the stack if
and only if x;; > xj;. Otherwise, we save the point p; into the stack. Figures 7 and 8 illustrated the two
cases whether deleting p; or not.

y & p}
Pibj

pjpk

Pie D

7 Xjk X; ]\ x
Figure 7. An Example of Deleting Point p;.

y

7 xij e\ X
Figure 8. An Example of Maintaining Point p;.

Figure 9 demonstrates an example of the step 2.1 process of 5th column of Figure 6. Firstly,
we compare x1; and xp3, and delete p, from the stack. Next, we compare x13 and x34, and save p3 into
the stack. Follow the same procedure until all eight points are encountered. Finally, point p1, p3 and p7
are saved into the stack. point py, p4, ps, pe and pg are deleted from the stack.

1| D2 Py Ps Do Pg
[ ) : [e] [e] ] [o] [o]
PPz -
rqi// p2p3 \\pg\p&
ol p3 p7
: ° e °
’x;3 X12 2y

Figure 9. An Example of Step 2.1.

Step 2.2 For the ith column, we compute the distance of the points which are deleted from the stack.
Specifically, we bisect the adjacent left points to determine the proximate intervals [21] on x-axis.
The interval [a,]] (a,b € Z and a < b) of the left point p; after step 2.1 process determines the
dominated areas of point p;.

Figure 10 shows an example of step 2.2 process. p1, p3 and p7 are the left points of step 2.1. We
bisect p1, p3 and ps, p7 to calculate x13 < 0 and x37 = 5. The intervals of points p3 and py are[x13, x37]
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and [x37, 8]. It means that the point p3 dominates points p1, p2, p4 and ps. Points pg, pg are dominated
by point p7. In the obvious way, we can compute the distance of all grids in the map.

Pz
°
X37

< interval >< interval >

Figure 10. An Example of Step 2.2.

The algorithm of Reduce function is illustrated in Algorithm 2. The input of this step is the

key — value pairs. The key is the column ID, and the value is the distance calculated in the Map
function. The outputs are the area skyline objects such as the shaded grids shown in Figure 3.

Algorithm 2 Reduce Function for Step 2 Process

In

put: The results of the sorted and shuffle phase

Output: Area skyline objects

10:
11:
12:
13:
14:
15:
16:

1
2
3
4
5:
6
7
8
9

: for each point sorted by x-coordinate in the same column do
if Xij > Xjk then
pop the point p; from the stack
end if
end for
: for all un-popped points which are sorted by x-coordinate do
calculate the proximate interval of each point on x-axis
calculate the Euclidean Distance of the points in the interval
: end for
/ /remove the dominated grids
for the record r; of the Euclidean Distance for all types of each grid do
if r; <rjthen
remove the dominated grid from the record
end if
end for
return skyline objects

We demonstrate the complete results of the step 2 process of type F1T in Figure 11. Note that for

the facility type, F2* and F3~ can be calculated in the same process in the MapReduce framework.

Intuitively, our proposed MRGASKY algorithm can implement the same process of Voronoi Diagram.
However, MRGASKY is a distributed algorithm in MapReduce framework whose complexity is much
smaller than the Voronoi Diagram method.
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V1olVs V21 V2 vz |1 V2
sz oM 1]1]qf1
V1olVs V2|1 V2 vz |1 V2
Vi3[Ve V5|2 [V5[V5|2 |V5
VIo[V5 V2|1 [V2[V5|3 V10
sla{1fp|1]z]3]4
ViojVs |Vz |1 [v2 V5 V10)17
V13|ve [v3 | 2 |v5 |V8 M13)20

Figure 11. Example of the Step 2 Process.

Figure 12 demonstrates MapReduce data flow of facility type F1™ and F2*. The input data are
stored in HDFS. Specifically, they are formed as facility types F, row IDs n and the values of the binary
image in the same row. Next, we separate the data by row-wise and send them to the Map function.
In the Map function, the data are processed by key — value pairs. The output of the Map function
generates new key — value pairs, and the intermediate key — value pairs are grouped and sorted with
the same intermediate keys. After sorted and shuffle phase, the grids in the same column are grouped.
Similarity, the grouped data are sent to the Reduce function. The Reduce function mainly calculates
the distance of every grid to the nearest facility of each type column-wise.

Input Map Sort & Shuftle Reduce
F1*,1 |ococo3oooo00300
F1*,1|1,0 F1*,2 |ooc02000000200 F1*,1,3.613.16 3.00 3.16 3.61 3.16 3.00 3.16
F1*. 1, 00000000 Fl*,1{2 o F1*.3 |oocoloocoooloo Fl1*,2,2.822.232.002.232.822.23 2.00 2.23
+
Fl+, 2, 00000000 F17. 4 |o0o000000000% Fl: 3,223 1.41 1.00 1.41 2.23 1.41 1.00 1.41
F1*, 3, 00010000 F1*.4 | 4.0 F1*, 4, 2.00 1.00 0.00 1.00 2.00 1.00 0.00 1.00
F1*. 4, 00000000 FI* 415 F1*.5 |coooloooocolon
F1*.5, 00000000 = T3 6 socoloodooroo F1*,5,2.231.411.00 1.41 2,23 1.41 1.00 1.41
F1*, 6, 00000000 = | F2%,6,2231411.001.412.232.232.00223
F1*.7,00010010 FI*,8171 F2%, 7 | wa0c5w300 F2*,7,2.00 1.00 0.00 1.00 2,00 3.00 3.00 3.16
F1*.8, 00000000 F1*,8 |8 F1*, 8 | cooodoomoo oo F1*, 8. 4.46 4,12 4.00 3.16 2.23 1.41 1.00 1.41
in, 1, 00000000 F2r,1 |1, % F2",1 | coco6ooloo3o0 F2*,1,4.12 3.16 2.23 1.41 1.00 1.41 2.23 3.16
F2", 2, 00000000 F2*,1 (2,0 F2*, 2 | w00500000200 | F2%,2.4.003.002.00 1.00 0.00 1.00 2.00 2.23
F2+, 3, 00000010 F1*. 6 |soco2oncom oo F1*,6,2.82 2.23 2.00 2.23 2.23 1.41 1.00 1.41
F2+, 4, 00000000 T2 4| 43 F2* 4 | co00300200000 F2*,4,3.613.16 2.82 2.23 2.00 1.00 0.00 1.00
F2*. 5, 01000000 _— : :
.5, <
F2*. 6. 00000000 F2.4152 T35 3 ToeomdoaToolos F2*,3,4.123.16 2.23 1.41 1.00 1.41 1.00 1.41
F2*, 7, 00010000 F’”. 5 o300l F2*,5,2.822.232.002.232.23 1.41 1.00 1.41
F2*. 8. 00000000 F2%.8| 7.4 2759 | PPININI® | —" F1+, 7, 3,61 3.16 3.00 3.00 2.00 1.00 0.00 1.00
F2* 8 | 8 o0 F1*, 7 |e000300000000 F2+*,8,2.231.411.00 1.41 2.23 3.16 4.00 4.12
F2%, 8 | wooolooboodoo

Figure 12. MapReduce Data Flow of MRGASKY Algorithm.

4. Experimental Evaluation

In this Section, we conduct extensive experiments to evaluate the efficiency and effectiveness of
the proposed algorithm. We implement all algorithms using python 3.5.2. We select our previous work
GASKY as the baseline and compare it with the proposed MRGASKY algorithm. We conduct GASKY
on Linux operating system with Intel Core i7 3.40 GHz processor. It has 4 GB main memory. For the
experiments of MRGASKY, there are a total of four compute nodes for the MapReduce framework.
One computing node is the PC of GASKY. The remaining three PCs are conducted on Linux operating
systems with Intel Core 2 3.16 GHz, 3.16 GHz, and 2.13 GHz processors. These PCs have 4 GB main
memories. We implement the MRGASKY algorithm on Hadoop 2.5.2 version.

Synthetic datasets: We create a synthetic dataset to study the scalability of the algorithms, denoted by
SYN, in the experiments. The objects and facilities are randomly generated in two-dimensional
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space. Specifically, there are four synthetic datasets, SYN_A1, SYN_A2, SYN_B and SYN_C with
different number of grids, number of facility types and number of objects respectively.

Real datasets: The real dataset, called US, is employed in the experiment. US dataset comes from the
U.S. Geological Survey (USGS). It consists of 406,709 locations with 40 types. The number of
objects in the US dataset is 2,033,545. We create three datasets by using these real data, denoted
US_A, US_B, and US_C, with the different number of grids, facility types and objects respectively.

To compare the performance across the GASKY and the MRGASKY, we evaluate the average
processing time. Since it is the same process to remove the dominated objects from the dataset for both
two algorithms, and there is no difference in performance evaluation, we do not calculate the time cost
of this step.

4.1. Efficiency of Synthetic Dataset

In this subsection, we investigate the efficiency of the synthetic dataset.

Effect of grids: For SYN_A1 dataset, we set facility type m = 4. Both of the number of preferable
facility types and unpreferable facility types are two. We vary the number of grids n? with 32 x 32,
64 x 64,128 x 128,512 x 512 and 1024 x 1024 respectively. For dataset SYN_A?2, a larger dataset than
SYN_A1, we fix the number of facility type m = 2, which consists of one preferable facility type and
one unpreferable facility type. The number of objects is set to obj = 2000. The number of grids are
varying as 100 x 100, 500 x 500 and 1000 x 1000.

Figures 13 and 14 show the results. From the results in Figure 13, we find that the processing
time increases with the number of grids increasing. Furthermore, the processing time of GASKY
algorithm increases faster than MRGASKY algorithm when n? is larger than 256 x 256. The results
in Figure 14 show that processing time of GASKY algorithm increases faster at the beginning while
MRGASKY has a relatively steady increase. In other words, GASKY algorithm takes more time in
min — max computation [5] and Voronoi Diagram building. Thus, MRGASKY has better scalability
with the increase of the number of grids.

processing time (s) ——GASKY MRGASKY
600 -

500 /
400 | /

300 f

200 | /

100 /

=

‘ ' # of grids
32%32 64*64 128%128  256%256  512*512 1024*1024

Figure 13. Processing Time of SYN_A1.



Algorithms 2018, 11, 191 11 of 15

processing time (5) —~—GASKY ——MRGASKY
1200 -

1000 r
800 r
600 +
400 -

200 r

100*100 500*500 1000*1000 # of grids

Figure 14. Processing Time of SYN_A2.

Effect of facility types: In SYN_B, we conduct the effect on the number of facility types. We set
the number of objects as obj = 10,000 and the number of grids as 128 x 128. m is varied with 2, 4, 6
and 8 respectively. Both the number of preferable facility types and unpreferable facility types are set
to be the same values.

Figure 15 demonstrates the results. We can observe that the average processing time of GASKY
algorithm increases linearly when m changes. Conversely, the average processing time of the
MRGASKY algorithm is smaller than GASKY and tends to be stable. The result shows that the
proposed algorithm outperforms the GASKY, which justifies that our algorithm has good scalability
on the facility types.

processing time (s) —GASKY MRGASKY
800
700
600
500
400 +
300 |
200

100 r

2 3 4 # of types

—_

Figure 15. Processing Time of SYN_B.

Effect of objects: In SYN_C, we set m = 2, n> = 128 x 128. The number of objects is varied with
4000, 8000, 12,000 and 16,000.

The result shows in Figure 16. The performance of the MRGASKY algorithm is much better
than the GASKY algorithm. Overall, the MRGASKY algorithm maintains sufficient stability to handle
“big data”.
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Figure 16. Processing Time of SYN_C.
4.2. Efficiency of Real Dataset

In this subsection, we conduct the effect of processing time under the different number of grids,
facility types, and objects in the real dataset.

Effect of grids: For US_A dataset, we set facility types m = 2. Both the preferable facility types
and unpreferable facility types are 1. We vary the number of grids n? with 200 x 200, 300 x 300,
400 x 400, 500 x 500 and 600 x 600 respectively.

Figure 17 shows the results. We observe that the processing time of our MRGASKY algorithm is
particularly stable. In contrast, for GASKY algorithm, the processing time increases very fast with the
increase of the number of grids.

processing time (s)

400
——GASKY —MRGASKY

350 ~
300 | P
250 | s

200 /

150 | s

100 s

* * * * * # of grids
200%200 300%*300 400*400 500*500 600*600

Figure 17. Processing Time of US_A.

Effect of facility types: In US_B, we fix the number of objects obj = 1000 for each facility type
and the number of grids 200 x 200. We set the number of types m as 2, 4, 6 and 8, respectively.

In Figure 18, we can observe that the number of facility types has a significant effect on the
processing time. Moreover, similar to previous experiments, the processing time of our MRGASKY
smoothly changes below 50 while GASKY increases from 50.
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Figure 18. Processing Time of US_B.

Effect of objects: In US_C, we vary the number of objects with 2000, 4000, 6000, 8000 and 10,000.
The number of grids and the number of facility types are fixed to m = 2 and n? = 200 x 200.

The results are demonstrated in Figure 19. We observe that when the number of objects increases,
the processing time also increases. Besides, for the MRGASKY algorithm, the processing time is much
smaller than GASKY algorithm.

processing time (s)

2350 r —~GASKY ——MRGASKY
200 | e
‘V}
J/‘
r""'f/
150 | __
“,‘.M‘f .
100 | e
“_,./ﬂ""’
50 | o
0 # of objects
1000%2 200052 3000%2 40002 50002

Figure 19. Processing Time of US_C.

5. Conclusions

Location recommendation is essential for many map-based mobile applications. In general,
a good location should be surrounded by preferable facilities and away from unpreferable facilities.
In our previous work, we proposed a grid-based area skyline algorithm, GASKY, to recommend
such locations. In this paper, we proposed a novel distributed algorithm, MRGASKY, to improve
the performance of area skyline in the MapReduce framework. The experiments are conducted to
demonstrate the effectiveness and efficiency of our proposed algorithm. With the number of grids,
the number of facility types and the number of objects increases, the processing time of MRGASKY
algorithm increases smoothly and slowly. It is confirmed to handle the “big data” effectively.

In addition, some other specific scenarios can also utilize this approach:

e In the business field: Suppose a real estate developer would like to find a region to build
a community. In general, a good region of the community should be close to some highly
popular places such as bus/train stations, malls, and schools. Besides, it should be far from some
unpopular places such as noisy factories and open landfills. Our proposed algorithm can help the
real estate developer find some potential areas on a map, which could reduce the survey cost the
whole regions.
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e In the travel field: It is very common for tourists to utilize map applications on mobile devices
during a trip. In most instances, tourists would like to find some sightseeing spots where should
be surrounded by preferable facilities and away from unpreferable facilities. Our algorithm can
recommend such locations to the users of mobile devices in a short time.

In the future, we would like to consider the k—dominant problem and the non-spatial properties
such as price, population density, etc., in the MRGASKY algorithm. In addition, we also would like to
apply our algorithm in the map applications to help more people to make location recommendations.
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