
algorithms

Article

Modeling and Solving Scheduling Problem with m
Uniform Parallel Machines Subject to
Unavailability Constraints

Jihene Kaabi

College of Information Technology, University of Bahrain, P.O. Box 32038 Manama, Bahrain; jkaapi@uob.edu.bh

Received: 7 November 2019; Accepted: 19 November 2019; Published: 21 November 2019 ����������
�������

Abstract: The problem investigated in this paper is scheduling on uniform parallel machines, taking
into account that machines can be periodically unavailable during the planning horizon. The objective
is to determine planning for job processing so that the makespan is minimal. The problem is known to
be NP-hard. A new quadratic model was developed. Because of the limitation of the aforementioned
model in terms of problem sizes, a novel algorithm was developed to tackle big-sized instances.
This consists of mainly two phases. The first phase generates schedules using a modified Largest
Processing Time (LPT)-based procedure. Then, theses schedules are subject to further improvement
during the second phase. This improvement is obtained by simultaneously applying pairwise job
interchanges between machines. The proposed algorithm and the quadratic model were implemented
and tested on variously sized problems. Computational results showed that the developed quadratic
model could optimally solve small- to medium-sized problem instances. However, the proposed
algorithm was able to optimally solve large-sized problems in a reasonable time.

Keywords: uniform parallel machines; unavailability constraints; makespan; quadratic programming;
optimal algorithm

1. Introduction

In the industry field, machines are often supposed to be continuously available for processing
assigned jobs. However, this assumption is not totally realistic in real-world cases. For instance,
machines may be subject to unavailability periods due to many reasons, such as preventive
maintenance [1], corrective maintenance [2], and tool-change activities [3]. There are two main
concerns related to the temporary unavailability of a machine. The first is related to the increased
costs caused by stopping the machine’s activity, while the second is linked to the difficulty in taking
decisions regarding the balance between resource unavailability and production. Therefore, a proper
planning strategy in a manufacturing system is necessary for it to operate in the most cost-effective way.

Scheduling under machine-unavailability constraints has attracted the attention of many
researchers, and many real applications can be found. In [4], the authors listed two applications
in the aerospace industry where the machine must be stopped to change microdrilling tools after
a fixed number of use times. Another application was mentioned by [5] related to electric-battery
vehicles that require refuelling operations.

In this paper, we study a scheduling problem on m uniform parallel machines with multiple
unavailability constraints with the objective to minimize the makespan, which is the completion
time of the last assigned job. The reason behind the choice of such an objective is that minimizing
the makespan can ensure a good load balance among the machines. We followed three-field α|β|γ
classification, developed by [6], to represent the problem as Qm, hik|a|γ. In the first field, Q denotes
uniform parallel machine setting, m represents the number of considered machines, and hik states

Algorithms 2019, 12, 247; doi:10.3390/a12120247 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-9677-9607
http://www.mdpi.com/1999-4893/12/12/247?type=check_update&version=1
http://dx.doi.org/10.3390/a12120247
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 247 2 of 11

that each machine is unavailable during k periods in the planning horizon. In the second field, β, a
indicates that the machines are subject to availability constraints. Lastly, the third field, γ, describes
the objective to be minimized, that is, the completion time of the last processed job, denoted by Cmax.

Many papers in the literature studied parallel machine-scheduling problems with availability
constraints, but very few considered a uniform parallel machine setting. To the best of our
knowledge, only two related papers exist so far, [7,8]. In [7], the authors studied the uniform
parallel machine-scheduling problem where each machine could be unavailable during one period of
time. The considered performance measures were total completion times and makespan. Two types of
jobs were treated, namely, identical and nonidentical jobs. Linear programming models and optimal
algorithms were developed to solve the problem where jobs are identical. For the case of nonidentical
jobs, the authors proved that the problem is NP-hard, and proposed a quadratic program and a
heuristic that were tested on large-sized problem instances. The online version of the problem was
studied in [8]. The authors considered the case of two machines under the constraint of one periodically
unavailable machine. The identical- and uniform-machine cases were investigated. The objective was
to minimize the makespan. The solution approach consisted of optimal algorithms with competitive
ratios.

Furthermore, most research papers studied the case of identical parallel machines.
For example, [9–13] studied various identical parallel machine problems allowing various types
of unavailable intervals for machines.

The shortage in research in this area, and the important applications of the investigated problem
in reality motivated the author of this paper to explore this area more and contribute to the scientific
research on it. Uniform parallel machine scheduling can be found in the manufacturing field where
the same type of job can be processed on new and old machines that have different speeds. As an
example, a printing task can take much more time on an old machine than on a new one.

In this paper, the main contributions are a quadratic programming-model (QM) formulation of a
uniform parallel machine with multiple availability constraints and an algorithm that provides optimal
solutions. To the best of our knowledge, the proposed QM is the first such formulation for scheduling
on uniform parallel machine with availability constraints.

The content of this paper is organized as follows. Problem notations are laid in Section 2.
In Section 3.1, a quadratic model for the problem with makespan as an objective is developed.
Section 3.2 details an algorithm proposed for makespan-performance measurement. The proposed
algorithm was tested on different problem instances, and results are displayed in Section 4. Finally, a
general conclusion is formulated in Section 5.

2. Notations

For accuracy of description, by ‘unavailability interval’ we denote the time interval in which the
machine is not available for processing any job, whereas the time interval between two consecutive
unavailability intervals is called the ‘availability interval’ of the machine.

In this paper, we consider m uniform parallel machines that can process n jobs. Each job j,
j = 1, . . . , n is characterized by processing time pj and completion time Cj. We assumed that the jobs
were ready at time 0 and could be processed once at any time, but could not be interrupted once
started. Since we consider uniform parallel machines, each machine i, i = 1, . . . , m, can process at
most one job at a time at speed si. So, the processing time of any job j depends on the machine on
which it is processed and is equal to pij = pj/si, i = 1, . . . , m; j = 1, . . . , n. Without loss of generality,
we assumed that jobs were indexed in LPT order, that is, pi1 ≥ pi2 ≥ . . . ≥ pin. We assumed that
the machine could process the next job once the previous one was finished. Thus, no setup time was
considered. Let sik and eik be the starting and ending time of the kth unavailability period on machine i,
respectively. Without loss of generality, we assumed that all machines were available at the beginning
of the planning horizon. By Lik, we denote the length of the kth availability interval on machine i.

Algorithms 2019, 12, 247 3 of 11

The problem was to find a job assignment on machines that minimizes the makespan. As stated
earlier, the problem of scheduling jobs on uniform parallel machines subject to unavailability
constraints has not been studied before. Therefore, a mathematical formulation of the problem
can be of great interest. Thus, in Section 3.1, we detail a mathematical model to describe the problem
under consideration.

3. Proposed Solution Approach for Qm, hini |a|Cmax

In this section, we studied the scheduling problem on uniform parallel machine, where each
machine i can be unavailable during ni unavailability periods in its planning horizon. Thus, there are
ni + 1 availability intervals. The objective was to minimize the makespan.

It is easy to see that Qm, hini |a|Cmax is NP-hard. To see this, let si = 1 for every machine i. Then the
problem reduces to the identical parallel machine-scheduling problem under availability constraints
that was proved to be NP-hard by [14]

3.1. Mathematical Model

Let

xijk =

{
1 if job j is executed on machine i during kth availability interval
0 Otherwise.

yik =

{
1 if all jobs on machine i are completed before the start of kth unavailability period
0 Otherwise.

Using the above-listed decision variables, the problem can be modeled as a quadratic program
as follows:

Minimize Cmax = Maxj Cj (1)

Subject to

ni+1

∑
k=1

n

∑
j=1

pijxijk +
ni−1

∑
k=1

(k

∑
l=1

(eil − sil)
)

yik ≤
ni

∑
k=1

sikyik + d(1−
ni

∑
k=1

yik) i = 1, . . . , m, (2)

where d is a large positive number.

∑ni+1
k=1 ∑n

j=1 pijxijk + ∑ni
k=1(eik − sik)(1−∑k

l=1 yil) + ∑ni
k=1

[
(sik − eik−1)−∑n

j=1 pijxijk

][
1−∑k

l=1 yil

]
≤ Cmax

i = 1, . . . , m
(3)

ni

∑
k=1

yik ≤ 1 i = 1, . . . , m (4)

n

∑
j=1

pijxijk ≤ sik − eik−1 i = 1, . . . , m ; k = 1, . . . , ni (5)

m

∑
i=1

ni+1

∑
k=1

xijk = 1 j = 1, . . . , n (6)

xijk ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n k = 1, . . . , ni + 1 (7)

yik ∈ {0, 1} i = 1, . . . , m; k = 1, . . . , ni (8)

Equation (1) minimizes the makespan. Equation (2) guarantees that, when all jobs are completed
before the start of the 1st unavailability period, the unavailability duration is not considered in the
evaluation of the completion time of the last job assigned to machine i . There are m of these constraints.

Algorithms 2019, 12, 247 4 of 11

Equation (3) states that the completion time of the last job assigned to machine i is at most equal to
the makespan. There are m of these constraints. Equation (4) guarantees that no more than one yik is
equal one for a given machine i. There are m of these constraints. The total processing time of the jobs
assigned to a given availability interval cannot exceed the length of that interval. This is shown by
Equation (5). There are m ∑ ni of these constraints. Equation (6) assures that, if a job is assigned to a
machine, it can be processed on only one availability interval of that machine. There are n constraints
of this type. Equations (7) and (8) define the non-negativity constraints about the decision variables
used to develop the mathematical model.

The above quadratic model (QM) can be optimally solved by CPLEX for problem instances with
up to 73 machines. Therefore, a good polynomial algorithm that can solve large and more complicated
problems, and provide promising results is of great interest.

The Largest Processing Time algorithm (LPT) is a famous rule used to build heuristics for
scheduling problems with a makespan criterion. For example, in [15] the authors proposed LPT-based
heuristics to solve Q2||Cmax and Qm, ai||Cmax problems, respectively. The LPT rule sorts jobs into a
nonincreasing order of their processing times and then assigns a job to the machine on which it can
finish as early as possible.

3.2. Proposed-Solution Approach

The approach proposed to solve the problem of scheduling on parallel machines under
unavailability constraints consists of two steps. The first step focuses on assigning jobs to different
available machines using a newly proposed LPT-Based Heuristic, named LPTBH. The second step,
named LSHIP, tries to improve solutions obtained by LPTBH. The Main Algorithm, named MA, is a
combination of LPTBH and LSHIP.

3.2.1. LPTBH Heuristic Procedure

The main idea of LPTBH is to divide the set of jobs N into two subsets. The first set includes
jobs that can be assigned to one of the machines’ availability intervals. The second set contains the
remaining jobs. The LPTBH consists of two phases. The first is the main phase, as it schedules the
maximum of jobs. First, for every machine, a list of job candidates is formed on the basis of whether
they could fit the machine’s availability intervals except the last ones. This step is achieved by using the
Candidate_Search procedure shown in Algorithm 1. Second, jobs in every constructed list are sorted in
decreasing order of their processing times. Then, for every machine, starting from machine 1, select the
first job in the candidate list of machine 1. If the selected job is only in that machine’s list, assign it to
the availability interval that can fit it. Otherwise, assign it to the machine on which it can finish as early
as possible. The first phase ends when all the machines’ job-candidate lists are empty. The remaining
unscheduled jobs are input for the second phase. The pseudocode of the LPTBH heuristic is shown in
Algorithm 2. Table 1 lists notations used to develop Algorithms 1 and 2.

Table 1. Notations used in Algorithms 1 and 2.
.

Notation Meaning

S Set of all the jobs to be scheduled
Ci, i = 1, . . . , m Completion time of last job assigned to machine i
avik, i = 1, . . . , m; k = 1, . . . , ni Length of kth availability interval of machine i
maxAvi, i = 1, . . . , m Length of largest availability interval of machine i
Lci, i = 1, . . . , m List of jobs that can be processed in any availability interval on machine i
LR List of remaining unscheduled jobs

Algorithms 2019, 12, 247 5 of 11

Algorithm 1 Candidate_Search.

1: procedure (Input N = {1, . . . , n}, m, pij, i = 1, . . . , m; j = 1, . . . , n, maxAvi, i = 1, . . . , m)
2:
3: for i = 1 to m do
4:
5: for j = 1 to n do
6:
7: if (pij ≤ maxAvi) then
8:
9: Lci = Lci ∪ {j}

10:
11: end if
12:
13: end for
14:
15: end for
16:
17: Sort the jobs in every Lci, i = 1, . . . , m in a nonincreasing order of their processing times.
18:
19: end procedure
20:

Algorithm 2 LPTBH.

1: procedure (Input N = {1, . . . , n}, m, pij, i = 1, . . . , m; j = 1, . . . , n, Ni, i = 1, . . . , m, Sik, Eik, i =
1, . . . , m; k = 1, . . . , Ni, . Output S = Cmax)

2:
3: for i = 1 to m do
4:
5: for k = 1 to Ni do
6:
7: avik = Eik − Sik−1
8:
9: end for

10:
11: maxAvi = maxk avik
12:
13: Ci = 0
14:
15: end for
16:
17: Call Candidate_Search
18:
19: while (S 6= ∅) do
20:
21: Among the jobs of Lci, i = 1, . . . , m, select the job with the highest processing time. Let l be

that job and il(s) the machine(s) to which it can be assigned.
22:
23: if (l exists in more than one Lci) then
24:
25: Assign l to the machine on which it can finish as early as possible.
26:
27: elseAssign l to machine il
28:
29: Update Cil30:
31: end if
32:
33: S = S \ {l}
34:
35: Update avik of the machine to which job l was assigned.
36:
37: Call Candidate_Search
38:
39: if (Lci = ∅, ∀ i = 1, . . . , m) then
40:
41: if (|S| 6= n) then
42:
43: LR← N \ S
44:
45: Schedule the jobs of LR according to LPT rule.
46:
47: Calculate Ci, ∀ i = 1, . . . , m
48:
49: end if
50:
51: S← S \ LR
52:
53: end if
54:
55: end while
56:
57: S = maxi Ci
58:
59: return S.
60:
61: end procedure

Algorithms 2019, 12, 247 6 of 11

3.2.2. Improvement Procedure LSHIP

The idea of the improvement procedure was inspired from a local-search heuristic proposed
in [16], developed to solve the scheduling problem of parallel identical-batch processing machines.
The aim of the improvement procedure was to try to balance the load of different machines so that
the completion times of the last jobs in every machine are almost the same. This improvement can
be achieved by interchanging pairs of jobs between the most loaded machine and other machines.
The flowchart of the aforementioned heuristic is shown in Figure 1.

Figure 1. Flowchart of LSHIP procedure.

In order to illustrate the proposed heuristic, let us consider a problem instance with 2 machines
and 10 jobs. Table 2 summarizes the input data, and Figures 2 and 3 show the Gantt charts of solutions
obtained by LPTBH and LSHIP, respectively.

Algorithms 2019, 12, 247 7 of 11

Table 2. Input data for 10 jobs and two machines.

Job j 1 2 3 4 5 6 7 8 9 10

p1j 25 25 30 36 38 38 41 44 44 47
p2j 10 10 12 14 15 15 16 17 17 19

Figure 2. Gantt chart of solution generated by LPTBH.

Figure 3. Gantt chart of the solution generated by LSHIP.

Note that after interchanging a pair of jobs between two machines, the LSHIP procedure looks
to shift jobs to the left whenever the idle time interval on the machine can fit them. In the above
example, after interchanging jobs J3 and J8, LSHIP shifted job J2 to the left since it could fit in the idle
time interval.

4. Experiment Results

For the purpose of evaluating the performance of the proposed algorithm, many problem instances
were tested. These were generated after examining the important factors that significantly impacted the
performance of the proposed algorithm. The first factor was the number of jobs n to be processed that
directly affects the machines’ load. The second important factor is the number of machines m that has
an impact on the assignment of jobs to machines. Job processing times may play a role in the efficiency
of the proposed algorithm. Thus, we generated problem instances with different job processing times.
The algorithm was coded in IntelliJ IDEA. In addition, the quadratic model was modelled in IBM
ILOG CPLEX Optimization Studio 12.7. The proposed heuristic was implemented using programming
language Java. We ran all test problems on an Intel Core i5 2.5 Gigahertz, 4 Gigabyte RAM Macintosh
HD.

In order to avoid useless computational time, the program was stopped for two possible reasons.
The first was when the CPLEX became unable to generate a solution within the time limit of 3600 s
(1 h). The second reason was due to memory overflow. At this point, the best feasible solution found
within the time limit was recorded.

Algorithms 2019, 12, 247 8 of 11

4.1. Data Generation

A deep empirical study was conducted with the aim to generate datasets that would help to
correctly analyze the efficiency of the proposed algorithm. By the end, two dataset series were
considered, namely, DS1 and DS2. In fact, the way to generate dataset series DS2 was inspired
from Graham’s data-generation process [17] addressing P||Cmax problems. The parameters used to
generate DS1 and DS2 are summarized in Tables 3 and 4, respectively.

Table 3. DS1 parameters.

Number of machines (m) m ∈ {2, 3, 5}
Number of jobs (n) n ∈ {20, 30, 40, 50, 60, 70, 80}
Machine speed (si) si ∈ U(1, 5)

Job processing time (pj) pj ∈ U(5, 50) and pj ∈ U(50, 100)

Number of unavailability periods (ni) ni = m ∀i = 1, . . . , m

Duration of an unavailability period on machine i (ti) ti = 10, if pj ∈ U(5, 50) and ti = 15, if pj ∈ U(50, 100) ∀i = 1, . . . , m

Length of time interval between two consecutive unavailability periods on machine i (Ti) Ti = 25i, if pj ∈ U(5, 50) and Ti = 50i, if pj ∈ U(50, 100)

Table 4. DS2 parameters.

Number of machines (m) m ∈ {30, 31, 32, . . . , ..., 80}
Number of jobs (n) n = 2m + 1

Machine speed (si) si ∈ U(1, 5)

Job processing time (pj) pj ∈ U(1, 100)

Number of unavailability periods (ni) ni = 2 ∀i = 1, . . . , m

Duration of an unavailability period on machine i (ti) ti = 10 ∀i = 1, . . . , m

Length of time interval between two consecutive unavailability periods on machine i (Ti) Ti = 20i

The starting and ending times Sik and Eik of the unavailability periods were generated according
to Equations (9) and (10), respectively.

sik = kTi + (k− 1)ti i = 1, . . . , m; k = 1, . . . , ni (9)

eik = sik + ti i = 1, . . . , m; k = 1, . . . , ni (10)

4.2. Experiments

In this section, we outline different experiments that were conducted to evaluate the performance
of the QM and the proposed algorithm. In all experiments, Central Processing Unit time (CPUt)
represents the time in seconds required to find the optimal or best feasible solution. Tables 5 and 6
show the results obtained by QP and MA for small and large job processing times, respectively.

Table 5 clearly shows that the proposed algorithm was generating optimal solutions with a CPU
time of less than 1 second for all problem instances. Quadratic model QM was also able to provide
optimal schedules in a reasonable time. By considering much longer processing times than in the
previous data series, we still obtained optimal solutions in reasonable CPU time even though the
quadratic model became slower than in the first batch of problem instances. The proposed algorithm
outperformed the quadratic model in terms of computational time that was still less than 1 second.
Table 6 confirms these observations.

Algorithms 2019, 12, 247 9 of 11

Table 5. Comparison of QM and MA for datasets DS1 with si ∈ U(1, 5) and pj ∈ U(5, 50).

m n Cmax(QM) Cmax(MA) CPUt(QM) CPUt(MA)

2 20 66 66 1.16 0.01
2 30 66 66 1.16 0.01
2 40 229 229 0.46 0.02
2 50 463 463 0.86 0.05
2 60 343 343 1.26 0.03
2 70 401 401 0.71 0.04
2 80 780 780 1.25 0.03
3 20 87 87 1.72 0.01
3 30 218 218 3.58 0.04
3 40 244 244 3.91 0.02
3 50 165 165 2.81 0.02
3 60 282 282 4.73 0.02
3 70 246 246 4.01 0.04
3 80 298 298 6.46 0.04
5 20 28 28 1.52 0.02
5 30 60 60 3.25 0.03
5 40 85 85 7.24 0.03
5 50 196 196 114.24 0.06
5 60 93 93 14.19 0.04
5 70 120 120 27.02 0.06
5 80 174 174 121.58 0.05

Table 6. Comparison of QM and MA for datasets DS1 with si ∈ U(1, 5) and pj ∈ U(50, 100).

m n Cmax(QM) Cmax(MA) CPUt(QP) CPUt(MA)

2 20 169 169 1.76 0.02
2 30 409 409 1.25 0.03
2 40 319 319 1.03 0.01
2 50 622 622 0.73 0.02
2 60 567 567 0.6 0.03
2 70 659 659 0.79 0.04
2 80 689 689 1.10 0.02
3 20 130 130 1.83 0.01
3 30 239 239 3.24 0.04
3 40 359 359 2.09 0.02
3 50 365 365 8.45 0.03
3 60 407 407 17.98 0.04
3 70 561 561 23.65 0.06
3 80 702 702 3.53 0.03
5 20 94 94 3.00 0.01
5 30 143 143 5.87 0.02
5 40 277 277 9.55 0.06
5 50 272 272 473.35 0.06
5 60 208 208 14.41 0.06
5 70 382 382 796.08 0.06
5 80 339 339 223.71 0.06

In order to investigate the limitations of the proposed quadratic model, a second dataset series,
namely, DS2 was considered. Table 7 reports the computational results for both QM and MA.

Algorithms 2019, 12, 247 10 of 11

Table 7. Comparison of QM and MA for datasets DS2.

m n Cmax(QM) Cmax(MA) QP Optimal? CPUt(QM) CPUt(MA)

30 61 133 133 Yes 70.74 0.15
33 67 137 137 Yes 40.19 0.22
36 73 142 142 Yes 21.1 0.21
40 81 140 140 Yes 44.71 0.31
45 91 232 232 Yes 398.64 0.33
51 103 240 240 Yes 495.44 0.4
57 115 237 237 Yes 214.28 0.2
62 125 336 336 Yes 263.21 0.2
68 137 331 331 Yes 393.97 0.39
73 147 434 434 No 3603.54 0.42
76 153 439 439 No 3602.48 0.43
80 161 538 538 Yes 3602.9 0.27

The computational results displayed in Table 7 show that quadratic model QM was able to
generate an optimal solution within a time limit for problems with up to 73 machines.

On the basis of the computational results shown in Table 7, the quadratic model was not able
to generate optimal solutions in a reasonable time and for bigger problems. Therefore, proposed
procedure MA was tested for large-sized problems and compared to an adapted form of MLPT,
proposed earlier by the author of this paper in [7]. Table 8 reports the obtained results for problem
instances with m ∈ {100, 200, 300, 400, 500, 600, , 700, 800, 1000} and n = 2m + 1.

Table 8. Comparison of MA and MLPT.

m n Cmax(MLPT) Cmax(MA) Cmax(MLPT)/Cmax(LSH IP) CPUt(QP) CPUt(MA)

100 201 1120 880 1.27 0.47 0.49
200 401 1090 1050 1.03 2.16 2.5
300 601 1250 970 1.28 4.69 4.81
400 801 1110 960 1.15 9.12 9.55
500 1001 1120 760 1.47 16.24 15.48
600 1201 1260 1240 1.01 28.24 24.07
700 1401 1240 1160 1.06 41.92 62.24
800 1601 1260 1110 1.13 74.97 48.5
1000 2001 1110 1080 1.02 120.04 122.99

Table 8 shows that MA outperformed MLPT for all problem instances with slightly higher CPU
time than the time of MLPT CPU for most instances. In addition, run time increased with problem size.

5. Conclusions and Future Work

In this paper, we studied the problem of parallel machine scheduling with multiple planned
nonavailability periods. In the current literature, very few papers investigated this problem.
The problem was formulated as a quadratic program and optimally solved using CPLEX for small-
to moderately large-sized problems. In order to be able to solve large-sized problems, an algorithm
consisting of two main phases was developed. The first phase searches for schedules on the basis
of the LPT rule. The second aims to improve these schedules by considering simultaneous pairwise
interchanges of jobs between machines. A deep computational study was conducted to test the
efficiency of the proposed approach. Many datasets were carefully generated to help evaluate the
algorithm. Computational results showed that the proposed algorithm generated optimal solutions for
all considered problem sizes and outperformed an adapted form of a heuristic that was developed
earlier by the author of this paper. Further investigation can be done to consider other criteria and
more general versions of the problem, such as the dynamic case where jobs arrive one by one over the
planning horizon.

Algorithms 2019, 12, 247 11 of 11

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Azadeh, A.; Sheikhalishahi, M.; Firoozi, M.; Khalili, S. An integrated multi-criteria Taguchi computer
simulation-DEA approach for optimum maintenance policy and planning by incorporating learning effects.
Int. J. Prod. Res. 2013, 51, 5374–5385.

2. Yazdani, M.; Khalili, S.M.; Jolai, F. A parallel machine scheduling problem with two-agent and tool change
activities: An efficient hybrid metaheuristic algorithm. Int. J. Comput. Integr. Manuf. 2016, 29, 1075–1088.

3. Azadeh, A.; Sheikhalishahi, M.; Khalili, S.M.; Firoozi, M. An integrated fuzzy simulation—Fuzzy data
envelopment analysis approach for optimum maintenance planning. Int. J. Comput. Integr. Manuf. 2014,
27, 181–199.

4. Low, C.; Ji, M.; Hsu, C.J.; Su, C.T. Minimizing the makespan in a single machine scheduling problems with
flexible and periodic maintenance. Appl. Math. Model. 2010, 34, 334–342.

5. Schneider, M.; Stenger, A.; Hof, J. An adaptive VNS algorithm for vehicle routing problems with intermediate
stops. Or Spectrum 2015, 37, 353–387.

6. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete Math. 1979, 5, 287–326.

7. Kaabi, J.; Harrath, Y. Scheduling on uniform parallel machines with periodic unavailability constraints.
Int. J. Prod. Res. 2019, 57, 216–227.

8. Liu, M.; Zheng, F.; Chu, C.; Xu, Y. Optimal algorithms for online scheduling on parallel machines to minimize
the makespan with a periodic availability constraint. Theor. Comput. Sci. 2011, 412, 5225–5231.

9. Liao, L.W.; Sheen, G.J. Parallel machine scheduling with machine availability and eligibility constraints.
Eur. J. Oper. Res. 2008, 184, 458–467.

10. Mellouli, R.; Sadfi, C.; Chu, C.; Kacem, I. Identical parallel-machine scheduling under availability constraints
to minimize the sum of completion times. Eur. J. Oper. Res. 2009, 197, 1150–1165.

11. Fu, B.; Huo, Y.; Zhao, H. Approximation schemes for parallel machine scheduling with availability
constraints. Discret. Appl. Math. 2011, 159, 1555–1565.

12. Wang, X.; Cheng, T. A heuristic for scheduling jobs on two identical parallel machines with a machine
availability constraint. Int. J. Prod. Econ. 2015, 161, 74–82.

13. Gedik, R.; Rainwater, C.; Nachtmann, H.; Pohl, E.A. Analysis of a parallel machine scheduling problem with
sequence dependent setup times and job availability intervals. Eur. J. Oper. Res. 2016, 251, 640–650.

14. Lee, C.Y. Parallel machines scheduling with nonsimultaneous machine available time. Discret. Appl. Math.
1991, 30, 53–61.

15. Mireault, P.; Orlin, J.B.; Vohra, R.V. A parametric worst case analysis of the LPT heuristic for two uniform
machines. Oper. Res. 1997, 45, 116–125.

16. Kashan, A.H.; Karimi, B.; Jenabi, M. A hybrid genetic heuristic for scheduling parallel batch processing
machines with arbitrary job sizes. Comput. Oper. Res. 2008, 35, 1084–1098.

17. Graham, R.L. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 1969, 17, 416–429.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notations
	Proposed Solution Approach for Qm, hini |a| Cmax
	Mathematical Model
	Proposed-Solution Approach
	LPTBH Heuristic Procedure
	Improvement Procedure LSHIP

	Experiment Results
	Data Generation
	Experiments

	Conclusions and Future Work
	References

