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Abstract: Damage mechanisms of Reactive Powder Concrete (RPC) under fatigue loading are 
investigated using the 3D laser scanning technology. An independently configured 3D laser 
scanning system is used to monitor the damaging procedure. Texture analysis technique is also 
applied to enhance the understanding of the damage mechanisms of RPC under fatigue loading. In 
order to obtain the characteristic parameters of point cloud data, a point clouds projection algorithm 
is proposed. Damage evolution is described by the change of point cloud data of the damage in the 
2D plane and 3D space during fatigue loading. The Gray Level Co-occurrence Matrix (GLCM) 
method is used to extract the characteristic parameters to evaluate the statue of the structural. 
Angular Second Moment and Cluster Shadow of typical sensitive characteristic indexes is screened 
by using the Digital Feature Screening. The reliability of the damage index was verified by image 
texture analysis and data expansion. Indexes extracted in this paper can be used as a new structural 
health monitoring indicator to assess health condition. 

Keywords: 3D laser scanning; image processing; texture analysis; gray level co-occurrence matrix; 
damage monitoring; feature extraction 

 

1. Introduction 

In recent years, considerable attention has been paid to the health monitoring of advanced 
composite structures. Damage identification through various non-destructive testing techniques 
predict or diagnose the health of composite structures [1–3]. Reactive Powder Concrete (RPC), an 
emerging materials, are widely concerned in railway engineering, roads, buildings, airports and 
nuclear industrial facilities—ultra high strength, high toughness and high durability [4–9]. However, 
there are few researches on damage identification and detection of composite structures using RPC 
as raw materials. It is critical to popularize intelligent damage monitoring technology of RPC 
structure damage. 

Certain damage, which have considerable impact on structure reliability and security, are 
inevitably retained because of the influence of fatigue load [10–12]. The process of causing damage 
caused by cyclic loading includes the combined results of the cumulative process of crack initiation, 
expansion and final fracture. When the RPC structure is subjected to a continuous fatigue load, initial 
microcracks appear on the surface of the structure. The stress generated by the matrix crack increases 
and continues to aggregate, expanding and eventually forming macroscopic cracks. Scholars evaluate 
the health status of the structure by monitoring the development of damage [13–15]. Finding damage 
in time and predicting injuries is the key to avoiding temporary accidents. Therefore, it is very 
necessary to fully grasp the development of crack damage as well as find an intelligent method to 
quickly and conveniently monitor the health of the structure. 
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At present, the research on RPC mainly focuses on the influence of material parameters on its 
performance and the establishment of constitutive models. However, there is a lack of investigations 
on the damage characterization of materials and damage evolution mechanism [5,16,17]. The stress-
strain characteristics of RPC under fatigue loading are nonlinear. Therefore, it is important to use 
appropriate non-destructive testing methods to probe the quality of RPC structures. Accompanied 
by the destruction process, the structure is deformed and accompanied by local crack damage, which 
can be recorded by the 3D laser scanning technology (3D LST). Some scholars have found that 3D 
laser scanning can be used as an effective technique for fatigue damage accumulation research in 
RPC (see, for example, [18–20] as well as [21]). The 3D LST can be used to continuously monitor the 
development of damage or structure deformation and defects in RPC structure dynamically. In 
addition, we can use image processing methods to correlate the damage generation process with the 
feature parameters of the 3D image. The damage mode of RPC is extremely complicated, and the 
displacement and deformation characteristics exhibited during the fatigue loading process are 
obvious, which indicates that the 3D LST is an extremely effective technique for detecting the damage 
process. Moreover, many recent studies show that in the detection method of damage, the 3D LST, 
which can quickly and accurately implement structural modeling, non-destructive, non-contact, and 
does not require a light source and cost of wiring, has significant advantages [22,23]. At the same 
time, in the intelligent method of pattern recognition, artificial intelligence recognition technology, 
such as clustering technology and data mining, which can accurately and quickly identify the type of 
the damage, has received widespread attention. These results open the door to research the life 
prediction and mechanical behavior of RPC structure. More importantly, the 3D laser scanning 
technology affords unique advantages in the fatigue damage detection of RPC structure because it 
can evaluate the information contained in the damage to assess damage on-line. 

However, the study of bending fatigue damage performance is extremely complicated. At 
present, the research object is limited to small-scale specimen experiments, the experimental data 
obtained is relatively simple and the versatility is insufficient. Especially for building structures, as a 
new type of material, RPC has just been invested in by engineering construction. Compared with 
regular specimen structures, extracting the characteristics of point cloud data acquired by 3D laser 
scanning technology is more complex and more cost. There are few reports on the damage 
characteristics of such complex structures under fatigue loads until now. 

The purpose of this study was to investigate the evolution and development of RPC rupture 
process under 3D laser scanning technology under fatigue loading. The main part of damage 
extraction are performed by the Gray Level Co-occurrence Matrix (GLCM) method. In addition, the 
paper also discusses the variation of fatigue damage characteristics at different stages. The different 
techniques implemented in this work, that is, the extraction of 3D laser scanning events at various 
stages of the test, can classify and analyze crack development. It also provides an effective way to 
monitor damage. 

2. Materials and Methods  

2.1. Design principle of 3D laser scanning system 

The 3D laser scanning system is mainly composed of a 2D laser ranging sensor, sliding mold 
combination, bracket, control box and computer, as shown in Figure 1. The scanning system is 
divided into four parts: a transmission actuator, a transmission control device, a laser ranging sensor 
and a sensor control interface. The transmission actuator is driven by a stepping motor to output a 
high-precision, controllable lifting movement. The sensor scan plane is parallel to the ground and 
perpendicular to the drive direction. The parameters of the laser sensor are set on the surface of the 
sensor control interface, so that the scanning optical center lifting speed is consistent with the linear 
sliding group motion output. The unit consists of a stepper motor driver, PLC and related 
components. The control slider performs a uniform linear ascending and descending motion on the 
slide rail through the M programming language. For the purpose control the uniform linear lifting 
scanning action of the laser ranging sensor, it is fixed mounted on the slider through the connecting 
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plate. The sensor scan plane is parallel to the ground and perpendicular to the drive direction. The 
parameters of the laser sensor are set on the surface of the sensor control interface. The lifting speed 
of the scanning optical center is consistent with the motion output of the linear sliding group. 

 

Figure 1. Design drawing of 3D laser scanning system. 

2.2. Principle of GLCM 

Texture is an important image function, and because of its powerful discrimination ability, it can 
be used as certainly effective tool for pattern recognition technology. The most widely applied texture 
analysis technology is the Gray Level Co-occurrence Matrix (GLCM), in which texture features are 
extracted from the co-occurrence matrices Pd, θ of gray values f(i) and gray values f(j) based on 
statistical methods (Haralick, Shanmugam, & Dinstein 1973). The principle diagram of gray 
symbiosis matrix, as shows in Figure 2. 

 

Figure 2. The schematic diagram of GLCM. 

The following explains the GLCM schematic in Figure 2. First, input an image. Then a standard 
window is specified, and the probability of pixel pairs appearing under the same specified conditions 
is calculated. The probability distribution values are counted to generate a number matrix. Finally, 
the matrix is converted to a grayscale image. Additionally, the feature parameters characterizing the 
image properties are extracted. The characteristic parameters extracted in this study include: Angular 
Second Moment (ASM); Entropy (ENT); Variance (VAR); Correlation (COR); inverse difference 
moment (IDM); Cluster shadow (CLS), as shown in Table 1. 
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Table 1. Characteristic parameters. 

Texture 
Parameter Calculation Formulas Damage Characteristics 

ASM 
2

1 1
( , , , )
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Table 1 introduces formulas and damage characteristics of the parameters. The direction, trend 
and complexity of fracture damage in gray space were quantitatively described by feature parameters 

2.3. Bending fatigue test 

Under the repeated load during the actual engineering, the initial microscopic pores and cracks 
in the structure generate new micro-cracks. At the same time, the continuous development of the 
original pores and micro-cracks reduces the durability of the structure and causes fatigue damage. 
Under cyclic loading, the bending fatigue failure mode of reactive powder concrete is manifested as 
the failure mode of single critical fatigue main crack. The laser scanning system captures the failure 
process of the fatigue main crack, monitors the damage, and predicts the structural damage pattern. 
Therefore, a three-point bending fatigue loading test was carried out to verify the reliability of the 3D 
laser scanning system. 

2.3.1. Material 

PO42.5 ordinary Portland cement is used for cement, and its performance index is shown in 
Table 2. The steel fibers used had a diameter of 0.22 mm, a fiber length of 13 mm, and a tensile strength 
of more than 2850 MPa. A KY-1 type polycarboxylic acid high performance water reducing agent 
with a water reduction rate of 35% is selected. The admixture is made of grade I fly ash and micro 
silica. 
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Table 2. Performance indexes of cement. 

Soundness 
Setting Time /min Compressive Strength /MPa Flexural Strength /MPa 

Initial 

Setting 

Final 

Setting 
3d 28d 3d 28d 

Up to standard 170 238 22.3 42.9 5.7 7.7 

2.3.2. Production of test pieces 

According to the "Standards for Active Powder Concrete" GB / T 31387-2015, the mix ratio is 
shown in Table 3. The specifications and quantities of the test pieces are shown in Table 4. 

Table 3. Mix proportions of RPC kg/m3. 

Water-
binder 
Ratio 

Water Cement 
Silica 

Fume 

Fly 

Ash 

Quartz 

Powder 

Quartz 

Sand 

Water 

Reducer 

Steel 

Fiber 

0.19 171 620.7 155.2 124.1 362.7 846.3 27 96 

Table 4. Specification and quantity. 

Test Type Specification/mm Quantity 

Flexural strength 40 × 40 × 160 12 

Fatigue loading 40 × 40 × 160 72 

Under the standard curing conditions, the specimens of the specimens were removed after 24 
hours of curing. Then, after curing at 90℃ for 72 hours, it was allowed to stand under standard 
curing conditions for 28 days. 

2.4. Experiment 

The RPC bending fatigue specimens are three-point bending loads. The fatigue testing machine 
uses IPC Global UTM-30 dynamic hydraulic servo multi-function material testing machine. The 
effective span of the test beam is 120 mm, as shown in Figure 3(a). The actual loading situation is 
shown in Figure 3(b). The equal-amplitude sine wave load is selected, the load frequency is 15 Hz, 
and the fatigue load is performed in a stress control manner. 

 
 

(a) The effective span of the test beam (b) The actual loading situation 

Figure 3. Loading diagram. 

3. Result and analysis  

The whole process of damage mechanism of RPC under fatigue loading are investigated using 
the 3D laser scanning technology as show in Figure 4. 

40

120
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Building the 3D laser 
scanning system

Conducting the RPC 
bending fatigue test

Establishing the gray 
level co-occurrence 

matrix 

Extracting the feature 
parameters 

Screening damage 
characteristics index

Verifying the 
relevance of the 

indicator

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

Figure 1

Chapter 2.3

Figure 2 

In 3D space

In 2D plane

Transformation algorithm

Figure 9 
2D:ASM

3D:CLS

Figure 10 
 

Figure 4. Analysis of the whole process. 

The overall process consists of six parts in Figure 4. The establishment of a 3D laser scanning 
system. The execution of RPC fatigue loading test. Further, the GLCM is generated. Including 
extracted feature parameters, parameter screening and verification processes. Stack each part as the 
main line of research. And mark the core content of each part. 

3.1. Bending strength 

Four sets of test pieces were selected for the static load bending test, and the average value of 
the 28-day bending strength was measured, as shown in Table 5. 

Table 5. Test results of flexural tensile strength. 

Specimen Type RPC 

Bending strength（MPa） 27.76 

There was no significant change in the surface of the test piece before the test loading. The initial 
crack occurs in the test piece when the loading force reaches 70% to 80% of the ultimate bending 
strength. The flexural strength value did not decrease as the specimen appeared across the crack. It 
was not until the steel fiber in the cracked cross-section was pulled out that the test specimen was 
completely damaged. 

3.2. Data collection 
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The structure is located in the scanning sector detection area by adjusting the horizontal position 
of the holder body. In order to ensure complete structural modeling information, the effective 
detection range in the vertical direction is greater than the height of the detected object. The data 
acquisition process as shown in Figure 8. 

 

Figure 5. Data acquisition. 

Figure 5 shows the process of obtaining a structural point cloud image. Verification of scanning 
system accuracy based on bending fatigue load test. A total of 100 scans were performed in each 
group. Figure 6 is a structural point cloud diagram. 

 

Figure 6. Structure point cloud diagram. 

3.3. Damage parameter acquisition 

When the damage degree of the RPC structure is slight, the displacement and deflection of the 
damage source area are small. However, the location and elevation information of the damaged area 
is constantly changing as the degree of damage continues to develop. This change can be obtained in 

UTM-30 Fatigue testing 
machine 

Bracket body 

Laser sensor 

Control box 

Comoputer 

Detection area detail image  
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two ways. On the one hand, the continuous development of cracks in 2D plane can be achieved. On 
the other hand, the displacement of the crack and the change in height information in the 3D space. 

The 2D image can be captured by the CCD camera built in the 2D laser ranging sensor. 
According to the principle of the independently developed 3D laser scanning system, the point cloud 
data for obtaining the scanned test piece is a digital matrix composed of data points having position 
information. This value can be calculated by the Formula (2). Therefore, the damage region of the 
digital matrix composed of the 2D image and the point cloud elevation information is selected as the 
Region of Interest (ROI), respectively. The GLCM of the ROI is constructed separately, the feature 
parameters are extracted, and the texture features are calculated therefrom. The angles are 
determined as 0°, 45°, 90°, and 135°, the image grayscale is selected as 265, and the distance between 
the pixel pairs is 2 pixels. Therefore, when the construction factor is d = 2, g = 28 and θ selects 0°, 45°, 
90° and 135°, and six characteristic parameters of the damaged area of the test piece are extracted. In 
order to satisfy the image rotation invariance, the average of the 4 angles is taken as the final value 
function parameter. 

3.4. Parameter extraction in 2D plane 

The images of the fixed damage area are acquired with the same number of frames, as shown in 
Figure 7. 

 
Figure 7. Development of damage in 2D space. 

The ROI of damage images were captured in Figure 7. The number of image acquisition interval 
frames is 10 images. The direction of the arrow indicates the direction of damage development. As 
fatigue loads continue to accumulate, damage continues to expand and develop. A nonlinear texture 
change is formed on a 2D plane. The characteristic parameters of each image were acquired and data 
recorded. 
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3.5. Parameter extraction in 3D space 

A transformation algorithm for transforming 3D scene data into 2D elevation image is proposed 
based on the principle of orthogonal projection. Figure 8 is a schematic diagram of a conversion 
algorithm for 3D point cloud data projection elevation data information. 

 

Figure 8. Transformation algorithm. 

In Figure 8, the elevation information of the3D image is represented by the Z-axis in the 
coordinate system. Therefore, the projection point on the projection plane is the elevation data of the 
image, which can be represented by a matrix Z(x, y) consisting of discrete quantities: 

𝑍 𝑥,𝑦 𝑧 𝑥 ,𝑦 ⋯ 𝑧 𝑥 ,𝑦⋮ ⋱ ⋮𝑧 𝑥 ,𝑦 ⋯ 𝑧 𝑥 ,𝑦  (1) 

where x is the range of values (0, m) and the range of y is (0, n). 
All points in the Z(x, y) matrix are represented by one byte of 8 bits, converted to any value in 

the 0–255 interval, based on the one-dimensional sampling theorem and the principle of linear 
quantization. Therefore, the matrix Z(x, y) is a grayscale image of 256 gradation values. The converted 
image is named an elevation projection. An elevation digital matrix corresponding to images of a 2D 
plane is obtained. Then, convert them into projected images in sequentially. Feature parameters of 
the projected image are extracted separately. Finally, data statistics are performed. 

3.6. Damage diagnosis 

For the purpose of obtaining the damage indicators of fatigue damage model, the parameters is 
screening use the DFS (Digital Feature Screening) method. The DFS method establishes the selection 
criteria of the damage characteristic index: obtaining the crack image in a fixed area under the step 
of increasing the loading level, and sequentially performing image numbering. Finally, damage 
characteristic index of the crack image is obtained. Further, a digital feature screening analysis chart 
is established, as shown in Figure 9. 
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(a) 2D screening result 

 
(b) 3D screening result 

Figure 9. Screening result. 

Figure 9(a) shows the variation of the characteristic parameters as the damage grows in 3D space. 
After analysis, it is known that as the fatigue damage increases, the ASM characteristic parameters 
will continue to increase according to certain rules. The remaining characteristic parameters change 
irregularly with the development of the fracture, so the remaining characteristic parameters are 
excluded. In order to monitor the development of fractures in 3D space, ASM characteristic 
parameters with good positive correlation with fracture development trends were selected. 

Figure 9(b) shows a tendency of characteristic parameters to change as the damage advances in 
the 2D plane. Analysis of the data changes in the graph shows that as the fatigue damage increases, 
the CLS characteristic parameters continue to decrease. As the crack develops, the other characteristic 
parameters show different trends. Therefore, it is excluded. In order to monitor the development of 
two-dimensional spatial crack damage, the CLS characteristic parameters which are negatively 
correlated with the crack development trend are selected. 
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Figure 9(a) and Figure 9(b) respectively count the changes of the crack development of the six 
characteristic parameters, and obtain the monitoring basis of the 2D plane and 3D space cracks. The 
characteristic parameters ASM and CLS can quantify the development of cracks in different spaces 
and fully describe the development of cracks. Therefore, CLS and ASM characteristic parameters can 
be used as damage indicators for fatigue damage in RPC bending loading test to detect the 
development of damage. 

4. Experimental validation 

The reliability of the damage indicator can be verified in two ways. Firstly, it is analyzed whether 
the texture characteristics characterized by the feature parameters are consistent with the 
development of the damage. Secondly, multiple sets of experiments were performed, and 30 images 
of continuous lesion areas were randomly acquired for data verification. 

4.1. Texture feature verification 

In order to verify the reliability of the damage index, it is analyzed whether the texture 
characteristics of the texture are consistent with the development trend of the damage. Table 6 shows 
texture characteristics of damage indicators. 

Table 6. Texture characteristics of damage indicators. 

Damage Index Texture Characteristics 

ASM Image texture width 

CLS Image texture uniformity 

Analysis of the texture characteristics of the damage indicators in Table 5 results in the following 
conclusions. It shows that in the 2D plane, with the continuous development of fatigue damage, the 
damage image width with damage as the texture element is increasing. In 3D space, the increase in 
fatigue damage causes the image texture uniformity to continuously decrease. Therefore, the texture 
characteristics indicated by the damage index are consistent with the continuous accumulation 
process of fatigue damage. Finally, the reliability of the damage index is verified. 

4.2. Data verification 

In order to further verify the broad validity of the damage index. The damage index of the 
randomly acquired damage continuous image is extracted. Additionally, the fitting relationship is 
established, as show in Figure 10. 
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(a) ASM 

 
(b) CLS 

Figure 10. Fitting relationship between damage index and crack development trend. 

There is a specify positive correlation between ASM and the development trend of injury. 
Additionally, CLS is identify negatively correlated with the development of fatigue damage. CLS and 
ASM have the same trend and fantastic stability after comparison with multiple experimental images. 
The verification results show that the CLS and ASM can used as indicators of damage sensitivity 
characteristics of crack damage monitoring. This indicator can comprehensively monitor the damage 
status of cracks and accurately predict the health trend of the structure. 

5. Conclusion 

The 3D laser scanning technology of RPC under fatigue load conditions can clearly and 
effectively reveal the point cloud data features during the damage process. This work can provide a 
basis for the health monitoring of the RPC structure. Some of the conclusions drawn are as follows: 
1. The production principle and process of the inventive 3D laser scanning system was described. 

Using the system, the damage process of RPC under fatigue load was studied. In the process, 
the scanned 3D point cloud data simulates the RPC damage process. 

2. When the damage degree of the RPC structure is slight, the displacement and deflection of the 
damage source area are small. However, as the degree of damage continues to develop, the 
location and elevation information of the damaged area is constantly changing. The nonlinear 
variation of the damage region is described by the GLCM. And the damage characteristic 
parameter is extracted. 

3. The sensitive characteristic index is selected based on DFS. The reliability of indicators is verified 
by the texture characteristics and the random test sample. 

4. Damage point cloud data acquired from 3D laser scanning technology contains a considerable 
amount of information to the damage. Damage monitoring method based on 3D laser scanning 
performs an important role in condition monitoring and life prediction of RPC. In addition, the 
combination of texture analysis technologies and statistical theory can further demonstrate the 
advantages of 3D laser scanning technology. 
The system can be popularized and applied to the detection and diagnosis of the health status 

of other composite materials. The damage mechanism is analyzed by the extracted damage index. 
However, the scanning system is limited to the detection of damaged areas inside the three-
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dimensional space that can be scanned by laser. Therefore, it is necessary to use methods combined 
with other non-destructive testing new technologies to try to explore the indicators that are more in 
line with modern structural damage monitoring. 
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