
algorithms

Article

Application and Evaluation of Surrogate Models for
Radiation Source Search

Jared A. Cook 1,*, Ralph C. Smith 1, Jason M. Hite 2, Razvan Stefanescu 3 and John Mattingly 2

1 Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA;
rsmith@ncsu.edu

2 Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909, USA;
jmhite@ncsu.edu (J.M.H.); john_mattingly@ncsu.edu (J.M.)

3 Global Validation Model Department, Spire Global, Boulder, CO 80301, USA; rstefane@vt.edu
* Correspondence: jacook8@ncsu.edu

Received: 28 October 2019; Accepted: 6 December 2019; Published: 12 December 2019
����������
�������

Abstract: Surrogate models are increasingly required for applications in which first-principles
simulation models are prohibitively expensive to employ for uncertainty analysis, design, or control.
They can also be used to approximate models whose discontinuous derivatives preclude the use of
gradient-based optimization or data assimilation algorithms. We consider the problem of inferring
the 2D location and intensity of a radiation source in an urban environment using a ray-tracing
model based on Boltzmann transport theory. Whereas the code implementing this model is
relatively efficient, extension to 3D Monte Carlo transport simulations precludes subsequent Bayesian
inference to infer source locations, which typically requires thousands to millions of simulations.
Additionally, the resulting likelihood exhibits discontinuous derivatives due to the presence of
buildings. To address these issues, we discuss the construction of surrogate models for optimization,
Bayesian inference, and uncertainty propagation. Specifically, we consider surrogate models based
on Legendre polynomials, multivariate adaptive regression splines, radial basis functions, Gaussian
processes, and neural networks. We detail strategies for computing training points and discuss the
merits and deficits of each method.

Keywords: surrogate modeling; bayesian inference; radiation source localization

1. Introduction

Significant attention has been focused on accurate and efficient determination of the location
of radioactive materials. This is especially important in urban environments, which are particularly
susceptible to threats due to high population density. One strategy is to deploy a network of detectors,
which count ionizing gamma rays that reach their location. The resulting problem is to locate a radioactive
source in a complicated domain using this noisy detector data. The difficulties are compounded when
the signal-to-background radiation ratios are low, which is often the case. One avenue of current research
has focused on fusing detector data to determine the source location while attempting to decrease
the number of detectors, increase the accuracy of the location estimate, and increase the efficiency of
the algorithm [1–3]. This problem requires modeling the paths of the gamma particles emitted by the
source by employing the Boltzmann transport equation to determine the origination location. Two
standard methods for numerically solving the Boltzmann transport equation are to solve for the explicit,
deterministic solution and the implicit, stochastic solution using Monte Carlo simulations of many
particle histories. However, both are computationally expensive.

In prior work [2], we employed a 2D ray-tracing algorithm to model detector responses to a
radiation source in a simulated city block. We used the open source code gefry to solve for the detector

Algorithms 2019, 12, 269; doi:10.3390/a12120269 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-4591-6891
http://www.mdpi.com/1999-4893/12/12/269?type=check_update&version=1
http://dx.doi.org/10.3390/a12120269
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 269 2 of 24

responses within this test environment [4]. Whereas this algorithm is based on Boltzmann transport
theory, scattering is neglected to significantly improve the efficiency. It is shown in Ref. [5] that, despite
these simplifying assumptions, the code can resolve source locations to within meters for the considered
geometry and background levels. To solve the source localization problem, we employ Bayesian inference
by using a Delayed Rejection Adaptive Metropolis (DRAM) algorithm [6], which requires thousands
to millions of model evaluations to infer the 2D position (x, y) and intensity I, which are the design
variables used throughout this paper. Whereas the use of DRAM is tractable for this model, two issues
motivate the construction of surrogate models: (1) extension to 3D models employing Monte Carlo
N-Particle (MCNP) [7] simulations that incorporate more comprehensive physics; and (2) addressing the
non-differentiable likelihood due to the presence of buildings in the geometry. We extend the analysis
presented in Ref. [2] by exploring the choice of surrogate modeling technique and training point selection
in this paper.

We performed preliminary research regarding the use of Monte Carlo simulations [7] to generate
measurement data for nine point detectors in three dimensions with scattering in an extremely
simplified geometry detailed in Ref. [8]. A Monte Carlo simulation was run once to generate synthetic
measurements, and calibration was then performed against the calculated detector responses using
the ray-tracing model. In this geometry, four rectangular prisms in a 2 × 2 layout were considered
in a 100 m × 100 m domain, each adjusted to have wall thicknesses of 0.5 m of concrete. Employing
the ray-tracing model for the source localization problem for a 662 keV source placed 1 m above the
ground, we were able to localize the source to within 5 m. This level of accuracy is sufficient in this
large-space source search problem. However, it required several CPU hours of computation to generate
one set of detector measurements employing MCNP code [7,8]. For a realistic 3D geometry, such as a
3D version of the geometry depicted in Figure 1, thousands of CPU hours would be required to solve
the source localization problem using only Monte Carlo simulations.

Furthermore, the model solution to the 2D problem exhibits discontinuous derivatives due
to the buildings in the geometry, which block radiation paths to detectors. Hence, gradient-based
sensitivity analysis and optimization are not directly applicable. Gradient free sensitivity analysis
and optimization methods can be employed as done in prior work [2], which employs gradient free
optimization methods for this problem, however another option is to develop differentiable surrogate
models. To avoid similar difficulties in various non-differentiable models, studies have employed
differentiable surrogate models for applications in reactor simulations [9], hydrology [10], and for use
in general optimization strategies [11–13] and optimal design [14].

Similarly, we address these difficulties by investigating various differentiable surrogate models
that approximate model solutions, which quantify detector responses, with suitable accuracy at a
fraction of the computational expense. We employ spectral expansions using Legendre polynomials
and radial basis functions as bases to generate two surrogate models. We explore several approaches
to solving for the spectral expansion coefficients and compare interpolation and regression approaches.
We also illustrate surrogate models based on multivariate adaptive regression splines (MARS),
Gaussian processes (GP), and neural networks. We describe and compare the accuracy and efficiency
of each surrogate model. In addition, we consider the choice of training points for surrogate model
construction by comparing Gauss–Legendre points with Clenshaw–Curtis points, Latin hypercube
sampling, and random sampling. Lastly, we test the Gaussian processes surrogate model by employing
it in solving the source localization problem using DRAM [6].

This paper is organized as follows. In Section 2, we introduce the physical model, which we
approximate with the surrogate models. In Section 3, we introduce each surrogate model and discuss
its implementation. The choice of training points for the surrogate models is discussed in Section 4.
In Section 5, we plot each surrogate model against the physical model evaluations to illustrate goodness
of fit, we plot the relative root mean squared error (rRMSE) of the surrogate models, and we discuss
and compare the performance of the surrogate models. To verify the surrogate response, we employ
the Gaussian processes surrogate model to solve the source localization problem and compare it with

Algorithms 2019, 12, 269 3 of 24

the results from employing the ray-tracing model in Section 6. Lastly, in Section 7, we draw conclusions
and present future work.

2. Physical Model

The problem of determining the location and intensity of a radiation source from detector
measurements requires the solution of the Boltzmann equation describing the transport of neutral
particles—i.e., particles with no electrical charge—which is computationally intractable to solve in real
time. To address this problem, we make the assumption that gamma rays that suffer collisions before
reaching a detector are never detected. Under this assumption, we obtain the model

Ω · ∇ψ(r, E, Ω) +
1

λT(r, E, Ω)
ψ(r, E, Ω) =

I0

4π
δ(E− E0)δ(||r− rS||2) (1)

describing gamma transport [15]. Here, ψ denotes gamma intensity per unit area—particle scalar
flux—at location r and I0 denotes the intensity of the source, which is located at the position rS and
emits gamma particles with directional unit vector Ω and energy E. The Dirac density δ(·) on the
right-hand side isolates the source energy and position to E0, rS. Finally, λT is the mean-free path,
which is the mean distance traveled between collisions.

Solving Equation (1) for total flux at a certain point ri, which we take to be the location of the ith
detector, yields

ûi(q) = I0∆tiεi
Ai

4π||ri − rS||22
exp

(
−
∫

rS→ri

1
λT

dr

)
, i = 1, . . . , d, (2)

where u is the expected number of gammas observed by a detector at location ri, given the parameters
q = [rS, I0] ∈ Ω corresponding to the source location, rS = (x0, y0) and intensity, I0. Here, the path of
the gammas from the source to the detector is represented by rS → ri, which represents an arbitrary
parameterization of the curve from rS to ri; e.g., [rS → ri](τ) = rS + (ri − rS)τ where τ ∈ [0, 1]. Here,
the ith detector has face area Ai, a dwell time ∆ti, and efficiency εi. The full derivation of this equation
is provided in Ref. [5].

2.1. Numerical Model

We employ a ray-tracing scheme to determine the intensity of gammas reaching each detector
at location ri. For each detector, we construct a ray from the detector location to the source location.
We compute the number of intersections with the N buildings, and the length `h of the ray segment
through each of the h = 1, . . . ,N buildings. The buildings in the domain are assumed to be
homogeneous, each having a mean free path λh

T , h = 1, . . . ,N [2]. These assumptions yield

ûi(q) = I0∆tiεi
Ai

4π||ri − rS||22
exp

(
−
N
∑
h=1

`h

λh
T

)
, i = 1, . . . , d. (3)

We employ the Python code gefry [4] to implement this numerical model, which is a significant
simplification of the original problem derived from Boltzmann transport theory. Even so, because of
the buildings in the geometry, this model is non-smooth and any extension of this model—to 3D or
considering particle scattering–would yield a model that is computationally infeasible for Bayesian
inference and uncertainty propagation.

2.2. Model Geometry

To apply and test this numerical model for a realistic scenario, we select the domain to be a
250 m× 180 m block in downtown Washington, D.C. [2,5]. We construct a 2D representation of the
domain using data from the OpenStreetMaps database. We treat the buildings as disjoint polygons of

Algorithms 2019, 12, 269 4 of 24

uniform density and composition, which define their individual macroscopic cross-sections. A satellite
photo with the cross-sections overlaid is provided in Figure 1.

We semi-randomly assign each building an optical thickness between one and five mean free
paths, with the larger and more dense buildings having larger optical thicknesses. This is motivated by
an approximation that the wood and concrete buildings in this domain would have an average optical
thickness of three mean free paths. We generate the detector locations, plotted as diamond marks in
Figure 1, by sampling from a uniform distribution across the domain while excluding the walls of
the buildings. We assume the detectors have facial areas Ai = 0.0058 m2 associated with three-inch
diameters and three-inch lengths, intrinsic efficiencies of εi = 62%, and dwell times of ∆ti = 5 s for
i = 1, ..., 10. These efficiencies are typical for a standard NaI scintillator measuring 662 keV gamma
particles. We use a background rate of B = 300 counts per second, which is typical for this type of
detector in an urban environment. In prior work [2], we showed that we are able to locate a source
within the geometry despite these simplifications. Additionally, we are able to localize a source when
building cross section uncertainties are increased as high as 50% of their nominal values [16].

Figure 1. Satellite image of domain with overlaid model geometry from [2].

2.3. Statistical Model

To develop surrogate models, we must first construct an appropriate statistical model. We assume
a constant mean background with nominal intensity B = 300 gamma counts per second and take
q0 = [x0, y0, I0] to be the true source location and intensity. Radioactive decay and detection are
Poisson random processes so we take the detector response to be a Poisson-distributed random
variable. For each of the considered detectors, we employ the statistical model

Yi = Pois(ûi(q0) + B), i = 1, ..., d, (4)

for the total detector response. Here, Pois() denotes the Poisson distribution with mean

ui(q0) = ûi(q0) + B, (5)

for ûi(q0) given by Equation (3). The responses of d detectors are mutually independent. A Gaussian
distribution approximates the Poisson distribution with a large expected value, which in this case is
accurate for a large number of gamma observations. Therefore, we approximate Equation (4) by

Yi ∼ N (ui(q0), σ2
0i
), i = 1, ..., d, (6)

Algorithms 2019, 12, 269 5 of 24

where σ2
0i
= ui(q0) = ûi(q0) + B. We denote the detector observations by yi, i = 1, ..., d, which are

realizations of the random variables

Yi = ui(q0) + εi, i = 1, ..., d, (7)

where εi ∼ N (0, σ2
0i
).

3. Surrogate Models

Surrogate models are used to approximate input-output behavior of complex systems based on
limited simulations [17]. For our application, we construct differentiable surrogate models, which
approximate the non-differentiable ray-tracing model in Equation (3). These surrogate models are
computationally feasible for use with 3D simulation codes or codes incorporating additional physics,
such as photon scattering.

Whereas there are many methods to create surrogate models, we focus on response surface
methods that treat the simulation code as a black box. This is one reason the surrogate modeling
techniques we explore are feasible for use with high-fidelity codes. Two surrogate models are based
on a polynomial expansion of the physical model evaluations using Legendre polynomials and
radial basis functions. We employ discrete projections, which interpolate the data, to evaluate the
Legendre polynomial surrogate models. To compare, we consider radial basis function surrogate
models constructed using regression and a Legendre polynomial-based surrogate model constructed
using sparsity-controlled regression for evaluation of the surrogate models. In addition, we consider
a surrogate model based on a multivariate adaptive regression splines (MARS) algorithm. Finally,
we demonstrate Gaussian processes and artificial neural networks for surrogate model construction.

Our strategy is to construct an individual surrogate model at each of the d = 10 randomly
chosen detector locations in the urban geometry. To compute the surrogate model response
at source locations (x, y) ∈ [0, 250 m] × [0, 180 m] with intensities I ∈ [5 × 108, 5 × 1010Bq],
we sample the mean response ui(qm) at M = 213 = 9261 Gauss–Legendre training points
qm ∈ Ω = [0, 250 m]× [0, 180 m]× [5× 108, 5× 1010 Bq] for each of the i = 1, ..., d detector locations.
Note that a Bequerel (Bq) is a unit of the activity of nuclear decay in a quantity of radioactive material
per second. It takes 4.23 h to compute these 9261 model evaluations for each of the 10 detectors on a
computer with a 3.4 GHz Intel core processor and 16 GB of memory. Whereas the computations can be
parallelized, we report serial values in Section 5.

For each of the d detectors, we denote the surrogate model by uN
i , i = 1, . . . , d, and relate it to the

physical model solution ui = ûi + B via the statistical model

uN
i (qm) = ui(qm) + εm

i , m = 1, . . . , M. (8)

The model discrepancies εm
i quantify unresolved fine-scale behavior incorporated in the

ray-tracing model but neglected in the surrogate model. It is reasonable to assume that εm
i are

identically distributed with variance σ2
0 , but one cannot justify the more stringent assumption that

εm
i ∼ N (0, σ2

0).
For all but neural networks, we can express surrogate models as

uN
i (q, wi) =

N

∑
j=1

wi
jΨj(q) + Pi(q), (9)

where wi = [wi
1, . . . , wi

N] are coefficients and Ψj(q) are basis functions that define the surrogate model.
The trend functions Pi(q) quantify global trends exhibited by the model. To demonstrate the goal of
surrogate model construction, we plot a Gaussian process-based surrogate response surface versus
the training points for a fixed intensity in Figure 2. We note that the detector response increases as
the source is moved closer to the detector location and the response surface accurately quantifies the

Algorithms 2019, 12, 269 6 of 24

behavior of the training data. Additionally, we note that the surrogate model has smoothed the surface
represented by the training data, most notably near the singularity at the detector location caused by
the ||ri − rS|| term in the denominator of Equation (3).

To verify each of the d models, we compare the surrogate and physical models at S = 500 randomly
generated test points qs ∈ Ω. The physical model takes 13.63 min to compute detector responses for
the test points. We quantify errors by computing the relative root mean square error (rRMSE)

rRMSEi ≡
[

1
S

S

∑
s=1

(ui(qs)− uN
i (qs)

ui(qs)

)2
]1/2

(10)

at each detector. Since the detector responses (in counts per second) vary over orders of magnitude,
we compute the surrogate model responses based on the natural logarithm of the ray-tracing solution.
For each surrogate model, we report rRMSE = ∑d

i=1 rRMSEi and plot the surrogate and physical
model responses at the first 50 test points in Section 5. Whereas the surrogate and physical model
responses at these test points are discrete, we plot the points continuously for clarity. Additionally,
we plot the rRMSEi of each surrogate model for i = 1, . . . , d for the d = 10 detectors. We note that
performance metrics such as proper scoring rule [18] or Mahalanobis distance can be employed to
obtain some assessment of the uncertainty in the surrogate model, but we leave this as future work.

To minimize notation overload throughout the remaining discussion, we drop the dependence on
i and express the surrogate and statistical models as

uN(q, w) =
N

∑
j=1

wjΨj(q) + P(q), (11)

and

y = u(q) = uN(q, w) + ε, (12)

where we combine errors from the ray-tracing algorithm and surrogate model construction in ε.
However, we remind the readers that we construct individual surrogate models for each of the
i = 1, . . . , d detectors.

Figure 2. Gaussian process surrogate model response surface versus natural logarithm of the training
data for detector 1 observing a source with intensity I = 5× 1010 Bq.

Algorithms 2019, 12, 269 7 of 24

3.1. Legendre Polynomials

For polynomial interpolation and regression, we assume that the physical model responses can
be expressed as

u(q) = u(q, w) =
∞

∑
j=1

wjΨj(q), (13)

which we approximate to obtain the surrogate model

uN(q, w) =
N

∑
j=1

wjΨj(q). (14)

We take Ψj(q) to be multivariate Legendre polynomials—i.e., products of univariate Legendre
polynomials—which are defined as the solution to the differential equation

d
dq

[
(1− q2)

d
dq

Ψj(q)
]
+ j(j + 1)Ψj(q) = 0. (15)

The first three univariate Legendre polynomials are

Ψ1(q) = 1, (16)

Ψ2(q) = q, (17)

Ψ3(q) =
1
2
(3q2 − 1) (18)

for q ∈ Ω̂ = [−1, 1]. These polynomials are orthogonal on the interval Ω̂ = [−1, 1] with respect to
the density ρ(q) = 1

2 . We note that the roots of the univariate Legendre polynomials provide the
Gauss–Legendre training points, qm, m = 1, ..., M, that we use to construct the surrogate models.

An important feature of polynomial approximations is that their accuracy is improved for
functions with more regularity. We have spectral convergence for Legendre polynomial expansions of
functions on [−1, 1] with error bounds

||u(q, w)− uN(q, w)||L2[−1,1] ≤ Ck N−k||u(q, w)||Hk([−1,1]). (19)

Here, Ck ≥ 0 is a constant that may depend on k and u ∈ Hk([−1, 1]), where Hk([−1, 1])
is a Sobolev space of L2 functions with weak derivatives of all orders up to k in L2. We should
observe the convergence rate CN−1||u(q, w)||1, since our model is continuous, but has non-continuous
derivatives [19]. We observe a convergence rate of rRMSE(uN)/rRMSE(uN/2) ≈ 0.8, where
rRMSE(uN) means the relative root mean squared error defined in Equation (10) of the
Legendre-polynomial-based surrogate model employing N basis functions. This is not the convergence
rate of rRMSE(uN)/rRMSE(uN/2) ≈ 0.5 that we expected to observe, since

CN−1||u(q, w)||1
C(N/2)−1||u(q, w)||1

=
N−1

(N/2)−1 =
1
2

. (20)

However, this rate is closer to 0.5 for certain values of N, as can be seen in the convergence results
in rRMSE of the Legendre polynomials that we compile in Table 1. We also bound N from above to
address overfitting the noise in the physical model response.

We consider two methods to solve for the coefficients wj. The first is based on discrete projection,
which exploits the orthogonality of the polynomials Ψj(q) to interpolate the function of interest at

Algorithms 2019, 12, 269 8 of 24

u(qm), m = 1, . . . , M; i.e., the physical model simulations defined in Equation (3). Multiplying both
sides of Equation (13) by Ψj(q) and integrating over Ω̂, yields

wj =
1
γj

∫
Ω̂

u(q, w)Ψj(q)ρ(q)dq, j = 1, . . . , N, (21)

by exploiting the orthogonality relation

∫
Ω̂

Ψj(q)Ψi(q)ρ(q)dq =

{
0 for i 6= j

γj for i = j.
(22)

Here, γj =
2

2j+1 is a normalization constant and ρ(q) = 1
2 is the associated density over Ω̂ = [−1, 1].

We approximate this integral by a quadrature rule, such as Gauss–Legendre quadrature, to obtain
the approximate relation

wj ≈
1
γj

R

∑
r=1

u(qr)Ψj(qr)ρ(qr)ωr, j = 1, . . . , N (23)

for the coefficients of the surrogate model. Here, qr are the sampled inputs, ωr are the quadrature
weights, and u(q) = ûi(q) + B, where ûi(q) solves Equation (3) and we have dropped the dependence
on w. We employ Gaussian quadrature, since with only R + 1 training points, polynomials of degree
less than or equal to 2R + 1 can be integrated exactly. We set R = M and N = (p+K)!

p!K! , where p is the
number of parameters—three in our case—and K is the maximum degree of the multivariate Legendre
polynomials [17].

We construct the multivariate Legendre polynomials as tensor products of univariate Legendre
polynomials. As discussed in Ref. [20], the surrogate model error decreases roughly exponentially with
polynomial degree, provided that a high enough order quadrature rule is used; e.g., large R. However,
results with high degree polynomials—large K—diverge because of large fluctuations in the function
uN between the quadrature points produced by overfitting; i.e., uN begins fitting observation errors.

To determine the correct degree K, we compute the sum of squares (SSq) error of the surrogate
model evaluated at the test points qs

SSq =
S

∑
s=1

[u(qs)− uN(qs, w)]2, (24)

and compute the likelihood

π(u|q) = 1
(2πσ0)S/2 e−SSq/2σ2

0 , (25)

for the surrogate model uN with maximum polynomial degree K = 1, ..., 30. We plot the results in
Figure 3, where the results for the d = 10 surrogate models are plotted with the mean value overlaid
in a thicker line. We see that the mean sum of squares error has a distinct minimum and the mean
likelihood has a maximum at K = 21. Hence, we use this value when computing the surrogate model
and employ N = 2024 total basis functions. Akaike information criteria (AIC), Bayesian information
criteria (BIC), or cross validation techniques can also be employed to determine the value of K that
balances accuracy versus overfitting of the surrogate model. These cross-validation procedures are
discussed further in Ref. [21,22]. An alternative to using such a high degree polynomial for this
surrogate model is to employ splines, which we consider in Section 3.2.

We note that these surrogate models, excluding the Gaussian processes surrogate model, are
all parametric models. Whereas there are multiple definitions of parametric models, we define a
parametric model as one where the class of basis functions is defined prior to construction of the model.

Algorithms 2019, 12, 269 9 of 24

Since we employ the class of Legendre polynomials to construct this surrogate model, we classify it as
a parametric surrogate model. We classify Gaussian processes as semi-parametric under this definition,
as is discussed in Section 3.4.

An alternate method to obtain the coefficients wj is to perform a least absolute shrinkage and
selection operator (LASSO) regression [23]. Borrowing from compressive sensing (CS), we bound
the l1 norm of the coefficients to enforce sparsity. Therefore, we can formulate the problem as the
optimization problem

min
c
||Λc− y||22, subject to ||c||1 ≤ τ, (26)

where Λjm = Ψj(qm) is a matrix of the Legendre basis functions, y = [y1, ..., yM]T is the vector of
observations obtained from the statistical model defined in Equation (12), and c = [w1, ..., wN]

T is the
vector of coefficients. To solve this optimization problem, we use the MATLAB SPGL1 solver, which is
detailed in Ref. [23].

Table 1. Convergence of Legendre surrogate model rRMSE as N increases.

N 2 4 8 16 32 64 128 256 512 1024 2024

rRMSE 1.598 1.382 1.113 0.825 0.633 0.468 0.387 0.331 0.281 0.236 0.213
rRMSE(uN)

rRMSE(uN/2)
0.865 0.805 0.741 0.767 0.739 0.827 0.855 0.849 0.840 0.903

(a) (b)

Figure 3. (a) Sum of squares error and (b) likelihood for Legendre-based surrogate models computed
via Equation (21) with maximum polynomial degree P = 1, ..., 30. The dashed lines correspond to each
of the d = 10 surrogate models and the solid line is their mean.

We tested multiple values of τ, but use τ = 35 to obtain the results discussed in Sections 4 and 5.
We determine this value of τ by computing the 1-norm of the coefficients obtained via discrete
projection. We find that these coefficients have a 1-norm between 32 and 38, and, when we decrease
τ below 32, significant error is introduced. When we increase τ to greater than 38, the 1-norm of the
coefficients is less than τ, meaning that the constraint has no effect on the problem. When comparing
the coefficients between these two methods, we see that they are similar but not identical, even when
τ > 38. Further analysis on determining optimal values of τ is discussed in Ref. [23].

3.2. Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) were first proposed by [24] as a procedure
for performing adaptive nonlinear regression using piecewise linear (spline) basis functions. MARS
follows from recursive partitioning regression, which is also outlined in Ref. [24]. The MARS linear

Algorithms 2019, 12, 269 10 of 24

basis functions, often termed hinge functions, are introduced in pairs on either side of a “knot” t,
where there is an inflection point in a particular parametric direction; e.g.,

ψk(q) = max(0, qi − t) and ψk+1(q) = max(0, t− qi) (27)

are introduced concurrently. Here, qi, i = 1, . . . , p denotes the ith component of q, where p = 3 in
our model, since q = (x, y, I). In this way, the domain is divided so that ψk(q) is zero for qi < t and
ψk+1(q) is zero for qi > t.

We employ an adaptive regression algorithm to generate knot locations using data {qm, ym}M
m=1

from the statistical model defined in Equation (12) for the 10 detectors. We take the knot locations to
be t ∈ {qm

i }
p,M
i=1,m=1. An additive MARS model would take the basis functions to be Ψk(q) = ψk(q),

but we consider products of the linear basis functions, thus we take the basis functions to be

Ψj(q) =
Kj

∏
k=1

ψk(q) =
Kj

∏
k=1

[sjk(qv(j,k) − tjk)]+. (28)

Here, v(j, k) ∈ {1, ..., p} labels the component of the parameter vector or “predictor variable”
q = {qi}

p
i=1, Kj ≤ p is the level of interaction between the linear basis functions, and tjk is the

kth knot employed by the jth basis function. Furthermore, the positive subscript means take the
maximum of zero and the argument, as in Equation (27), and we take Ψ0(q) = 1 and sjk = ±1.
For simplicity, we consider only piecewise linear basis functions ψ(q), although this algorithm can
also be performed with other piecewise basis functions, such as cubic. Additionally, we consider up
to second-order interactions of the linear basis functions ψ; i.e., Kj ≤ 2, and first-order interactions
of the linear basis functions that are a function of the same variable. We found that employing
second-degree interactions—i.e., products of linear basis functions of the same variable—did not
increase the performance of the surrogate models significantly.

The surrogate model is

uN(q, w) =
N

∑
j=0

wjΨj(q), (29)

where Ψ0(q) = 1 and the coefficients wj are estimated using least-squares regression. Note that this is
the same form as Equation (11), for w0 = 1 and Ψ0(q) = P(q). The construction of the MARS model
takes place in two steps. In the forward step, basis functions are added to the model to reduce a “lack
of fit” value, which we take to be the least-squares error of the surrogate model to the physical model
evaluated at the training points. This is performed until a user defined maximum number of terms is
reached. The maximum number of terms we use in the forward process of the MARS algorithm to
construct this surrogate model is N = 200.

The MARS algorithm purposefully overfits the model to the data in its forward simulation and
then performs a backward deletion strategy in the second step to remove basis functions that no
longer contribute sufficiently to the accuracy of the model fit. This is performed via a model selection
procedure employing Generalized Cross-Validation (GCV) to compare models with subsets of the
basis functions. The GCV equation,

GCV =
1
M ∑M

m=1
[
ym − uN(qm, w)

]2[
1− N+κ×(N−1)/2

M

]2 , (30)

is a goodness of fit test that uses the parameter κ to penalize large numbers of basis functions N [25].
We use a default penalty parameter of κ = 3 and a threshold value of GCV < 10−3, which is used as

Algorithms 2019, 12, 269 11 of 24

a stopping criterion for the backward phase. The suggested threshold value is 10−4 and should be
reduced for noise free data.

To better understand the MARS model structure, consider the problem of approximating the data
depicted in Figure 4. We employ the MARS model

uN(q) = 20−max(q− 12, 0) + 3×max(12− q, 0)− 2×max(22− q, 0) (31)

to approximate the data. The knot locations at q = 12 and q = 22 delimit the regions where different
linear relationships are identified. By considering the products of these linear basis functions, we can
quantify nonlinear behaviors of the model.

To motivate error analysis of the MARS surrogate model, we consider the full MARS model

uN(q, w) = w0 +
N

∑
j=1

wj

Kj

∏
k=1

[sjk(qv(j,k) − tjk)]+, (32)

where w0 is the coefficient of the constant basis function. The sum is over the basis functions

Bi(qi) = ∑
Kj=1

wjΨj(qi) = ∑
Kj=1

wj[sj1(qi − tj1)]+, for i ∈ Vj, (33)

Bik(qi, qk) = ∑
Kj=2

wjΨj(qi, qk) = ∑
Kj=2

wj[sj1(qi − tj1)]+[sj2(qk − tj2)]+, for i, k ∈ Vj, (34)

...

where we now consider higher-order products of basis functions; i.e., Kj ≥ 1. Here, Vj = {v(j, k)}Kj
1 is

the set of predictor variable component labels for the jth basis function Ψj. Whereas this representation
of the model does not provide insight into the model development, it allows us to rearrange the model
in a way that reveals the predictive behavior of the model. By collecting basis functions that involve
identical predictor variable sets, we obtain the representation

uN(q) = w0 + Bi(qi) + Bik(qi, qk) + Bik`(qi, qk, q`) + . . . (35)

These sums represent the Kj level interactions, if present, between the variables within the model.
By adding the univariate contributions to the bivariate contributions, we obtain the representation

B∗ik(qi, qk) = Bi(qi) + Bk(qk) + Bik(qi, qk). (36)

This provides a bivariate tensor product spline approximation representing the joint bivariate
contributions of qi and qk to the model [24]. Similar rearranging can be performed by employing this
representation combined with the trivariate functions to obtain the joint contributions of qi, qk, and q`.
Since Equation (35) is similar to analysis of variance decomposition [17], we refer to this as the ANOVA
decomposition of the MARS model. The optimal additive approximation corresponds to the first-order
terms in the ANOVA expansion, thus, if the higher-order indices are small, then the function can be
approximated well by an additive model; i.e., Kj = 1, j = 1, . . . , N. Note that, for our purposes, we
consider a model with second-order interactions, thus we truncate Equation (35) at the second-order
interactions. Unfortunately, the adaptivity of MARS makes it difficult to bound the error in the manner
of spectral approaches that bound the error in terms of the coefficients wj. However, cross validation
procedures, such as those detailed in Ref. [21,22], can be used to provide an error estimate for the
MARS model.

The MARS algorithm can be cast in a Bayesian framework in which case the number of basis
functions N, their coefficients wj, and their form—knot points tjk, sign indicators sjk, and the level of
interaction Kj—are considered to be random [26]. Since any MARS model can be uniquely defined by

Algorithms 2019, 12, 269 12 of 24

these values, the Bayesian MARS model sets up a probability distribution over the space of possible
MARS structures. The data are then used to infer these hyperparameters by employing a Markov
chain Monte Carlo (MCMC) reversible jump simulation algorithm [27]. Currently, a form of this
algorithm has been implemented in the R package BASS (Bayesian adaptive spline surface), but
no such package exists for MATLAB. Hence, a comparison of BASS with these surrogate models is
deferred to future research.

The MARS surrogate model takes advantage of the local low dimensionality of the function
of interest, even if that function is strongly dependent on a large number of variables; i.e., large p.
We employ the third-party ARESLab toolbox for MATLAB [28], which employs an algorithm similar
to MARS [24]. Following the backward deletion step performed by this toolbox, the surrogate models
discussed in Sections 4 and 5 for each of the 10 detectors employ between N = 20 and N = 36
basis functions.

Figure 4. Simple additive MARS example with two knot locations represented by the dashed vertical lines.

3.3. Radial Basis Functions

Here, we consider expansions

uN(q, w) =
N

∑
j=1

wjΨj(q) (37)

with radial basis functions

Ψj(q) = Ψ(||q− qj||2) = Ψ(hj(q)) (38)

defined in terms of the Euclidean distance

hj(q) = ||q− qj||2 =

[
p

∑
i=1

(qi − qj
i)

2

]1/2

. (39)

We remind the reader that p = 3 for our problem. A common choice of Ψ is

Ψ(hj(q)) = e−h2
j (q)/2σ2

, j = 1, . . . , N. (40)

Here, the hyperparameter σ is a scale factor, which is typically inferred when constructing the
surrogate model. Details regarding the manner in which σ affects conditioning and stability are
provided in Ref. [29]. Gaussian radial basis functions defined in Equation (40) have the advantage of
physical interpretation and super-spectral convergence; i.e., errors decrease as O(e−CN). Additionally,
multiquadric, inverse multiquadric, and thin plate splines are described in Table 2.

Algorithms 2019, 12, 269 13 of 24

To compute the coefficients w = [w1, . . . , wN]
T , we formulate Equation (37), with observations

given by Equation (39) as the matrix system

u = Aw + ε, (41)

where u = [u(q1), . . . , u(qM)]T , Ajm = Ψj(qm), and ε = [ε1, . . . , εM]T are the errors from Equation (12).
For M > N, the least squares estimate is given by

w = A†u, (42)

where A† =
[
AT A

]1/2 AT is the pseudo-inverse of A. To compute w, we use the MATLAB backslash
command which employs a QR factorization. Other solution techniques are discussed in Ref. [29,30].
For the purpose of comparing with Legendre surrogate models, we employ the same number of basis
functions N = 2024 by randomly selecting center points qj for the basis functions Ψj(q) from the
training data, such that {qj}N

j=1 ∈ {qi}M
i=1.

In Table 2, we observe that the Gaussian radial basis functions surrogate model does not perform
as well as the inverse multiquadric and thin-plate spline radial basis function surrogate models.
This decrease in performance is likely due to the smoothness of the Gaussian radial basis functions as
compared with the other basis functions. The inverse multiquadric function provides the best accuracy
and low computational cost in comparison with the other basis functions. Therefore, we employ
inverse multiquadric radial basis functions to develop surrogate models that we compare with the
other surrogate modeling methods in Sections 4 and 5. We note that radial basis functions are often
employed in the development of neural networks as the activation functions of the neural network
nodes, which is discussed further in Section 3.5.

Whereas the shape parameter σ can be treated as a hyperparameter to be optimized for each
problem, we set σ = 40. We chose this by testing multiple values of σ and choosing the value
that provided the smallest rRMSE, defined in Equation (10). Because we randomly sample the
basis function center points, optimizing the value of σ is difficult, whereas, if we used all or a
constant set of the training points as center points for the basis functions, we could optimize this
hyperparameter. The value of σ can affect the conditioning of the problem and, if too large, cause the
Runge phenomenon to introduce large errors, as discussed in Ref. [29]. However, decreasing the value
of σ improves conditioning and decreases accuracy, so these two effects must be considered when
setting this hyperparameter.

Table 2. Comparison of radial basis functions for surrogate model construction.

Basis Function Mathematical Form Comp. Time (s) rRMSE

Multiquadric Ψ(hj(q)) =
√

h2
j (q) + σ2 131 0.2094

Inverse Multiquadric Ψ(hj(q)) = 1/
√

h2
j (q) + σ2 132 0.2075

Thin-plate Spline Ψ(hj(q)) = h2
j (q) log(hj(q)/σ) 159 0.2089

Gaussian Ψ(hj(q)) = e−h2
j (q)/2σ2

135 0.2093

3.4. Gaussian Process Regression

In Gaussian process- or kriging-based surrogate models, one treats the high-fidelity simulations
as realizations of a Gaussian process

uN(q) ∼ GP
(
m(q), c(q, q′)

)
. (43)

The mean and covariance functions m(q) and c(q, q′) are constructed to reflect the trends and
correlation structure of the physical model u.

Algorithms 2019, 12, 269 14 of 24

We employ a constant mean m(q) = P(q) = β01, where β0 is a hyperparameter that we infer and
1 is an M× 1 vector of ones, since we employ observations for M parameter values qm to compute the
surrogate model. Whereas universal kriging employs a polynomial trend function m(q), we limit our
analysis to ordinary kriging by employing a constant mean m(q). Additionally, we employ covariance
functions of the form

c(q, q′) = σ2r(q, q′), (44)

where σ2 denotes the model variance and r(q, q′) is a parametric correlation function or kernel. By the
definition of parametric given in Section 3.1, Gaussian processes are semi-parametric. This is because
the class of basis functions employed is not fully determined, but follow from the predefined parametric
correlation function. A fully nonparametric Gaussian processes model is discussed in Ref. [31].
A common choice for r(q, q′) is the squared exponential function

r(q, q′) = e−
1

2`2 ∑
p
i=1[qi−q′i]

2

, (45)

which can be expressed as

r(hj(q)) = e−hj(q)2/2`2
(46)

with hj(q) defined in Equation (39) if we consider q′ = qj. Comparison with Equation (40) illustrates
that this is comparable to employing radial basis functions as a correlation function. We note that
this kernel is isotropic in the sense that the length scale ` is the same for each of the p = 3 scaled
components of the parameter q = (x, y, I).

For inputs q1, . . . , qM, the associated covariance and correlation matrices have entries Cij = c(qi, qj)

and Rij = r(qi, qj). For the statistical model defined in Equation (12), it follows that

u ∼ N (β01, C + σ2
0 I), (47)

where u = [u(q1), . . . , u(qM)]. Note that σ2
0 serves as a nugget, which results in an emulator that does

not interpolate the data and attaches a non-zero uncertainty bound around the data.
Whereas use of the correlation function from Equation (45) facilitates comparison with radial basis

surrogate models, it is overly smooth for the urban source applications with discontinuous derivatives.
This motivates consideration of the less smooth Matern correlation functions [32,33]. As summarized
in Table 3, we consider three isotropic correlation functions

r1/2(h) = e−h/`, (48)

r3/2(h) =

(
1 +

√
3h
`

)
e−
√

3h/`, (49)

and Equation (45), where h = ||qi − qj|| denotes the Euclidean distance between samples qi and
qj and the subscripts denote half integer choices with explicit representations. We also consider
three anisotropic kernel functions where the characteristic length scale `i is allowed to vary for each
component of q = (x, y, I). As detailed in Ref. [33], this yields the anisotropic Automatic Relevance
Determination (ARD) correlation functions

rARD
1/2 = e−h` , (50)

rARD
3/2 =

(
1 +
√

3h`
)

e−
√

3h` , (51)

rARD
5/2 =

(
1 +
√

5h` +
5
3

h2
`

)
e−
√

5h` , (52)

Algorithms 2019, 12, 269 15 of 24

where

h` =

[
p

∑
i=1

(qj
i − qk

i)
2

`2
i

]1/2

. (53)

Note that rARD
3/2 reduces to r3/2 when `i = `.

Since the ARD Matern kernel with Matern parameter value 3/2 outperforms the other kernel
functions, we consider this kernel for the rest of our analysis in Sections 4 and 5. The ARD Matern
3/2 kernel performs better than the ARD Matern 5/2 kernel because it is less smooth than the ARD
Matern 5/2—the Matern 3/2 kernel has one continuous derivative, whereas the Matern 5/2 kernel
has two—and hence can more accurately quantify the non-smooth behavior of the physical model.
Anisotropic functions are important for this application of surrogate models, since the domain differs
greatly in each parametric direction [33]. We additionally note that metrics, such as those discussed in
Ref. [34], can be employed to test the performance of these surrogate models and can be used to assess
the performance of other surrogate modeling techniques. These metrics are able to account for the
correlation between the validation data, but we leave the evaluation of these performance metrics to
future work.

We optimize the hyperparameters, [σ, `j], j = 1, ..., p, using a dense, symmetric rank-1-based,
quasi-Newton algorithm to approximate the Hessian that is required to solve this problem. We set
their initial values, respectively, as the standard deviation of the predictors and the standard deviation
of the responses divided by the square root of two. We employ the MATLAB package fitrgp, which
is both robust and relatively easy to use.

Table 3. Comparison of Gaussian process kernel functions for surrogate model construction.

Kernel Function Computation Time (s) rRMSE

Exponential 203 0.1993
Squared Exponential 175 0.2013

Matern 3/2 196 0.2006
ARD Exponential 448 0.2005
ARD Matern 3/2 426 0.1975
ARD Matern 5/2 401 0.1995

3.5. Neural Networks

The final surrogate model is based on neural networks, which was originally developed to
solve problems in a way that emulates the brain. They are typically organized in layers of their core
structures, called neurons or nodes, each of which has an inherent activation function. There are
also sets of coefficients that act on the connections between nodes, which are tuned by a learning
algorithm and are capable of accurately approximating nonlinear functions [35]. For our model,
the input nodes of the neural network are the parameter components {qi}

p
i=1 associated with the

location and intensity of a nuclear source. The output node is the neural network surrogate model
approximation to the ray-tracing solution defined in Equation (3) for a detectors response u(q). Here,
we develop a feed-forward artificial neural network, meaning that the information is only passed
forward through the hidden layer. This is unlike a feedback network, which allows for information
transfer in both directions and consequently loops within the network. We note that while we employ
supervised machine learning methods, unsupervised learning methods might potentially be employed
for future work.

The construction of the neural network surrogate model is divided into two steps: choosing a
network structure and training the network. To define the network architecture, we must define the
number of hidden layers, the number of neurons in each layer, the activation functions associated
with each neuron, and the performance function used to evaluate the accuracy of the network during

Algorithms 2019, 12, 269 16 of 24

training. There have been many advances made in the development of deep learning algorithms [36],
but for simplicity we consider a single hidden layer for this model. We set the hidden layer of the
fitting network to a size of 35, which we obtained from testing hidden layer sizes to obtain an optimal
hidden layer size for this problem. We note that the use of a large number of hidden layers or hidden
layer neurons can lead to overfitting and increased computational time. Hence, these measures are
normally employed only for highly complex problems.

Each neuron performs a linear transformation, η = w1q1 + w2q2 + ...+ wpqp for the p components
{qi}

p
i=1, where wj, i = 1, . . . , p are the neural network coefficients. Therefore, there are p× N + N × 1

coefficients to train for this model, where N = 35 is the number of neurons in the model and one is
the dimension of the output. This transformation is followed by a nonlinear operation defined by the
symmetric sigmoid activation function

Ψ(q, w) = Ψ(η) =
2

1 + e−2η
− 1. (54)

We employ the MATLAB neural network toolbox to evaluate the surrogate model. We apply the
mean squared error performance function, since this performance function provides a good balance
between accuracy and computation time during surrogate model construction when compared with
other performance functions provided by the MATLAB neural network toolbox.

To train the network, we employ a nonlinear least-squares regression to compute the coefficients
using the training data {qj, u(qj)}M

j=1. We employ the Levenberg–Marquardt back-propagation training
function, since this outperforms other built-in training functions in terms of error. The only exception
is Bayesian regulation back-propagation, which requires approximately four times the computational
time for an improvement of only 0.01 in the surrogate model rRMSE. This is due in part to the fact that
the Levenberg–Marquardt algorithm does not require the computation of the Hessian matrix, unlike
many of the other MATLAB built in training functions. We set the training parameters associated with
this training function to their default values and compare the performance of this surrogate model
with the other models in Sections 4 and 5.

4. Training Points

The basis functions, Ψj, j = 1, . . . , N, should be employed in conjunction with a complimentary
choice of training points, qm, m = 1, . . . , M, to accurately approximate the ray-tracing model. Training
points derived from Gaussian quadrature are often employed, due to their accuracy with relatively
few points. However, these points are not nested and hence cannot be re-employed when increasing
discretization levels. This is made apparent by Figure 5a,b, in which we plot the Gauss–Legendre
and Clenshaw–Curtis points for levels ` = 0, ..., 4, where the number of training points are given by
R(`) = 2` + 1. We note that each level of Gauss–Legendre points do not overlap with the level above it,
whereas the Clenshaw–Curtis points do overlap. This becomes important when attempting to improve
a grid without re-evaluating the high-fidelity model at every point on the updated grid. We consider
four separate sets of training points and we compare how the surrogate models previously discussed
perform when employing each set of points. Whereas there is a whole class of model-based design
methods that have been studied for use with various surrogate modeling techniques [37], we consider
model-free techniques. Additionally, methods for experimental design could be employed to improve
surrogate performance, but we leave this as future work.

The first set of points is Gauss–Legendre (GL), which we use to obtain the surrogate model results
discussed in Section 5. The Gauss–Legendre points can be obtained by solving for the roots of the
Legendre polynomials. We compile rRMSE results for the surrogate models employing these training
points in Table 4. We also compile in Table 4 the surrogate model rRMSE when randomly selected
training points are used. These randomly selected points are drawn from a uniform distribution
over [0, 1].

Algorithms 2019, 12, 269 17 of 24

Clenshaw–Curtis (CC) quadrature points are specified by the extrema of Chebyshev polynomials,
which are typically defined on the interval [−1, 1]. These points, when mapped to [0, 1], are given by

qr
` =

1
2

[
1− cos

(r− 1)π
R(`)− 1

]
, r = 1, ..., R(`), (55)

where R(`) = 2` + 1. As shown in Figure 5, these points are not equally spaced and cluster around
the endpoints of the interval. This effectively avoids producing spurious oscillations, termed the
Runge’s phenomenon, when interpolating. Furthermore, we note that these points are nested, so that
the training points in level R(`) are also in level R(` + 1), which is important when more points
must be added for increased accuracy of the surrogate model. In practice, it has been shown that,
for most functions, Clenshaw–Curtis quadrature performs as well as Gaussian quadrature [38] in
most applications.

Latin hypercube points—obtained via latin hypercube sampling (LHS)—were designed to be
quasi-random while adequately exploring a multidimensional space [39,40]. For a p dimensional
parameter space, each dimension is divided intoM equally probable sections. Then,M sample points
are randomly placed so that each sample is the only point in its axis-aligned hyperplane. This sampling
scheme is favorable in high dimensions—e.g., p ≥ 10—since increased samples are not required for
increased dimensions. In addition, these points can be nested, as with Clenshaw–Curtis.

We note that the discrete projection-based Legendre surrogate model employing Gauss–Legendre
sampling outperform the same surrogate model employing the other sampling methods. Conversely,
the regression-based Legendre, MARS, RBF, Gaussian processes, and neural networks surrogate
models favor random sampling of the parameter space. Latin hypercube sampling has been shown
to perform about as well as simple random Monte Carlo sampling strategies [39,40]. We attribute
the decrease in accuracy seen in a number of the surrogate models employing LHS sampling to
the low dimensional parameter space, thus we do not exploit the main strength of Latin hypercube
sampling—better accuracy in high dimensional spaces. Additionally, recent work has shown that this
is not true when model hyperparameters are unknown and must be estimated from training data
observed at the chosen design sites [41].

In Table 5, we tabulate the rRMSE of each of the surrogate models for several choices of the
number of tensored Gauss–Legendre points used to train the surrogate models. We note that the
Legendre polynomials employing discrete projections do not do well at approximating the physical
model for a low number of training points. This likely has to do partly with fewer points being
employed for the quadrature rule. The sparsity controlled regression-based Legendre surrogate model
does not have this same problem, but the error decreases more slowly than some of the other surrogate
models as more training points are employed. The MARS surrogate model does not improve greatly
when training points are added. The radial basis function, Gaussian processes, and neural networks
surrogate models behave similarly and, as expected, with the rRMSE error bound decreasing as more
training points are employed. In Section 5, we employ the Gauss–Legendre points for surrogate model
construction, since this choice provides a good comparison of all the surrogate models.

Table 4. Comparison of surrogate models relative error using randomly generated training points
where Legendre refers to the model constructed via Equation (21) and Legendre Reg. refers to the
model constructed via Equation (26).

Points Legendre Leg. Reg. MARS RBF GP NN

GL 2.13× 10−1 3.05× 10−1 4.18× 10−1 2.08× 10−1 1.98× 10−1 2.62× 10−1

Random 9.39× 100 2.67× 10−1 3.57× 10−1 1.12× 10−1 7.79× 10−2 2.02× 10−1

CC 2.26× 10−1 2.90× 10−1 4.31× 10−1 2.21× 10−1 2.39× 10−1 2.94× 10−1

LHS 9.44× 100 3.53× 10−1 3.60× 10−1 1.67× 10−1 1.51× 10−1 2.26× 10−1

Algorithms 2019, 12, 269 18 of 24

Table 5. Comparison of surrogate model accuracy bounds in rRMSE employing increasingly more
Gauss–Legendre training points where Legendre refers to the model constructed via Equation (21) and
Legendre Reg. refers to the model constructed via Equation (26).

M Legendre Legendre Reg. MARS RBF GP NN

93 26.950 0.4244 0.4803 0.3828 0.3804 0.4306
113 2.0417 0.4225 0.4341 0.3753 0.3661 0.4713
133 0.5061 0.3574 0.4190 0.3220 0.3109 0.5311
153 0.3351 0.3390 0.4307 0.2825 0.2738 0.3563
173 0.2947 0.3344 0.4025 0.2375 0.2422 0.4164
193 0.2427 0.3135 0.3908 0.2397 0.2173 0.3636
213 0.2128 0.3048 0.4175 0.2075 0.1975 0.2624

(a) (b)

Figure 5. Quadrature points for levels l = 0, ..., 4 for (a) Gauss–Legendre and (b) Clenshaw–
Curtis algorithms.

5. Surrogate Performance Results

For each of the surrogate models discussed in Section 3, we plot the goodness of fit for the first 50
test points in Figure 6 for detector 1. Note that we construct these surrogate models by employing
Gauss–Legendre training points. Figure 6a,b depicts the natural log response of the physical model
plotted versus the Legendre polynomial-based surrogate models solved for via discrete projection in
Equation (21) and LASSO from Equation (26). Additionally, we plot in Figure 6c–f the natural log of the
physical model response versus the response of the surrogate models based on multivariate adaptive
regression splines, radial basis functions, Gaussian processes, and neural networks, respectively.
We note that each of these surrogate models provides an accurate approximation to the physical model.

For each of the 10 detector models and for each of the considered surrogate models, we plot the
relative root mean squared error (rRMSEi) for test points {qs}S

s=1, s = 1, ..., S in Figure 7. We also
compile the total rRMSE, defined in Equation (10), for each surrogate model in Table 6 along with the
computation and evaluation times of the surrogate models.

Note that, in Figure 6a,b, both methods for computing the Legendre surrogate models produce
good approximations to the physical model. However, the results in Table 6 show that the surrogate
models computed by employing discrete projection provide better accuracy and efficiency than the
surrogate models employing sparsity controlled regression. Whereas the Legendre polynomial-based
surrogate models require the least time to compute, they require substantially more time to evaluate
due to the large number of basis functions required to accurately approximate the non-smooth behavior
of the physical model.

The MARS surrogate models do not perform as well as other surrogate models in terms of
accuracy, but outperform many of them in terms of computational speed. This is especially apparent
in some of the large deviations of the surrogate model for detector 1 from the test data in Figure 6c
as well as by the scale of the rRMSEi in Figure 7. We explain this decrease in accuracy by the fact
that MARS is meant to be used on high-dimensional problems. We would expect these surrogate

Algorithms 2019, 12, 269 19 of 24

models to be competitive in terms of accuracy with the other surrogate models when approximating
a higher dimensional problem. The ability of MARS to accommodate high-dimensional parameter
spaces makes it an ideal candidate for problems with a large number of parameters.

The radial basis functions presented in Section 3.3 are isotropic, but the surrogate models based
on radial basis functions have low rRMSE in comparison with the other surrogate models, as depicted
in Figure 7 and compiled in Table 6. This isotropy is a concern for our non-smooth model when less
training points are available, since the model has different responses in each parametric direction,
mainly between the (x, y) and I parameters. The Gaussian processes surrogate models are constructed
in a way to avoid this problem using anisotropic kernel functions. The Gaussian processes surrogate
models are more accurate than the other models, but require a large amount of computation and
evaluation time when compared with the other models. However, the combination of the computation
and evaluation expenses required by the Gaussian processes surrogate models is still significantly less
expensive than the evaluation of the physical model at those same test points.

Radial basis function and neural network surrogate models also provide accurate approximations
of the physical model with the trade off of requiring a moderate amount of time to compute the
surrogate models. The evaluation time for the RBF and neural networks surrogate models is an order
of magnitude smaller than the other surrogate models, excluding the less accurate MARS surrogate
models, and substantially smaller than the physical model evaluation time, making them ideal for
Bayesian inference and uncertainty quantification.

We used MATLAB’s built-in neural network and Gaussian processes packages to develop these
two surrogate models, whereas we constructed the functions required to evaluate the radial basis
functions and Legendre functions surrogate models. Additionally, we employed the third-party ARES
toolbox [28] for the construction of the MARS surrogate models.

0 10 20 30 40 50

Test Points

5

6

7

8

9

10

11

12

L
o

g
 o

f
M

o
d

e
l
R

e
s
p

o
n

s
e

Physical Model

Legendre Surrogate

(a)

0 10 20 30 40 50

Test Points

5

6

7

8

9

10

11

12

L
o
g
 o

f
M

o
d
e
l
R

e
s
p
o
n
s
e

Physical Model

Legendre Surrogate

(b)

0 10 20 30 40 50

Test Points

5

6

7

8

9

10

11

12

L
o

g
 o

f
M

o
d

e
l
R

e
s
p

o
n

s
e

Physical Model

MARS Surrogate

(c)

0 10 20 30 40 50

Test Points

5

6

7

8

9

10

11

12

L
o

g
 o

f
M

o
d

e
l
R

e
s
p

o
n

s
e

Physical Model

RBF Surrogate

(d)

0 10 20 30 40 50

Test Points

5

6

7

8

9

10

11

12

L
o
g
 o

f
M

o
d
e
l
R

e
s
p
o
n
s
e

Physical Model

GP Surrogate

(e)

0 10 20 30 40 50

Test Points

5

6

7

8

9

10

11

12

L
o
g
 o

f
M

o
d
e
l
R

e
s
p
o
n
s
e

Physical Model

NN Surrogate

(f)

Figure 6. Log of detector 1 model responses plotted for the first 50 test points versus the: (a) Legendre
surrogate model computed via Equation (21); (b) Legendre surrogate model computed via Equation (26);
(c) MARS surrogate model; (d) radial basis functions surrogate model; (e) Gaussian processes surrogate
model; and (f) neural networks surrogate model.

Algorithms 2019, 12, 269 20 of 24

Table 6. Comparison of surrogate models using Gauss–Legendre training points where Legendre refers
to the model constructed via Equation (21) and Legendre Reg. refers to the model constructed via
Equation (26).

Surrogate rRMSE Surrogate Computation Surrogate Evaluation
Time (s) Time (s)

Legendre 2.13× 10−1 33.42 3.86
Legendre Reg. 3.05× 10−1 50.21 3.95

MARS 4.18× 10−1 66.43 0.02
RBF 2.08× 10−1 134.45 0.29
GP 1.98× 10−1 425.64 2.32
NN 2.62× 10−1 124.11 0.13

Figure 7. Root mean squared relative error for the 10 surrogate models, corresponding to the 10
detectors, constructed using these methods.

6. Radiation Source Localization

To illustrate the use of these surrogate models for Bayesian inference, we consider the problem
of locating a source within the domain depicted in Figure 1 and outlined in Section 2.2. We begin by
simulating a 3.22× 108 Bq source at the location (x, y) = (158, 98) as in Ref. [16]. We then employ the
ray-tracing model from Equation (3) to simulate detector responses and DRAM to perform Bayesian
inference. A complete description of DRAM and the methodology used for source localization can
be found in Ref. [6]. We initialize the MCMC chains in the center of the uniform parameter prior
distributions—i.e., an approximately 3.7× 107 Bq source in the center of the domain—and we draw
105 samples, with the first half discarded as burn-in. Visual inspection of the sample histories indicate
that this number of samples is a very conservative choice. We plot the posterior obtained from DRAM
in Figure 8 and note that the mode of the posterior is within approximately 1.5 m of the true source
location. Additionally, we have captured the true source location within the posterior distribution,
which covers approximately a 10 m by 10 m portion of the domain.

Algorithms 2019, 12, 269 21 of 24

(a) (b)

Figure 8. Posterior density for source location employing the ray-tracing model for Bayesian inference
with DRAM. We plot (a) the full domain and (b) the portion of the domain where the posterior
is located.

Next, we use the same simulated source and employ the surrogate models to generate detector
responses to solve the source localization problem with DRAM. We employ the same DRAM setup
as with the ray-tracing model and we plot the posteriors in Figure 9. We note that the mode of the
posterior is within 2 m of the true source location and that the posteriors are more diffuse than before.
The wider posteriors are caused by the model discrepancy errors εm

i that arise from our smoothing of
the ray-tracing model solution. These discrepancies lead to less precise localization results, however
we have still accurately localized the source to within a 35 m by 35 m portion of the domain and this
amount of precision in the posterior results is sufficient for most applications.

(a) (b)

Figure 9. Posterior density for source location employing the Gaussian processes surrogate model for
Bayesian inference with DRAM. We plot (a) the full domain and (b) the portion of the domain where
the posterior is located.

Algorithms 2019, 12, 269 22 of 24

7. Conclusions and Future Work

Our goal is to construct surrogate models that could approximate the non-smooth model
solution accurately and inexpensively. We employ surrogate models based on Legendre polynomials,
multivariate adaptive regression splines, radial basis functions, Gaussian processes, and neural
networks. Table 6 displays the rRMSE of the surrogate models, as well as the computational efficiency
of the surrogate models. We see that all of the surrogate models yield a dramatic decrease in the
time required to evaluate the model at the 500 test points. The evaluation of the ray-tracing model
required nearly 14 min, whereas all the surrogate models required merely seconds for the same
evaluation. The relative errors in Table 6 are acceptable for many applications, including for this model.
Additionally, we show that the choice of training points is important when choosing a surrogate model
and can affect the performance of the surrogate model approximation. We show that the surrogate
models investigated here provide sufficiently accurate approximations for use in Bayesian inference
when solving the source localization problem.

An area of present and future work is the application of a selection of these surrogate models to
approximate high-fidelity 3D radiation transport simulations in a similar urban domain. Whereas these
simulations require multiple minutes for a single evaluation with low uncertainty, they incorporate more
complex physics and allow for three-dimensional domain construction. However, this computational
expense precludes Bayesian inference and motivates the development of surrogate models. An additional
area of future work is the use of these surrogate models for optimal detector placement and moving
detectors, similar to the work done in Ref. [2,5]. The surrogate models developed here would require
being retrained for every new detector location considered for optimal placement, making these
surrogate models in their current framework infeasible for use in that problem. However, the surrogate
modeling techniques can be reused to approximate, for instance, mutual information to inform optimal
surrogate placement.

Author Contributions: Conceptualization, J.A.C., R.S. and J.M.; methodology, J.A.C.; software, J.A.C. and J.M.H.;
validation, J.A.C. and J.M.H.; formal analysis, J.A.C.; investigation, J.A.C.; resources, J.A.C.; data curation,
J.A.C. and J.M.H.; writing–original draft preparation, J.A.C. and R.S.; writing–review and editing, R.S. and J.M.;
visualization, J.A.C. and J.M.; supervision, R.C.S. and J.M.; project administration, R.C.S.; funding acquisition,
R.C.S. and J.M.

Funding: This research was supported by the Department of Energy National Nuclear Security Administration
(NNSA) under the Award Number DE-NA0002576 through the Consortium for Nonproliferation Enabling
Capabilities (CNEC).

Acknowledgments: Satellite imagery used in this report is c©2015 Commonwealth of Virginia, DigitalGlobe,
District of Columbia (DC GIS), Sanborn, as well as the U.S. Geological Survey and is provided by Google Maps.
Building footprints shown in satellite overlays is c©2015 OpenStreetMaps contributors and is publicly available
under the terms of the Open Database License (http://www.openstreetmap.org/copyright).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brennan, S.; Mielke, A.; Torney, D.; Maccabe, A. Radiation detection with distributed sensor networks.
Computer 2004, 37, 57–59. [CrossRef]

2. Ştefănescu, R.; Schmidt, K.; Hite, J.; Smith, R.C.; Mattingly, J. Hybrid optimization and Bayesian inference
techniques for a non-smooth radiation detection model. Int. J. Numer. Methods Eng. 2017, 111, 955–982.
[CrossRef]

3. Chin, J.; Yau, D.K.Y.; Rao, N.S.V.; Yang, Y.; Ma, C.Y.T.; Shankar, M. Accurate localization of low-level
radioactive source under noise and measurement errors. In Proceedings of the 6th ACM Conference on
Embedded Network Sensor Systems, Raleigh, NC, USA, 5–7 November 2008; pp. 183–196.

4. Hite, J.M. jasonmhite/gefry2. [online] Github. Available online: Http://github.com/jasonmhite/gefry2
(accessed on 22 June 2018).

5. Schmidt, K.; Smith, R.C.; Hite, J.; Mattingly, J.; Azmy, Y.; Rajan, D.; Goldhahn, R. Sequential optimal
positioning of mobile sensors using mutual information. Stat. Anal. Data Min. 2019. [CrossRef]

http://www.openstreetmap.org/copyright
http://dx.doi.org/10.1109/MC.2004.103
http://dx.doi.org/10.1002/nme.5491
Http://github.com/jasonmhite/gefry2
http://dx.doi.org/10.1002/sam.11431

Algorithms 2019, 12, 269 23 of 24

6. Haario, H.; Laine, M.; Mira, A.; Saksman, E. DRAM: Efficient adaptive MCMC. Stat. Comput. 2006, 16, 339–354.
[CrossRef]

7. Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.;
et al. Initial MCNP6 release overview. Nucl. Technol. 2012, 180, 298–315. [CrossRef]

8. Hite, J.M.; Mattingly, J.K.; Schmidt, K.L.; Ştefănescu, R.; Smith, R. Bayesian metropolis methods applied to
sensor networks for radiation source localization. In Proceedings of the IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, 19–21 September 2016.

9. Yankov, A. Analysis of Reactor Simulations Using Surrogate Models. Ph.D. Thesis, University of Michigan,
Ann Arbor, MI, USA, 2015.

10. Wang, C.; Duan, Q.; Gong, W.; Ye, A.; Di, Z.; Miao, C. An evaluation of adaptive surrogate modeling based
optimization with two benchmark problems. Environ. Model. Softw. 2014, 60, 167–179. [CrossRef]

11. Bhosekar, A.; Ierapetritou, M. Advances in surrogate based modeling, feasibility analysis, and optimization:
A review. Comput. Chem. Eng. 2018, 108, 250–267. [CrossRef]

12. Forrester, A.; Keane, A. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79.
[CrossRef]

13. Han, Z.-H.; Zhang, K.-S. Surrogate-based optimization. In Real-World Application of Genetic Algorithm;
IntechOpen: London, UK, 2012; pp. 343–362.

14. Ştefănescu, R.; Hite, J.; Cook, J.; Smith, R.C.; Mattingly, J. Surrogate-based robust design for a non-smooth
radiation source detection problem. Algorithms 2018, 12, 113. [CrossRef]

15. Shultis, J.K.; Faw, R.E. Radiation Shielding; American Nuclear Society: La Grange Park, IL, USA, 2000; Chapter
10.

16. Hite, J.M. Bayesian Parameter Estimation for the Localization of a Radioactive Source in a Heterogeneous
Urban Environment. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2019.

17. Smith, R.C. Uncertainty Quantification: Theory, Implementation, and Applications; SIAM: Philadelphia, PA,
USA, 2014.

18. Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007,
102, 359–378. [CrossRef]

19. Sullivan, T.J. Introduction to Uncertainty Quantification; Springer: New York, NY, USA, 2015.
20. Bieglert, L. Large-Scale Inverse Problems and Quantification of Uncertainty; Wiley: Chichester, UK, 2011;

pp. 135–136.
21. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79.

[CrossRef]
22. Yang, Y. Can the strengths of AIC and BIC be shared? A conflict between model identification and regression

estimation. Biometrika 2005, 92, 937–950. [CrossRef]
23. Friedlander, M.P.; van den Berg, E. Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput.

2008, 31, 890–912.
24. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [CrossRef]
25. Zhang, W.; Goh, A. Multivariate adaptive regression splines for analysis of geotechnical engineering systems.

Comput. Geotech. 2013, 48, 82–95. [CrossRef]
26. Denison, D.G.T.; Mallick, B.K.; Smith, A.F.M. Bayesian MARS. Stat. Comput. 1998, 8, 337–346. [CrossRef]
27. Green, P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrica 1995, 82, 771–832. [CrossRef]
28. Jekabsons, G. ARESLab: Adaptive Regression Splines Toolbox for Matlab/Octave. Available online: http:

//www.cs.rtu.lv/jekabsons/ (accessed on 17 May 2018).
29. Piret, C. Analytical and Numerical Advances in Radial Basis Functions. Ph.D. Thesis, University of Colorado,

Boulder, CO, USA, 2007.
30. Driscoll, T.A.; Fornberg, B. Interpolation in the limit of increasingly flat radial basis functions.

Comput. Math. Appl. 2002, 43, 413–422. [CrossRef]
31. Choi, I.; Li, B.; Wang, X. Nonparametric estimation of spatial and space-time covariance functions. J. Agric.

Biol. Environ. Stat. 2013, 18, 611–630. [CrossRef]
32. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Boston, MA, USA, 2006.
33. Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging; Springer Series in Statistics; Springer: New

York, NY, USA, 1999.

http://dx.doi.org/10.1007/s11222-006-9438-0
http://dx.doi.org/10.13182/NT11-135
http://dx.doi.org/10.1016/j.envsoft.2014.05.026
http://dx.doi.org/10.1016/j.compchemeng.2017.09.017
http://dx.doi.org/10.1016/j.paerosci.2008.11.001
http://dx.doi.org/10.3390/a12060113
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1093/biomet/92.4.937
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1016/j.compgeo.2012.09.016
http://dx.doi.org/10.1023/A:1008824606259
http://dx.doi.org/10.1093/biomet/82.4.711
http://www.cs.rtu.lv/jekabsons/
http://www.cs.rtu.lv/jekabsons/
http://dx.doi.org/10.1016/S0898-1221(01)00295-4
http://dx.doi.org/10.1007/s13253-013-0152-z

Algorithms 2019, 12, 269 24 of 24

34. Bastos, L.S.; O’Hagan, A. Diagnostics for Gaussian process emulators. Technometrics 2009, 51, 425–438.
[CrossRef]

35. Marsland, S. Machine Learning: An Algorithmic Perspective; CRC Press: Boca Raton, FL, USA, 2014.
36. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
37. Kaufman, C.G.; Bingham, D.; Habib, S.; Heitmann, K.; Frieman, J.A. Efficient emulators of computer

experiments using compactly supported correlation functions, with an application to cosmology.
Ann. Appl. Stat. 2011, 5, 2470–2492. [CrossRef]

38. Trefethen, L. Is Gaussian quadrature better than Clenshaw-Curtis? SIAM Rev. 2008, 50, 67–87. [CrossRef]
39. Owen, A. Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 1997, 34, 1884–1910.

[CrossRef]
40. Stein, M.L. Large sample properties of simulations using latin hypercube sampling. Technometrics 1987, 29,

143–151. [CrossRef]
41. Zhang, B.; Cole, D.A.; Gramacy, R.B. Distance-distributed design for Gaussian process surrogates. Technometrics

2019, 1–28. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1198/TECH.2009.08019
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1214/11-AOAS489
http://dx.doi.org/10.1137/060659831
http://dx.doi.org/10.1137/S0036142994277468
http://dx.doi.org/10.1080/00401706.1987.10488205
http://dx.doi.org/10.1080/00401706.2019.1677269
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Physical Model
	Numerical Model
	Model Geometry
	Statistical Model

	Surrogate Models
	Legendre Polynomials
	Multivariate Adaptive Regression Splines
	Radial Basis Functions
	Gaussian Process Regression
	Neural Networks

	Training Points
	Surrogate Performance Results
	Radiation Source Localization
	Conclusions and Future Work
	References

