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Abstract: This paper takes 50 ETF options in the options market with high transaction complexity as
the research goal. The Random Forest (RF) model, the Long Short-Term Memory network (LSTM)
model, and the Support Vector Regression (SVR) model are used to predict 50 ETF price. Firstly,
the original quantitative investment strategy is taken as the research object, and the 15 min trading
frequency, which is more in line with the actual trading situation, is used, and then the Delta hedging
concept of the options is introduced to control the risk of the quantitative investment strategy,
to achieve the 15 min hedging strategy. Secondly, the final transaction price, buy price, highest price,
lowest price, volume, historical volatility, and the implied volatility of the time segment marked
with 50 ETF are the seven key factors affecting the price of 50 ETF. Then, two different types of
LSTM-SVR models, LSTM-SVR I and LSTM-SVR II, are used to predict the final transaction price
of the 50 ETF in the next time segment. In LSTM-SVR I model, the output of LSTM and seven
key factors are combined as the input of SVR model. In LSTM-SVR II model, the hidden state
vectors of LSTM and seven key factors are combined as the inputs of the SVR model. The results
of the two LSTM-SVR models are compared with each other, and the better one is applied to the
trading strategy. Finally, the benefit of the deep learning-based quantitative investment strategy,
the resilience, and the maximum drawdown are used as indicators to judge the pros and cons of the
research results. The accuracy and deviations of the LSTM-SVR prediction models are compared
with those of the LSTM model and those of the RF model. The experimental results show that the
quantitative investment strategy based on deep learning has higher returns than the traditional
quantitative investment strategy, the yield curve is more stable, and the anti-fall performance is better.

Keywords: deep learning; quantitative investment strategy; options prediction; long short-term
memory network; support vector regression; random forest

1. Introduction

Financial innovation improvement drives the rise of quantitative trading in the Chinese financial
market. As major parts of the national market economy, the crucial roles stocks, futures, and options
markets attract an increasing number of researchers for the study of market price behavior. Instead
of introducing numerous premise assumptions, the adoption of deep learning techniques makes it
possible to directly hand over rules mining tasks to computers. In this way, the study of stocks, futures
and options price behavior is essentially a predictive work that is related to the future price trend of
trading objects in the market.

At present, most researches target the stock market [1–3], however, in China, traders can only
buy stocks first, which means that traders can only hold a long position. Besides, T + 0 trading is
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also forbidden, which means traders cannot sell the amount of stocks they bought within a same day.
These rules contribute to the particularity of Chinese stock market, which further negatively prompts
the utilization of prediction based on deep learning in this realm. Therefore, this article focuses on an
options market with four trading strategies (Long Call, Short Call, Long Put, Short Put) where deep
learning prediction results can be fully employed, in order to mirror the impact of its accuracy on
quantitative trading strategies in a straightforward way.

However, financial markets tend to present tremendous noise, non-stationarity, and non-linearity [4–6].
Furthermore, technical indicators of the traditional financial market cannot fully reflect the situation,
which lead to problems such as greater delay and lower accuracy. Meanwhile, conventional
econometric equations hardly perform well in analyzing high-dimensional, complex, and noisy
financial market data. In sharp contrast, deep learning-based data mining models succeed in avoiding
drawbacks mentioned above, and they are more likely to obtain a more accurate result [5].

Deep learning models [7] have attracted huge attention from researchers and investors, due to
their superiority in dealing with extremely complex problems [2,5]. Many high-tech companies, such
as Microsoft, Baidu, and Google, have already invested heavily in deep learning models, in order to
take leading positions.

Financial market prediction is actually a high-dimensional time series forecast, since differences
always exist between contiguous moments. For time-series forecasting, Passalis et al. [8] proposed a
novel temporal-aware neural bag-of-features (BoF) model, which is tailored to the needs of time-series
forecasting by using high frequency limit order book data that captures both long-term and short-term
behavior in order to handle the complex situation and to improve the prediction ability. Researchers
have already discussed quite a few econometrical and statistical models, such as the Autoregressive
Integrated Moving Average (ARIMA) model [9] and the Vector Autoregressive (VAR) model [10] etc.,
in financial time series predictions, but these models cannot perfectly fit the financial time series, due
to their non-stationarity and nonlinearity. Given these characteristics, researchers have subsequently
turned to artificial neural networks (ANNs) [11], deep learning [6,12], and other models. Results show
that these models perform better in reflecting real financial situations compared to the linear ones.
Based on the structural risk minimization principle, Support Vector Machine (SVM) is an approach
that involves training of the polynomial or radial basis function neural network. Compared with
other methods, it has better generalization performance [13], which has gained favor from numerous
researchers. For instance, Kim [4] and Sun [14] took advantage of SVM for financial forecasting,
and both achieved good results. However, one model approach may ignore other features of the
problem, which brings about the multiple models approach. Van [15] and Das [16] etc., all combine
a variety of models to enhance prediction results by exploiting the characteristics of each model.
The application of deep learning in financial markets not only lowers the difficulty of analysis and
forecasting to a large extent, but also introduces new investment methods and ideas to investors.

Based on the above ideas, this paper will adopt the deep learning and support vector machine
approach, as well as using the specific data (50 ETF options data) to predict the 50 ETF price. During
the research, the data is preprocessed, which involves the following procedures. First of all, the History
Volatility (HV) model and the Implied Volatility (IV) model are combined to calculate the HV of 50 ETF
and the IV of 50 ETF options. Then, they are selected as two input characteristics of the deep learning
model, and the price prediction model of the 50 ETF options is constructed. Afterwards, the question of
whether the deep learning shows a higher accuracy rate on this problem is studied, as well as whether
the quantitative investment strategy can lead to a higher rate of return and lower drawdown.

The experimental results show that compared with the traditional quantitative investment strategy,
the quantitative investment strategy based on deep learning presents higher returns, a more stable
yield curve, and better anti-fall performance. Therefore, the quantitative investment strategy based on
deep learning has certain reference value for investors when making decisions. For the deep learning
model, the Long Short-Term Memory (LSTM) that is built in this paper, there is still space to improve,
and the combined Long Short-Term Memory– Support Vector Regression (LSTM-SVR) model improves
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significantly in prediction accuracy. At the same time, the quantitative investment strategy developed
in this paper can withstand certain prediction errors, so that the quantitative investment strategy
based on deep learning in this paper has a better performance in the options market. In contrast, in
the stock and futures markets, errors are likely to cause huge losses. For the stock market, due to the
particularity of China’s stock market, only T + 1 trading transactions can be conducted, and this error
may result in a certain amount of loss. With regard to the futures market, the loss caused by the error
may even lead to a direct burst. Therefore, there is still a lot of work that needs to be done in research
on quantitative investment strategies based on deep learning.

The innovative points of this paper are as follows: (1) Based on the deep learning model LSTM,
this paper combines LSTM and SVM to form the LSTM-SVR model. This model can reduce the
predicted deviation value; that is, improve the accuracy of the prediction, especially during a relatively
stable period. (2) The quantitative investment strategy designed in this paper introduces the concept
of hedging, which guarantees Delta neutrality. The experiment proves that hedging boosts the
quantitative investment strategy performance in terms of profitability and stability. (3) The quantitative
investment strategy in this paper is conducted every 15 minutes, which is closer to the real trading
market, so that the back-testing results can be more practical. (4) This paper combines the prediction
result of the deep learning model LSTM-SVR, which acts as a signal ‘diff’ with the quantitative
investment strategy to form a quantitative investment strategy based on the deep learning model,
which exhibits a distinct optimization in terms of both yield and resilience.

The paper is organized as follows: Section 2 offers a brief review of both the related domestic
and foreign literature. Section 3 introduces the models and the quantitative investment strategy of
this paper. Section 4 introduces the experimental simulation. Section 5 analyzes and compares the
experimental results. Section 6 gives conclusions and prospects.

2. Literature Review

Quantitative investment strategies can be currently divided into single model-based research
and multi-model-based ones. Due to advantages in solving complex and non-linear problems, more
researches are conducted by adopting deep learning methods. Additionally, multi-model based
methods can produce higher accuracies than the single-model ones, providing both theoretical and
practical significance.

In terms of single models, researchers have proposed a number of instructive studies. Kercheval
et al. [17] proposed a framework based on machine learning to acquire the dynamics of high-frequency
limit-order books in financial equity markets, and to predict the real-time metrics automatically.
They used multi-class support vector machines to help build a learning model for each metric.
They found that it is effective to forecast the short-term price by using the features from the proposed
framework. Fan and Palaniswami [18] studied the stock selection problem by using support vector
machines (SVM) to identify stocks that are likely to receive excess returns and to outperform the market.
The total return of the equal-weight stocks portfolio selected by SVM over a five-year period was
208%, which remarkably exceeded the benchmark of 71%. They found that through a class sensitivity
tradeoff, the output of the support vector machine can be interpreted as a probability measure and
sorted, so that the selected stock can be fixed at the top 25%. Although traditional SVM can reach good
results, it is still necessary to improve the common method for better results when dealing with some
special problems. Tay and Cao [13] proposed an improved model, the C-ascending support vector
machine, and applied it for simulating non-stationary financial time series. Based on prior knowledge,
the dependence between input variables and output variables changed over time. Specifically, recent
past data can provide more important information than distant past data. They exposed that this
support vector machine had a better prediction ability than the traditional SVM when handling the
actual ordered sample data. Cao and Tay [19] studied the application of SVM in financial time series
predictions, and compared it with the multi-layer back-propagation neural network (BPNN) and the
regularized radial basis function neural network (RBF). The application feasibility of the support vector
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machine in financial forecasting was studied, and the variation of support vector machine performance
with free parameters was studied. Introducing the non-stationarity financial time series into the
support vector machine, they put forward adaptive parameters, which had higher generalization
performances in financial forecasting. However, for single models, one-sidedness learning features
still exist; that is, it is impossible to learn the important features comprehensively, resulting in poor
prediction results.

Therefore, in order to fully characterize the features, researchers combined two or more models to
form a hybrid one, for a more outstanding performance. Lin et al. [20] proposed an approach based
on particle swarm optimization for parameter determination and feature selection of the SVM, called
particle swarm optimization + support vector machine (PSO-SVM). In order to evaluate it, multiple
common data sets were used to calculate the classification accuracy, where the PSO-SVM method
was compared with the traditional parameter value grid search method and other methods. Results
showed that the classification accuracy of this method outperforms other methods, and achieves similar
results to the GA-SVM method, which illustrates that the PSO-SVM method is valuable for parameter
determination and feature selection of support vector machines. Das and Padhy [16] further improved
on the basis of Lin, linking SVM with teaching–learning-based optimization (TLBO) which avoids
user-specified control parameters that are required in other optimization methods. The feasibility
and effectiveness of this hybrid model was evaluated by predicting the daily closing price of the
Commodity Futures Index (COMDEX). They discovered that this model is more efficient than the
PSO-SVM hybrid model and the standard support vector machine model. Hsu [21] designed a hybrid
method based on back-propagation neural network (BPNN), feature selection technology and genetic
programming (GP), using technical indicators to solve the stock/future price forecasting problem.
By predicting the closing price of the spot monthly futures of the Taiwan Stock Exchange’s Capital
Weighted Index (TAIEX), the feasibility and effectiveness of the forecast are verified. In addition, the
most important technical indicators can be determined by using a feature selection method based on
the proposed simulation technique, or a preliminary GP prediction model. Liang et al. [22] proposed
a simple and effective options price prediction method based on neural network (NN) and SVR
analysis. First, they improved the traditional options pricing method to make options prices prediction
accessible. Secondly, the use of NNs and SVRs further reduced the prediction error of the parametric
method. Since the traditional method simulated the trend of the actual options price, the prediction
error of the nonlinear curve simulated in a mixed model of NNs and SVRs in the first stage can be
further reduced in the second stage. Finally, a lot of experimental research on the Hong Kong options
market data proved that NNs and SVRs can improve the prediction accuracy.

With the further development of deep learning, researchers have also applied it into the financial
forecasting field, where financial time series forecasting problems are also essentially time series
problems. Considering that the performance of Recurrent Neural Networks (RNN) tend to surpass
other methods, many researchers have focused their attention on RNN. Tsantekidis et al. [23] used
recurrent neural networks to form a deep learning methodology to forecast the price movement in
future by using large-scale high-frequency data on Limit Order Books. Chen et al. [24] modeled
and predicted China stock returns by using LSTM. Compared with the random prediction method,
the proposed LSTM model showed its power by improving the accuracy of the stock returns forecast.
Minami [25] proposed a sequential learning model that uses LTSM-RNN methods to predict individual
stock prices with corporate behavioral event information and macroeconomic indices, displaying broad
application prospects in stock price forecasting under the corporate behavior and corporate publishing
variables. Besides, some researchers used other deep learning models; Tsantekidis et al. [26] used
Convolutional Neural Networks (CNNs) to form a deep learning methodology to forecast the price
movements of stocks, using as input large-scale, high-frequency time-series derived from the order
book of financial exchanges. Tsantekidis et al. compared CNNs with other models like SVM and
Multilateral Neural Networks to show that CNNs had better performance in their situation. However,
compared with hybrid models, single models are usually unlikely to give a best result. Hence,
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Sun et al. [6] proposed a hybrid integration learning method of the AdaBoost model and the LSTM
network to predict financial time series. The database was trained by AdaBoost model to obtain training
samples, after which each of them was predicted by LSTM. Finally, the prediction results of all LSTM
predictors were synthesized by the AdaBoost model to offer an integrated result. This AdaBoost-LSTM
integrated learning method was illustrated to be superior to other single prediction models and
integrated learning methods.

In this paper, two different LSTM-SVR models are proposed to forecast the 50 ETF price. Through
studying the 50 ETF options market in the Chinese options market, this paper aims to design a
short-strangle quantitative investment strategy based on the historical volatility and the implied
volatility of 50 ETF underlying goods. The trading frequency is every 15 min (daily trading 16 times),
and the concept of hedging is introduced to keep Delta neutral, so that more stable returns can
be gained under stable market conditions. Then, the LSTM-SVR hybrid models (LSTM-SVR I and
LSTM-SVR II) are used to predict the future price of the 50 ETF target, and the accuracy and error of the
prediction results of these two models are compared in this paper. Results show that the LSTM-SVR I
model has better performance than the LSTM-SVR II model. Therefore, the results of the LSTM-SVR
I model are added into trading strategy. The prediction results based on the deep learning model
LSTM-SVR I are further viewed as an investment signal diff, which is added into the quantitative
investment strategy in this paper for greater returns and better resilience.

The following section will introduce the models and the quantitative investment strategy.

3. Models and Quantitative Investment Strategy

3.1. Long Short-Term Memory (LSTM) Model

Sepp Hochreiter and Jurgen Schmidhuber [27] first proposed the LSTM model in 1997. The LSTM
neural network is a new deep learning neural network based on the Recurrent Neural Networks (RNN)
model. Therefore, before introducing the LSTM model, we need to introduce the RNN model.

It can be seen from Figure 1 that compared with ANNs, in addition to the input and output layer,
the RNN model also considers the hidden layer at the next time step. Through the feedback of the
hidden layer at this time step, the weight of the hidden layer at the next time step is affected. The RNN
model is often simplified to the right part of Figure 1 for better understanding. In the RNN model,
the next time t+1 is affected by the current time t. It is worth noting that the weights at each time step
(including weights from the input layer to the hidden layer and from the hidden layer to the output
layer) are the same. After the RNN model is expanded according to the time steps, the structure of
Figure 2 can be obtained:
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Where w1 means the weight input from the output layer to hidden layer at the same time.
w2 means the weight input from last hidden layer to next hidden layer at adjacent time points.
w3 means the weight input from the hidden layer to the input layer at the same time.

After expanding the RNN model, it is possible to analyze and understand its structure in a much
more clear way. Forward propagation can be calculated according to the time sequence, as shown in
Figure 3, whereas back-propagation refers to passing the accumulated residuals forward and correcting
the weights, which start from the last time step, as shown in Figure 4. Therefore, back-propagation
enables the RNN model to perform end-to-end training.
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Forward Propagation:
αt

k = ∑H
h=1 whkbt

h (1)

αt
h = ∑I

i=1 wihxt
i + ∑H

h′=1 wh′hbt−1
h′ (2)

bt
h = θh(α

t
h) (3)

The RNN model and its formula in this paper are cited from [28], where b refers to the value
calculated by the activation function, α refers to the value calculated by the aggregation, w represents
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the weights connecting different nodes, w with the subscript k is associated with the output layer, and w
with the subscript h is associated with the hidden layer, and a function with parentheses indicates the
activation function. As seen from the above equation, similar to the normal neural network, the output
layer in the RNN model is also the sum of the product of the hidden layers output and its weights.
Yet, the difference is that all the calculated values have time nodes t as a superscript, which indicates
the time t. L represents the Loss Function, which is the mean squared error. The formula of the Loss
Function is:

MSE(y, y′) = ∑n
i=1(yi − y′i)

2

n
(4)

where yi is the actual value and y′i is the fit value.
The difference between the RNN model and the traditional neural networks model mentioned

above is that the hidden layer receives the data from the hidden layer of the previous time, which
can also be reflected in Equation (2). The first summation in Equation (2) represents the result from
the input layer, which is the same as the traditional neural network, while the second summation
represents the result from the hidden layer of the previous time. Finally, the result of the activation
function in Equation (3) is substituted into Equation (1) to calculate the final result through the
summation process.

Back-propagation:
δt

h = ϑ′(αt
h)(∑

K
k=1 δt

kwhk + ∑H
h′ δt+1

h′ whh′) (5)

δt
j =

∂L
∂αt

j
(6)

∂L
∂wij

= ∑T
t=1

∂L
∂αt

j

∂αt
j

∂wij
= ∑T

t=1 δt
j b

t
i (7)

The above formula mainly calculates the cumulative residual in the hidden layer during
back-propagation. Similar to the forward propagation, the two parts in the second bracket of the right
part in Equation (5) represent the residual returned by the output layer at present, and the residual
returned by the hidden layer of the next time step (because it is back-propagated). In order to achieve
the fastest gradient descent, the two values are derived to correct the weights of each node.

For the RNN model, in the process of minimizing Loss, the Loss Function needs to be derived
(computing the gradient), since the gradient direction (the direction of the derivation) is the fastest
direction in which the value of the Loss Function decreases. However, when computing the gradient
of the Loss Function, Gradient Vanish phenomenon is likely to happen. That is to say in the process of
finding the minimum value, the gradient function disappears quickly. As a result, the Loss Function
requires nearly infinite time to approach the minimum value.

Although simple, the traditional way to solve the Gradient Vanish that replaces the activation
is still effective. However, a better model architecture can help to significantly correct and optimize
RNN. Thus, Sepp Hochreiter and Jurgen Schmidhuber [27] proposed the LSTM model.

In order to solve problems exposed in the RNN model, the LSTM model adds a long-time lag.
In the structure shown in Figure 5, each memory cell is controlled by three special gates for reading,
writing and saving functions. These three types of gates are called the forget gate, the output gate and
that input gate, respectively, which only have weights of 0 and 1 to selectively correct the parameters.
For example, when the weight of the forget gate is 1, the storage cell stores the content information,
while when the forget gate has a weight of 0, the storage cell clears the previous content. When the
weight of the input gate is 1, new information will be sent to the memory cell, whereas when the
weight is 0, no information will enter the memory cell. When the weight of the output gate is 1,
the information stored in the memory cells is accessible to the other parts of the LSTM.
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For the model shown in Figure 5, the values of the three gates for each memory cell are
obtained through training. Each black node in Figure 5 represents an associated activation function.
The commonly used activation function is the sigmoid function. In forward propagation, the calculation
formula for each department is as follows [29]:

Input gate:
αt

l = ∑I
i=1 wil xt

i + ∑H
h=1 whlbt−1

h + ∑C
c wclst−1

c (8)

bt
1 = f (αt

1) (9)

The subscript L is related to the input gate. According to Equation (8), the input of the input gate
includes the input of the outer layer and the dashed line from the memory cells, which is expressed
as the first summation and the third summation part of the right side of the Equation in Equation
(8). The second part of the summation with H can be seen as part of the input from the outer layer,
which can either be the result of the interconnection between the memory cells or the result of the
interconnection between the hidden layers, reflecting the flexibility of LSTM. The subscript c is related
to the memory cells.

Forget gate:
αt

φ = ∑I
i=1 wiφxt

i + ∑H
h=1 whφbt−1

h + ∑C
c wcφst−1

c (10)

bt
φ = f (αt

φ) (11)

Inputs associated with the forget gate include: the inputs from the outer layer, the memory cells
(dashed line) and the input layer.

Memory cells:
αt

c = ∑I
i=1 wicxt

i + ∑H
h=1 whcbt−1

h (12)

st
c = bt

φst−1
c + bt

1g(at
c) (13)

where st
c is the network’s cell state at the time t. As can be seen from Equation (12), the inputs

associated with memory cells include: the general inputs of the outer layer and the input layer. g(x) in
Equation (13) represents an activation function, and Equation (13) shows that the memory cells connect
the product of the forget gate and the previous time state, and the product of the input gate and the
activation function, which are then summed.

Output gate:
αt

w = ∑I
i=1 wiwxt

i + ∑H
h=1 whwbt−1

h + ∑C
c wcwst

c (14)

bt
w = f (αt

w) (15)
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The output layer shares the same principle of the input layer.
The final output is:

bt
c = bt

wh(st
c) (16)

The small black dot above the LSTM structure diagram is another activation function h(x).
Back propagation:
Input gate:

δt
l = f ′(αt

l)∑
C
c=1 g(αt

c) ∈t
s (17)

Forget gate:
δt

φ = f ′(αt
φ)∑C

c=1 st−1
c ) ∈t

s (18)

Output gate:
δt

w = f ′(αt
w)∑C

c=1 h(st
c) ∈t

s (19)

Memory cells:

∈t
s= bt

wh′(st
c) ∈t

c +bt+1
φ ∈t+1

s +wclδ
t+1
l + wcφδt+1

φ + wcwδt
w (20)

δt
c = bt

l g′(αt
c) ∈t

s (21)

Final output:

∈t
c=

∂L
∂bt

c
(22)

∈t
s=

∂L
∂st

c
(23)

∈t
s= ∑K

k=1 wckδt
k + ∑G

g=1 wcgδt+1
g (24)

In conclusion, the invention of LSTM solves the problem that the weight of the training becomes
very small due to the disappearance of the gradient when the RNN is back-propagating, which further
causes that the whole training process to only reach a local optimal solution. Through adding three
gates (the input gate, output gate, and forget gate), the LSTM solves this problem and assists in
controlling the error during propagation, which ensures that a gradient explosion will never occur,
regardless of the diversity of the spread. Therefore, this paper adopts the LSTM model for research.

Based on the data obtained from the database and the data obtained through data processing,
this paper sorts out input data with seven attributes: the final transaction price within the 50 ETF time
segment, the purchase price (the highest bid price within the time segment on the market), the highest
price within the 50 ETF time segment, the lowest price within the 50 ETF time segment, the volume
within the time segment, the historical volatility (HV) at that time, and the implied volatility (IV).
These seven features are stored as independent variables in the csv file, and Tensorflow is used to
build the LSTM cell in Python. Under the Python 3.6 environment, the deep learning model LSTM
is run with seven features as input data. Under MATLAB, the Random Forest (RF) model proposed
in paper [30] is built with seven features as input data. Compared with the result of LSTM and the
result of RF, LSTM shows better performance. Therefore, LSTM is chosen to combine with SVR. At the
same time, the traditional machine learning model, SVR, is also adopted. Eight features in total, which
involve the seven attributes as well as the predicted values obtained by the LSTM model, are used as
the input data of the SVR model in MATLAB, to form the LSTM-SVR I model. Besides, the hidden state
vectors from every hidden layers of LSTM are extracted and these hidden vectors with seven attributes
are combined as input data of the SVR model to form the LSTM-SVR II model. Since in this paper the
hidden units used in LSTM is 20, and as for the LSTM-SVR II model, there are a total of 27 attributes as
the inputs of SVR. The support vector regression SVR method in this paper is proposed by.

The following section will introduce quantitative investment strategies.
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3.2. The Support Vector Regression Model

Different from the traditional SVM proposed in paper [31] used for classification, in this article,
the SVR model proposed in paper [32] is used as a part of the LSTM-SVR model.

The difference between the SVR used in this article and the traditional SVM used for classification
includes the objective function, constraint, and kernel function:

As for SVC:

min
{

1
2
‖ w ‖2

}
, s.t. yi(wxi + b) ≥ 1, ∀i (25)

where, 1
2‖ w ‖2 represents the margin between the two support vectors, yi(wxi + b)-1=0 denotes the

sample on the frontier, and yi equals 1 or −1.
As for SVR:

min
{

1
2
‖ w ‖2

}
, s.t. |yi(wxi + b)| ≤ ε, ∀i (26)

where, 1
2‖ w ‖2 represents the margin between two support vectors, yi(wxi + b)-1=0 means the sample

on the frontier, yi equals 1 or −1.
In the SVR model, if the difference between the prediction value yi and the real value is less than

the threshold ε, we will not make a penalty on this sample point.
In the SVR model in this article, RBF (radial basis function) is selected as the kernel function.

Therefore, there are two significant parameters, c and g. A detailed discussion of c and g is given a
following section (Section 4.3.2).

3.3. Quantitative Investment Strategies

3.3.1. Introduction to the Basics of Options

According to the paper [33], there are the introductions to basics of options:
(1) 50 ETF options
The options used in this article is the Shanghai 50 ETF options. The Shanghai 50 ETF options

contract is a standardized contract established by the Shanghai Stock Exchange to provide the buyer
with the right to buy or sell the “Shanghai 50 Trading Open Index Securities Investment Fund” at a
specific price within a certain period of time. After paying a certain amount of premiums, the buyer of
the 50 ETF options has the absolute right to decide whether to execute the contract when the contract
expires. In contrast, the seller of the contract that receives the buyer’s premiums must unconditionally
obey the buyer’s choice within a certain period and fulfill the promise of this transaction.

(2) Strangle options short-term investment strategy
The basis of the quantitative investment strategy used in this paper is the strangle options

short-term investment strategy.
A strangle options investment strategy refers to the sale of a portfolio of options with different

strike prices but the same maturity date while selling a call options.
For example, a short strangle options portfolio shown in Table 1 is constructed on one trading

day (assuming that the strike price of the at-the-money options is 2.65 yuan):

Table 1. Example of a strangle options short-sell investment strategy.

Subject Contract Name Buy or Sell Quantity Options Price

50 ETF buying
December 2750 Sell 1 0.0635

50 ETF selling
December 2550 Sell 1 0.0334
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That is, the sale of a 50 ETF call options expiring in December with a strike price at 2.75 yuan, and
at the same time, the sale of a 50 ETF put options expiring in December with strike price at 2.55 yuan.

For this short options portfolio, the gains chart on the maturity date can be drawn as shown in
Figure 6:
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As can be seen from Figure 6, theoretically, the benefits of this strategy are limited, whereas the
potential risks are infinite. When the price of the underlying asset finally falls around the strike price,
the portfolio can earn profits. On the contrary, when the price of the underlying asset eventually
changes substantially, the portfolio faces a loss. That is to say, when the expiration date is reached,
compared with the price at the time of opening the position, if the fluctuation of the 50 ETF price is not
large, a profit can be obtained; otherwise, it will cause the loss of a large amount of money. Overall,
this strategy is suitable for a relatively stable market.

(3) Margin
During options trading, since this article performs as an options seller who is required to pay for

the margin at the transaction, to ensure that the seller can perform the options contract when the buyer
executes the options, attention must be paid to the amount of margin that is needed prevent trading
troubles that are caused by an insufficient remaining amount (such as the inability to hedge, the need
for additional margin, etc.) when opening a position and holding a position. The maintenance margin
used in this paper is calculated as follows:

Mo = max
{

p + M f −
1
2

V, p + M f

}
(27)

where p denotes the premium, M f denotes the futures margin, and V denotes out-of-money value of
the options, which is divided into two types, namely the out-of-money value Vc of the call options and
the out-of-money value Vp of the put options. The corresponding calculation is as follows:

Vc = Max(K− C, 0)×U (28)

Vp = Max(C− K, 0)×U (29)

where K is the exercise price of the options contract, C is the settlement price of the underlying futures
contract, and U is the options contract unit.

(4) Delta hedge
This article uses the hedging strategy for Delta hedging.
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Delta (∆) refers to the ratio of changes in the price of an options to changes in the price of the
underlying asset, which is expressed by the following formula:

∆ =
∂ f
∂s

(30)

where f represents the price of the options; s represents the price of the underlying asset.
Delta actually represents the slope of the options win–loss chart. Figure 7 shows the win–loss

chart of an options. The curve represents the relationship between the price of the call options and the
price of the underlying asset. The straight line is the tangent of the curve at the point (A, B), whose
slope indicates that the price of the underlying asset is A and the value of Delta when the options price
is B.

Algorithms 2019, 12, x FOR PEER REVIEW 12 of 35 

( ,0)cV Max K C U= − ×  (28) 

( ,0)pV Max C K U= − ×  (29) 

where K  is the exercise price of the options contract, C  is the settlement price of the underlying 
futures contract, and U  is the options contract unit. 

(4) Delta hedge 
This article uses the hedging strategy for Delta hedging. 
Delta ( )Δ  refers to the ratio of changes in the price of an options to changes in the price of the 

underlying asset, which is expressed by the following formula: 

f
s

∂Δ =
∂  

(30) 

where f  represents the price of the options; s  represents the price of the underlying asset. 
Delta actually represents the slope of the options win–loss chart. Figure 7 shows the win–loss 

chart of an options. The curve represents the relationship between the price of the call options and 
the price of the underlying asset. The straight line is the tangent of the curve at the point (A, B), 
whose slope indicates that the price of the underlying asset is A and the value of Delta when the 
options price is B. 

 
Figure 7. Calculation of Delta. 

The Delta formula for China's options market is as follows: 
The Delta for non-dividend call options is: 

1( ) ( )call N dΔ =  (31) 
2

0

1

ln( ) ( )
2

S
r T

Kd
T

δ

δ

+ +
=  (32) 

where 0S  represents the price of the options at time 0t ; T  represents the options term; K  
represents the options strike price; r  represents the risk-free rate of continuous compound interest; 
δ  represents the volatility of the options; ( )N x  represents the cumulative normal distribution 
function. 

The Delta for non-dividend put options is: 

1( ) ( )-1put N dΔ =  (33) 

According to what is mentioned above, Delta can be understood as the magnitude of the change 
in the options price caused by one unit price change of underlying asset. If the Delta of the entire 
investment strategy portfolio is positive, the decrease of the underlying asset price will bring about 
losses; if the Delta of the entire investment strategy portfolio is negative, the increase of the 

Figure 7. Calculation of Delta.

The Delta formula for China’s options market is as follows:
The Delta for non-dividend call options is:

∆(call) = N(d1) (31)

d1 =
ln( S0

K ) + (r + δ2

2 )T

δ
√

T
(32)

where S0 represents the price of the options at time t0; T represents the options term; K represents the
options strike price; r represents the risk-free rate of continuous compound interest; δ represents the
volatility of the options; N(x) represents the cumulative normal distribution function.

The Delta for non-dividend put options is:

∆(put) = N(d1)−1 (33)

According to what is mentioned above, Delta can be understood as the magnitude of the change
in the options price caused by one unit price change of underlying asset. If the Delta of the entire
investment strategy portfolio is positive, the decrease of the underlying asset price will bring about
losses; if the Delta of the entire investment strategy portfolio is negative, the increase of the underlying
asset price will lead to losses. Therefore, in order to avoid the loss caused by the fluctuation of the
price of the target price, the Delta hedge adjustment is performed at each time stamp to ensure that the
Delta of the strategy combination is 0; that is, the Delta neutrality is guaranteed, so that the seller can
completely convert premiums into profits on the expiration date, which can be understood as earning
time value and abandoning the benefits and losses caused by the price fluctuations.
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3.3.2. Introduction to Quantitative Investment Strategies

The logic of the quantitative investment strategy used in this paper is as follows:
(1) The time series of the IV-HV difference between the implied volatility (IV) and the historical

volatility (HV) is calculated at 14:55 on the options expiration date. This time series is the IV-HV series
for 20 trading days prior to the expiration date.

(2) Sort the IV-HV time series in ascending order and find its 90th percentile as the opening
threshold, “option_open”. Find the median the IV-HV time series as the regression closing threshold,
“option_close”.

(3) Each transaction timestamp calculates the IV-HV value at that moment, and it is compared
with “option_open”. If it is greater than or equal to “option_open”, the position is opened at the
amount of 50% of 10 million (considering that the late delta hedge adjustment position will make the
margin change and try to ensure that there will be no burst; 50% is reserved); that is, using five million
funds to sell a strangle options portfolio based on the options’s maintenance margin. Otherwise, do not
open the position.

(4) Under the position circumstance, the Delta hedge adjustment is performed at each timestamp
to ensure that the Delta of the strangle options portfolio remains neutral.

(5) The condition of the closing position is that in the case of a position, the IV-HV at that time is
smaller than or equal to “option_close”, then “returning the position”. Alternatively, when the price of
the 50 ETF at that time is not within the range of the strike price of the options (less than the strike
price of the put options or greater than the strike price of the call options), the “stop loss liquidation”
is performed. Both “returning the position” and “stopping the position” need to be closed with the
opponent price at the moment.

(6) If it is an empty position (including closing the position after opening the position or opening
the position all the time) and it has not reached the next expiration date, continue to judge whether
each transaction timestamp reaches the opening condition.

(7) If the position is still held on the expiration date, judge whether the options will be exercised
at this time. If the price of the 50 ETF underlying asset is greater than the strike price of the call options
at this time, the call options is exercised (requires the position of the opponent to be closed at this
time), and the put options will not be exercised (all of the premium when opening the position will
be the income). If the price of the 50 ETF underlying asset is less than the put options strike price at
this time, the put options is exercised (the opponent price needs to be used at this time to close the
position), and the call options will not be exercised (all of the premium when opening the position will
become the income). If the price of the 50 ETF underlying asset lies between the two options strike
prices, then the opponent price at that time is required to close the position.

The experimental simulation process will be described below.

4. Experimental Simulation

4.1. Data Acquisition

The experimental data comes from the database of the quantitative investment department of
Zheshang options company, which is constructed by the author of this paper. This article selects the
50 ETF underlying asset and its corresponding 50 ETF options data, starting from 25 February 2015
to 16 March 2018. This paper chooses information, including the transaction date, transaction time,
the final transaction price within the time segment of the 50 ETF underlying asset, the purchase price
(the highest bid price quoted within the time segment market), the highest price, the lowest price of
the 50 ETF underlying asset in the time segment and the volume within the time segment.

All of the data are collected every 15 minutes, and the time stamps are 09:45, 10:00, 10:15, 10:30,
10:45, 11:00, 11:15, 11:30, 13:15, 13:30, 13:45, 14:00, 14:15, 14:30, 14:45, and 14:55 every day.
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4.2. Data Processing

This paper combines the HV model and the options IV model to obtain the HV and the IV) for
each timestamp. According to the data from the database and Hu Jun’s formula which is published in
the book “A Step-by-step Guide of Options Investment” [32], the data is processed.

4.2.1. Calculating Historical Volatility

So far, both the industry and academia have proposed countless ways to estimate historical
volatility. This article selects the Close-To-Close [32] method. As the name suggests, this volatility
estimation method uses the closing price to estimate the volatility. Since the standard definition of
volatility is the square root of the variance of the variable, only based on the definition of the unbiased
estimate of the variance, the formula for calculating the historical volatility is available:

σ =

√
∑ (xi − x)2

N − 1
(34)

x =
1
N ∑ xi (35)

xi = log(
Pt

Pt−1
) (36)

where σ is the historical volatility; xi is the logarithmic rate of return; x is the mean of the sample’s
rate of return; N is the sample size, meaning the number of xi involved in the calculation; Pt is the
closing price at time t. The historical volatility used in this paper refers to the historical volatility of
five previous trading days of the day at present.

4.2.2. Calculating Implied Volatility

Implied volatility is the volatility implied by the market price of an options. The most common
method is to bring the current market price of the options into the Black–Scholes–Merton formula [34],
and then to calculate the implied volatility in a reverse way.

The Black–Scholes–Merton formula is one of the most famous and important formulas in financial
engineering, and it has a major impact on how to price and hedge the options.

For the non-dividend stock European options (the 50 ETF options in China’s options market is
one of them), the Black–Scholes–Merton formula is as follows:

Call options:
C = S0N(d1) − Ke−rT N(d2) (37)

Put options:
P = Ke−rT N(−d2) − S0N(−d1) (38)

In the formula:

d1 =
ln( S0

K ) + (r + σ2

2 )T

σ
√

T
(39)

d2 =
ln( S0

K )− (r + σ2

2 )T

σ
√

T
= d1 − σ

√
T (40)

It should be noted that although d1 and d2 seem to be very cumbersome, they do have practical
meaning. d1 describes the sensitivity of the options to the stock price (underlying asset), and d2

describes the likelihood that the options will be executed at last.
In the formula mentioned above, C represents the European call options price; P represents the

European put options price; S0 represents the starting price of the stock (underlying asset); K represents
the strike price; r represents the risk-free interest rate of continuous compound interest; σ represents the
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volatility; T represents the term of the options; N(x) represents the cumulative probability distribution
function of the standard normal distribution.

The deduction process of the implied volatility is as follows: after knowing the call options price
C, the underlying asset starting price S0, the strike price K, the continuous compound interest risk-free
interest rate r, and the options term T, the implied volatility of the options can be assumed as σ0. After
bringing this into the Black–Scholes–Merton formula, the options price c under this implied volatility
can be obtained. The term c is compared with C. Since the options price increases along with the
increase of volatility, if c < C, the volatility is set to be σ1, where σ1 > σ0. This is brought into formula
(34) or (35) to obtain the price of the options under σ1, compared with C. In this way, the approximate
solution of the implied volatility can be obtained. In this paper, the fzero function is directly called in
MATLAB to solve the inverse calculation process of volatility.

The experimental results will be analyzed below.

4.2.3. Normalization and Standardization

In this paper, normalization and standardization are used as pre-processing steps for improving
the convergence speed of the program, which means improving the speed for obtaining the best
solution in gradient descent. Before this pre-processing, different data have different magnitudes.
After this pre-processing, the process of obtaining the best solution becomes gentler. It makes the
convergence faster, and it is easier to obtain the best solution.

In this article, the formulas of normalization and standardization are as follows:
(1) Normalization:
Process matrices by mapping row minimum and maximum values to [−1 1]

Y = (Ymax −Ymin)×
X−Ymin

Xmax − Xmin
+ Ymin (41)

where, Xmax is the maximum value among the rows, Xmin is the minimum value among the rows,
Ymax is the maximum value among the columns, and Ymin is the minimum value among the columns.

If Xmax − Xmin = 0, then the data in this row will not change.
(2) Standardization:
Process the matrices by mapping each row’s means to 0, and deviations to 1.

Xnew =
(Xold − X)

Xstd
(42)

Xstd =

√
∑ (Xi − X)

2

N − 1
(43)

X =
∑ Xi

N
(44)

where, Xnew is the data after standardization, Xold is the data before standardization.
If normalization is not performed, during the gradient descent, the step size for descending in

the direction of each feature will be the same, because the units of the gradient drop are the same.
However, the length of each feature varies, due to the difference in orders of magnitude. In constrast,
after normalization, the descending step size for each attribute during gradient descent can correspond
to its magnitude.

4.3. Parameters Determination

4.3.1. Parameter Determination for LSTM

The parameters that need to be determined include the number of hidden units of LSTM, iteration
times, timestep, and batch_size. As for the timestep, the meaning of timestep is the amount of data
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in the previous timestamp that are used to predict the objective in the next timestamp. For example,
the timestep in this article is 20, which means that the data in the previous 20 timestamps are used to
predict the objective. Since in this article the trading frequency is every 15 min, 20 timestamps equals
slightly more than a whole trading day. As for batch_size, the meaning of the timestep is the amount
of data that are input into the LSTM cell to train every time. The batch_size value in this article is 60,
which is equal to around four trading days. In this article, another combination in which the timestep
is 16 and the batch_size is 80 is also discussed to make a comparison.

As for the number of hidden units of LSTM and iteration times, theoretically, the bigger the values
of these two parameters, the better performance of prediction result. However, if the values of these
two parameters increase, the time for running the code will also increase a lot. To make a comparison,
there are six situations that have been discussed (Take the prediction of first 2850 data for example).
Every situation was run eight times to obtain the average results in Table 2:

Table 2. Results of six different situations.

Hidden Units Iteration Times TimeStep Batch_Size Runningtime Deviation

20 200 16 80 6 min 0.013833
20 1000 16 80 16 min 0.013703
20 2000 16 80 34 min 0.011918
20 2000 20 60 32 min 0.009551
60 2000 16 80 1 h 21 min 0.016878
100 2000 20 60 2 h 27 min 0.012416

Six different situations are denoted by combination_1 (Hidden units: 20, Iteration times: 200,
Timestep: 16, Batch size: 80), combination_2 (Hidden units: 20, Iteration times: 1000, Timestep: 16,
Batch size: 80), combination_3 (Hidden units: 20, Iteration times: 2000, Timestep: 16, Batch size: 80),
combination_4 (Hidden units: 20, Iteration times: 2000, Timestep: 20, Batch size: 60), combination_5
(Hidden units: 60, Iteration times: 2000, Timestep: 16, Batch size: 80), and combination_6 (Hidden
units: 100, Iteration times: 2000, Timestep: 20, Batch size: 60).

Figure 8 gives the results of different situations. It can be seen from Figure 8 that the general
performance of combination_4 (Hidden units: 20, Iteration times: 2000, Timestep: 20, Batch size: 60) is
best because its deviation is the least and the running time is also acceptable.Algorithms 2019, 12, x FOR PEER REVIEW 17 of 35 
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The iteration times are an important parameter that affects the performance. However, when the
iteration times increase to 2000 from 1000, although the result becomes more similar to the real price,
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the running time is doubled from 16 minutes to 34 minutes. If the iteration is still increased, the time
cost will be considerable.

Besides, the number of hidden units is also a significant parameter that affects the performance.
Increasing the number of hidden units may not result in better prediction performance (using
combination_3 and combination_5; or using combination_4 and combination_6, for example).

Therefore, in this article, combination_4 (Hidden units: 20, Iteration times: 2000, Timestep: 20,
Batch size: 60) is used as the parameters of LSTM.

4.3.2. Parameters Determination for LSTM-SVR

Since radial basis function (RBF) is selected as the kernel function of SVR in this article, there are
two significant parameters, c and g. A detailed discussion of c and g is made in the following:

c is a parameter that is used for penalty if the difference between the prediction value yi and real
value exceeds the threshold ε. A bigger value of c means a smaller margin. Therefore, a bigger value of
c will make the training performance better, but it may also cause overfitting. However, if c is relative
small, it will cause poor prediction performance.

g (gamma) is the parameter of RBF. A bigger gamma value will cause less support vectors, and a
smaller gamma will cause more support vectors. The amount of support vectors will have an effect on
the speed of training and prediction.

To determine the values of c and g, an exhaustive grid search is used in this article. Take using
LTSM-SVR I to predict the 8500th data to the 11,300th data as an example. In coarse selection,
the searching range of c is set from 2−5 to 210, and the searching range of g is set from 2−5 to 25.
The result of coarse selection is given in Figure 9.Algorithms 2019, 12, x FOR PEER REVIEW 18 of 35 
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From Figure 9, the best solution for c and g lies in the zone of log2 c from 0 to 9, and log2 g from
−2 to 3.

Based on the results of Figure 9, the searching range could be narrowed down. To make a fine
selection, the searching range of c is set from 20 to 29, and the searching range of g is set from 2−2 to 23.
Figure 10 gives the result of fine selection.
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Figure 10. Result of fine selection.

From Figure 10, the best solution for c and g lies in the zone where the value of log2 c is from 0 to
2, and log2 g is from −2 to −0.5.

The final result of fine selection is given in Table 3.

Table 3. Final result of fine selection.

Cross-validation mean squared error (MSE) 0.00117032

Cross-validation squared correlation coefficient 0.987437

Best cross-validation MSE 0.000496649

Best c 1.23114

Best g 0.378929

Therefore, when predicting the 8500th data to the 11,300th data, c equals 1.23114 and g equals
0.378929 are used as parameters of the LSTM-SVR model.

When using LSTM-SVR I to predict first 2850 data, in coarse selection, the searching range of c is
set from 2−5 to 210, and the searching range of g is set from 2−5 to 25. The result of coarse selection is
shown in Figure 11.
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From Figure 11, the best solution for c and g lies in the zone where log2 c is from 0 to 9, and where
log2 g is from −2 to 3.

Based on the results of Figure 11, the searching range could be narrowed down. To make a fine
selection, the searching range of c is set from 20 to 29, and the searching range of g is set from 2−2 to 23.
Figure 12 gives the results of the fine selection.

Algorithms 2019, 12, x FOR PEER REVIEW 19 of 35 

Therefore, when predicting the 8500th data to the 11,300th data, c equals 1.23114 and g equals 
0.378929 are used as parameters of the LSTM-SVR model. 

When using LSTM-SVR I to predict first 2850 data, in coarse selection, the searching range of c 
is set from 2−5 to 210, and the searching range of g is set from 2−5 to 25. The result of coarse selection is 
shown in Figure 11. 

 
Figure 11. Result of coarse selection. 

From Figure 11, the best solution for c and g lies in the zone where log 𝑐 is from 0 to 9, and 
where log 𝑔 is from −2 to 3. 

Based on the results of Figure 11, the searching range could be narrowed down. To make a fine 
selection, the searching range of c is set from 20 to 29, and the searching range of g is set from 2−2 to 
23. Figure 12 gives the results of the fine selection. 

From Figure 12, the best solution for c and g lies in the zone where log 𝑔 is around −1 and 
where log 𝑐 is from 0 to 10. Since the lines are approximately parallel, the minimum value of c is 
chosen. 

 
Figure 12. Results of fine selection. 

The results of the final selection are given in Table 4: 
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From Figure 12, the best solution for c and g lies in the zone where log2 g is around −1 and where
log2 c is from 0 to 10. Since the lines are approximately parallel, the minimum value of c is chosen.

The results of the final selection are given in Table 4:

Table 4. Results of the fine selection.

Cross-validation mean squared error 0.00214727

Cross-validation squared correlation coefficient 0.980383

Best cross-validation MSE 0.000388862

Best c 1

Best g 0.466516

Therefore, when predicting the first 2850 data, c equals 1 and g equals 0. 466516 are used as the
parameters of the LSTM-SVR I model.

5. Experimental Results and Comparison

5.1. Analysis of LSTM Model Results

This paper first uses the first 8499 data as the training set. After 2000 iterations, the trained LSTM
model is applied to the 8500th data to the 11,300th data for prediction.

Figure 13 shows the calculation results, where the blue line is the predicted price, and the red
line is the actual price of the test. (The forecast timestamp is from 11:30 on 28 June 2017 to 10:30 on
14 March 2018).
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Figure 13. Comparison of Long Short-Term Memory (LSTM) prediction results with actual results
(8500th data to 11,300th data).

The iteration number is 2000 times, the number of hidden layers is 20, and the parameters of the
LSTM training model are recorded once every 200 epochs (to prevent the program from crashing; if the
program crashes, the training can directly follow the last saved model parameters instead of starting
over, to save time) The overall deviation is 0.0023179110088004246.

Since the price of the 50 ETF underlying asset is small, a direct calculation error may not be
obvious, and so this paper calculates the deviation value of each time stamp to obtain Figure 14.
The deviation value is calculated as:

σdeviation =
Ypredict −Ytest

Ytest
(45)

where Ypredict is the predicted price and Ytest is the original value.Algorithms 2019, 12, x FOR PEER REVIEW 21 of 35 
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Figure 14. Error map of the LSTM prediction results and the actual results (8500th data to 11,300th data).

It can be seen from Figure 14 that the prediction result and the actual error value after 2000
iterations under the LSTM model is small, and the calculated statistics determines a 73.32% error
between the predicted data and the actual data is less than 1%.

In order to gain more prediction, this paper uses the 2850th to the 11,300th data in the original
data as the training set. After 2000 iterations, the trained LSTM model is applied to the first 2850 data
for prediction.

Figure 15 shows a graph of the calculation results, with the blue line being the predicted price
and the red line being the actual price of the test. (The forecast timestamp is from 10:30 on 14 April
2015 to 13:45 on 12 January 2016).
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From 2000 iterations, the number of hidden layers is 20 layers, and the parameters of the LSTM
training model are recorded once every 200 generations (to prevent the program from crashing; if the
program crashes, the training can directly follow the last saved model parameters instead of starting
over, to save time). The overall deviation value is 0.00903735599521065. As above, since the price
of the 50 ETF underlying asset is small, the direct calculation error may not be obvious. Therefore,
the deviation value of each time stamp is calculated according to Formula (45), mentioned above.
Figure 16 presents the calculation result.Algorithms 2019, 12, x FOR PEER REVIEW 22 of 35 
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As can be seen from Figure 16, the calculated statistics found that the change of a 27.7% error
between the predicted data and the actual data is less than 1%, and that an 89.47% error is less than 5%.
Comparing with the previous prediction, the deviation of the prediction results will increase when the
market volatility increases.

It can be drawn from Figures 13–16 that the error between the predicted value and the actual
value obtained by the LSTM model is relatively stable; although the error will increase when the
market is unstable, the extent of increase is not so large.

5.2. Randsom Forest Model Results

The same data (the first 8499 data) is then used as the training set under the RF model. The trained
model is applied to the data ranging from the 8500th to the 11,300th. The calculation results are given
in Figure 17.
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Figure 17. Comparison of Random Forest (RF) prediction results with actual results (8500th data to
11,300th data).

Figure 17 shows the calculation results, where the blue line is the predicted price, and the red
line is the actual price of the test (the forecast timestamp is from 11:30 on 28 June 2017 to 10:30 on
14 March 2018).

The number of iterations is set to 100. The overall deviation is 0.004752332.
Since the price of the 50 ETF underlying asset is small, a direct calculation error may not be

obvious, and the deviation value of each time stamp is calculated using Formula (45). Figure 18 gives
the results of the deviation value.Algorithms 2019, 12, x FOR PEER REVIEW 23 of 35 
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Figure 18. Error map of RF prediction results and actual results (8500th data to 11,300th data).

It can be seen from Figure 18 that the difference between the prediction result and the actual error
value after 100 iterations under the RF model is relative small, and that the calculated statistics expose
that the chance of a 62.78% error between the predicted data and the actual data is less than 1%.

In order to gain more predictive power, this paper also uses the 2850th to the 11,300th data in
the original data as the training set. After 100 iterations, the trained RF model is applied to the first
2850 data for prediction.

Figure 19 shows a graph of the calculation results, with the blue line being the predicted price
and the red line being the actual price of the test (the forecast timestamp is from 10:30 on 14 April 2015
to 13:45 on 12 January 2016).
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The iteration number is 100 times. The overall deviation value is 0.011889902. As with the above,
since the price of the 50 ETF underlying asset is small, the direct calculation error may not be obvious.
Therefore, the deviation value of each time stamp is calculated according to Formula (45), as mentioned
above. Figure 20 presents the calculation results.Algorithms 2019, 12, x FOR PEER REVIEW 24 of 35 
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As can be seen from Figure 20, the calculated statistics found that the chance of 74.12% error
is less than 5%. Compared with the previous prediction, the deviation of the prediction results will
increase when the market volatility increases (the same situation as the result of LSTM).

It can be drawn from Figures 17–20 that the error between the predicted value and the actual
value obtained by the RM model is relatively stable; although the error will increase when the market
is unstable, the increase extent is not so large. However, generally, the prediction performance of RF is
worse than the prediction performance of LSTM.

5.3. LSTM-SVR I Model Results

The same data (the first 8499 data) is then used as the training set under the LSTM-SVR I model.
The trained model is applied to the data ranging from 8500 to the 11,300. The calculation results are
given in Figure 21.
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Figure 21. Comparison of LSTM-SVR I prediction results with actual results (8500th data to
11,300th data).

The blue curve in Figure 21 is the actual price curve, while the red dotted curve is the predicted
price curve (the predicted time stamp is from 11:30 on 28 June 2017 to 10:30 on 14 March 2018).

The overall deviation is 0.00025. As above, since the price of the 50 ETF underlying asset is small,
the direct calculation error may not be obvious. Therefore, the deviation value of each time stamp is
calculated according to Formula (45), as mentioned above. Figure 22 shows the calculation results.
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The data (2850th data to 11,300th data) is then used as a training set to apply to the LSTM-SVR model.
Afterwards, the trained model predicts the first 2850th data. Figure 23 shows the calculation results.
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As can be seen from Figure 23, the blue curve is the actual price curve, and the red dotted curve is
the predicted price curve (the predicted time stamp is from 10:30 on 14 April 2015). It is divided into
13:45 on 12 January 2016).

The overall deviation is 0.0023. As above, since the price of the 50 ETF underlying asset is small,
the direct calculation error may not be obvious. Therefore, the deviation value of each time stamp is
calculated according to Formula (45), as mentioned above. Figure 24 gives the calculation results.Algorithms 2019, 12, x FOR PEER REVIEW 26 of 35 
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Figure 24. Error map of LSTM-SVR I prediction results and actual results (first 2850 data).

It can be seen from Figures 21–24 that under the LSTM-SVR I model, there is a very small error
between the prediction result and the actual result when the market is stable. However, when the
market fluctuates heavily, the error predicted by the LSTM-SVR I model will increase sharply, and the
magnitude of the surge is also very large. After eight experiments, this phenomenon still exists.

5.4. LSTM-SVR II Model Results

The same data (the first 8499 data) is then used as the training set under the LSTM-SVR II model.
The trained model is applied to the data ranging from 8500 to 11,300. The calculated results are given
in Figure 25.
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11,300th data).

The blue curve in Figure 25 is the actual price curve while the red dotted curve is predicted price
curve (the predicted time stamp is from 11:30 on 28 June 2017 to 10:30 on 14 March 2018).

The overall deviation is 0.00062389. As above, since the price of the 50 ETF underlying asset is
small, the direct calculation error may not be obvious. Therefore, the deviation value of each time stamp
is calculated according to Formula (45), as mentioned above. Figure 26 shows the calculated results:Algorithms 2019, 12, x FOR PEER REVIEW 27 of 35 
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The data (2850th data to 11,300th data) is then used as a training set to apply to the LSTM-SVR
II model. Afterwards, the trained model predicts the first 2850th data. Figure 27 shows the
calculated results.
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As can be seen from Figure 27, the blue curve is the actual price curve, and the red dotted curve is
the predicted price curve (the predicted time stamp is from 10:30 on 14 April 2015; it is divided into
13:45 on 12 January 2016).

The overall deviation is 0.00552. As above, since the price of the 50 ETF underlying asset is small,
the direct calculation error may not be obvious. Therefore, the deviation value of each time stamp is
calculated according to Formula (45), as mentioned above. Figure 28 gives the calculation result:Algorithms 2019, 12, x FOR PEER REVIEW 28 of 35 
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It can be seen from Figures 25–28 that under the LSTM-SVR II model, there is a relatively larger
degree of error than the LSTM-SVR I model. In both of the two situations, the performance of
LSTM-SVR II is worse than LSTM-SVR I.

5.5. Comparison of LSTM Model, RF Model, and LSTM-SVR Model Results

Table 5 shows the deviation values of LSTM and RF over different time periods (20170628
(11:30)–20180314 (10:30) and 20150414 (10:30)–20160112 (13:45)). It can be seen from Table 5 that LSTM
model shows a better performance in both of the two situations. Therefore, this is the reason for why
the LSTM model is used in combination with SVR.
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Table 5. Comparison table of deviation values predicted by the LSTM model and the LSTM-SVR model
over two time periods.

LSTM (Deviation) RF (Deviation)

20170628 (11:30)
–20180314 (10:30) 0.00232 0.00475

20150414 (10:30)
–20160112 (13:45) 0.00903 0.01189

Table 6 shows the deviation value of LSTM-SVR I and LSTM-SVR II in different time periods
(20170628 (11:30)–20180314(10:30) and 20150414 (10:30)–20160112 (13:45)).From Table 6, compared to
the results of the LSTM-SVR I model and the LSTM-SVR II model, the LSTM-SVR I model (only using
the output of LSTM and combining with seven attributes as the input of SVR) has a better performance,
both in the stable situation (20170628 (11:30)–20180314 (10:30)) and the relative unstable situation
(20150414 (10:30)–20160112(13:45)). Therefore, the results of the LSTM-SVR I model are added into the
trading strategy.

Table 6. Comparison table of the deviation values predicted by the LSTM-SVR I and LSTM-SVR II
models (different input vectors) over two time periods.

LSTM-SVR I (Deviation,
Only Using Output)

LSTM-SVR II (Deviation,
Using Hidden State Vector)

20170628(11:30)
−20180314(10:30) 0.00025 0.00062

20150414(10:30)
−20160112(13:45) 0.0023 0.00552

As can be seen from Table 6, when the LSTM-SVR (LSTM-SVR I and LSTM-SVR II) models predict
the 8500th data to the 11300th data (11:30 on 28 June 2017 to 10:30 on 14 March 2018), their accuracies
are much higher than the LSTM model and the RF model, which indicates that the combined models
greatly improve the accuracy of the prediction. Nevertheless, when the LSTM-SVR models predict the
first 2850 data (10:30 on 14 April 2015 to 13:45 on 12 January 2016), the orders of magnitude of deviation
rise from 10−4 to 10−3, and the deviations at this time are improved compared with the LSTM model,
although their extent is not as good as in the relatively stable market period (10:30 on 28 June 2017
to 10:30 on 14 March 2018). This result happens after eight experiments. Therefore, it can be inferred
that the LSTM-SVR models can improve accuracy to a large extent, compared with the LSTM model
and the RF model, under a relatively stable environment. Although the LSTM-SVR models can obtain
highly accurate prediction data under these circumstances, when the market fluctuates, the error
rate increases relatively rapidly. As a result, it can be concluded that the prediction stability of the
LSTM-SVR models still needs to be improved.

The experiment in this paper used a laptop with an i5 processor, 2.8 GHz CPU clock speed, 8 GB
memory, and dual-core four-thread. However, after running the model multiple times and comparing
the running times of the two models, the average time required to run the SVR model for prediction
was 110.45 s, while the LSTM model running 2000 iterations had an average running time of about
39 min and 31 s. The difference in terms of the running times between two types of models is very
large. The time required for the LSTM model is much longer than that of the SVR model and the RF
model. Hence, the long running time of the deep learning models LSTM and LSTM-SVR is also an
aspect that needs to be improved.



Algorithms 2019, 12, 35 29 of 34

5.6. Initial Quantitative Investment Strategy Results

This paper first runs the traditional quantitative investment strategy and compares the results at
different trading frequencies. Figure 29 shows the calculation results (twice-daily trading frequency
and daily trading frequency at 16 times):
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Figure 29. Twice-daily trading frequency (10:30 and 14:55).

As can be seen from Figure 29 (twice), the opening date is March 26, 2015, while in Figure 30
(16 times), the opening date is 23 April 2015, so that there is a subtle distinction on the 50 ETF net value
curve. Combined with the above figure, it can be concluded that this trading investment strategy can
outperform the 50 ETF index, so that in terms of the quantitative investment strategy itself, it can be
considered as an investment product for investors, and it has certain research value.Algorithms 2019, 12, x FOR PEER REVIEW 30 of 35 
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Figure 30. Daily trading frequency of 16 times (15 min).

Comparing Figure 29 with Figure 30, after increasing the trading frequency, although the yield
rate may be lower than that of the low-frequency trading, due to the forced liquidation in the options
market, at a low hedging frequency, if the price fluctuates violently in the market, it is likely that
the trader’s trading account has been forced to close by the exchange, which cannot be reflected in
the gain chart. Therefore, the trading frequency needs to be enhanced, and judgment on whether
there is a burst or not should be made in as many cases as possible. Accordingly, the win–loss chart
shown in Figure 30 (16 times) with a high transaction frequency is more realistic and practical for
trading guidance.

From Figure 30 (16 times), it can be found that the entire quantitative investment strategy exhibits
a huge loss when the price of the 50 ETF underlying asset plummets or rockets (i.e., the price fluctuates
greatly). Therefore, if the deep learning model can accurately predict the 50 ETF price of the next time
segment, it will theoretically play a role in avoiding losses in advance. If the losses can be avoided
more effectively, the profitability of the quantitative investment strategy will be considerable.
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5.7. Quantitative Investment Strategy Results Based on Deep Learning

Based on the deep learning method, this paper predicts the timestamp from 11:30 on 28 June 2017
to 10:30 on 14 March 2018, which is viewed as a diff signal to combine with the quantitative investment
strategy. This paper tests four cases: having signal but no hedging (SNH), no hedging or signal (NHS),
having hedging but no signal (HNS), and having hedging and signal (HS). The following results are
obtained (the starting date of the gain line chart is from 9:45 on 29 June 2017 to 13:45 on 14 March 2018.
The horizontal axis from 2227 to 2333 reflects a dive during 2 February 2018 to 13 February 2018, during
which the price of the 50 ETF underlying asset plummeted). Figure 31 shows the calculated results:
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Table 7 discusses the benefits of the four strategies, and Figure 32 shows the comparison result.

Table 7. Comparison of four strategic situations.

SNH NHS HS HNS

Maximum returns 576,767.6 484,294 493,478.8 511,736.6

Minimum returns −116,804.2 −393,156.8 −61,717.6 −143,753.8

Maximum
drawdown 362,872.8 877,450.8 2,352,84.4 655,490.4

Final returns 258,675.6 −15,720.4 464,496 219,288.

(1) As can be seen from Figure 32 and Table 7, hedging can provide greater support in terms of
defensibility and stability in the quantitative investment process. When the signal diff based on the
deep learning model LSTM-SVR I model is not added, the traditional quantitative investment strategy
with hedging can avoid the plunge (the lowest return is much higher than the traditional quantitative
investment strategy without hedging) and it performs better in stability (the maximum drawdown is
much lower than the traditional quantitative investment strategy without hedging). In the case of diff
signals based on deep learning, there is also a quantitative investment strategy based on deep learning
with hedging to avoid a plunge (the lowest return is much higher than the unhedged quantitative
investment strategy), and the stability is better (the maximum drawdown is much lower than the
non-hedging quantitative investment strategy).
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(2) As can be seen from Figure 32 and Table 7, the quantitative investment strategy based on the
deep learning model generally performs better. After adding the deep learning model based on the
LSTM-SVR I model, the quantitative investment strategy performs optimally when it has a hedge,
and contains a deep learning diff signal (HS). However, the highest yield when there is a hedging
and deep learning diff signal (HS) is slightly lower than that with a hedging but no deep learning diff
signal (HNS). However, with hedging and deep learning diff signals (HS), the maximum withdrawal
is significantly lower than the case with a hedging but without deep learning diff signals (HNS).
It explains that after adding the diff signal based on deep learning prediction, the defensibility of the
quantitative investment strategy is significantly enhanced.

Figure 33 separately compares the presence and absence of signals in the case of hedging. It is
more obvious that the quantitative investment strategy based on deep learning is more defensive.
By adding a diff signal based on deep learning predictions, losses can be avoided to a great extent.
The amount of losses avoided at this stage is around 2541.291 yuan, accounting for 25.4% of the initial
total investment amount, which theoretically contributes to a 25.4% increase in yield.Algorithms 2019, 12, x FOR PEER REVIEW 32 of 35 
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This paper combines the forecast time stamp from 10:45 on 24 April 2015 to 14:00 on 12 January
2016 with the quantitative investment strategy as a “diff ” signal. This article tested two cases: a hedging
without a “diff ” signal and a hedging with a diff signal. Figure 21 shows the results (the starting and
ending date of the yield line chart is from 10:30 on 24 April 2015 to 09:45 on 4 January 2016). As can be
seen from Figure 34, the diff signal based on deep learning prediction helps to avoid a large amount of
losses. At this stage, the losses avoided is about 4311.896 yuan, accounting for 43.1% of the initial total
principal, which is theoretically increased by 43.1% in yield.
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Figure 34. Comparison of the signal strategy with or without a line chart (predicting the top 25% of
the data).

In summary, this paper has tested two trading cases. The first case: The LSTM-SVR I model is
trained with the first 8500 data as the training set, and then the trained model is used to predict the
8500th to 11,300th data. Afterwards, the prediction result is combed as the deep learning model signal
diff into the quantitative investment strategy. The second case: The 2850th to 11,300th data are used as
the training set to train the LSTM-SVR I model, and then the trained model is used to predict the first
2850 data. The prediction results are then added to the quantitative investment strategy as the deep
learning model signal diff. In both cases, the recoverable losses were 25.4% and 43.1%, respectively.
Furthermore, the cumulative recoverable loss was 68.5%. That is to say, theoretically applying the deep
learning quantitative investment strategy to these two periods can bring about a 68.5% enhancement in
the final return. Considering that the whole time span is roughly three years, based on deep learning,
the quantitative investment strategy can increase the average annual yield by at least 20%.

6. Conclusions and Prospects

The quantitative investment strategy designed in this paper has particular research value.
The introduction of the hedging concept facilitates its stability. Furthermore, the 15 min trading
frequency in a day is much closer to the facts, contributing to a more practical backtesting result.
Adopting the strangle quantitative investment strategy based on the 50TF ETF historical volatility and
the 50TF ETF options implied volatility; the net value of this strategy slumps, with the price of the
50 ETF underlying asset fluctuating violently under the 15 min trading frequency. However, it can still
outperform the 50 ETF index. Therefore, the strangle quantitative investment strategy based on the
50 ETF underlying asset historical volatility and the 50 ETF options implied volatility has a certain
research value in terms of the strategy itself. At the same time, it is confirmed that introducing the
concept of hedging will prompt the quantitative investment strategy to be more defensive and stable.

Before combining the deep learning method and quantitative investment strategies, the deep
learning model LSTM, RF and the combined models LSTM-SVRs (LSTM-SVR I and LSTM-SVR II)
are used to predict the price of the 50 ETF underlying asset for two time periods, which are: 11:30 on
28 June 2017 to 10:30 on 14 March 2018, and 10:30 on 14 April 2015 to 13:45 on 12 January 2016. Before
using the model to predict the data within a certain time period, this paper first employs the remaining
data as the training set to train the model, which is in accordance with the requirement that 75% of
the data should be used as the training set and 25% of the data ought to be the prediction set. After
eight experiments, the comparison between RF model and LSTM model for two time periods reveals
that the performance of LSTM model is generally better than RF model. Therefore, the chosen LSTM
model is compared with LSTM-SVRs to see whether there is an improvement. After eight experiments,
the deviation of the combined models LSTM-SVR (LSTM-SVR I and LSTM-SVR II) in forecasting data
from 10:30 on 28 June 2017 to 10:30 on 14 March 2018, are lower than the LSTM model. In other words,
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comparing with LSTM model, there is a more significant improvement in accuracy in LSTM-SVR I and
LSTM-SVR II. However, when the LSTM-SVR (LSTM-SVR I and LSTM-SVR II) models predict data
from 10:30 on 14 April 2015 to 13:45 on 12 January 2016, the deviation increases sharply. At this time,
although the deviation of the LSTM-SVR model still a little prior to the LSTM model, compared with
the prediction result from 10:30 on 28 June 2017 to 10:30 on 14 March 2018, the extent of optimization
has plummeted greatly. Therefore, it can be inferred that the prediction stability of the LSTM-SVR
models calls for further improvement, but that the accuracy of the LSTM-SVR models are much higher
than that of the LSTM model when predicting a relatively stable market. This paper also compares two
different ways to form the LSTM-SVR model. LSTM-SVR I combines the output of LSTM and seven key
factors as the input of SVR. The other kind of LSTM-SVR II combines the hidden state vectors of LSTM
and seven key factors as the inputs of SVR. In this paper, the performance of LSTM-SVR I is better
than the performance of LSTM-SVR II. As for the reason, it might be related to the input attributes of
LSTM-SVR II containing every hidden state vector in every hidden layer (a total 20 hidden layers), and
the many vectors might be considered as redundant, resulting in worse performance. This paper finds
that compared with traditional quantitative investment strategies, quantitative investment strategies
based on deep learning models can bring higher returns, and better defensibility and stability.

Using the prediction result of the two time periods mentioned above (10:30 on 28 June 2017 to
10:30 on 14 March 2018 and 10:30 on 14 April 2015 to 13:00 on 12 January 2016) as signals to backtest,
the quantitative investment strategy with deep learning signals can avoid losses of 2,541,291 yuan
and 4,311,896 yuan, respectively, compared to the traditional quantitative investment strategy without
them, which means that in theory, yields can be increased by 25.4% and 43.1%, respectively. In addition,
according to the yield curve, the quantitative investment strategy combined with the deep learning
model also exhibits better defensibility.
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