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Abstract: In this paper, a novel constraint-following control for uncertain robot manipulators
that is inspired by analytical dynamics is developed. The motion can be regarded as external
constraints of the system. However, it is not easy to obtain explicit equations for dynamic modeling
of constrained systems. For a multibody system subject to motion constraints, it is a common
practice to introduce Lagrange multipliers, but using these to obtain explicit dynamical equations is a
very difficult task. In order to obtain such equations more simply, motion constraints are handled
here using the Udwadia-Kalaba equation(UKE). Then, considering real-life robot manipulators are
usually uncertain(but bounded), by using continuous controllers compensate for the uncertainties.
No linearizations/approximations of the robot manipulators systems are made throughout, and the
tracking errors are bounds. A redundant manipulator of the SCARA type as the example to illustrates
the methodology. Numerical results are demonstrates the simplicity and ease of implementation of
the methodology.

Keywords: robot manipulators; Udwadia-Kalaba equation; constraints; nonlinear systems; uncertain
system control

1. Introduction

The main methods currently used for dynamic modeling of robot manipulators with motion
constraints are the Newton–Euler method [1–3], Lagrange’s method [4,5], and Kane’s method [6].
The Newton–Euler method describes motion and force through the use of vectors. In the modeling
procedure, every component of the mechanism is isolated and the corresponding Newton and Euler
equations are established. The calculations involved are quite efficient, but it is hard to use this
approach when attempting to design control systems for manipulators. For a multibody system with
motion constraints, Lagrange’s method can be used, generally with the introduction of Lagrange
multipliers, a widely used technique for constrained systems. However, controlling these multipliers
is difficult, and the approach is not very well suited for symbolic considerations. Kane’s method
combines the advantages of vector mechanics and analytical mechanics, with a generalized rate being
used as an independent variable in the equations of motion of the system. The fundamental vector
projection of the main force and the inertial force of the system is extended directly to derive the
equations of motion. However, with this method, these dynamical equations cannot be obtained in
the appropriate analytical form for a constrained mechanical system. All of these approaches share
the common fundamental problem that they cannot provide explicit expressions for the dynamical
equations of the constrained system. As is well known, the generation of dynamical equations for
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constrained systems in symbolic form has a number of advantages with regard to issues of both control
and mechanical design [7].

To address the control of robot manipulators, valuable control approaches have been presented,
such as Jacobian-Matrix-Adaption (JMA) Method [8], sliding mode control (SMC) [9], Robust adaptive
control [10], and adaptive neural network control [11]. Unlike most control methods for the control
problem of robot manipulators, the present paper does not make any linearizations or approximations.
Our methodology is based on the Udwadia–Kalaba equation (UKE) [12–17]. The Udwadia–Kalaba
equation is obtained by using Gauss’s principle rather than the more commonly used principles of
Lagrange, Hamilton, Gibbs, and Appell [18]. This equation takes constraints into account in the
dynamical equation and involves the generalized Moore–Penrose inverse [19]. It provides a simple
and general explicit equation of motion for constrained mechanical systems without the need for
Lagrange multipliers [14,20]. This relatively simple approach allows detailed dynamical analysis of
such systems and should improve fundamental understanding of constrained motion in multibody
dynamics. Based on UKE, many researchers have used this method to solve problems in the dynamics
analysis of constrained systems. Pennestri et al. [21] use UKE to study the slider-crank mechanism and
compared the numerical efficiency with the coordinate partitioning (CPE) equation. Chen et al. [22]
applied the approach to the trajectory tracking control of the mobile robot, by solving UKE to obtain
the control input not make any linearization or approximations. For additional applications using
UKE see [23–28].

In this paper, we regard the desired trajectory as constraints, by using the UK equation to
obtain the control input. Considering the moment of inertial of the robot manipulators are uncertain,
a nonlinear controller was adopted to make nonlinear system to track the given trajectory. In the
control methodology, this nonlinear controller is augmented by an additional additive controller based
on a generalization of the notion of sliding surfaces [15–17,29]. It’s important to notice that the control
obtained relies on recent advances in analytical dynamics rather than on control theory.

The paper is organized as follows. In Section 2, we introduce the Udwadia–Kalaba equation.
In Section 3, we introduce our new approach based on UKE to tracking control of robot manipulator
with uncertain dynamics. In Section 4, the proposed method is applied to a redundant SCARA-type
manipulator, and illustrative numerical simulation results are presented in Section 3. Finally, this paper
is concluded in Section 5.

2. Udwadia–Kalaba Equation

Consider the unconstrained mechanical system, moving under the influence of gravity alone,
described by n generalized coordinates q := [q1, q2, · · · , qn]

T , and with equations of motion expressed
in Newtonian or Lagrangian form as

M (q, t) q̈ = Q (q, q̇, t) , (1)

with initial conditions
q (0) = q0, q̇ (0) = q̇0. (2)

Here t ∈ R is the time, M is an n× n matrix that can be either positive-semidefinite (M ≥ 0) or
positive-definite (M > 0) at each instant of time. q̇ is the n× 1 velocity vector, q̈ is the n× 1 acceleration
vector, and Q (q, q̇, t), called the given force, collects together the normal and Coriolis inertial terms
and the applied forces related to q, q̇, and t. From (1), when q, q̇, and t are known, the acceleration can
be obtained as follows:

a (q, q̇, t) := M−1 (q, t) Q (q, q̇, t) . (3)

Suppose the mechanical system is subject to l(l < n) Paffian (holonomic or non-holonomic)
constraints [23]:
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n

∑
i=1

Ali(q, t)q̇i = cl(q, t), l = 1, 2, · · · , m, (4)

in which Ali(∗) : Rn × R→ R are both C1, m ≤ n. By differentiating the Equation (4), we can obtain
the second-order form constraints as

n

∑
i=1

(
d
dt

Ali(q,t))q̇i +
n

∑
i=1

(
d
dt

Ali(q,t))q̈i =
d
dt

cl(q, t), (5)

in which 
d
dt Ali(q, t) = ∑n

k=1
∂Ali(q,t)

∂qk
q̇k +

∂Ali(q,t)
∂t ,

d
dt cl(q, t) = ∑n

k=1
∂cl(q,t)

∂qk
q̇k +

∂cl(q,t)
∂t .

(6)

Let

bl(q, q̇, t) :=
d
dt

cl(q, t)−
n

∑
i=1

(
d
dt

Ali(q, t))q̇i. (7)

Then Equation (5) can be written as the matrix form

A(q, q̇, t)q̈ = b(q, q̇, t), (8)

where b = [b1, b2, · · · , bm]T .
When the system is constrained, an additional set of forces act on the manipulator system, and the

equation of motion of this constrained manipulator system can then be written as

M (q, t) q̈ = Q (q, q̇, t) + Qc (q, ṫ, t) , (9)

where Qc (q, q̇, t) is an n× 1 vector, which is present because of the additional constraint force and
satisfies the constraint conditions.

In Lagrangian mechanics, when the constraints are ideal, Qc (q, q̇, t) is governed by the usual
D’Alembert principle. However, the constraints can also be nonideal, and the constrained system can
be subject to both ideal and nonideal constraints at the same time, in which case Qc (q, q̇, t) can be
written as

Qc (q, q̇, t) = Qc
id (q, q̇, t) + Qc

nid (q, q̇, t) , (10)

where Qc
id (q, q̇, t) is the ideal constraint force and Qc

nid (q, q̇, t) the nonideal constraint force.
Assuming that the virtual displacement is ν, the work done by the ideal constraint force is zero,

i.e.,
νTQc

id = 0, (11)

while the work done by the nonideal constraint force Qc
nid (q, q̇, t) is nonzero. i.e.,

νTQc
nid 6= 0. (12)

Udwadia and Kalaba showed that the ideal constraint force is given by

Qc
id (q, q̇, t) = M

1
2 B+

(
b− AM−1Q

)
, (13)

and the nonideal constraint force by

Qc
nid (q, q̇, t) = M

1
2 B+

(
I − B+B

)
M−

1
2 c, (14)
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where the matrix B = AM−
1
2 and the superscript “+” indicates the Moore–Penrose inverse matrix.

The vector c is a known vector, which can be obtained experimentally or by observation for a given
mechanical system.

From (9), (10), (13), and (14), the general equation describing the dynamics of the constrained
system is

Mq̈ = Q + M
1
2 B+

(
b− AM−1Q

)
+ M

1
2 B+

(
I − B+B

)
M−

1
2 c. (15)

If the work done by constraint forces under virtual displacements is zero, then Qc
nid = 0, and the

general equation of the constrained system is then simplified to

Mq̈ = Q + M
1
2 B+

(
b− AM−1Q

)
= Q + Qc. (16)

Premultiplying both sides of Equation (16) with M−1, the acceleration of the nominal system that
satisfies the constraint in Equation (5)

q̈ = a + M−1Qc(t). (17)

3. Tracking Control of Robot Manipulators with Uncertain Dynamics

We suppose this framework in the joint space of the robot. The task description is given by the
end-effector of robot manipulators trajectory as constraint with h(q, t) = f (q(t))− xd(t) = x(t)−
xd(t) = 0, in which x = f (q) denotes the forward kinematics [30]. We make use of the differential
forward kinematics,

ẋ = J(q)q̇, ẍ = J(q)q̈ + J̇ q̇, (18)

and we bring Equation (18) into Equation (8) with

A(q, q̇, t) = J, b(q, q̇, t) = ẍd − J̇ q̇. (19)

We considered the uncertainties in the modeling of the moments of inertia of the robot
manipulators by using the concept of a sliding surface [15–17]. The equation of motion of the controlled
“actual” system is

Ma q̈c = Qa(qc, q̇c, t) + Qc(t) + Qu(qc, q̇c, t), (20)

in which qc is the generalized coordinate vector of the controlled actual system; the subscript a denotes
the actual, real-life system whose knowledge is uncertain, but bounded; the actual “given” force vector
is Qa; Qc is obtained from Equation (16) and Qu is the additional control force vector that compensates
for the actual system.

The tracking errors (position and velocity) between the actual and the nominal system is

exa(t) = xa(t)− xd(t), ėxa(t) = ẋa(t)− ẋd(t). (21)

For a sliding surface defined as

s(t) = ėxa(t) + kexa(t), (22)

when the sliding surface s = 0, it tracks the desired trajectories of the manipulator system exactly,
using a smooth function [15] (instead of the traditional signum function or saturation function),
and we can only ensure that the actual system stays within a small region around the origin, s ∈ Ωε.
This region Ωε defined as

Ωε := {s ∈ Rn∣∣‖s‖ ≤ ε} (23)

can be made arbitrarily small. The method requires the computation of the following estimates:
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(i)λmin := min(eigenvalues o f AM−1
a A+),

(ii)β ≥ ‖A‖‖δq̈‖+ (‖Ȧ‖+ k‖A‖)‖ėa‖
λmin

, ∀t > 0.
(24)

in which
δq̈ = M−1

a (Qa + Qc)−M−1(Q + Qc). (25)

In the above relations, ‖ ∗ ‖means the L2 norm. The additional control force is given as

Qu = −βA+(s/ε), (26)

where ε is a positive number, which can be chosen by the user. The tracking errors boundary is given
by (for a Proof, see Ref. [15]):

|exa,i| ≤
ε

k
, |ėxa,i| ≤ 2ε, i = 1, 2, · · · , n. (27)

Proof Equation (26). Define the tracking errors on position as

exa = f (qa)− f (q) = ẋ− ẋd = Aėa. (28)

The derivative of Equation (22) is evaluated as

ṡ = ëxa + kėxa = ẍa − ẍd + k(ẋa − ẋd) =

ẍa−ẍd︷ ︸︸ ︷
Aëa + Ȧėa + kAėa︸︷︷︸

k(ẋa−ẋd)

. (29)

Upon differentiating the tracking errors ea(t) = qa(t)− qd(t) twice , we have

ëa = q̈a(t)− q̈d(t). (30)

Using Equation (16), and the controlled actual system (Equation (20)), Equation (30) becomes

ëa = M−1
a (Qa + Qc)−M−1(Q + Qc) + M−1

a Qu = δq̈ + M−1
a Qu. (31)

Therefore, the time derivative of the sliding manifold by using Equations (31) and (29) can be
simplified as:

ṡ = ëxa + kėxa = Aëa + Ȧėa + kAėa = A(δq̈ + M−1
a Qu) + Ȧėa + kAėa. (32)

Considering the Lyapunov function

Va =
1
2

sTs, (33)

suppose s ∈ Ωε and compute

V̇a = sT ṡ

= sT(A(δq̈ + M−1
a Qu) + Ȧėa + kAėa

)
= sT(A(δq̈−M−1

a βA+(
s
ε
)) + Ȧėa + kAėa

)
= sT(Aδq̈− βAM−1

a A+(
s
ε
) + Ȧėa + kAėa).

(34)
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Observing that sT AM−1
a A+s ≥ λmin‖s‖2, we have

V̇a ≤‖s‖(‖A‖‖δq̈‖ − βλmin
‖s‖

ε
+ ‖Ȧ‖+ k‖A‖)‖ėa‖

= ‖s‖‖A‖(‖δq̈‖ − βλmin
‖s‖
‖A‖ε +

‖Ȧ‖+ k‖A‖
‖A‖ ‖ėa‖).

(35)

Thus, when β ≥ ‖A‖‖δq̈‖+(‖Ȧ‖+k‖A‖)‖ėa‖
λmin

, ∀t > 0, Equation (35) is strictly negative.

4. Application Example: A Redundant SCARA-Type Manipulator

In this section, the proposed Equation (26) is tested on a redundant SCARA-type manipulator [31].
The manipulator is shown in Figure 1.

Figure 1. A redundant manipulator of the SCARA type.

4.1. Kinematics Analysis

The DH parameters can be used to write the transformations for each link. The general
transformation between link i− 1 and i can be written as:

i−1Ti =


cos θi − sin θi cos αi sin θi sin αi ai cos θi
sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di
0 0 0 1

. (36)

For the redundant manipulator, the DH parameters are shown in Table 1.

Table 1. DH parameters of a redundant manipulator.

i ai αi di θi

1 0 0 l1 + d1 0
2 l2 0 0 θ2
3 l3 0 0 θ3
4 l4 π 0 θ4
5 0 0 l5 + d5 0

It is straightforward to write the transformation matrix for each link of the manipulator by
inserting the DH parameters from Table 1 in Equation (36). Then, the transformation matrix can be
easily obtained from
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T =


C234 S234 0 l2C2 + l3C23 + l4C234

S234 −C234 0 l2S2 + l3S23 + l4S234

0 0 −1 l1 + d1 − l5 − d5

0 0 0 1

 , (37)

where S2 = sin θ2, S23 = sin(θ2 + θ3), S234 = sin(θ2 + θ3 + θ4), C2 = cos θ2, C23 = cos(θ2 + θ3),
C234 = cos(θ2 + θ3 + θ4).

From Equation (37), we can obtain the position of the end-effector of the manipulator
x = l2C2 + l3C23 + l4C234,

y = l2S2 + l3S23 + l4S234,

z = l1 + d1 − l5 − d5.

(38)

Then, the constraint encountered by the manipulator can be written as the following:

x = rx = η cos(t/2) cos(t) + x0,

y = ry = η sin(t/2) cos(t) + y0,

z = rz = 0.2,

θ1 = 0.1 + 0.1 sin(t),

θ3 = π/2.

(39)

By differentiating Equation (39) with respect to time t twice and combining with Equation (8),
we write the constraints in matrix form:



A =



0 −l2S2 − l3S23 − l4S234 −l3S23 − l4S234 −l4S234 0

0 C2l2 + l3C23 + l4C234 C23l3 + l4C234 l4C234 0

1 0 0 0 −1

1 0 0 0 0

0 0 1 0 0


,

b =



l2C2θ̇2
2 + l3(θ̇2 + θ̇3)

2C23 + l4(θ̇2 + θ̇3 + θ̇4)
2C234 − 5

4 η cos t
2 cos t + η sin t

2 sin t

l2S2θ̇2
2 + l3(θ̇2 + θ̇3)

2S23 + l4(θ̇2 + θ̇3 + θ̇4)
2S234 − 5

4 η sin t
2 cos t− η cos t

2 sin t

0

−0.1 sin(t)

0


.

(40)

4.2. Dynamics Analysis

The dynamics equation of the manipulator can be written as:

M (q) q̈ + C (q, q̇) + G (q, q̇) = τ, (41)

where τ represents the generalized forces vector, M is the inertia matrix, C is the centrifugal and
Coriolis forces vector, and G is the gravitational force vector.

The inertia matrix is a symmetric positive definite matrix, which means Mij = Mji. The inertia
matrix for the manipulator system is given as follows:
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

M11 = m1 + m2 + m3 + m4 + m5, M15 = −m5, M12 = M13 = M14 = M25 = M35 = M45 = 0,

M22 = l2
c2m2 + (l2

2 + l2
c3 + 2l2lc3C3)m3 + (l2

2 + l2
3 + l2

c4 + 2l2l3)m4 + 2(l3lc4C4 + l2lc4C34)m4

+(l2
2 + l2

3 + l2
4 + 2l2l3C3)m5 + 2(l3l4C4 + l2l4C34)m5 + I2zz + I3zz + I4zz,

M23 = (l2
c3 + l3lc3C3)m3 + (l2

3 + l2
c4 + l2l3C3 + 2l3lc4C4)m4 + l2l4C34m5,

+(l2
3 + l2

4 + l2l3C3 + 2l3l4C4)m5 + I3zz + I4zz,

M24 = (l2
c4 + l3lc4C4 + l2lc4C34)m4 + (l2

4 + l3l4C4 + l2l4C34)m5 + I4zz,

M33 = l2
c3m3 + (l2

3 + l2
c4 + 2l3lc4C4)m4 + (l2

3 + l2
4 + 2l3l4C4)m5 + I3zz + I4zz,

M34 = (l2
c4 + l3lc4C4)m4 + (l2

4 + l3l4C4)m5 + I4zz,

M44 = l2
c4m5 + l2

4m5 + I4zz, M55 = m5.

(42)

The components of centrifugal and Coriolis forces C are given as:

C11 = C15 = 0,

C12 = −(l2S3θ̇2
3 + 2l2S3θ̇2θ̇3)(lc3m3 + l4m4 + l3m5) + (l2S34θ̇2

3 − 2(l3S4 + l2S34)θ̇3θ̇4)(lc4m4 + l4m5),

+(l2S34θ̇2θ̇3 − (θ̇2
4 + 2θ̇2θ̇4)(l2S34))(lc4m4 + l4m5),

C13 = (lc3m3 + l3m4 + l3m5)l2S3θ̇2
2 + (l2S34θ̇2

2 − (2(θ̇2 + θ̇3) + θ̇4)l3S4θ̇4)(lc4m4 + l4m5),

C14 = (lc4m4 + l4m5)(l3S4 + l2S34)θ̇
2
2 + (l3S4θ̇2

3 + 2l3θ̇2θ̇3)(lc4m4 + l4m5).

(43)

The components of the gravitational force are given by:

G = [(m1 + m2 + m3 + m4 + m5)g, 0, 0, 0,−m5g]T . (44)

According to the UK equation, the constraint force, which represents the inverse dynamics of the
manipulator, can be written in the form

Qc = M
1
2 (AM−

1
2 )+(b− AM−1(−C− G)). (45)

4.3. Numerical Simulation

The numerical values of the parameters used for simulation were: m1 = 0.524
kg, m2 = m3 = m4 = 1.023 kg, m5 = 0.14 kg, ∆m1 = 0.1m1 sin(t), ∆m2 = 0.1m2 sin(t),
∆m3 = 0.1m3 sin(t), ∆m4 = 0.1m4 sin(t), ∆m5 = 0.1m5 sin(t), l1 = 0.524 m, l2 = l3 = l4 = 0.2 m,
l5 = 0.14 m, l1zz = l2zz = l3zz = 0.0058 kg ·m2, lc2 = lc3 = lc4 = 0.0229 m, η = 0.1, x0 = y0 = 0.2,
g = 9.8 m/s2. The initial conditions of the system are given as: q(0) = [0.1,−0.6435, π/2, 0, 0.284]T ,
q̇(0) = [0.1, 0.4, 0,−0.5, 0.1]T . We chose the control parameters as follows: k = 10, β = 1000, ε = 0.001.
We can guarantee that the tracking errors of position and velocity as given by Equation (27) were
|exa,i| ≤ ε

k = 10−4, |ėxa,i| ≤ 2ε = 2× 10−3. The equation of the controlled system given by Equation
(20) was numerically integrated for 20 s using ODE15s on the MATLAB platform.

Figures 2–4 show the numerical simulation results for the tracking control of the SCARA-type
manipulator. By using the MATLAB Robotics toolbox [32], the trajectories of the end-effector of the
manipulator are shown in Figure 2. From Figure 2, we can see that the end-effector of the manipulator
can move on the desired trajectory. Figure 3 shows the errors in tracking the position and the velocity
of the end-effector of manipulator of the nominal system. These values are bounded within 10−4 and
2× 10−3. The required servo joint forces are shown in Figure 4, where Qc denotes the control input,
and Qu denotes the additional control torques for uncertainties of the actual system.
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Figure 2. The end-effector of the SCARA-type manipulator tracks the Rhodonea path in Cartesian space.
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Figure 3. Tracking error. (a) The error of tracking the nominal system on position; (b) The error of
tracking the nominal system on velocity.
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Figure 4. The control input torques. Control input obtained from Equation (16); Additional controller
to compensate for the uncertainties by using Equation (26).
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5. Conclusions

In this paper, problems in the dynamic modeling and control of a robot manipulators system
with uncertain dynamics were considered. The dynamical equations and the constraint torque forces
were obtained from the Udwadia–Kalaba equation, using the additional controller to compensate
uncertainties in the nominal system. No linearizations/approximations of the robot manipulators
systems were made throughout, and the tracking errors were bounded. A SCARA-type manipulator
was used as an application example. Numerical simulation demonstrated the simplicity and ease
of implementation.
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