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Abstract: An improved squirrel search algorithm (ISSA) is proposed in this paper. The proposed
algorithm contains two searching methods, one is the jumping search method, and the other is
the progressive search method. The practical method used in the evolutionary process is selected
automatically through the linear regression selection strategy, which enhances the robustness of
squirrel search algorithm (SSA). For the jumping search method, the ‘escape’ operation develops
the search space sufficiently and the ‘death’ operation further explores the developed space, which
balances the development and exploration ability of SSA. Concerning the progressive search method,
the mutation operation fully preserves the current evolutionary information and pays more attention
to maintain the population diversity. Twenty-one benchmark functions are selected to test the
performance of ISSA. The experimental results show that the proposed algorithm can improve the
convergence accuracy, accelerate the convergence speed as well as maintain the population diversity.
The statistical test proves that ISSA has significant advantages compared with SSA. Furthermore,
compared with five other intelligence evolutionary algorithms, the experimental results and statistical
tests also show that ISSA has obvious advantages on convergence accuracy, convergence speed
and robustness.

Keywords: the squirrel search algorithm; the jumping search method; the progressive search method;
linear regression selection strategy

1. Introduction

Optimization is one of the most common problems in the engineering field, and with the
development of new technology, the problems that need to be optimized have gradually turn to large
scale, multi peak and nonlinear approaches. The intelligence evolutionary algorithm is a mature global
optimization method with high robustness and wide applicability. The fact that the evolutionary
process is not constrained by search space and does not require other auxiliary information means
that the intelligence evolutionary algorithm can deal with complex problems effectively, which are
too difficult to be solved by the traditional optimization algorithms [1,2]. The applications of the
intelligence evolutionary algorithms have covered system control, machine design and engineering
planning, for example [3-7].

The intelligence evolutionary algorithms can be divided into the evolutionary heuristic algorithms,
the physical heuristic algorithms and the group heuristic algorithms, according to their inspiration. The
evolutionary heuristic algorithms originate from the genetic evolution process, with the representative
algorithms described as follows: The genetic algorithm imitates Darwin’s theory of natural selection
and finds the optimal solution by selection, crossover and mutation [8]. Similarly, the essence of the
differential evolutionary algorithm is the genetic algorithm based on real coding; the mutation operation
modifies each individual according to the difference vectors of population [9]. In the covariance-matrix

Algorithms 2019, 12, 80; doi:10.3390/a12040080 www.mdpi.com/journal/algorithms


http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8223-086X
http://www.mdpi.com/1999-4893/12/4/80?type=check_update&version=1
http://dx.doi.org/10.3390/a12040080
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 80 2 of 29

adaptation evolution strategy, the direction of mutation steps of a population is directly described
by the covariance matrix, where the search range of the next generation is increased or decreased
adaptively. The individuals produced by sampling are optimized through the iterative loop [10]. The
clonal selection algorithm is based on the clonal selection theory; the fitness value corresponds to the
cell affinity, and the optimization process imitates the affinity maturation process of cells with low
antigen affinity [11]. Given that human beings have higher survivability because they are good at
observing and drawing experience from others” habits, the social cognitive optimization algorithm
was proposed, with better solutions being selected by the imitating process and new solutions being
produced by the observing process [12]. Imitating the toning process of musicians, the melody search
is aimed at finding the best melody of continuity, the harmony memory considering rate controls the
search range of each solution (harmony) and the pitch adjusting rate produces a local perturbation
of the new solution [13]. The teaching-learning-based optimization algorithm is proposed through
imitating the teachers’ teaching and the students’ learning process. The teacher is the individual with
the best grade (fitness value) and the other individuals in the population are students. In order to
improve the grades of the whole class, each student studies from the teacher in the teaching stage
and the students learn from each other in learning stage [14]. There are three relationships among
living things: mutualism, commensalism and parasitism; creatures can benefit themselves by any of
these relationships. The symbiotic organisms search was proposed according to this phenomenon.
Each individual interacts with other individuals during the optimization and the better individuals
are retained after each interaction [15]. The mouth brooding fish algorithm simulates the symbiotic
interaction strategies adopted by organisms to survive and propagate in the ecosystem. The proposed
algorithm uses the movement, dispersion and protection behavior of a mouth brooding fish as an
update mode, and the individuals in the algorithm are updated after these three stages to find the best
possible answer [16].

The physical heuristic algorithms are inspired by physical phenomena, with the representative
algorithms as follows: The freedom of molecules increases after a solid melts, and the temperature
needs to drop slowly to return to stable solids with minimum energy. Simulated annealing takes the
fitness value as the energy of the solid, with the energy decreasing gradually with the optimization
proceeding and the optimal solution being found [17]. The gravitational search algorithm is based on
the law of universal gravitation—for each individual the fitness value represents its resultant force
produced by all the individuals in the population [18]. The magnetic optimization algorithm is inspired
by the theory of magnetic field, where the resultant forces of individuals are changed by the field
strength and the distance among individuals. The acceleration, the velocity and positions of individuals
are also updated, with the individuals reaching the optimum values gradually [19]. Considering the
refraction that occurs when light travels from a light scattering medium to a denser medium, the ray
optimization algorithm was proposed. For each individual, the normal vector is determined by its
optimal solution and the global optimal solution; the optimal solution can be found with the exit rays
close to normal [20]. The kinetic energy of gas molecules takes the energy of gas as the fitness value.
When the pressure remains unchangeable and the temperature decreases, the molecules gradually
accumulate to the position where the temperature is the lowest and the kinetic energy is the smallest in
the container [21]. Inspired by the physical phenomenon of water evaporation, the water evaporation
optimization algorithm was proposed. The factors that affect the water evaporation rate are taken
as the fitness values. According to the water evaporation rate model, the evaporation probability
matrix was considered as the individual renewal probability. Considering that the aggregated forms
of water molecules are different, the algorithm is divided into a monolayer evaporation phase in the
early evolutionary stage and a droplet evaporation phase in the later evolutionary stage [22]. The
lightning attachment procedure optimization algorithm simulates the lightning formation process,
which takes the test points between cloud and ground as individuals and the corresponding electrical
fields represent fitness values. The three evolutionary operations—downward pilot, upward pilot
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and branch fading—imitate the downward leader movement, the upward leader propagation and the
discharge of lightning, respectively [23].

The group heuristic algorithms mainly simulate biological habits in nature. The representative
algorithms are as follows: The ant colony optimization algorithm was proposed according to the
way that ants leave pheromones on their path during movement, with better paths having more
pheromones, and thus better paths have greater possibilities to be chosen by ants. As a result, more
and more pheromones will be left on those paths, and the optimal solution will be found with the
increasing concentration of pheromones [24]. The particle swarm optimization algorithm is inspired by
the behavior of birds seeking food. For each individual, the position is updated by its current speed, its
optimal position and the global best position [25]. The artificial bee colony algorithm was proposed by
imitating honeybee foraging behavior. The whole population is divided into three groups: the leading
bees, the following bees and the detecting bees. The leading bees are responsible for producing a new
honey source, while the following bees search greedily near better honey sources. If the quality of the
honey source remains unchanged after many iterations, the leading bees will change to detecting bees
and continue to search for a high quality honey source [26]. The social spider optimization regards the
whole search space as the spiders” attached web, with the spiders’ positions as the possible solutions of
the optimization problem, and the corresponding weights representing the fitness values of individuals.
Female and male subpopulations produce offspring through their respective cooperation and mating
behavior [27]. The selfish herd theory proves that when animals encounter predators, each individual
increases its survival possibilities by aggregating with other individuals in the herd, whether this
approach affects the survival probability of other individuals or not. According to this theory, the
selfish herd optimizer was proposed, wherein each individual updates the location in this way to
obtain a greater probability of survival [28]. Inspired by the foraging process of hummingbirds, the
hummingbirds optimization algorithm was proposed. The hummingbird can search according to its
cognitive behavior without interacting with other individuals in a self-searching phase. In addition to
searching through experience, hummingbirds can also search by using various dominant individuals
as guidance information in a guided-search phase, with the two phases cooperating to promote the
population evolution [29].

A large number of experimental results show that the intelligence optimization algorithms can
obtain, exact or approximate an optimal solution to large-scale optimization problems in a limited time
frame. However, there are also disadvantages, such as the convergence speed being not fast enough
and easily falling into the local optimal. Therefore, scholars have put forward various new intelligence
evolutionary algorithms.

In 2018, the squirrel search algorithm (SSA) [30] was proposed by Jain M. The algorithm imitates
the dynamic jumping strategies and the gliding characters of flying squirrels. The mathematical
model mainly consists of the location of a food source and the appearance of predators. The whole
optimization process includes the summer phase and the winter phase. However, similar to other
intelligent evolutionary algorithms, SSA also has some shortcomings, such as low convergence accuracy
and slow convergence speed [31,32]. According to SSA, the single winter search method of the global
search ability is not enough, which makes the algorithm easily fall into local optimal. Furthermore, the
random summer search method decreases the convergence speed, and the convergence precision is
also reduced. In order to improve the convergence precision and the convergence speed, this paper
proposed an improved squirrel search algorithm (ISSA). The proposed algorithm includes the jumping
search method and the progressive search method. When the squirrels meet with predators, the
‘escape’ and ‘death’ operations are introduced into the jumping search method and the ‘mutation’
operation is introduced into the progressive search method. ISSA also chooses the suitable search
method through the linear regression selection strategy during the optimization process. Twenty-one
benchmark functions are used to evaluate the performance of the proposed algorithm. The experiments
contain three parts: the influence of the parameter on ISSA, the comparison of the proposed methods
and SSA and the comparison of ISSA and five other improved evolutionary algorithms.
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The remaining sections are arranged as follows: Section 2 reviews the basic SSA. Section 3 presents
the proposed ISSA. The experiments and results analysis are reported in Section 4. Section 5 concludes
this paper.

2. The Squirrel Search Algorithm

The standard SSA updates the positions of individuals according to the current season, the type
of individuals and whether predators appear [30].

2.1. Initialize the Population

Assuming that the number of the population is N, the upper and lower bounds of the search space
are FSyy and FSy. N individuals are randomly produced according to Formula (1):

FS; = FSp + rand(1,D) X (FSy — FSy) M)

FS; represents the i-th individual, (i =1 ... N); rand is a random number between 0 and 1; D is the
dimension of the problem.

2.2. Classify the Population

Taking the minimization problem as an example, SSA requires that there is only one squirrel at
each tree, assuming the total number of the squirrels is N, therefore, there are N trees in the forest.
All the N trees contain one hickory tree and N (1 < N < N) acorn trees; the others are normal trees
which have no food. The hickory tree is the best food resource for the squirrels and the acorn tree takes
second place. N can be different depending on the different problems. Ranking the fitness values
of the population in ascending order, the squirrels are divided into three types: individuals located
at hickory trees (Fj), individuals located at acorn trees (F;) and individuals located at normal trees
(Fp). Fy, refers to the individual with the minimum fitness value, F, contains the individuals whose
fitness rank 2 to Ng; + 1 and the remaining individuals are noted as F,,. In order to find the better food
resource, the destination of F, is Fj; the destinations of F;, are randomly determined as either F, or Fj,.

2.3. Update the Position

The individuals update their positions by gliding to the hickory trees or acorn trees. The specific
updating formulas are shown as Formulas (2) and (3), respectively:

FSit! = FS! +dg X Ge x (F} —FS}) if r> Py, )
randomlocation otherwise
t+1 .
FSI*h = FSt 4 dg x Ge X (FL. = FS!) if r> Py, 3)
randomlocation otherwise

ris a random number between 0 and 1; P, valued at 0.1 represents the predator appearance probability;
if r > Py, then no predator appears, the squirrels glide in the forest to find the food, and the individuals
are safe; if r < Py, the predators appear, the squirrels are forced to narrow the scope of activities, the
individuals are endangered, and their positions are relocated randomly (the specific method will be
introduced in Section 2.4); t represents the current iteration; G is the constant with the value of 1.9; F;
i=12,... Nfs) is the individual randomly selected from F; dg is the gliding distance which can be
calculated by Formula (4):

hg

dg = tan(p) Xsf )
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hg is the constant valued 8; sf is the constant valued 18; tan(¢) represents the gliding angle which can
be calculated by Formula (5):

D
tan(p) = T ®)
D is the drag force and L is the lift force which can be calculated by calculated by Formulas (6) and (7),
respectively:
1
- - 6
ZPVZSC D ( )
1
= S v25c, @)
pV25CL

p, V, S and Cp are all the constants which are equal to 1.204 kg m=3, 525 ms™!, 154 cm? and 0.6,
respectively; Cy is a random number between 0.675 and 1.5.

2.4. Seasonal Transition Judgement and Random Updating

At the beginning of each iteration, the standard SSA requires that the whole population is in
winter, which means all the individuals are updated in the way introduced in Section 2.3. When all the
individuals have been updated, whether the season changes is judged according to Formulas (8) and

(9):

D
=\, -F ) i=12..,Ng (8)

10e~®

Smin = (365)!/ (1725

9
T is the maximum number of iterations, if St < S,,;,,, winter is over and the season turns to summer,
otherwise, the season is unchanged. When the season turns to summer, all the individuals who glide to
Fj, stay at the updated location, and all the individuals who glide to F; and do not meet with predators
relocate their positions by Formula (10):

FS'TY — FS; + Le'vy(n) x (FSy — FSp) (10)

mew

Le’vy is the random walk model whose step obey the Le’vy distribution and can be calculated by
Formula (11):

Le'vy(x) = 0.01 x = xla (11)
Irpl?
p is the constant valued 1.5; o can calculated by Formula (12):
]
T(1+p)xsin( 2L 7 )
r(4t )><5><2 ) (12)

whereF() (x=1)!

In conclusion, the procedure of the standard SSA is shown in Figure 1:
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Figure 1. The procedure of the standard squirrel search algorithm (SSA).

3. The improved Squirrel Search Algorithm

3.1. Motivation

A large number of experiments have proven that different evolutionary strategies are suitable for
different problems, and also that the requirements are also different with the development of evolution.
In the early stage of optimization, individuals are distributed dispersedly in the search space, and
there are still large distances among the individuals with better fitness values. Thus it is important
to maintain the diversity of the population to develop the search space sufficiently. Meanwhile, the
convergence speed should be improved as well. In the later stage of optimization, the difference
among the individuals are increasingly shorter, and thus the main work is to search around the elite
individuals to improve the convergence speed. In addition to this, in order to prevent the algorithm
from falling into a local optimal, the diversity of the population also needs to be supplemented.

Considering the analysis above, an improved squirrel search algorithm (ISSA) is proposed in this
paper to improve the performance and the robustness of SSA. The proposed algorithm includes the
jumping search method and the progressive search method, both of having an independent winter
search strategy for the early evolutionary stage when St > S,,;; and summer search strategy for the
later evolutionary stage when S. < S,,;,,. Algorithm 1 shows the detailed steps of ISSA:

Algorithm 1. Pseudo Code of ISSA

Input: pop
Output: fhes (fpes is the best fitness value optimized by the algorithm)
for t=1to T (T is the total generation of the algorithm to be executed)
evaluate the fitness values of the population
update the population through the jumping search method introduced in Section 3.2
if t==T/n (nis the total substages of the whole optimization, details in Section 3.4)
calculate the corresponding linear regression equations introduced in Section 3.4
if two or more calculated slopes are positive
continue optimizing through the progressive search method introduced in Section 3.3
else
continue optimizing through the jumping search method mentioned in Section 3.2
end
end
end
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3.2. The Jumping Search Method

3.2.1. “Escape’ Operation in Winter

According to the winter updating method, a random relocation makes the endangered individuals
abandon the current evolutionary direction, which decreases the convergence speed even if it can
explore the new position to maintain the population diversity. In addition, the safe individuals evolve
towards either Fj, or F, based on themselves, which can maintain the current evolutionary information
and supplement the population diversity. However, the convergence speed will decrease because F; is
ultimately not the best individual.

In order to maintain the population diversity and improve the convergence speed, a new winter
search strategy was designed in the jumping search method. The details are as follows:

If r > Py, FS; is safe, the position is updated by Formula (13):

FSI*1 = FS! +dg x G, x (F} — FS!) (13)
Ifr < Py, FS; is endangered, FS; is considered to be dead and generates a new one by Formula (14):
FS!*1 = L+ rand(1,D) x (U~L) (14)

In Formula (14), U is the maximum of FS; and L is the minimum of FS;.

Producing a subpopulation GS, all the individuals in GS have not been updated, and the original
FS; is considered to be the predator with the hunting radius calculated by Formula (15). The individual
in GS is threatened if the distance between itself and the predator is shorter than the hunting radius. All
the threatened individuals ‘escape’ by Formula (16) and continue searching around the new position
by Formula (17) after ‘escaping’.

R— % (15)
FS}* = FS' +dg x Ge X (Fy; = FS}) = dg X Ge X (FS; —FS))i = 1,2,..., N (16)
st.“ = FS}™ % (0.5 + rand) (17)

In the formula above, FS; represents the threatened individual.

The advantages of the new winter search strategy include: (1) Considering the evolutionary
information in early stage is abundant enough to maintain the population diversity, the safe individuals
only evolve to the best individual Fj,, which will improve the convergence speed; (2) The endangered
individuals reinitialize in a smaller range, and thus the current evolutionary information can be retained
in a way that avoids a blind search, which will improve the searching efficiency. More importantly, the
threatened individuals evolve towards F, which avoids the individuals concentrating excessively. The
further development after ‘escaping’ supplements the population diversity and prevents the algorithm
from falling into a local optimal. In summary, the new winter search strategy maintains the population
diversity as well as improves the convergence speed, which satisfies the requirement of the early
evolutionary stage.

3.2.2. ‘Death’ Operation in Summer

According to the summer updating method, only safe individuals who evolve towards F, are
randomly relocated; the others stay at their updated positions without any change, although it
supplements the population diversity and retains the current evolutionary information, and the
blindness of random relocation decreases the convergence speed, which is not fit for the requirement
of the later evolutionary stage.
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In order to satisfy the corresponding requirement, a new summer search strategy was proposed.
The proposed strategy searches around the elite individual carefully and supplements the population
diversity to make up the disadvantages introduced above. The details are as follows:

If r > Py, FS; is safe, the position is updated by Formula (18):

FSI™1 = F} +dg x Ge X (F}, = FS}) (18)

If r < Py, FS; is endangered, FS; is considered to be dead and a new one will be generated by
Formula (19). Furthermore, all the threatened individuals are considered to be dead and the new ones
will be generated by Formula (20):

FS!*1 = Fstx (0.5NO)) (19)

FSI*1 = Fj x (0.5 + rand) (20)

In the formula above, N (0,1) is a random number which obeys the standard normal distribution.

Fj, is the best individual found so far. Formula (18) takes Fj, as the base vector and takes the
differential vector between Fj, and FS; as the disturbance. Due to the fact that differences among the
individuals in summer (S < S,,;,,) are smaller than those in winter (S!. > S,,;,), the essence of Formula
(18) is to search finely around Fj, and retain the current evolutionary information. In Formula (19), the
random number is generated by 0.5(N(01) scattered in [0.572,0.5%] but close to 1 in greater possibilities,
thus the individuals generated by Formula (19) are more similar to FS;, while the individuals generated
by Formula (20) distribute in [0.5F),1.5F,] uniformly. Therefore, the search space of Formulas (19) and
(20) are smaller than the random relocation shown in Formula (10). In addition, Formula (19) pays
more attention to retain the current evolutionary information and Formula (20) pays more attention to
developing the search space.

3.2.3. Characters of the Jumping Search Method

According to the new winter search strategy introduced in Section 3.2.1 and the new summer
search strategy introduced in Section 3.2.2: (1) If r > Py, the winter search strategy takes the FS; as
the base vector and takes the differential vectors between Fj, and FS; as the disturbance; the summer
search strategy takes the Fj, as the base vector and takes the differential vectors between Fj, and FS; as
the disturbance. As both of them evolve towards Fj, the difference between the winter search strategy
and the summer search strategy is that the former focuses on maintaining the population diversity,
while the latter focuses on improving the convergence speed. (2) If r < Py, the winter search strategy
updates the individuals by changing the learning target and gets away from the current position, while
the summer search strategy generates new individuals around FS; or F;,. In summary, the different
requirements in different stages are satisfied by the coordination of the two search strategies. The
pseudo code of the jumping search method is shown in Algorithm 2:
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Algorithm 2. Pseudo Code of the Jumping Search Method

Input: pop
Output: popew
if SL> S
season = winter
else
season = summer
end
if season == winter
for p1 = 1 to popsize (popsize is the total number of squirrels)
if r> Pdp
FSI*T = PSt +dg x Ge x (F! — FS!)
end
if r< Pdp
FSI*! = L+ rand(1,D) x (U~ L)
for p, =1 tonty (nt] is the total number of threatened squirrels)
FS;?ew = FSj. +dg X G¢ X (Ff”. —FS?.) —dg x Ge % (PSf. - FSj.)i =12,...,Ng
FSTH = FS1° x (0.5 + rand)
end
end
end
end
if season == summer
for p; = 1 to popsize
if 1Py,
FSITh = F! 4 dg x G x (F! — FSt)
end
if r< Pdp
FSIHY = Fstx (0.5(NO1))
for p, =1 to nt, (nt; is the total number of dead squirrels)
FSIU = Ft x (0.5 + rand)
end
end
end

3.3. The Progressive Search Method

3.3.1. The Principle of the Progressive Search Method

The progressive search method is designed to improve the robustness of SSA, compared with the
jumping search method. The progressive search method has a similar thought but different details.

When St > S, the season is winter, update and mutate the individuals as follows:

If r > Pyy, FS; is safe, update the position according to Formula (13);

If r < Py, FS; is endangered, select a dimension randomly and mutate it in the range of FS; and
FSp, which is aimed at retaining the current evolutionary direction and information.

When S < S, the season is summer, update and mutate the individuals as follows:

If r > Py, FS; is safe, update the position according to Formula (21):

FSI™1 = F, + Le'vy(x) x (Fi, - FS}) (1)

Le’vy(x) is calculated by Formulas (11) and (12), which makes the individuals search in a short distance
with greater possibilities and search in a long distance occasionally.
If r < Pgy, FS; is endangered, select a dimension randomly and mutate it in the range of L and U.
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3.3.2. The Analysis of the Progressive Search Method

According to the introduction of the progressive search method above, for the winter stage,
if the individuals are safe, the search strategy is the same as that in the jumping search method.
However, if the individuals are endangered, mutate one dimension of the individuals randomly, and
the convergence speed will slow down but more evolutionary information is retained. For the summer
stage, if the individuals are safe, the search strategy is similar to the jumping search method, but the
gliding step is replaced by the Le’vy flight. If the individuals are endangered, mutate one dimension of
the individuals randomly to maintain the diversity of the population. Algorithm 3 shows the pseudo
code of the progressive search method:

Algorithm 3. Pseudo Code of the Progressive Search Method

Input: pop

Output: popyew

if SL> S,

if r > Pdp

season = winter

else

season = summer

end

if season == winter

for p; =1 to popsize
FST =St +dg x G x (F! — FS!)

end
if <Py
select one dimension randomly and change it between FS; and FSy
end
end
end

if season == summer
for p; =1 to popsize

if 1> Py,

FSTHU =t 4 Le'oy(x) x (F! - FS!)

end

if <Py

select one dimension randomly and change it between U and L
end

end

3.4. Linear Regression Selection Strategy

According to the introduction in Sections 3.2 and 3.3, due to the fact that individuals generated in
summer are more similar to Fj, the jumping search method improves the convergence speed in an
obvious manner. As the progressive search method retains the evolutionary information efficiently, the
population diversity can be better maintained. Meanwhile, during the optimization process of the
minimization problem, the best fitness value of the population is supposed to be a downward trend.
If the population diversity is not abundant enough, the search space will not be developed sufficiently,
meaning the algorithm will not convergence efficiently and the best fitness value will fluctuate or even
become larger. Considering that different problems are suitable for different evolutionary strategies,
this paper proposes a linear regression selection strategy to choose the appropriate updating method
from the two methods mentioned above. The details are as follows:

Divide the whole evolutionary process into n substages evenly. The optimization starts with the
jumping search method, calculating the linear regression equations of the best fitness value when a
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substage is finished. There are three linear regression equations needed to be calculated: the best
fitness value of the first half substage, the second half substage and the whole substage. If two or
more equations’ slopes are positive, the best fitness value may fluctuate or become larger, that is,
the population diversity needs to be supplemented. The jumping search method is not suitable for
the current problem. Therefore, the progressive search method is selected to finish the evolution.
Otherwise, the population diversity is abundant enough, and will continue evolving through the
jumping search method to converge faster. Figure 2 is the illustration of the linear regression selection
strategy introduced above. Taking n = 10 and ¢ = 0.2 T as an example, calculate the linear regression
equations of the three regions: [0.1 T, 0.15 T], [0.15 T, 0.2 T] and [0.1 T, 0.2 T]. It can be seen from
Figure 2 that the slope of ab is negative, and the slopes of bc and ac are positive, which means that the
best fitness value will fluctuate or become larger, therefore, select the progressive search method to
finish the evolution. Figure 3 is the procedure of ISSA.

Value ——————————— The image of liner regression between a and b
The image of liner regression between a and c

The image of liner regression between b and c

T 0.15T 02T Tteration

Figure 2. The illustration of the linear regression selection strategy.

‘ Population initialization ‘

Y
Update the population through

the jumping search method

t/(0.1T)==07?

Calculate the equation of linear regression of the
corresponding phase

N Two or more slopes
are positive?
Y Y ¢
Update the population through Update the population through
the jumping search method the progressive search method

eet the terminating
condition?

eet the terminating
condition?

Figure 3. The procedure of improved squirrel search algorithm (ISSA).
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4. Analysis of the Experimental Results

4.1. Benchmark Functions

In order to test the performance of the proposed ISSA, a series of experiments are carried out.
All the experiments work on CPU: Intel Core i5-7200 M, 4 G RAM, 2.70 GHZ, Windows 10 and
Matlab R2016a.

The experiment selects 21 benchmark functions from reference [15,33-35], which include the low
dimensional unimodal functions (F1, F2), the low dimensional multimodal functions (F3-F10), the high
dimensional unimodal functions (F11-F17) and the high dimensional multimodal functions (F18-F21).
The specific functions are shown in Table 1:

Table 1. Benchmark functions.

Name Function D Range Optimal
F1 Easom F(x) = —cos(x1) cos(x2) exp(—(x; — 7)% = (x5 — 7)?) 2 [-100,100] -1
F2 Matyas f(x) = 0.26(x3 + x3) - 0.48x1x; 2 [-10,10] 0
F3 Bohachevsky1 flx) = x% + ZX% —0.3c0s(3mxy ) — 0.4cos(4mxy) + 0.7 2 [-100,100] 0
F4 Bohachevsky2 f(x) = 22 + 2x2 — 0.3cos(3mx1 ) (4mxg) + 0.3 2 [-100,100] 0
F5 Bohachevsky3 f(x) = x] +2x5 — 0.3cos(3mx; + 47mxz) +0.3 2 [-100,100] 0
F6 Booth Fx) = (x1 + 2% +7)% + (201 +x2 - 5)° 2 [-10,10] 0
D
F7 Michalewicz2 f(x) = =X sin(x;)(sin(ix? /7)) % 2 [0, 7] -1.8013
i=1
in2 24 42
F§ Schaffer — 054 Jr(HR)05 2 ~100,100 0
flx) =05+ (1+0.001(x2+22)) [ ]
D
F9 Michalewicz5 f(x) = =X sin(x;)(sin(ix?/m))? 5 (0,7 —4.6877
i=1
D
F10 Michalewicz10 f(x) = =X sin(x;)(sin(ix?/m)) % 10 [0, 7] -9.6602
i=
D D D
F11 Zakharov f(x) = ¥ o+ (X 05ix;)?+( ¥, 0.5ix;)* 30/50/100 [-5,10] 0
i=1 i=1 i=1
F12 Sphere f)=1Lr 30/50/100 [~100,100] 0
i=1
D
F13 SumSquares fx)=% z'xl2 30/50/100 [-10,10] 0
i=1
D i
F14 Schwefel 1.2 fx) =X (X x))? 30/50/100 [~100,100] 0
=1 j=1
F15 Schwefel 2.21 fx) = m%]x{lx,l} 30/50/100 [~100,100] 0
i
D D
F16 Schwefel 2.22 F(x) = X lxil + TTIxl 30/50/100 [~10,10] 0
i=1 i=1
D i
F17 Elliptic fx)y=Y (106)?11:(12 30/50/100 [-100,100] 0
i=1
D D
F18 Griewank Fx) = g (X (- 100)%) — (TT cos(""\}00 ) +20+e 30/50/100 [-600,600] 0
i=1 i=1
D D
F19 Salomon f(x) = — cos(2m /): 22) 401 /Z 241 30/50/100 [~100,100] 0
i=1 i=1
D
F20 Alpine f(x) = X |xisin(x;) +0.1x;| 30/50/100 [~10,10] 0
i=1
D
1
F21 Powell £0) = [ (raa +1005.2)* + 5y = x4a)’ + (i - 2040)* + 10043 +x4) '] 32/52/100 145 0

i

4.2. The Influence of Parameter on ISSA

ISSA divides the whole evolutionary process into n substages and selects the proper strategy
when a substage is completed. In order to obtain good performances as fast as possible, take n = 0,
n=>5,n=10,n=15and n = 20 and test the ISSA on low dimensional unimodal function F2, the low
dimensional multimodal functions F6 and F10, the high dimensional unimodal functions F16 and
F17, the high dimensional multimodal functions F18 and the total number of evolutions at 18,000,
respectively. N is 3 which is the same as the reference [30]. The population size is 30, and every
function runs 30 times independently in order to avoid the occasionality of the single execution. The
results are as follows: the number before ‘+’ is the mean and the number after ‘+’ is the deviation of
the obtained best fitness value.
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According to Table 2, there is almost no impact of different n on low dimensional unimodal
function; for low dimensional multimodal functions, the results of n = 0 are much worse than that of
n # 0. According to 3.4, ISSA starts with the jumping search method and ISSA is same as the jumping
search method in total when n = 0. ISSA is the combination of two strategies and the searching strategy
may turn to the progressive search method when n # 0. The results of F2 and F6 mean that different
strategies are fit for different problems and the linear regression selection strategy is effective. Aside
from this, the results of F2 and F6 are better with a higher selection frequency; for high dimensional
unimodal functions, the experimental results are not much different. However, there are obvious
differences on a high dimensional multimodal function between n = 5 and n = 0, n = 10, 15 and 20.
In order to guarantee the convergence performance and the operating efficiency of ISSA at the same
time, take n = 10 for the remaining experiments in this paper.

Table 2. The experimental results of ISSA with different .

n

F
0 5 10 15 20
F2 0+0 0+0 0+0 0+0 0+0
6 6.2502e—04 + 1.7129e—10 + 3.5323e—-08 + 7.7188e—07 + 7.5656e—07 +
1.9021e—04 9.2634e-11 1.2626e—09 2.8698e—-08 1.9151e-08
F10 —7.6632 + 0.7985 —9.4261 + 0.0680 —9.2260 + 0.7780 —8.1919 + 1.3054 —8.0299 + 1.1781
F16 6.2909e—-163 + 0 7.4432e-162 + 0 1.0302e—164 + 0 2.0455e—-165 + 0 7.1391e-164 £ 0
F17 0+0 0+0 0+0 0+£0 0+0
F18 1.8504e-15 + 4.4095e—-08 + 2.1945e-15 + 2.9976e-15 + 3.1826e—15 +
1.0135e—15 1.9301e-07 8.2481e-16 6.5204e—-15 7.1639%e-15

4.3. The Efficiency of the Proposed Methods

The proposed ISSA selects the jumping search method or the progressive method according to
the linear regression selection strategy automatically. In order to verify the efficiency of the proposed
methods, compare the standard SSA, the jumping search method, the progressive method and the
ISSA through the 21 benchmark functions in terms of convergence speed, population diversity and
convergence precision.

4.3.1. Comparison of Convergence Speed on Four Methods

For each method mentioned above, the total number of evolution is 30,000 and Nfs is 3, the
population size is 30, which is aimed at comparing the methods fairly effectively. Every method runs
30 times independently in order to avoid the randomness of the single execution.

Figure 4a—i shows the convergence curves of SSA, the jumping search method, the progressive
search method and ISSA on the low dimensional unimodal functions F2, the low dimensional
multimodal functions F3 and F5, the high dimensional unimodal functions F11, F13, F14 and F16 and
the high dimensional multimodal functions F18 and F21 when the evaluation time is 30,000. The blue,
green, yellow and red curves refer to SSA, the jumping search method, the progressive method and
ISSA, respectively. The abscissa of each figure is the iteration and the ordinate of each figure is the
best value found so far. The title of each figure is given as the name F2, F3, F5, F11, F13, F14 and F16.
For the low dimensional functions, the jumping search method, the progressive method and ISSA all
have obvious improvements on convergence speed compared with SSA. The convergence speed from
high to low is the jumping search method, ISSA and the progressive search method. In relation to the
high dimensional functions, the convergence speed of the jumping search method and ISSA is still
much better than SSA and the jumping search method performs better, but the improvement of the
progressive search method is not as obvious as that on the low dimensional functions.



Figure 4. Convergence curves of the proposed methods and SSA.

4.3.2. Comparison of Population Diversity on Four Methods
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In order to compare the population diversity of the four methods intuitively, all the population
sizes are 30. Table 3 is the comparison of the individuals’ distribution on the 2-dimensional unimodal
function F2 and the 2-dimensional multimodal function F5 when the convergence accuracy is up to
107%, 1078 and 1071°. The points in the figures refer to the individuals’ positions, and the blue, green,
black and red points refer to SSA, the jumping search method, the progressive search method and
ISSA, respectively. The abscissa and the ordinate of each figure are the search range for the function;
for F2 the search range is from —10 to 10 and for F5 the search range is from —100 to 100. The title
of each figure is the name of F2 or F5. Table 4 shows the variance of the population’s fitness values
when the algorithms converge to about 10~* of benchmark functions. The functions contain the high
dimensional unimodal functions F11 and F12 and the high dimensional multimodal functions F20 and
F21. The number before ‘+’ is the variance’s mean and the number after ‘+’ is the variance’s standard
deviation. */’ represents the algorithm failure to converge to 10~ after evaluating 30,000 times.
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Table 3. The comparison of the individuals” distribution.
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Table 4. The comparison of the population’s fitness value.

Method
Name Jumping Search
SSA Method Progressive Search Method ISSA
Fl1 1'7222;:28 N 2'25222%93 " 1.1115e+04 + 3.3201e+03 0.0017 + 0.0015
F12 5;?;3;;?3 n 7;2?1;;9851' 1.3107e+03 + 543.9195 7.2366e—04 + 6.0848e—04
F20 / 6'202338;9(5)5* 1.2767 + 0.2946 2.2921e—04 + 1.7366e—04
F21 / 8;2;22:85* 7.2621e+04 + 6.0527e+04 6.2753e—04 + 4.7156e—04

It can be seen from Table 3 that SSA has the most dispersed individual distribution because of the
individuals’ re-initialization. For the three proposed strategies mentioned in this paper, individuals of
the progressive search method distribute most dispersedly. ISSA takes second place, and the jumping
search method has the most concentrated distribution. The progressive search method mutates
individuals on a certain dimension, which will make more individuals distribute on lines x; = 0 and
x3 = 0. As a result, the benchmark functions have a great chance to converge to the optimal value.
SSA re-initializes the whole individual, which makes the individuals distribute in the search space
irregularly. From the analysis above, the progressive search method has the best population diversity
while the jumping search method performs worst when the population evaluates to the fixed accuracy.

Data in Table 4 show that the variances of SSA and the progressive search method are much larger
than the variances of the jumping method and ISSA. Excessive population diversity slows down the
convergence speed and some functions cannot converge to the fixed accuracy. Meanwhile, for the
population diversity of the three proposed strategies in this paper, the progressive search method
performs best, ISSA takes second place and the jumping search method performs worst.

4.3.3. Comparison of Comprehensive Performance on Four Methods

In order to compare the comprehensive performance of the four methods, Table 5 shows the
mean and standard deviation of the optimal value obtained in 30 independent experiments on the 21
benchmark functions. For each method, the population size is 30, the total of evolution times is 30,000
and the N is 3. The number before ‘+” is the mean and the number after ‘+" is the deviation of the
obtained best fitness value; '+, ‘~" and ‘=" represent that the means of the corresponding method are
better than ISSA, worse than ISSA and equal to ISSA, respectively.
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Table 5. The comparison of the convergence precision.

17 of 29

Method
Name . .
Jumping Search Progressive
SSA Method Search Method ISSA
F1 ~120(=) ol 1'(0_9)096_16 -120(=) ~1+39171e-16
4.4212e-21 + 9.7986e—149 =
F2 1.5032e—20 (=) 0£0(=) 5.3669¢—148 (-) 0+0
7.4015e—18 =
F3 20510017 () 0+0(=) 0+0(=) 0+0
1.0191e-20 =
F4 2.9625¢-20 (=) 0+0(=) 0+0(=) 0+0
1.2019e—20 =
F5 40285020 (=) 0+0(=) 0+0(=) 0+0
1.4402¢-18 = 2.6295e—33 = 49331e—12 +
Fé 3.0624e—18 (+) 020200238 444030 30 () 1.6068e—11
- ~1.8468 £ 0.0838  —1.7911 + 0.0116 ~1.8013 + ~1.8013 +
) -) 6.8344e-16 (=) 8.5739e—16
F8 0+0(=) 0+0(=) 0+0(=) 0+0
—4.6459 + ~44543 +0.1818  —4.6808 + 0.1336
F9 27201615 () O ) ~4.6617 + 0.0304
F10 _9'533?_i) 02598 "8'2036 0374 _96e02+0(+)  -9.5882 +0.0891
2.7472e~13 + 2.1318e-16 =
Fl1 1.1640e~12 (=) 0£0(=) 1167615 (=) 0+0
8.0478e—13 = 1.9301e-15 =
F12 4361212 (-) 0+0(=) 1.0572e—14 (-) 00
2.0435¢10 + 3.5232¢—11 +
F13 1.0129¢-09 (=) 0£0(=) 1.9297e—10 (=) 0+0
F14 0.5472 + 2.7161 (-) 0+0(=) 0.0865 + 0.4149 (-) 0+0
7.2194e—08 +
F15 62T 08 () 0+0(=) 0.0241 + 0.1321 (-) 0+0
14322e-11 =
F16 0.0978 + 0.4017 (-) 0+0(=) 7 Btte 11 (o) 00
9.7812e+03 = 2.3545e—15 =
F17 3.5168¢+04 (-) 0£0(=) 1.2896e—14 (-) 0+0
1.961de—16 =
F18 0.6323 + 0.3594 () 0+0(+) 0.0129 =+ 0.0650 (-) 28131
F19 0.1099 =+ 0.0548 (-) 0+0(=) 0.0233 + 0.0773 (=) 0+0
F20 0.0025 + 0.0109 (-) 0+0(=) 9-1222e~13 & 0+0
e £ 0. * 4.9964e—12 (-) *
F21 8.6605 + 38.6332 (-) 0+0(=) 7:3093e-05 & 0+0

2.2255e—05 (-)

Table 5 shows that the convergence precision of the jumping search method, the progressive
method and the ISSA are all obviously better than SSA. Meanwhile, compared with ISSA, the numbers
of benchmark functions with the better mean, the worse mean and the equivalent mean of SSA are
1,18, and 2, respectively; the corresponding numbers of the jumping search method are 1, 4 and 16,
respectively; the corresponding numbers of the progressive search method are 3, 12 and 6, respectively.
In order to compare the differences of each method, a Friedman test was taken to check the data in
Table 5 [36]. The specific process is shown below:

The Friedman test ranks the algorithms for each data set separately; k refers to the number of

algorithms and n refers to the number of data sets of each algorithm. The results are shown in Table 6,
k
and is calculated as follows: x> = m Y R? -3n(k+1) = m
j=1

21X (4+1) = 21.0571; « = 0.05, df = 4 — 1 = 3 at the 5% significant level and )(805: 7.81 < 21.0571

(75% 4 442 + 512 + 40%) -3 x
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according to the Chi-square distribution table. Therefore, the four methods are considered to have
significant differences at the 5% significance level.

Table 6. The results of the Friedman test.

. Rank
Function
SSA Jumping Search Progressive Search ISSA

F1 15 3 15 4
F2 4 15 3 15

F3 4 2 2 2

F4 4 2 2 2

F5 4 2 2 2

F6 2 4 1 3

F7 4 3 1 2
F8 2.5 2.5 2.5 2.5

F9 3 4 1 2
F10 3 4 1 2
F11 4 15 3 15
F12 4 15 3 15
F13 4 15 3 15
F14 4 15 3 15
F15 3 15 4 15
F16 4 1.5 3 1.5
F17 4 15 3 15
F18 4 1 3 2
F19 4 15 3 15
F20 4 15 3 1.5
F21 4 15 3 15
Total rank 75 44 51 40
Average rank 3.5714 2.0952 2.4286 1.9048

Sort 1 3 2 4

To further compare the performance of the four methods, assuming that the convergence
performance of ISSA is better than the other three methods, a Holm test was carried out and the results
are shown in Table 7:

Table 7. The results of the Holm test.

k(k+1 4x(4+1
i Algorithm z=(R; = R/~ ol = (R - Ra)/ | S5 = (R P; af(k—i)
— R4)/0.3984
1 SSA (3.5714 - 1.9048)/0.3984 = 4.1832 2e—05 0.0167
2 progressive search (2.4286 — 1.9048)/0.3984 = 1.3148 0.1885 0.0250
3 jumping search (2.0952 — 1.9048)/0.3984 = 0.4779 0.6348 0.0500

It can be seen from Table 7 that P; < a(k—1), P, > a(k—2), P3 > a(k — 3). The original hypothesis
is rejected at the 5% significance level. Therefore, compared with SSA, ISSA has significantly better
performance. ISSA has a smaller average rank, though it does not outperform the progressive search
method and the jumping search method.

In conclusion, the jumping search method has the best convergence speed and the progressive
search method performs best on maintaining the population diversity. Compared with SSA, both have
obvious advantages in convergence accuracy. ISSA combines the two methods together, improves the
convergence speed and the convergence accuracy and maintains the population diversity as well. ISSA
can find the global optimal of more benchmark functions and has the best comprehensive performance.
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4.4. Performance Compared with Other Algorithms

To verify the advantages of ISSA, we compared it with five algorithms with better optimization
results: the improved differential evolutionary algorithm—MDE (modified differential evolution, with
self-adaptive parameters method) [37], the improved gravitational search algorithm—IGSA/PSO (an
improved gravitational search algorithm for green partner selection in virtual enterprises) [38],
the improved artificial bee colony algorithm—distABC (artificial bee colony algorithm, with
distribution-based update rule) [39], the improved particle swarm optimization—ADN-RSN-PSO
(all-dimension neighborhood based particle swarm optimization with randomly selected neighbors) [40]
and the improved grey wolf optimization algorithm—PSO-GWO (an improved hybrid grey wolf
optimization algorithm) [41].

For each algorithm mentioned above, the population number is 30, the total number of evolution
times is 24,000 and each method runs 30 times independently to ensure the comparison is fair enough.
The relevant parameters are set as follows:

ISSA: n =10; NfS =3;

MDE: the crossover probability CR = 0.4, the mutation probability F is determined by the random
number between 0 and 1.

IGSA/PSO: the gravitational constant Gy = 100, « = 20;

distABC: limit = (the population number x dimension)/2;

ADN-RSN-PSO: the weight factor w = 0.7298, c1 = c2 = 2.05;

PSO-GWO: the weight factor ¢ = ¢ = 2.05; a;y; = 2, ay = 0; 11, 12, 13, 14 are all the random numbers
between 0 and 1.

Table 8 shows the optimization results of low dimensional functions (F1-F10) and Table 11 shows
the ones of high dimensional functions (F11-F21). Best, Worst, Mean and SD respectively represent the
best fitness value, the worst fithess value, the mean fitness value and the standard deviation obtained
by 30 independent executions. R represents the times of the algorithm converges to the appointed
precision. The appointed precision is 1078 for the benchmark functions, whose optimal is 0. For the
benchmark functions F1, F7, F9 and F10 whose optimal is not equal to 0, the appointed precision is
—0.6, —1.6, 3.6 and —8.6 respectively.

Table 8. The convergence results of F1-F10.

Name Method Best Worst Mean SD R
Modified differential evolution

(MDE) -1 -1 -1 0 30

Improved artificial bee colony _ _ _
(distABC) 0.9957 0.4070 0.8023 0.1716 30

Improved gravitational search _ _
algorithm (IGSA/PSO) 1 0 0.8333 0.3790 30

F1 All-dimension neighborhood
based particle swarm
optimization with randomly —-0.9126 0 —-0.0345 0.1668 30
selected neighbors
(ADN-RSN-PSO)
Improved grey wolf _ _ _ _

optimization (PSO-GWO) 1.0000 0.9983 0.9997 4.3750e—04 30
ISSA -1 -1.0000 -1 4.1233e-17 30
MDE 1.8981e—124 6.0392e-111 2.0134e-112 1.1026e-111 30
distABC 6.4478e—~12 1.3143e-04 4.5038e—06 2.3974e—05 21
B IGSA/PSO 3.5151e-20 1.2328e-18 4.3235e-19 3.5081e-19 30
ADN-RSN-PSO 1.5194e-14 9.3798e-06 3.8898e—07 1.7203e-06 20
PSO-GWO 8.0797e-271 5.0693e—225 1.6898e-226 0 30

ISSA 0 0 0 0 30
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Table 8. Cont.

Name Method Best Worst Mean SD R

MDE 0 0 0 0 30

distABC 0 6.6613e—16 2.2204e-17 1.2162e-16 30

3 IGSA/PSO 0 6.6613e—16 5.1810e-17 5.1810e-17 30
ADN-RSN-PSO 1.7529e-09 0.3443 0.0209 0.0670 1

PSO-GWO 0 0 0 0 30

ISSA 0 0 0 0 30

MDE 0 0 0 0 30

distABC 0 0 0 0 30

4 IGSA/PSO 0 5.5511e-17 1.8504e-18 1.0135e-17 30
ADN-RSN-PSO 2.2204e-16 0.0025 1.5597e-04 4.6084e—04 6

PSO-GWO 0 0 0 0 30

ISSA 0 0 0 0 30

MDE 0 0 0 0 30

distABC 0 2.2128e-10 7.3769e—12 4.0400e-11 30

B IGSA/PSO 0 1.6653e—16 2.9606e—-17 4.3081e-17 30
ADN-RSN-PSO 4.3178e-12 0.5315 0.0194 0.0968 3

PSO-GWO 0 0 0 0 30

ISSA 0 0 0 0 30

MDE 0 0 0 0 30

distABC 9.3892e—04 0.9114 0.1484 0.1747 0

6 IGSA/PSO 2.3141e-19 6.8399e—-17 1.4187e-17 1.5244e-17 30
ADN-RSN-PSO 4.6791e-13 3.3521e-04 2.3684e—05 7.2443e—-05 7

PSO-GWO 4.7856e—07 9.8150e—04 1.4743e-04 2.1193e—-04 0

ISSA 0 1.5479e-12 5.1596e—14 5.1596e—14 30

MDE -1.8013 —-1.9996 -1.8206 0.0587 30

distABC -1.7576 -1.1419 -1.4170 0.1852 12

7 IGSA/PSO -1.8381 -1.9969 -1.9554 0.0443 30

ADN-RSN-PSO —1.7829 —-1.4155 -1.7056 0.1385 25

PSO-GWO -1.8013 -1.2138 -1.7697 0.1218 27

ISSA -1.8013 -1.8013 -1.8013 7.5040e—16 30

MDE 0 0.0097 6.4773e—04 0.0025 28

distABC 0.0014 0.0103 0.0085 0.0027 0

8 IGSA/PSO 5.7927e—04 0.0097 0.0071 0.0034 0
ADN-RSN-PSO 0.2325 0.4767 0.3792 0.0769 0

PSO-GWO 0 0 0 0 30

ISSA 0 0 0 0 30

MDE —4.6459 —4.9833 —4.7363 0.0866 30

distABC —2.6563 -1.7364 —2.2089 0.2644 0

- IGSA/PSO —4.3109 —2.5452 -3.6519 0.4646 19
ADN-RSN-PSO —3.4226 -2.1793 —2.6879 0.3210 0

PSO-GWO —4.4527 —2.7246 -3.4183 0.4289 14

ISSA —4.6877 —4.6459 —4.6856 0.0093 30

MDE —9.6552 -9.1153 —9.5328 0.1095 30

distABC -3.5674 -2.7672 -3.1627 0.1969 0

F10 IGSA/PSO —8.6839 —-3.8323 —5.9454 1.2127 12
ADN-RSN-PSO —4.9021 —3.3798 —-3.7563 0.3143 0

PSO-GWO —6.7936 —4.1522 —5.4923 0.6488 0

ISSA —9.6602 —-9.5403 -9.6241 0.0411 30

It can be seen from Table 8 that MDE can converge to the optimal on F1, F3, F4, F5, F6, F7 and
F8, but the performances of F7 and F8 are not stable enough; distABC only converges to the optimal
stably on F4 and has a certain probability to converge to the optimal on F3 and F5; IGSA/PSO has no
stable convergence performance on all the functions but still has a certain probability to converge to
the optimal on F1, F3, F4 and F5; ADN-RSN-PSO has the worst performance without any function
convergences to the optimal; PSO-GWO can converge stably to the optimal on F3, F4, F5 and F8, and
there is also a certain probability for F7 to converge to the optimal. For ISSA, all the low dimensional
functions can converge to the optimal and have the stable convergence performances on F2, F3, F4,
F5 and F8. Aside from this, ISSA obtains the minimum mean on all functions except Fé. In order to
compare the differences of each method, we used the Friedman test to check the data in Table 8. The
specific process is shown below, and the results can be obtained by Table 9:
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Table 9. The results of the Friedman test.

. Rank
Function
MDE distABC  IGSA/PSO  AND-RSN-PSOPSO-GWO ISSA

F1 1 5 4 6 3 2

F2 3 6 4 5 2 1

F3 2 4 5 6 2 2
F4 2.5 2.5 5 6 2.5 2.5

F5 2 5 4 6 2 2

F6 1 6 2 4 5 3

F7 2 6 5 4 3 1
F8 3 5 4 6 1.5 1.5

F9 2 6 3 5 4 1

F10 2 6 3 5 4 1
Total rank 20.5 51.5 39 53 29 17
Average rank 2.05 5.15 3.9 53 29 1.7
Sort 5 2 3 1 4 6

= k+1 ZRZ 3n(k+1) = m(2052+5152+392+532+292+172) 3x10x (6 +

1) = 33.7857; « = 0.05, df =6 — 1 =5 at the 5% significant level and )(8_05: 11.07 < 33.7857 according
to the Chi-square distribution table. Therefore, the six algorithms are considered to have significant
differences at the 5% significance level.

To further compare the performance of the six algorithms, assume that the convergence
performance of ISSA is better than the other five algorithms. A Holm test was carried out and
the results are shown in Table 10:

Table 10. The results of the Holm test.

k+1)
z=(R; — Rg) =(R; -
i Algorithm G 16 / ' P; af (k—i)
R/ 28t = (R, - Re)/0.8367
1 AND-RSN-PSO (5.3 - 1.7)/0.8367 = 4.3026 2e-05 0.01
2 distABC (5.15 - 1.7)/0.8367 = 4.1233 4e—-05 0.0125
3 IGSA/PSO (3.9 - 1.7)/0.8367 = 2.6294 0.0087 0.0167
4 PSO-GWO (2.9 - 1.7)/0.8367 = 1.4342 0.1513 0.025
5 MDE (2.05 - 1.7)/0.8367 = 0.4183 0.6781 0.05

It can be seen from Table 10 that P; < a(k—1), P, < a(k—-2), P3 < a(k—3), Py > a(k—4),
P5 > a(k - 5); the original hypothesis is rejected at the 5% significance level. Therefore, compared
with AND-RSN-PSO, distABC and IGSA/PSO, ISSA has significantly better performance. ISSA
has a smaller average rank, though it does not outperform PSO-GWO and MDE. In summary,
compared with five other algorithms, the proposed algorithm ISSA has better performance on the low
dimensional functions.

Table 11 shows the convergence results on the high dimensional functions. It can be seen that
MDE can converge to a certain precision on F11, F12, F13, F16, F18 and F20, but the obtained precision
has obvious gaps compared with ISSA; distABC almost has no efficient convergence performance on
the high dimensional functions; IGSA/PSO can converge to a certain precision on F11, F12 and F13,
but the results are not good enough; ADN-RSN-PSO can converge to a certain precision on all the
high dimensional functions except on F18, but the obtained precision is far from ISSA; PSO-GWO
can converge to a better precision except on F18, whose convergence result is not good enough and
on F21 which cannot converge efficiently, with the obtained convergence precision still being worse
than that of ISSA. For ISSA, all the functions can converge to the optimal except F15, F16 and F20.
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Aside from this, the best fitness value, the worst fitness value, the mean fitness value and the standard
deviation of F11, F12, F13, F14, F17, F19 and F21 are all equal to zero and keep unchanged even if the
dimensions become higher. The best fitness value of F18 is also equal to zero no matter whether the
dimension is 30, 50 or 100, and the deviation is much smaller than the other five algorithms for F15,
F16 and F20, which cannot converge to the optimal. The best fitness value, the worst fitness value, the
mean fitness value and the standard deviation are still much better than the other five algorithms. In
order to compare the differences of each method, a Friedman test is taken to check the data in Table 11
when the dimension is 30. The specific process is shown below:

Table 11. The convergence results of F11-F21.

Name D Method Best Worst Mean SD R
MDE 1.0401e-14 1.5722e-12 1.9227¢-13 3.1621e-13 30
distABC 0.0366 2.2711 0.3127 0.4293 0
30 IGSA/PSO 7.9175e—07 0.0051 5.0970e—04 0.0011 0
ADN-RSN-PSO 5.7203e-17 27.6484 1.0388 5.0631 9
PSO-GWO 5.5036e—-276 7.3227e-204 2.4409e—-205 0 30
ISSA 0 0 0 0 30
MDE 2.4111e-07 7.1216e-06 1.3533e—-06 1.6316e—06 0
distABC 5.3447e+03 1.5571e+05 5.4741e+04 3.8374e+04 0
F11 50 IGSA/PSO 0.1664 3.5193 1.0541 0.7896 0
ADN-RSN-PSO 1.9193e—13 100.5956 6.6218 19.7265 2
PSO-GWO 1.6753e—-281 1.4189e-221 4.7307e-223 0 30
ISSA 0 0 0 0 30
MDE 0.7826 24.0248 5.3714 5.5151 0
distABC 1.3689e+06 2.7723e+06 2.2532e+06 3.6327e+05 0
100 IGSA/PSO 637.5637 3.1652e+03 1.3765e+03 659.7935 0
ADN-RSN-PSO 1.8339e—12 0.4017 0.0410 0.0877 3
PSO-GWO 1.2087e—284 2.6558e—214 9.3853e-216 0 30
ISSA 0 0 0 0 30
MDE 9.2637e—14 7.6003e-11 5.8122e-12 1.3863e-11 30
distABC 0.0086 0.2122 0.0605 0.0567 0
30 IGSA/PSO 1.0212e—08 1.0867e—04 1.1358e—-05 2.3307e—05 0
ADN-RSN-PSO 9.6397e—-26 397.2135 14.0547 72.4037 3
PSO-GWO 6.2166e—292 6.3326e—231 2.1637e-232 0 30
ISSA 0 0 0 0 30
MDE 1.6536e—07 9.7707e—-06 2.9899¢—-06 2.6119e—-06 0
distABC 449.1668 2.6220e+03 1.2305e+03 564.3590 0
F12 50 IGSA/PSO 0.0041 1.5093 0.2486 0.3447 0
ADN-RSN-PSO 8.2423e-17 403.1810 26.2589 82.8892 3
PSO-GWO 6.4181e—-278 4.5968e—223 1.5336e—224 0 30
ISSA 0 0 0 0 30
MDE 1.6536e—07 9.7707e—-06 2.9899¢—-06 2.6119e—06 0
distABC 2.2131e+05 2.8567e+05 2.5701e+05 1.4272e+04 0
100 IGSA/PSO 405.5180 2.5861e+03 1.0468e+03 448.9013 0
ADN-RSN-PSO 1.3639e-26 146.5426 5.9463 26.7914 6
PSO-GWO 7.3808e—273 3.3942e-226 1.1314e-227 0 30
ISSA 0 0 0 0 30
MDE 49141e-15 2.3773e-12 2.3077e-13 4.2943e-13 30
distABC 0.0019 0.0248 0.0103 0.0069 0
30 IGSA/PSO 1.6976e—05 0.0101 0.0018 0.0026 0
ADN-RSN-PSO 8.0743e—-29 38.4053 24114 7.6095 9
PSO-GWO 2.0610e—290 2.3985e—230 8.0010e—-232 0 30
ISSA 0 0 0 0 30
Fi3 MDE 4.3369e—-08 2.3226e—-06 5.8020e—-07 5.5813e—07 0
distABC 60.5866 437.6214 192.8170 90.6097 0
50 IGSA/PSO 0.2174 15.5868 2.6151 3.1442 0
ADN-RSN-PSO 2.3824e-19 35.9528 3.3225 9.7473 7
PSO-GWO 4.7500e—286 4.9925e-230 2.9195e-231 0 30

ISSA 0 0 0 0 30
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Table 11. Cont.

Name D Method Best Worst Mean SD R
MDE 0.1475 4.8333 0.8994 0.9433 0
distABC 7.3635e+04 1.2853e+05 1.0609e+05 1.4043e+04 0
100 IGSA/PSO 215.7341 673.2718 428.7446 119.2857 0
ADN-RSN-PSO 2.7413e-20 2.0323e+03 87.6861 369.4296 1
PSO-GWO 2.8630e—289 4.3016e—-227 1.4339e—-228 0 30
ISSA 0 0 0 0 30
MDE 5.2747e+03 3.2657e+04 1.3414e+04 6.1786e+03 0
distABC 1.3735e+04 9.6878e+04 5.2398e+04 1.8624e+04 0
30 IGSA/PSO 4.7593 149.2362 47.7658 37.3198 0
ADN-RSN-PSO 2.6758e—36 1.4738e+03 56.9252 268.1544 2
PSO-GWO 2.0189e—-294 5.7304e—-239 1.9102e—-240 0 30
ISSA 0 0 0 0 30
MDE 5.2107e+04 1.3519e+05 8.0055e+04 1.9715e+04 0
distABC 1.7554e+05 4.6751e+05 2.8911e+05 6.8753e+04 0
F14 50 IGSA/PSO 472.8938 2.5645e+03 1.1703e+03 534.2655 0
ADN-RSN-PSO 4.9794e-13 1.9352e+03 73.0431 352.4516 2
PSO-GWO 3.1521e—-284 1.7900e—240 5.9668e—242 0 30
ISSA 0 0 0 0 30
MDE 3.1074e+05 6.3577e+05 4.2536e+05 8.1732e+04 0
distABC 9.0218e+05 2.2811e+06 1.4725e+06 3.2973e+05 0
100 IGSA/PSO 5.9127e+03 2.2013e+04 1.1214e+04 3.2236e+03 0
ADN-RSN-PSO 3.6628e—-11 6.1001e+03 354.5833 1.1445e+03 2
PSO-GWO 5.5639e—-279 3.6892e—-238 6.3759e—-240 0 30
ISSA 0 0 0 0 30
MDE 0.6789 15.6594 4.6249 3.3505 0
distABC 29.4236 88.1198 69.3981 14.3107 0
30 IGSA/PSO 0.1421 5.0155 1.3894 1.2303 0
ADN-RSN-PSO 3.5252e—-06 3.2581 0.4436 0.8071 0
PSO-GWO 4.9641e—-143 4.1240e—-106 1.3747e-107 7.5293e—-107 30
ISSA 6.8624e—-294 1.9355e-221 6.4516e—223 0 30
MDE 7.3112 26.3407 15.3471 4.5763 0
distABC 86.2687 95.1062 92.3951 2.4449 0
F15 50 IGSA/PSO 5.0050 11.4719 8.6978 1.5023 0
ADN-RSN-PSO 5.6962e—09 2.5363 0.4027 0.6049 1
PSO-GWO 3.6326e—139 5.3333e-111 1.7782e-112  9.7371e-112 30
ISSA 2.2890e—-275 5.3435e—222 1.7813e-223 0 30
MDE 24.5859 46.3713 33.8856 4.9749 0
distABC 92.1930 97.9642 96.0475 1.1959 0
100 IGSA/PSO 14.1813 22.4854 17.8145 1.9772 0
ADN-RSN-PSO 3.5409e-13 2.3798 0.2541 0.5142 1
PSO-GWO 1.3222e-143 3.3096e—-116 1.2837e-117  6.0495e—-117 30
ISSA 1.3362e-271 1.3887e—230 4.8821e-232 0 30
MDE 6.3446e—-14 2.0800e—-11 2.1415e-12 4.0992e—-12 30
distABC 0.0036 0.1511 0.0145 0.0262 0
30 IGSA/PSO 0.0016 0.2406 0.0451 0.0495 0
ADN-RSN-PSO 9.8349e—-06 37.3092 2.4168 7.3907 0
PSO-GWO 5.6633e—141 4.9625e—-113 1.6893e—-114  9.0549e-114 30
ISSA 9.3727e-307 1.1611e—-225 3.8704e-227 0 30
MDE 3.4911e-05 1.9115e—-04 9.2416e-05 3.9599e—-05 0
distABC 3.5850 100.0040 16.9396 16.7889 0
F16 50 IGSA/PSO 0.5307 13.3690 2.6048 2.4739 0
ADN-RSN-PSO 6.1043e—-08 20.3200 2.5146 4.8767 0
PSO-GWO 4.9924e-140 1.5073e—107 5.0244e-109 2.7520e—108 30
ISSA 2.1080e—-272 7.1760e—-227 2.4359e-228 0 30
MDE 0.1146 2.2932 0.5097 0.4762 0
distABC 3.5037e+13 6.5783e+27 2.9767e+26 1.2607e+27 0
100 IGSA/PSO 16.1544 40.1933 25.2979 5.3738 0
ADN-RSN-PSO 1.7105e—-04 106.2857 8.2050 21.3386 0
PSO-GWO 3.4506e—142 4.3916e-113 1.5163e-114 8.0109¢e—-114 30
ISSA 8.5914e-275 1.5030e—226 5.0101e—-228 0 30
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Name D Method Best Worst Mean SD R
MDE 75.0038 75.0038 75.0038 2.4914e—06 0
distABC 14.1555 967.8401 263.9005 227.9731 0
30 IGSA/PSO 6.3987e+03 1.3092e+05 3.2932e+04 2.9068e+04 0
ADN-RSN-PSO 9.8556e—09 1.2370e+06 1.0690e+05 2.8807e+05 1
PSO-GWO 1.5518e—282 1.3001e—226 4.3877e-228 0 30
ISSA 0 0 0 0 30
MDE 125.0040 125.0089 125.0061 0.0011 0
distABC 8.7542e+05 8.0466e+06 3.7711e+06 1.7995e+06 0
F17 50 IGSA/PSO 5.9214e+04 9.9143e+05 3.6022e+05 2.4168e+05 0
ADN-RSN-PSO 1.0970e—-10 2.1368e+06 1.2419e+05 4.5201e+05 1
PSO-GWO 1.7465e—284 5.6730e—226 1.9183e—-227 0 30
ISSA 0 0 0 0 30
MDE 246.0984 254.7257 250.2010 1.7431 0
distABC 7.9086e+08 1.7132e+09 1.1912e+09 2.6043e+08 0
100 IGSA/PSO 2.8580e+06 2.8682e+07 1.0857e+07 5.9353e+06 0
ADN-RSN-PSO 1.6856e—10 3.7886e+07 1.9511e+06 7.5422e+06 1
PSO-GWO 6.8705e—282 1.1504e—-207 3.8348e—-209 0 30
ISSA 0 0 0 0 30
MDE 5.6399e—-14 0.0049 1.6441e—04 9.0052e—04 29
distABC 37.4773 52.3512 44.4924 3.8327 0
30 IGSA/PSO 2.2085 16.7038 7.2453 3.6023 0
ADN-RSN-PSO 473.9074 756.4108 618.1881 58.6785 0
PSO-GWO 1.4714e—-04 0.5205 0.1391 0.1364 0
ISSA 0 1.8646e-11 6.2199e-13 3.4042¢-12 30
MDE 2.1559e—-07 0.0247 0.0020 0.0050 0
distABC 88.2182 191.3685 142.3998 20.9568 0
F18 50 IGSA/PSO 21.8794 81.5488 42.3904 14.2207 0
ADN-RSN-PSO 968.5157 1.3856e+03 1.1812e+03 107.6813 0
PSO-GWO 0.0012 0.5782 0.1944 0.1966 0
ISSA 0 2.0095e—14 3.8525e-15 5.4146e-15 30
MDE 0.1950 1.1188 0.6049 0.2438 0
distABC 1.7147e+03 2.7003e+03 2.4415e+03 200.0542 0
100 IGSA/PSO 147.2077 249.3046 191.1295 25.7575 0
ADN-RSN-PSO 2.3436e+03 3.0052e+03 2.6587e+03 141.5865 0
PSO-GWO 0.0148 1.0070 0.4467 0.3082 0
ISSA 0 2.0095e—14 3.8525e-15 5.4146e-15 30
MDE 0.2008 0.3999 0.2899 0.0382 0
distABC 0.5839 1.3355 0.8775 0.1932 0
30 IGSA/PSO 1.0999 3.6999 1.8435 0.5102 0
ADN-RSN-PSO 1.8736e—05 2.4222 0.3108 0.5509 0
PSO-GWO 9.8614e—142 3.7041e-106 1.4517e-107  6.7762e-107 30
ISSA 0 0 0 0 30
MDE 0.4999 1.1000 0.7342 0.1439 0
distABC 3.2414 7.4063 5.6732 0.9657 0
F19 50 IGSA/PSO 3.4999 7.0999 5.0539 0.7385 0
ADN-RSN-PSO 1.5276e—04 3.7168 0.2954 0.7185 0
PSO-GWO 1.1372e-147 7.0961e-103 2.3655e—104 1.2956e—-103 30
ISSA 0 0 0 0 30
MDE 2.2228 5.7138 3.5648 0.7504 0
distABC 46.4171 55.0417 52.0511 1.8933 0
100 IGSA/PSO 9.4999 14.0488 11.1732 1.1383 0
ADN-RSN-PSO 1.0459e—07 3.5730 0.5094 0.9123 0
PSO-GWO 1.1118e—134 3.5210e-77 1.1737e-78 6.4285e—78 30
ISSA 0 0 0 0 30
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Table 11. Cont.

Name D Method Best Worst Mean SD R
MDE 2.0970e-07 0.0017 2.0093e—-04 4.2588e—04 0
distABC 0.0349 0.9800 0.1546 0.2342 0
30 IGSA/PSO 0.0019 0.1676 0.0249 0.0340 0
ADN-RSN-PSO 1.9121e-07 18.8459 0.7225 3.4292 0
PSO-GWO 3.1745e-141 4.1132e-119 1.5246e—-120 7.5032e—-120 30
ISSA 1.1472e-268 1.7507e-232 6.9323e-234 0 30
MDE 4.9616e—05 0.0076 0.0017 0.0020 0
distABC 23.2445 64.7154 36.0016 9.1027 0
F20 50 IGSA/PSO 0.0772 3.2993 0.7989 0.6953 0
ADN-RSN-PSO 2.7451e-05 20.6995 1.0087 3.7981 0
PSO-GWO 1.1263e—143 1.1212e-110 3.7456e-112 2.046%e—-111 30
ISSA 2.4273e-279 3.4792e-224 1.1597e-225 0 30
MDE 0.0418 0.2153 0.1025 0.0453 0
distABC 178.0676 239.7760 209.6574 13.7426 0
100 IGSA/PSO 6.7693 16.2261 10.7582 2.3683 0
ADN-RSN-PSO 9.8116e—-07 30.9275 2.5294 7.5049 0
PSO-GWO 1.7729e—-144 5.6582e—-121 2.2664e—-122 1.0321e-121 30
ISSA 9.0375e—-288 1.1851e—-220 3.9503e—222 0 30
MDE 0.0204 38.6884 5.4340 10.5332 0
distABC 272.5527 8.4642e+04 1.9675e+04 2.1057e+04 0
32 IGSA/PSO 0.0468 20.9792 2.5257 3.8308 0
ADN-RSN-PSO 4.9194e-20 2.8246 0.1053 0.5147 9
PSO-GWO 1.2817e+07 1.2817e+07 1.2817e+07 0 0
ISSA 0 0 0 0 30
MDE 0.3480 360.7218 22.4760 67.4348 0
distABC 4.9677e+05 5.6793e+06 2.3595e+06 1.3184e+06 0
F21 50 IGSA/PSO 1.2118 5.0887e+03 497.2259 1.0764e+03 0
ADN-RSN-PSO 3.3860e-31 0.0562 0.0020 0.0102 17
PSO-GWO 2.0828 e+07 2.0828 e+07 2.0828 e+07 0 0
ISSA 0 0 0 0 30
MDE 61.9570 6.2051e+03 1.0242e+03 1.3454e+03 0
distABC 3.7772e+07 6.2101e+07 5.8466e+07 4.7813e+06 0
100 IGSA/PSO 1.0160e+04 6.5678e+04 3.5827e+04 1.3363e+04 0
ADN-RSN-PSO 1.3081e—21 45014 0.2386 0.8825 13
PSO-GWO 4.0055 e+07 4.0055 e+07 4.0055 e+07 0 0
ISSA 0 0 0 0 30
12 k 2 12 2 2 2 2 2
It can be obtained by: x; = m];l R]. =3nk+1) = m(?ﬂ + 55° + 46~ + 55° + 27° +

11%) =3 x 11 x (6 + 1) = 38.7403 with the results shown in Table 12; & = 0.05, d; = 6 — 1 = 5 at the 5%
significant level and )(8.05: 11.07 < 38.7403 according to the Chi-square distribution table. Therefore,
the six algorithms are considered to have significant differences at the 5% significance level.

Table 12. The results of the Friedman test.

Rank
MDE distABC IGSA/PSO AND-RSN-PSOPSO-GWO ISSA

Function

F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21

Total rank
Average rank 3.3636
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To further compare the performance of the six algorithms, assume that the convergence

performance of ISSA is better than the other five methods. A Holm test is carried out and the
results are shown in Table 13:

Table 13. The results of the Holm test.

i Algorithm 2= (R~ R/ “or) = (R; = Re)/ | %) = P; of (k—i)
(R; — R¢)[0.7977

1 AND-RSN-PSO (5 — 1)/0.7977 = 5.0144 0 0.01

2 distABC (5 — 1)/0.7977 = 5.0144 0 0.01

3 IGSA/PSO (41818 — 1)/0.7977 = 3.9887 6e—05 0.0167

4 MDE (33636 — 1)/0.7977 = 2.9630 0.0030 0.025

5 PSO-GWO (2.4545 — 1)/0.7977 = 1.8234 0.068 0.05

It can be seen from Table 13 that Py < a(k—1), P, < a(k—2), P3 < a(k—3), Py < a(k—4),

Ps > a(k —5), and the original hypothesis is rejected at the 5% significance level. Therefore, compared
with AND-RSN-PSO, distABC, IGSA/PSO and MDE, ISSA has a significantly better performance. ISSA
has a smaller average rank, though it does not outperform PSO-GWO. In summary, the ISSA proposed
in this paper has obvious advantages on convergence precision and stability in terms of the high
dimensional functions. Figure 5a—u shows the convergence curves of the algorithms mentioned above
on F1-F21 in order to compare the convergence performances intuitively. The yellow, cyan, purple,
green, black, blue and red curves refer to MDE, distABC, IGSA/PSO, AND-RSN-PSO, PSO-GWO, SSA
and ISSA, respectively. The abscissa of each figure is the iteration and the ordinate of each figure and is
the best value found so far. The title of each figure is given the name of F1-F21.
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Figure 5. The convergence curves of ISSA and other algorithms.
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This paper proposes an improved squirrel search algorithm. In terms of SSA, the winter searching
method cannot develop the search space sufficiently, and the summer searching method is too random
to guarantee the convergence speed. ISSA introduces the jumping search method and the progressive
search method. For the jumping search method, the ‘escape’ operation in winter supplements the
population diversity and fully exploits the search space, while the ‘death” operation in summer explores
the search space more sufficiently and improves the convergence speed. Aside from this, the mutation
in the progressive search method retains the evolutionary information more effectively and maintains
the population diversity. ISSA selects the suitable method by the linear regression selection strategy
according to the variation tendency of the best fitness value, which improves the robustness of the
algorithm. Compared with SSA, ISSA pays more attention to developing the search space in winter,
and pays more attention to exploring around the elite individual in summer, which keeps a good
balance between development and exploration improves the convergence speed and the convergence
accuracy. Moreover, ISSA selects a proper search strategy along with the optimization processing, so
ISSA has greater possibilities in finding the optimal solution. The experimental results on 21 benchmark
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functions and the statistical tests show that the proposed algorithm can promote the convergence
speed, improve the convergence accuracy and maintain the population diversity at the same time.
Furthermore, ISSA has obvious advantages in convergence performances compared with other five
intelligent evolutionary algorithms.
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