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Abstract: Prediction of energy use behaviors is a necessary prerequisite for designing personalized
and scalable energy efficiency programs. The energy use behaviors of office occupants are different
from those of residential occupants and have not yet been studied as intensively as residential
occupants. This paper proposes a method based on Markov chain Monte Carlo (MCMC) to predict
the energy use behaviors of office occupants. Firstly, an indoor electrical Internet of Things system
(IEIoTS) for the office scenario is developed to collect the switching state time series data of selected
user electrical equipment (desktop computer, water dispenser, light) and the historical environment
parameters. Then, the Metropolis–Hastings (MH) algorithm is used to sample and obtain the optimal
solution of the parameters for the office occupants’ behavior function, the model of which includes
the energy action model, energy working hours model, and air-conditioner energy use behavior
model. Finally, comparative experiments are carried out to evaluate the performance of the proposed
method. The experimental results show that while the mean value performs similarly in estimating
the energy use model, the proposed method outperforms the Maximum Likelihood Estimation (MLE)
method on uncertainty quantification with relatively narrower confidence intervals.

Keywords: MCMC; energy use behavior; time series; electrical equipment

1. Introduction

Building energy consumption has increased dramatically due to population growth, increased
demand for building functions, and global climate change in recent decades [1]. The proportion of
building energy consumption in China has increased to about 35 percent, in which office building
energy consumption occupies an important part [2]. A large number of studies show that building
energy consumption is not only affected by meteorological parameters, building shape, envelope
structure, window-to-wall ratio, etc., it is also related to the behaviors of occupants [3]. By mining
the hidden patterns from office occupants’ equipment usage data and establishing a corresponding
personnel energy use behavior model, the most preferred equipment control scheme according to the
needs of users can be recommended and configured, and the experience of the office occupants can be
improved and accurate demand response strategies for office buildings designed accordingly.

Many scholars have made considerable contributions in the field of personal behavior prediction
and have obtained some excellent research results, some of which were reviewed in [4]. The traditional
methods of personal behavior prediction mainly include naive Bayes (NB) [5], support vector machine
(SVM) [6], k-nearest neighbor (KNN) [7], the hidden Markov model (HMM) [8], and convolutional
neural networks (CNN) [9]. Withanage et al. [10] used the depth cuboid similarity feature (DCSF)
algorithm to identify and predict the behavior characteristics of the elderly through video capture
of personnel behavior information. Although this method has high accuracy, it is easy to invade
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privacy, and it has low security. Zou et al. [11,12] proposed a personal behavior prediction system
based on wearable devices and smart phones. The system can acquire personal information through
embedded sensor devices and realize the functions of personal location and behavior prediction.
This method improves the prediction accuracy, but the calculation speed is slower due to the increase
of the computational complexity of multi-parameter prediction. Kasteren et al. [13–15] could predict
personal continuous behavior by continuously optimizing the hidden Markov model (HMM), using
each sensor activation as a personal action, and simulating the relationship between each action.
Chen et al. [16–18] used the sequence probability map model to predict single user activity in a
wireless sensor network environment, which shortened the identification time and improved the
accuracy. Cameras, mobile phones, wearable devices, etc., are all non-intrusive devices, which are
prone to cause security problems and fail to meet people’s privacy requirements.

Hitherto, several non-intrusive behavioral prediction methods have been proposed to address
some of the above mentioned challenges. Zhou et al. [19] monitored the lighting energy consumption
of office buildings in Beijing and Hong Kong for a long time, which was used to study the energy
consumption pattern of lighting and simulate lighting behaviors. They found that the fluctuation
of daily lighting energy consumption in office buildings is closely related to personal regular
routines. Indraganti et al. [20,21] investigated the thermal comfort level of the population and
the adaptive behavior of high temperature, in which the polynomial was fitted to the air-conditioning
usage rate and outdoor temperature. Wang et al. [22] proposed a basic research framework and
quantitative description method for occupant behavior related to building energy. It was based on
the segmentation probability function and the conditional triggering form of the personal action
model. This method effectively reflected a number of characteristics including the diversity among
different individuals, the randomness of behavior, the environmental relevance, and the diversity
among different individuals. Kumagai et al. [23] established a quantitative stochastic model based
on user actions to predict the air-conditioning usage status. The mathematical descriptions affecting
the use of air-conditioning were regarded as a series of conditional probabilities, which had a high
accuracy rate. Glicksman et al. [24] proposed a new method for describing personal behavior and built
an energy using behavior model and algorithm process based on the “subject and event mechanism”.
This model focused on the overall process of people in buildings from mobile behavior to energy use
behavior. Influenced by the surrounding physical environment, social environment, and personal
subjective factors, such as emotional changes, habit adjustments, etc., the behaviors of office occupants
have a large degree of uncertainty. The traditional point prediction models cannot describe them well,
while probabilistic models can provide more information about the uncertainty.

This paper proposes an MCMC based method for predicting office occupants’ energy use behavior.
The on-off state data of electrical equipment and indoor environmental parameters are collected
through the indoor electrical Internet of Things system (IEIoTS). The Metropolis–Hastings MCMC
algorithm is used for random sampling of the parameter values of the fitting function, and the sampling
theorem is used for judgment, so as to obtain the optimal energy use action model, energy use working
hours model, and air-conditioning energy use behavior model of the office occupants. Compared with
other prediction approaches, this method can predict the user behavior more quickly, because the
accept-reject step in Metropolis–Hastings MCMC algorithms can make the probability distribution
model converge more efficiently to the optimal parameters. Understanding users’ energy use behaviors
can provide decision-making reference for intelligent control of building equipment. For example,
air-conditioners and water dispensers in the office can be turned on automatically during electricity
price valley periods and maintained in the specified state in advance before working, which can
effectively reduce the electricity bill while providing users with a comfortable working environment.

The rest of the paper is organized as follows: Section 2 introduces the properties of the Markov
chain and the principle of the Metropolis–Hastings (MH) MCMC algorithm. Section 3 presents the
procedure of the proposed method to predict energy use behaviors of office occupants. The comparative
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experiments are carried out and the results are discussed in Section 4. Finally, conclusions are drawn
in Section 5.

2. Methodology

The Markov chain Monte Carlo (MCMC) method has been widely used in machine learning,
deep learning, natural language processing, and others [25]. The MCMC method consists of two MCs.
The first MC is Monte Carlo sampling, and the second MC is the Markov chain. It is essentially a
method of repeatedly drawing the random values of the assumed parameters according to the current
value until it converges to the the real distribution. The samples of each value are randomly sampled,
while the selection of values is limited only by the current state and the prior distribution of the
assumed parameters [26–29].

2.1. Markov Chain

In the Markov chain, the probability of state transition from the current state to
the next state depends only on its current state, independent of the previous states [30].
Suppose · · · , xi−3, xi−2, xi−1, xi, · · · are the states in a Markov chain. The transition probability can be
described as by:

P(xi| · · · , xi−3, xi−2, xi−1) = P(xi|xi−1) (1)

where P is the probability of the occurrence of the event; P(xi|xi−1) is the probability of transitioning
to the state xi under the condition of xi−1.

A Markov chain that satisfies the detailed balance condition can converge to a stationary
distribution, and it is given by:

π
(

x(i)
)

T
(

x(i−1)
∣∣∣x(i) ) = π

(
x(i−1)

)
T
(

x(i)
∣∣∣x(i−1)

)
(2)

where π(x) is the stationary distribution of the system; π(x(i)) represents the probability value
corresponding to the current state; T(x) is the transfer matrix; T(x(i)|x(i−1)) is the transition probability
from state i− 1 to i. The existence of this property makes the Markov chain have a recurrence; therefore,
the state of the Markov chain can return to any state with a probability greater than zero when the
value of the variable iis large enough [31]. A Markov chain that satisfies the detailed balance condition
can be converted from the i− 1 state to i for any two states and without any loss in the conversion.
However, under normal circumstances, the two state transitions in the Markov chain are not equal
and do not satisfy the detailed balance condition. How to construct the transfer matrix so that the
stationary distribution is the target distribution is the key of Markov chain sampling.

2.2. Metropolis–Hastings Algorithm

The Metropolis–Hastings (MH) algorithm is the cornerstone of Markov chain Monte Carlo
sampling [32]. In order to make the Markov chain meet the detailed balance condition, the acceptance
rate r(x(i−1), x(i)) is introduced to make the original Markov chain jump from state i− 1 to i, which is
received with the probability of r(x(i−1), x(i)) [33]. The original Markov chain is random. Assuming
there is a stationary distribution of π(x), x is a sample obtained from the Markov chain, and the ratio
of π(x(i)) and π(x(i−1)) can be calculated by Equation (2), while parameters x(i) and x(i−1) can be
selected according to a certain probability. The parameters by multiple iteration sampling should be
met π(x) [34,35]. The iterative steps of the MH algorithm are as follows:

• The MH algorithm takes random values in the parameter space as the starting parameter x(0).
The random parameter x(1) is generated from the distribution function of parameters, and the
probability density of the current parameter is calculated.

• First, a random number µt is extracted from the uniform distribution of [0, 1], and then,
we determine whether to keep the current parameter according to whether the probability density
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ratio between the current parameter x(i) and the starting parameter x(i−1) is greater than µt. If the
reception probability of the current parameter is greater than µt, µt ≤ r(x(i−1), x(i)), the state is
accepted, and it needs to be updated x(i) = x(i), otherwise x(i) = x(i−1) [36]. The acceptance
probability r(x(i−1), x(i)) of MH can be described as:

r
(

x(i−1), x(i)
)
= min

1,
π(x(i−1))T

(
x(i)

∣∣∣x(i−1)
)

π(x(i))T
(
x(i−1)

∣∣x(i) )
 (3)

It is obvious that the acceptance probability r(x(i−1), x(i)) value is between [0, 1], and its purpose
is accelerating the convergence of the Markov chain to the detailed balance condition.

3. Proposed Method

The energy use behavior of the office occupant has a certain regularity, which is related to
the working time and thermal comfort of users. The daily on and off states and working hours of
electrical equipment are related to personal energy use behavior habits, and the energy use behavior
of air-conditioner is related to users’ thermal comfort. The purpose of this paper is to predict the
office occupant energy use behavior by mining the user’s equipment usage data. This method regards
the energy use behavior model as a time or temperature function and uses the MCMC method to
fit the posterior probability distribution of the energy use action model, energy use working hours
model, and air conditioning energy use behavior model. The prediction process of personnel energy
use behavior can be roughly divided into three sections: data acquisition, data preprocessing, and
model training.

3.1. Data Acquisition

In order to obtain the usage data of electrical equipment in the office, we build an indoor
electrical Internet of Things system (IEIoTS), which can obtain the electrical equipment’s state data
and environmental parameters by installing smart sockets, smart switches, temperature and humidity
sensors, and electrical parameter detection modules. The architecture of this system is shown in
Figure 1.

As can be seen from Figure 1, this system includes electrical equipment, a gateway, and a server
from the bottom up. The system was deployed in an office building of Shandong Jianzhu University,
and the collected data were stored and managed in units of rooms. The electrical equipment of each
room included smart sockets, smart switches, and other electrical equipment. The on-off state data
of electrical equipment could be acquired by smart sockets and switches, and temperature data were
acquired by temperature and humidity sensors. The gateway was the core equipment of the indoor
electrical Internet of Things system, which could not only complete the two way transmission of control
instructions and state data, but also complete the protocol conversion, and so on [37]. At the top of the
system, there was a cloud server to manage the data in the building and store the effective information
from the sensors in each room. The data of electrical equipment was uploaded to the database in the
cloud server by the gateway for analysis and storage. The TCP/IP protocol was adopted, which could
reliably transmit the data collected in the remote environment to the database in real time.

The dataset used in this paper was generated from the IEIoTS deployed in a laboratory building
of Shandong Jianzhu University and an occupant in the office. The on/off state data of three pieces of
equipment (water dispenser, desktop computer, and light) and the historical data of environmental
parameters in the lab were collected and recorded as the original data. The sampling frequency was
1 sample per minute. The original data of half a year were used in this paper, and the total number of
the data was 65,880, during which 98% were used as the training data and the remaining 2% as the
test data.
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Figure 1. Architecture of the indoor electrical Internet of Things system.

3.2. Data Preprocessing

The preprocessing of the original data mainly included: time interception, removing the zero
vector, excluding outliers, data interception, etc. The data preprocessing process is shown in Figure 2.

Figure 2. Flowchart of data preprocessing.

(1) Time interception: The data should strictly require daily data starting from 00:00, with one
minute as the sampling period and yyyy/m/d h:mm as the time format for date processing.
One-thousand-four-hundred-forty records could be obtained in one day. It was necessary to
determine whether the data were complete. If there was a missing value, we assigned the
previous state.

(2) Removing the zero vector: Removing the state data of the powered device that was not working
for a whole day.

(3) Excluding outliers: For data outliers that occasionally occurred in the original data, outliers were
detected and removed by the Laida algorithm [38].
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(4) Data interception: By analyzing the time period of the equipment action daily, the state data
during the device on and off time periods were respectively intercepted.

3.3. Model Training

The energy use action model refers to the probability that the electrical equipment enters the
power-on and power-off state within a certain temperature; the energy use working hours model refers
to the probability of the electrical equipment duration of energy use; and the energy use behavior
model of air-conditioner refers to the probability that the air-conditioner enters into the cooling and
heating state at a given temperature. Since time and temperature are continuous variables, which
are difficult to determine for the entire posterior distribution, the MCMC was used to study the
approximate distribution and obtain the fitting curve of the data distribution.

The energy use action model and the energy use working hours model reflect the time rule of
user’s energy use behavior. The air-conditioner energy use behavior model reflects user’s thermal
comfort, which depends on user’s comfortable temperature range. The process of model training was
as follows, taking the energy use action model as an example to elaborate in detail. At first, we needed
to observe the electrical equipment’s state distribution based on the time series to determine the fitting
function with the parameters that needed to be trained, set the number of samples, and give the
initial value to the parameters for the sampling. Secondly, we assumed the a priori distribution of
the parameters, and MH random sampling was carried out by searching the distribution space of the
parameters. Based on Markov characteristics, new values were randomly assigned to the parameters
according to the current state. Thirdly, we checked the new random values; if they satisfied the MH
sampling theorem, then we accepted them as a new current state; if not, we rejected and returned them
to the previous state. Lastly, we repeated the previous two steps for the specified number of iterations,
until it reached the detailed condition of a Markov chain. This method could construct the energy
use behavior model based on different time ranges (daily, weekly, annually, etc.), and the calibration
frequency of the model needed to be adjusted accordingly. We took the construction of the day based
energy use behavior model as an example to evaluate the performance of the proposed method in this
paper. The flowchart of energy use behavior prediction is shown in Figure 3.

Function model 
selection

Determination of 
sampling times

MCMC

Random 
sampling

HM
filter

Simulation 
and statistics

≥Setting sampling times

Output sampling 
mean

Prediction model

No

Yes

Figure 3. Flowchart of energy use behavior prediction.
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The algorithm returned all the values generated by the parameters, and the mean of these values
was used as the most likely final value for the parameters in the model. We used the Bernoulli function
to calculate the probability of the equipment action time. The MCMC returned an approximation of
the distribution instead of the accurate results.

3.3.1. Action Model

(1) Function model selection:

This study took the desktop computer as an example to introduce the algorithm in detail. First,
a fitting function was required to model the posterior probability distribution of the energy use action
behaviors (on and off) for the desktop computer. The distribution of the historical state data of
the desktop computer was observed. The power-on time period was selected as 6:00–9:00, and the
power-off time period was selected as 14:00–17:00. The action time probability distribution is shown in
Figure 4.

As shown in the Figure 4, it can be concluded that users usually powered on and powered off after
7:30 and 15:00, respectively, and the model was created to simulate the transition process of the user
between power-on and power-off in the form of a probability. After many experiments, the logistic
function was chosen as the posterior probability distribution model of the on-off action. It can be
described as:

P(action|ti) =
1

1 + eβti+α
(4)

where t represents the action time. The parameter β affects the direction and steepness of the curve;
the parameter α affects the position. β and α are the two model parameters that need to be trained in
the MCMC process jointly. The logistic function with different parameters is shown in Figure 5.

The logistic function satisfied the experimental data, because the probability of the power-on and
power-off of the desktop computer would gradually change, which could reflect the change of the
on-off action model.

(a) Power-on data

(b) Power-off data

Figure 4. Action time probability distribution of the desktop computer.
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Figure 5. The logistic function with varying β and α.

(2) MH sampling:

The procedure of the MH algorithm was randomly sampling from the probability distribution
model of the parameters. Each time, the sampling values of the parameters (β and α) of the function
were changed, and the response was observed. The mean value of all sample values was taken to
obtain the optimal approximation.

First, in order to plot the random values of the parameters β and α, it was necessary to assume
the prior distribution of the parameters. In this paper, a 2D Gaussian distribution was selected as the
prior distribution of the parameters. The two edge distributions of the 2D Gaussian distribution were
all in the form of a univariate Gaussian distribution, and this can be expressed as:

f (x |µ, τ ) =

√
τ

2π
exp

(
−τ

2
(x− µ)2

)
(5)

where µ is the mean of the normal distribution; τ is the accuracy; f (x) is Gaussian distribution function.
The accuracy (τ) determines the concentration of the distribution; the mean (µ) determines the position
of the distribution. The higher the accuracy, the more centralized the presentation data and the smaller
the change. The mean can be positive or negative, and the precision must be positive. In order to
broaden the search area of the acquired β and α values, choose µ = 0 and τ = 0.01. The parameter
space of the prior distribution is shown in Figure 6.

α

β

P(
pr

ob
ab

ili
ty

)

Figure 6. Parameter search space for the normal priors’ distribution.
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It can be seen from Figure 6 that not every point in the parameter distribution space could be
attempted, but the most fitting model could be created by random sampling from a higher probability
region (the red part in Figure 6). In order to make the test results more accurate, a step size as long
as possible should be chosen. In this paper, the step size was 5000. The MH algorithm evaluated
the random values of β and α each time. If the MH sampling condition was satisfied, the current
values of β and α would be accepted, and the state was transferred. If not, the values of β and α were
random values of the previous time. The sampling trajectory of the parameters β and α of the desktop
computer power-on model are shown in Figure 7.

(a) Trajectory of α

(b) Trajectory of β

Figure 7. Parametric trajectory of the desktop computer power-on model.

The Bernoulli variable was adopted to model the on or off action of equipment, where the
power-on was set to 1 and the power-off was set to 0 [39]. The Bernoulli variable of the desktop
computer state data depended on the time, which could be defined by the logistic function. It can be
described as:

Si ∼ Ber (p (ti)) , i = 1, · · · , N (6)

where p(ti) is the logistic function with time as the argument, representing the probability of action at
a certain time. Therefore, the probability of power-on and power-off was converted by Equation (4),
and it can be written in the form:

P (action |ti ) = Ber
(

1
1 + e(βti+α)

)
(7)

The goal of MCMC was to find the optimal values of parameters β and α based on the data from
the assumption of normal prior distribution. In order to find the most optimal posterior probability
distribution of the turn-on and turn-off action model, the mean values of β and α samples were taken as
the optimal parameters of desktop computer, water dispenser, and light. The probability distribution
of the energy use action model is shown in Figure 8.
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Desktop

Light

Water Dispenser

Computer

(a) Power-on time probability distribution

Computer

(b) Power-off time probability distribution

Figure 8. Energy use action time probability distribution.

3.3.2. Working Hours Model

According to the characteristics of the data distribution, we adopted the skewed distribution
as a posterior distribution of the working hours model. The skewed distribution is the frequency
distribution of deviating from the symmetrical value of variables, which can be expressed as:

f (x; µ, σ, λ) =
2
σ

φ

(
x− µ

σ

)
Φ
(

λ (x− µ)

σ

)
(8)

where φ(x; µ, σ) and Φ(x; µ, σ) are the density function and distribution function of the standard normal
distribution, respectively [40,41]. The MCMC method was used to obtain the optimal values of the mean
values µ, variance σ2, and skewness λ in the skewed normal distribution, as well as fitting the maximum
probability value of the user electrical equipment’s used time. The energy use working hours models of
the desktop computer, light, and water dispenser were established, which are shown in Figure 9.

(a) Desktop computer (b) Light

Figure 9. Cont.
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(c) Water dispenser

Figure 9. Energy use working hours model of electrical equipment.

3.3.3. Air-Conditioner Energy Use Behavior Model

The air-conditioner can effectively improve the indoor thermal environment and meet the
desired thermal comfort of office occupants. Through the collection of the environmental parameters
(temperature, humidity) of the office air outlet, the on-off state and the set temperature of the
air-conditioner could be analyzed, then the air-conditioner energy use behaviors of office occupants
could be predicted.

The MCMC algorithm was used to build the energy use behavior model of the manual on and
off air-conditioner and predict the user’s air-conditioner use behavior based on temperature data.
The energy use behavior model of the air-conditioner refers to the probability that the air-conditioner
enters into the cooling or heating state in a given temperature. The air-conditioner energy use behavior
model included air-conditioner heating-on, heating-off, cooling-on, and cooling-off action model.
The training process of the air-conditioner energy use behavior model was similar to the example of
the energy use action model in Section 3.3.1. The difference was that the air-conditioner energy use
behavior model was based on temperature, while the energy use action model was based on time
series of the equipment state. Specifically, the steps of MCMC algorithm for the air-conditioner energy
use behavior model are as follows. At first, we needed to observe the air-conditioner state distribution
based on the temperature to determine the fitting function with the parameters that needed to be
trained; the logistic function was selected similarly, and we set the number of samples and gave
the initial value to the parameters for the sampling. Secondly, we assumed the a priori distribution
of the parameters was 2D Gaussian, and MH random sampling was carried out by searching the
distribution space of the parameters. Based on Markov characteristics, new values were randomly
assigned to the parameters according to the current state. Thirdly, we checked the new random values;
if they satisfied the MH sampling theorem, then we accepted them as a new current state; if not, we
rejected and returned them to the previous state. Lastly, we repeated the previous two steps for the
specified number of iterations, until it reached the detailed condition of a Markov chain, which was
the probability distributions of the air-conditioner energy use behavior.

The experimental period was from 22 January 2019 to 4 June 2019. The highest, lowest,
and average outdoor temperatures of Jinan in each month during the experiment are shown in
Figure 10. The temperatures in May and June were higher, with the average temperatures of 24 ◦C and
27.5 ◦C, respectively. The highest temperature in May was 38 ◦C; the lowest temperature in January
was −7 ◦C.

Figure 11 shows the temperature change of a user’s office with the air-conditioner from 22 to
25 May 2019. It can be seen from Figure 11 that the temperature of the air outlet was about 10–15 ◦C,
which was lower than the indoor temperature when the air-conditioner was running. Based on this,
the working states of the air-conditioner could be judged.
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Figure 10. Outdoor temperature change of Jinan from January to June 2019.

Figure 11. Indoor air-conditioner temperature change from 22 to 25 May 2019.

Figure 11 shows several typical air-conditioner operation processes. Processes 2 and 4 show
that after the user turned on the air-conditioner, the air outlet temperature dropped to about 17 ◦C,
and with little fluctuation, so the air-conditioner compressor was in constant frequency operation.
After the operation of Processes 1, 3, and 5 for a period of time, due to the frequency conversion of
the compressor, the temperature was fluctuating continuously. Before the air-conditioner was started
manually, the temperature was basically stable and high. Therefore, the above judgment method
could distinguish the manual on and off condition of the air-conditioner from the automatic on and off
process, so as to obtain the record of the manual on and off condition of the air-conditioner. Through
the above MCMC algorithm, we could get the probability model of the on and off condition of the
air-conditioner at a certain temperature, as shown in Figure 12c.
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Desktop

Light

Water Dispenser

Computer

(a) Probability density model of power-on

Computer

(b) Probability density model of power-off

Temperature/℃
5 10 15 20 25 30 35

Heating On

Heating Off 
Cooling On
Cooling Off

(c) Probability density model of the air-conditioner

Figure 12. Action probability density model of the electrical equipment.

4. Experimental Evaluation

4.1. Evaluation Indices

The root mean squared error (RMSE) and mean absolute error (MAE) are usually used as the loss
function of linear regression in machine learning. RMSE is the square root of the squared sum of the
deviation between the observed value and the true value with the ratio of the observed times and is
used to measure the deviation between the observed value and the true value. MAE is the average of
absolute errors, which can better reflect the actual situation of the predicted value error. Therefore,
RMSE and MAE were selected to verify the accuracy of the experiment, which can be described as:

RMSE =

√
1
m ∑m

n=1 (ŷi − yi)
2 (9)
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MAE =
1
m ∑m

n=1 |ŷi − yi| (10)

where m is the number of sample data; yi is the true value; ŷi represents the predicted value. yi and ŷi
are both probability values, and the range is [0,1].

Using the above evaluation indices, the loss between the energy use action time model and the
real value of each electrical equipment could be obtained, and the accuracy of the experiment could
be evaluated. The MCMC method was used to obtain 5000 sample values, and the average of all
sample values was taken as the final parameter of the model. The results of RMSE and MAE are shown
in Table 1; the value of RMSE and MAE of the light power-on model was smaller than the desktop
computer power-on model, so the light power-on model was more accurate than the desktop computer
power-on model.

Table 1. Comparisons of three prediction models in the first experiment.

Equipment Action Model Optimal Parameter Evaluation Index

α β RMSE MAE

Desktop computer Power-on 3.2269 −0.0578 0.0823 0.0517
Desktop computer Power-off −0.8263 0.0331 0.0732 0.0415

Light Power-on 3.3025 −0.0693 0.0536 0.0346
Light Power-off −0.4510 0.0345 0.0634 0.0238

Water dispenser Power-on 4.3892 −0.0705 0.0815 0.0591
Water dispenser Power-off −1.0008 0.0362 0.0924 0.0612
Air-conditioner heating-on 2.8954 −0.0873 0.0687 0.0491
Air-conditioner heating-off 3.7358 −0.0492 0.0824 0.0574
Air-conditioner cooling-on 5.1029 −0.0617 0.0635 0.0329
Air-conditioner cooling-off 4.8796 −0.0584 0.0744 0.0482

4.2. Comparison between MCMC Estimation and MLE

The Maximum Likelihood Estimate (MLE) is a statistical method based on the principle of
maximum likelihood, which is the application of probability theory in statistics. It provides a way to
estimate a model for a given observation. The steps of solving the maximum likelihood estimation
value mainly include: writing out the likelihood function ` (θ) at first, taking the logarithm of the
likelihood function, and finally, solving the maximum likelihood function estimation value θ̂. ` (θ)
and θ̂ can be described as:

`(θ) = p(x1, x2, ..., xN |θ ) =
N

∏
i=1

p(xi |θ ) (11)

θ̂ = argmax
θ

N

∏
i=1

p(xi |θ ) (12)

where x1, x2, ..., xN are samples; ` is the parameter vector. We compared the MCMC and MLE algorithm
for the analysis of the energy use behavior models corresponding to the optimal parameters β and α.
For the convenience of the statistics, the time periods of [6:00–9:00] and [14:00–17:00] were mapped
respectively to the numerical interval of [−85,95] and [−60,120]. The comparative analysis results are
shown in Table 2, for the desktop computer power-on model; the model interval difference (d) fitted by
the MLE algorithm and the MCMC algorithm was 1.6074 and 0.9780, respectively. The smaller the d
was, the more the data in the confidence interval, and the better the fitting result. Therefore, the MCMC
algorithm was better than the MLE algorithm. By comparing the mean (v), the 90% credible interval
(L), and the difference of the interval (d) for the model, it could be obtained that while the mean
value performed similarly in estimating the energy use model, the proposed method outperformed
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the Maximum Likelihood Estimation (MLE) algorithm on uncertainty quantification with relatively
narrower confidence intervals.

Table 2. Comparison results of MLE and MCMC.

Energy Use Model MLE MCMC

v L d v L d

Desktop computer power-on 33.2179 [32.4142,34.0216] 1.6074 33.2637 [32.7747,33.7527] 0.9780
Desktop computer power-off 25.7983 [24.6318,26.9648] 2.3330 25.4528 [24.6492,26.2564] 1.6072

Light power-on 28.3459 [26.8734,29.8184] 2.9450 27.1368 [25.9037,28.3366] 2.4329
Light power-on 23.4086 [22.5467,24.2705] 1.7238 23.8457 [23.6375,24.0539] 0.4164

Water dispenser power-on 40.4608 [39.0547,41.8669] 2.8122 39.7638 [38.9513,40.5763] 1.6250
Water dispenser power-on 26.0109 [25.1376,26.8847] 1.7466 26.5534 [25.7375,27.3693] 1.6318
Air-conditioner heating-on 17.9635 [17.0346,18.8924] 1.8578 18.2389 [17.8934,18.5844] 0.6910
Air-conditioner heating-off 26.0184 [24.7342,27.3076] 2.5684 25.7267 [24.8763,26.5771] 1.7008
Air-conditioner cooling-on 27.8423 [26.3756,29.3090] 2.9334 27.5361 [26.9108,28.1614] 1.2506
Air-conditioner cooling-off 23.4861 [22.0785,24.8937] 2.8152 23.3462 [22.7658,23.9216] 1.1608

4.3. Experimental Results and Analysis

In order to analyze energy use behavior intuitively, the probability distribution model of energy
use behavior in Figure 8 was transformed into the probability density distribution model, as shown in
Figure 12a,b.

As can be seen from the Figure 12a,b, the energy use behaviors had a certain regularity. In the
morning, the user tended to turn on the light between 7:40 and 7:50 firstly, then turn on the desktop
between 7:50 and 8:00, and finally, turn on the water dispenser between 8:00 and 8:10. In the afternoon,
the user turned off the light between 15:10 and 15:20 at first, then turned off the desktop and the
water dispenser between 15:20 and 15:30 PM. However, the analysis of the office occupant energy use
behavior habits had a high time dependence and uncertainty. The energy use behavior of the office
occupants can be deduced from Table 3.

It can be seen from Figure 12c that the average temperature of air-conditioner cooling-on was
27.5 ◦C, and the average off temperature was 23.3 ◦C; the average temperature of air-conditioner
heating-on was 18.2 ◦C, and the average off temperature was 25.7 ◦C. The on and off behavior of
the air-conditioner also reflected the thermal comfort of the users. When the indoor temperature in
summer exceeded 27.5 ◦C, the thermal endurance of users exceeded the threshold value, and the
air-conditioner was turned on for cooling; when the indoor temperature dropped to 23.3 ◦C, the users
felt cold, and the air-conditioner was turned off at this time. Therefore, 23.3–27.5 ◦C could be regarded
as the comfortable temperature range for the experimenters under the working condition of the
air-conditioner in summer.

Table 3. Prediction results of energy use behaviors.

Device
Prediction On Period Off Period On Time Off Time Working Hours (h)

Desktop computer 7:50–8:00 15:20–15:30 7:55 15:25 7.18
Light 7:40–7:50 15:10–15:20 7:47 15:13 7.16
Water dispenser 8:00–8:10 15:20-15:30 8:02 15:27 7.20

5. Conclusions

In this paper, a new method for predicting personal energy use behavior was proposed. Based on
the data of electrical equipment used by an office occupant for half a year, the prediction of energy
use behavior was realized by using the MCMC method. Firstly, the on-off state data of electrical
equipment and temperature history data were obtained by building the IEIoTS for office application,
and the experimental data were obtained by data preprocessing. Secondly, the sampling parameters
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were determined by selecting an a priori function model from observation data. Then, the optimal
parameters were obtained through continuous sampling with the MH algorithm in MCMC, and the
energy use action model, the energy use working hours model, and the air-conditioner energy use
behavior model were fitted. Finally, comparative analysis of the experiments verified that the proposed
method had high accuracy and stability. The method proposed in this paper was a generic statistical
modeling framework. As long as the user behavior had certain statistical patterns, this method could
be used for prediction. Therefore, the model could be applied to other types of buildings, such as
residential buildings, industrial buildings, and so on.

In some cases, equipment states and performance data may not be available. For example,
considering the user’s privacy, we may not be able to access equipment states of residential buildings,
but it is possible to infer the working state information of the equipment by using the aggregated data
from the household electricity meters, and then, the method in this paper could be used to predict
the user behaviors. Although the proposed method could obtain the rules of personal energy use
behaviors, it could not predict the energy use behavior rules with a high resolution. In the future study,
we will further improve the accuracy of the algorithm, for example by acquiring longer electrical
equipment state data. In addition, we will design energy saving strategies on the basis of office
occupants’ energy use behaviors.
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