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Abstract: This paper develops the mathematical modeling and deflection control of a textile-reinforced
composite integrated with shape memory actuators. The mathematical model of the system is
derived using the identification method and an unstructured uncertainty approach. Based on
this model and a robust stability analysis, a robust proportional–integral controller is designed
for controlling the deflection of the composite. We showed that the robust controller depends
significantly on the modeling of the uncertainty. The performance of the proposed controller is
compared with a classical one through experimental analysis. Experimental results show that the
proposed controller has a better performance as it reduces the overshoot and provide robustness
to uncertainty. Due to the robust design, the controller also has a wide operating range, which is
advantageous for practical applications.
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1. Introduction

Soft robots have been used in a wide range of applications. Considerable growth in the application
area is expected in the coming years [1,2]. The growing interest in soft robots comes from the good
performance of these materials in environments which is not best suited for conventional rigid bodies.
Soft robots utilize the compliance, adaptability, and flexibility of soft materials and actuation methods
to develop highly adaptive structures [3]. Soft robots are mainly composed of materials with low
Young’s modulus (around 1 GPa). Typical materials to which this applies are silicone, rubber, or other
elastomeric polymers. The strength and stiffness of these soft materials can be improved by adding
reinforcement materials such as fibers. The resulting combination called textile reinforced composites
is lightweight, strong, and resistant that makes it ideal for diverse soft robotics applications [4,5].
Engineering applications of these composites exist in robotics, aerospace, automotive, underwater
vehicles, and other areas [6].

The elastic properties of textile reinforced composites require smart actuators which possess
adaptability and deformability. Smart materials which include piezoelectric materials, shape memory
alloys (SMA), and dielectric elastomers have been used in diverse flexible structures [7–9]. Among these
smart materials, SMAs have the advantages of simple structure, small size, excellent (i.e., higher)
force to weight ratio, large displacement, and high stiffness [10,11]. SMAs are capable of returning
to a predefined shape when heated. This phenomenon is called the shape memory effect (SME) and
is due to crystalline phase transformation from martensite (low temperature phase) to austenite
(high temperature phase) [12]. This transformation gives rise to a hysteresis effect which is highly
nonlinear. While contracted upon heating, the SMAs exerts a force which is used for actuation. One of
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the efficient methods for heating the SMAs is resistive heating from an electrical current. Through this
method, the deflection and retraction of the wire can be made controllable.

The performance of a shape memory actuator depends significantly on the accuracy of its controls,
which is in turn dependent on the SMAs mathematical model. Among the different modeling
approaches available in the literature, phenomenological or macro approaches are more suitable
to be used for engineering applications. This includes constitutive models like the Tanaka model [13],
the Liang and Rogers model [14], the Brinson model [15], and the hysteresis models such as the Preisach
model [16], the Krasnosel’skii–Pokrovskii model [17], and the Prandtl–Ishlinskii model [18]. However,
due to the complicated dynamics of the hysteresis effect in SMAs, these models are mainly complex and
difficult to use for designing a suitable controller. Furthermore, not only the modeling of the involved
SMA actuators is required, but of the structure of the entire system as well. One alternative for obtaining
the mathematical model of the system is using experimental modeling or system identification to
derive simpler equations [19,20]. The nonlinear relationship between the inputs and outputs of the
system can be then represented by a linear transfer function which includes the nonlinearities of the
system as unstructured uncertainty.

The purpose of this paper is to use the unstructured uncertainty approach for modeling a
textile-reinforced composite system actuated by shape memory alloys. The paper extends preliminary
findings presented in the conference paper [21]. Different uncertainty models are introduced, applied to
the system and consequently compared. Based on the robust stability analysis a proportional–integral
controller is then designed to verify the effectiveness of this approach. The objective of the controller
is to stabilize the position of the system for a fixed reference. The performance of this controller is
compared with a classical one.

The rest of the paper is organized as follows. In Section 2 we describe the test bench. The system
identification is addressed in Section 3. We carry out classical controller design in Section 4. The main
contribution is the design of a robust controller discussed in Section 5. Finally, we will draw some
conclusions in Section 6.

2. System Description

Figure 1 shows the experimental platform of the textile-reinforced composite with integrated SMA
actuators. It consists of a textile composite manufactured from a fabric for reinforcement, covered with
silicone rubber matrix. For the SMA, we used wires of a Ni-Ti alloy with a protective glass fiber
polypropylene sheathing. The sheathed SMA wires are integrated in a strengthening textile in the
form of a single-layer plain glass fiber fabric. This fabric was embedded in a castable two-component
silicone rubber matrix forming a composite panel. Details of the specimen production as well as
the properties of the materials are described in [22]. For our experiments one single specimen was
available, but it was tested under different operating conditions.

Figure 1. Test bench of textile-reinforced composite specimen with integrated shape memory alloys (SMAs).
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In the composite, the SMAs are placed close to the top surface so that there is a large offset
to the center of the material. By this arrangement a phase transition of the SMA wires will bend
the composite as shown in Figure 2. When thermally activated through heating, the SMA actuators
contract themselves and generate a mechanical tension inside the textile composite. The SMA thermal
stimulus is induced by applying a voltage causing a current flow through the wires.

Figure 2. Deflection of the textile-reinforced composite with side view of the test bench unit.

The voltage to heat the SMAs is provided by a 30 V DC power supply and controlled by an
L298N driver IC [23] via pulse width modulation (PWM) with a maximum permissible current of
2 A. This corresponds to a maximum power consumption of 60 W. To measure the deflection of the
textile composite we equipped the test bench with a distance sensor of the type GP2Y0A41SK0F from
Sharp [24,25]. The control algorithms have been implemented on an Arduino Uno R3 board [25] using
the Simulink Support Package for Arduino Hardware [26]. More details on the experimental setup are
presented in [21,22].

3. Model Identification

One of the main shortcomings of the SMA actuators is the difficulties in motion control due to
hysteresis and other nonlinearities. The reason that gives rise to hysteresis is that the material’s
crystalline structure shifts between martensite and austenite phases depending on the applied
temperature and stress. Martensite is the rather soft and easily deformed phase of shape memory
alloys. This phase exists at lower temperatures, whereas at higher temperatures, the austenite phase is
relatively hard. The hysteresis of the shape memory actuators of the experimental platform for four
consecutive heating up and cooling down cycles is shown in Figure 3.
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Figure 3. Four consecutive heating up and cooling down cycles of shape memory alloy with hysteresis.
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The system responds with a time lag to the applied voltage. In addition, there is almost no
overshoot. For these reasons, we want to describe the system’s essential behavior by a first order linear
time-invariant system. In the Laplace frequency domain, the system is modeled by the transfer function

G(s) =
K

1 + sT
(1)

with the complex variable s representing the excitation frequency. In addition, the parameter K > 0
describes the gain and the parameter T > 0 is the system’s time constant. Roughly speaking,
the transfer function in Equation (1) can be understood as frequency-dependent gain factor [27].

The actuator specimen has been tested with different step inputs and different operating points.
Due to these different basic conditions, each experiment delivers more or less differing parameter
values of K and T. The set of parameters obtained can be described by intervals

K ≤ K ≤ K and T ≤ T ≤ T. (2)

This interval model is later extended to a dynamic uncertainty model in order to capture the
hysteresis and other unmodeled dynamics.

For the identification, the System Identification ToolboxTM of MATLAB R© is used [28]. This toolbox
offers an easy and efficient way to generate various mathematical models of systems such as
continuous-time and discrete-time transfer functions as well as state space models. To describe
the characteristics of the SMA actuator over a wide range of operation points, open-loop tests of the
actuator using step inputs are conducted. The input and output values of these experiments are used
to identify the mathematical model (Equation (1)), of the system. Each step response yields different
values of the parameters K and T. Over all experiments we obtained the following upper and lower
bounds of these parameters [21]:

K = 1.969, K = 2.6328, T = 112.676, T = 382.995. (3)

Thereafter, the plant’s nominal transfer function

G̃(s) =
K̃

1 + sT̃
(4)

can be derived, where the (nominal) parameter values K̃ ≈ 2.3009 and T̃ ≈ 247.8355 are obtained by
the arithmetic mean values of the bounds seen in Equation (3).

4. Classical Controller Design

To control the position of the textile reinforced composite, a simple proportional integral (PI)
controller is used [29,30]. Let e be the error between the desired position and the output y which is the
plant measured deflection, see Figure 4. Then, the controller dynamics can be expressed by

u(t) = Kpe(t) +
∫ t

0
e(τ)d τ (5)

in the time domain. The control law in Equation (5) yields the closed-loop controller output signal u,
which is the (averaged) voltage applied to the system through PWM (see Section 2). In the frequency
domain, the controller dynamics in Equation (5) can be described by the transfer function

C(s) =
U(s)
E(s)

= Kp +
Ki
s

(6)
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with the coefficients Kp and Ki for the proportional and integral action, respectively. Note that we use
capital letters for the Laplace-transformed signals (i.e., E(s) corresponds to e(t) etc.).

Controller Plant

E(s) U(s) Y(s)
C(s) G(s)

Figure 4. Simplified structure of the closed control loop.

The transfer function of the (nominal) closed loop system using the plant Equation (4) and the
controller Equation (6) can be expressed as follows

Y(s)
U(s)

=
K̃Kps + K̃Ki

T̃s2 + (K̃Kp + 1)s + K̃Ki
. (7)

The second order system in Equation (7) is stable if and only if all coefficients of the denominator
polynomial have the same sign (Stodola condition). The range of the controller parameters for which
Equation (7) is stable is given by

Ki > 0, Kp > −K̃.

Due to practical reasons, we shall use Kp > 0. Based on Ziegler–Nichols tuning method [29,31],
the gain values Kp = 3 and Ki = 1.1 are obtained for the controller. The transient behavior of the
controlled specimen for a reference deflection of 22 mm is shown Figure 5.
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Figure 5. Deflection of the controlled system for 22 mm reference with classically designed proportional
integral (PI) controller.

5. Robust Control

5.1. Uncertainty Models

When the exact model of a physical system is not known due to for example unmodeled dynamics
or nonlinearities, the unstructured uncertainty can be useful for modeling the errors. There are several
types of unstructured uncertainty models in literature, e.g., [32–34]:

• Additive Uncertainty
G(s) = G̃(s) + W(s)∆(s). (8)

• Multiplicative Uncertainty
G(s) = G̃(s) (1 + W(s)∆(s)) . (9)
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• Feedback Uncertainty

G(s) =
G̃(s)

1 + W(s)∆(s)G̃(s)
. (10)

• Multiplicative Feedback Uncertainty

G(s) =
G̃(s)

1 + W(s)∆(s)
. (11)

In these models, G̃ denotes the transfer function of the nominal plant, W(s) is a proper and stable
weight function characterizing the uncertainty dynamics, and ∆(s) contains the uncertainty, which can
be an arbitrary stable transfer function fulfilling the inequality:

‖∆‖∞ ≤ 1, (12)

where
‖∆‖∞ = sup

ω∈R
|∆(jω)| (13)

is the norm of the Hardy space H∞. Additive uncertainty can be used when the numerator of
the transfer function G contains uncertain terms while the feedback uncertainty is useful when the
denominator has uncertainties. Also, multiplicative uncertainty is suitable for gain uncertainties.
The block diagrams of these uncertainty models are shown in Figure 6.

(a) (b)

(c) (d)
Figure 6. Uncertainty models of the plant’s transfer function G(s). (a) Additive uncertainty;
(b) Multiplicative uncertainty; (c) Feedback uncertainty; (d) Multiplicative feedback uncertainty.

Now, we want to describe the plant Equation (1) with these uncertainty models using the identified
interval uncertainty Equation (2). With this extension we also cover nonlinearities such as hysteresis
and other unmodeled dynamics. To do so, an appropriate weighting function W for each case should
be found such that the condition in Equation (12) holds. First, we compute W for additive uncertainty
case. Solving Equation (8) for the product term W(s)∆(s) we get

W(s) · ∆(s) = G(s)− G̃(s). (14)

Together with the plant’s transfer functions Equation (1) and Equation (4) this results in

W(s) · ∆(s) = s(KT̃ − K̃T) + K− K̃
s2T̃T + s(T̃ + T) + 1

.



Algorithms 2020, 13, 24 7 of 12

In order to fulfill the bound in Equation (12) we replace the unknown parameters K, T by their
lower or upper bound as in Equation (2), respectively. A possible solution fulfilling the condition in
Equation (12) is then given by

W(s) =
s(KT̃ − K̃T) + K− K̃
s2T̃T + s(T̃ + T) + 1

(15)

∆(s) =

(
s2T̃T + s(T̃ + T) + 1
s2T̃T + s(T̃ + T) + 1

)(
s(KT̃ − K̃T) + K− K̃
s(KT̃ − K̃T) + K− K̃

)
. (16)

Applying the same procedure to other uncertainty models, the weighting function W and the
uncertainty function ∆ can be described as follows:

• Multiplicative Uncertainty

W(s) =
s(KT̃ − K̃T) + K− K̃

K̃(sT + 1)
, ∆(s) =

(
sT + 1
sT + 1

)(
s(KT̃ − K̃T) + K− K̃
s(KT̃ − K̃T) + K− K̃

)
. (17)

• Feedback Uncertainty

W(s) =
s(KT̃ − K̃T) + K− K̃

KK̃
, ∆(s) =

(
K
K

)(
s(KT̃ − K̃T) + K− K̃
s(KT̃ − K̃T) + K− K̃

)
. (18)

• Multiplicative Feedback Uncertainty

W(s) =
s(K̃T − KT̃)+K̃− K

K(1 + sT̃)
, ∆(s) =

(
K
K

)(
s(K̃T − KT̃)+K̃−K
s(K̃T − KT̃)+K̃− K

)
. (19)

As mentioned before, the transfer functions W and ∆ must be stable. In order to be stable,
the transfer functions must also be proper, i.e., the degree of the numerator polynomial should
not exceed the degree of the denominator polynomial. This structural condition is violated for the
weighting function W of the feedback uncertainty model in Equation (18). Therefore, this model is not
taken into account for the robust controller design.

5.2. Robust Stability Analysis

We assume that the controller C(s) was designed such that the closed loop with the nominal plant
Equation (4) is stable. Let L(s) denote the corresponding (nominal) open loop transfer function, i.e.,

L(s) = C(s) · G̃(s). (20)

Furthermore, let us define S̃(s) and T̃(s) as the (nominal) sensitivity and complementary
sensitivity function

S̃(s) =
1

1 + L(s)
and T̃(s) =

L(s)
1 + L(s)

. (21)

Then, assuming an additive uncertainty Equation (8), the closed loop system is robustly stable if
and only if

‖W C S̃‖∞ < 1, (22)

see [34]. The inequality Equation (22) can be adjusted into:∥∥∥∥ W C
1 + C G̃

∥∥∥∥
∞
< 1. (23)
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This condition can be interpreted graphically in the Nyquist diagramm: The envelope of the
frequency response with the center L(jω) and the radius W(jω)G̃(jω) cannot include or circumvent
the critical point −1 ∈ C. Then, the closed loop system is stable because of the small gain theorem [32].

The other uncertainties have different versions of such conditions. Table 1 summarizes the robust
stability conditions for the uncertainty models.

Table 1. Robust stability conditions for different uncertainties [32,34].

Uncertainty Type Robust Stability Condition

G̃ + W∆ ‖WCS̃‖∞ < 1
G̃ (1 + W∆) ‖WT̃‖∞ < 1

G̃
1+W∆G̃

‖WG̃S̃‖∞ < 1

G̃
1+W∆ ‖WS̃‖∞ < 1

5.3. Robust PI Control

A PI controller based on robust stability analysis is designed to investigate the effectiveness of the
proposed design method. The (nominal) open loop transfer function of system in Equation (4) with
the controller Equation (6) is expressed as

L(s) =
(

Kp +
Ki
s

)(
K̃

1 + sT̃

)
. (24)

The (nominal) associated sensitivity and complementary sensitivity function are given by

S̃(s) =
s(1 + sT̃)

s2T̃ + s(K̃Kp + 1) + K̃Ki
, (25)

T̃(s) =
K̃(sKp + Ki)

s2T̃ + s(K̃Kp + 1) + K̃Ki
. (26)

By substituting the above equations in the robust stability condition of each uncertainty model,
the range of the controller parameters for which the robust stability of the system is guaranteed can be
obtained. To do so, the norms of auxiliary transfer functions occurring in the stability conditions of
Table 1 are calculated and then plotted for different values of Kp and Ki as it is shown in Figures 7 and 8.
Note that for our model the auxiliary transfer functions resulting from the additive and multiplicative
model are the same. The level sets of function values of the corresponding Hardy space norm less than
one fulfill the conditions and ensure robust stability.
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Figure 7. Level sets of ‖WCS̃‖∞ and ‖WT̃‖∞ for different values of Kp and Ki for the system with
additive and multiplicative uncertainty.
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Figure 8. Level sets of ‖WS̃‖∞ for different values of Kp and Ki for the system with multiplicative
feedback uncertainty.

To verify the performance of the robust PI controller, output position control of the textile
reinforced composite for a desired deflection was tested. The selected gain values considering the
additive/multiplicative uncertainty are Kp = 2 and Ki = 0.004. The Bode plot of the auxiliary transfer
functions, WCS̃ and WT̃, is shown in Figure 9. Clearly, the magnitude plot stays below 1 = 0dB such
that robust stability condition is fulfilled. The result of the experiment for a reference deflection of
22 mm is shown in Figure 10. It can be seen that the control action is really slow which is due to small
value of the integral gain.
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Figure 9. Bode diagram of WCS̃ for Kp = 2 and Ki = 0.004 considering multiplicative uncertainty.
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Figure 10. Deflection of the controlled system with multiplicative uncertainty for 22 mm reference
using a robust PI controller.
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The same experiment was repeated for the feedback multiplicative uncertainty case using the
gain values Kp = 3.2 and Ki = 0.16. The Bode plot of the auxillary transfer function WS̃ occurring in
the stability condition using these gain values is shown in Figure 11. Experimental results in Figure 12
show that this controller has a better performance in comparison to other uncertainty models and
classical controllers. It takes less time to reach the reference value. Furthermore, it provides stability
for the whole set of plants described by Equation (11).
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Figure 11. Bode diagram of WS̃ for Kp = 3.2 and Ki = 0.16 considering multiplicative feedback
uncertainty.
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Figure 12. Deflection of the controlled system with multiplicative feedback uncertainty for 22 mm
reference using a robust PI controller.

6. Conclusions

In this paper, the mathematical model of a textile reinforced composite actuated by shape
memory alloys is described using various unstructured uncertainty models. Through this model
the nonlinearities of the system including hysteresis are covered. The robust stability analysis of the
proposed model is carried out and a robust proportional–integral controller based on this analysis is
designed. Among all uncertainty models, the multiplicative feedback uncertainty is best suited for the
system. The experimental results show that the designed controller based on this uncertainty model
has a better performance in stabilizing the composite at a desired deflection. It takes less time to reach
the reference value and reduces the overshoot.
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In the present case, the specimen was manufactured individually. We expect that active textile
reinforced composites will be used more extensively in soft robotic applications and therefore be
available in larger quantities in the future. We used very common electronic standard components to
implement position control. The power consumption of typically less than 50W is hardly a limitation
for practical applications.
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