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Abstract: We study two-machine shop-scheduling problems provided that lower and upper bounds
on durations of n jobs are given before scheduling. An exact value of the job duration remains
unknown until completing the job. The objective is to minimize the makespan (schedule length).
We address the issue of how to best execute a schedule if the job duration may take any real value
from the given segment. Scheduling decisions may consist of two phases: an off-line phase and an
on-line phase. Using information on the lower and upper bounds for each job duration available
at the off-line phase, a scheduler can determine a minimal dominant set of schedules (DS) based
on sufficient conditions for schedule domination. The DS optimally covers all possible realizations
(scenarios) of the uncertain job durations in the sense that, for each possible scenario, there exists at
least one schedule in the DS which is optimal. The DS enables a scheduler to quickly make an on-line
scheduling decision whenever additional information on completing jobs is available. A scheduler
can choose a schedule which is optimal for the most possible scenarios. We developed algorithms
for testing a set of conditions for a schedule dominance. These algorithms are polynomial in the
number of jobs. Their time complexity does not exceed O(n2). Computational experiments have
shown the effectiveness of the developed algorithms. If there were no more than 600 jobs, then all
1000 instances in each tested series were solved in one second at most. An instance with 10,000 jobs
was solved in 0.4 s on average. The most instances from nine tested classes were optimally solved.
If the maximum relative error of the job duration was not greater than 20%, then more than 80% of
the tested instances were optimally solved. If the maximum relative error was equal to 50%, then 45%
of the tested instances from the nine classes were optimally solved.
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1. Introduction

A lot of real-life scheduling problems involve different forms of uncertainties. For dealing with
uncertain scheduling problems, several approaches have been developed in the literature. A stochastic
approach assumes that durations of the jobs are random variables with specific probability distributions
known before scheduling. There are two types of stochastic scheduling problems [1], where one is on
stochastic jobs and another is on stochastic machines. In the stochastic job problem, each job duration
is assumed to be a random variable following a certain probability distribution. With an objective of
minimizing the expected makespan, the flow-shop problem was considered in References [2–4]. In the
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stochastic machine problem, each job duration is a constant, while each completion time of the job is
a random variable due to the machine breakdown or nonavailability. In References [5–7], flow-shop
problems to stochastically minimize the makespan or total completion time have been considered.

If there is no information to determine a probability distribution for each random duration
of the job, other approaches have to be used [8–10]. In the approach of seeking a robust
schedule [8,11–13], a decision maker prefers a schedule that hedges against the worst-case scenario.
A fuzzy approach [14–16] allows a scheduler to find best schedules with respect to fuzzy durations of
the jobs. A stability approach [17–20] is based on the stability analysis of optimal schedules to possible
variations of the durations. In this paper, we apply the stability approach to the two-machine job-shop
scheduling problem with given segments of job durations. We have to emphasize that uncertainties
of the job durations considered in this paper are due to external forces in contrast to scheduling
problems with controllable durations [21–23], where the objective is to determine optimal durations
(which are under the control of a decision maker) and to find an optimal schedule for the jobs with
optimal durations.

2. Contributions and New Results

We study the two-machine job-shop scheduling problem with uncertain job durations and address
the issue of how to best execute a schedule if each duration may take any value from the given segment.
The main aim is to determine a minimal dominant set of schedules (DS) that would contain at least
one optimal schedule for each feasible scenario of the distribution of durations of the jobs.

It is shown how an uncertain two-machine job-shop problem may be decomposed into two
uncertain two-machine flow-shop problems. We prove several sufficient conditions for the existence of
a small dominant set of schedules. In particular, the sufficient and necessary conditions are proven
for the existence of a single pair of job permutations, which is optimal for the two-machine job-shop
problem with any possible scenario. We investigated properties of the optimal pairs of job permutations
for the uncertain two-machine job-shop problem.

In the stability approach, scheduling decisions may consist of two phases: an off-line phase and
an on-line phase. Using information on the lower and upper bounds on each job duration available at
the off-line phase, a scheduler can determine a small (or minimal) dominant set of schedules based
on sufficient conditions for schedule dominance. The DS optimally covers all scenarios in the sense
that, for each possible scenario, there exists at least one schedule in the DS that is optimal. The DS
enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on completing some jobs becomes available. The stability approach enables a scheduler to choose a
schedule, which is optimal for the most possible scenarios.

In this paper, we develop algorithms for testing a set of conditions for a schedule dominance.
The developed algorithms are polynomial in the number of jobs. Their asymptotic complexities do not
exceed O(n2), where n is a number of the jobs. Computational experiments have shown effectiveness
of the developed algorithms: if there were no more than 600 jobs, then all 1000 instances in each tested
series were solved in no more than one second. For the tested series of instances with 10,000 jobs, all
1000 instances of a series were solved in 344 seconds at most (on average, 0.4 s per one instance).

The paper is organized as follows. In Section 3, we present settings of the uncertain scheduling
problems. The related literature and closed results are discussed in Section 4. In Section 4.2, we describe
in detail the results published for the uncertain two-machine flow-shop problem. These results are
used in Section 5, where we investigate properties of the optimal job permutations used for processing
a set of the given jobs. Some proofs of the claims are given in Appendix A. In Section 6, we develop
algorithms for constructing optimal schedules if the proven dominance conditions hold. In Section 7,
we report on the wide computational experiments for solving a lot of randomly generated instances.
Tables with the obtained computational results are presented in Appendix B. The paper is concluded
in Section 8, where several directions for further researches are outlined.
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3. Problem Settings and Notations

Using the notation α|β|γ [24], the two-machine job-shop scheduling problem with minimizing the
makespan is denoted as J2|ni ≤ 2|Cmax, where α = J2 denotes a job-shop system with two available
machines, ni is the number of stages for processing a job, and γ = Cmax denotes the criterion of
minimizing the makespan. In the problem J2|ni ≤ 2|Cmax, the set J = {J1, J2, ..., Jn} of the given jobs
have to be processed on machines from the setM = {M1, M2}. All jobs are available for processing
from the initial time t = 0. Let Oij denote an operation of the job Ji ∈ J processed on machine
Mj ∈ M. Each machine can process a job Ji ∈ J no more than once provided that preemption of each
operation Oij is not allowed. Each job Ji ∈ J has its own processing order (machine route) on the
machines inM.

Let J1,2 denote a subset of the set J of the jobs with the same machine route (M1, M2), i.e., each
job Ji ∈ J1,2 has to be processed first on machine M1 and then on machine M2. Let J2,1 ⊆ J denote
a subset of the jobs with the opposite machine route (M2, M1). Let Jk ⊆ J denote a set of the jobs,
which has to be processed only on machine Mk ∈ M. The partition J = J1

⋃J2
⋃J1,2

⋃J2,1 holds.
We denote mh = |Jh|, where h ∈ {1; 2; 1,2; 2,1}.

We first assume that the duration pij of each operation Oij is fixed before scheduling.
The considered criterion Cmax is the minimization of the makespan (schedule length) as follows:

Cmax := min
s∈S

Cmax(s) = min
s∈S
{max{Ci(s) : Ji ∈ J }},

where Ci(s) denotes a completion time of the job Ji ∈ J in the schedule s and S denotes a set of
semi-active schedules existing for the problem J2|ni ≤ 2|Cmax. A schedule is called semi-active if no
job (operation) can be processed earlier without changing the processing order or violating some given
constraints [1,25,26].

Jackson [27] proved that the problem J2|ni ≤ 2|Cmax is polynomially solvable and that the optimal
schedule for this problem may be determined as a pair (π′, π′′) of the job permutations (calling it
a Jackson’s pair of permutations) such that π′ = (π1,2, π1, π2,1) is a sequence of all jobs from the set
J1
⋃J1,2

⋃J2,1 processed on machine M1 and π′′ = (π2,1, π2, π1,2) is a sequence of all jobs from the
set J2

⋃J1,2
⋃J2,1 processed on machine M2. Job Jj belongs to the permutation πh if Jj ∈ Jh.

In a Jackson’s pair (π′, π′′) of the job permutations, the order for processing jobs from set J1

(from set J2, respectively) may be arbitrary, while for the permutation π1,2, the following inequality
holds for all indexes k and m, 1 ≤ k < m ≤ m1,2:

min{pik1, pim2} ≤ min{pim1, pik2} (1)

(for the permutation π2,1, the following inequality holds for all indexes k and m, 1 ≤ k < m ≤ m2,1) [28]:

min{pjk2, pjm1} ≤ min{pjm2 pjk1} (2)

The aim of this paper is to investigate the uncertain two-machine job-shop scheduling problem.
Therefore, we next assume that duration pij of each operation Oij is unknown before scheduling;
namely, in the realization of a schedule, a value of pij may be equal to any real number no less
than the given lower bound lij and no greater than the given upper bound uij. Furthermore, it is
assumed that probability distributions of random durations of the jobs are unknown before scheduling.
Such a job-shop scheduling problem is denoted as J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. The problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is called an uncertain scheduling problem in contrast to the deterministic
scheduling problem J2|ni ≤ 2|Cmax. Let a set of all possible vectors p = (p1,1, p1,2, . . . , pn1, pn2) of the
job durations be determined as follows: T = {p : lij ≤ pij ≤ uij, Ji ∈ J , Mj ∈ M}. Such a vector
p = (p1,1, p1,2, . . . , pn1, pn2) ∈ T of the possible durations of the jobs is called a scenario.

It should be noted that the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is mathematically incorrect.
Indeed, in most cases, a single pair of job permutations which is optimal for all possible scenarios
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p ∈ T for the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax does not exist. Therefore, in the general
case, one cannot find an optimal solution for this uncertain scheduling problem.

For a fixed scenario p ∈ T, the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax turns into the
deterministic problem J2|ni ≤ 2|Cmax associated with scenario p. The latter deterministic problem is
an individual one and we denote it as J2|p, ni ≤ 2|Cmax. For any fixed scenario p ∈ T, there exists
a Jackson’s pair of the job permutations that is optimal for the individual deterministic problem
J2|p, ni ≤ 2|Cmax associated with scenario p.

Let S1,2 denote a set of all permutations of m1,2 jobs from the set J1,2, where |S1,2| = m1,2!. Let S2,1

denote a set of all permutations of m2,1 jobs from the set J2,1, where |S2,1| = m2,1!. Let S =<S1,2, S2,1>

be a subset of the Cartesian product (S1,2, π1, S2,1)× (S2,1, π2, S1,2) such that each element of the set
S is a pair of job permutations (π′, π′′) ∈ S, where π′ = (πi

1,2, π1, π
j
2,1) and π′′ = (π

j
2,1, π2, πi

1,2),
1 ≤ i ≤ m1,2!, 1 ≤ j ≤ m2,1!. The set S determines all semi-active schedules and vice versa.

Remark 1. As an order for processing jobs from set J1 (from set J2) may be arbitrary in the Jackson’s pair of
job permutations (π′, π′′), in what follows, we fix both permutations π1 and π2 in the increasing order of the
indexes of their jobs. Thus, both permutations π1 and π2 are now fixed, and so their upper indexes are omitted
in each permutation from the pair (π′, π′′) = ((πi

1,2, π1, π
j
2,1), (π

j
2,1, π2, πi

1,2)).

Due to Remark 1, the equality |S| = m1,2! · m2,1! holds. The following definition is used for a
J-solution for the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

Definition 1. A minimal (with respect to the inclusion) set of pairs of job permutations S(T) ⊆ S is called
a J-solution for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with set J of the given jobs if, for each scenario
p ∈ T, the set S(T) contains at least one pair (π′, π′′) ∈ S of the job permutations, which is optimal for the
individual deterministic problem J2|p, ni ≤ 2|Cmax associated with scenario p.

From Definition 1, it follows that, for any proper subset S′ of the set S(T) S′ ⊂ S(T), there exists
at least one scenario p′ ∈ T such that set S′ does not contain an optimal pair of job permutations for
the individual deterministic problem J2|p′, ni ≤ 2|Cmax associated with scenario p′, i.e., set S(T) is a
minimal (with respect to the inclusion) set possessing the property indicated in Definition 1.

The uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is a generalization of the uncertain
flow-shop problem F2|lij ≤ pij ≤ uij|Cmax, where all jobs from the set J have the same machine
route. Two flow-shop problems are associated with the individual job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax. In one of these flow-shop problems, an optimal schedule for processing jobs J1,2

has to be determined, i.e., J2,1 = J1 = J2 = ∅. In another flow-shop problem, an optimal schedule
for processing jobs J2,1 has to be determined, i.e., J1,2 = J1 = J2 = ∅. Thus, a solution of the
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax may be based on solutions of the two associated problems
F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and with job set J2,1.

The permutation π1,2 of all jobs from set J1,2 (the permutation π2,1 of all jobs from set J2,1,
respectively) is called a Johnson’s permutation, if the inequality in Equation (1) holds for the permutation
π1,2 (the inequality in Equation (2) holds for the permutation π2,1, respectively). As it is proven in
Reference [28], a Johnson’s permutation is optimal for the deterministic problem F2||Cmax.

4. A Literature Review and Closed Results

In this section, we address uncertain shop-scheduling problems if it is impossible to obtain
probability distributions for random durations of the given jobs. In particular, we consider the uncertain
two-machine flow-shop problem with the objective of minimizing the makespan. This problem is well
studied and there are a lot of results published in the literature, unlike the uncertain job-shop problem.
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4.1. Uncertain Shop-Scheduling Problems

The stability approach was proposed in Reference [17] and developed in Reference [18,29–31]
for the Cmax criterion, and in References [19,32–35] for the total completion time criterion ∑ Ci :=
mins∈S ∑Ji∈J Ci(s). The stability approach combines a stability analysis of the optimal schedules, a
multi-stage decision framework, and the solution concept of a minimal dominant set S(T) of schedules,
which optimally covers all possible scenarios. The main aim of the stability approach is to construct a
schedule which remains optimal for most scenarios of the set T. The minimality of the dominant set
S(T) is useful for the two-phase scheduling described in Reference [36].

At the off-line phase, one can construct set S(T), which enables a scheduler to make a quick
scheduling decision at the on-line phase whenever additional local information becomes available.
The knowledge of the minimal dominant set S(T) enables a scheduler to execute best a schedule and
may end up executing a schedule optimally in many cases of the problem F2|lij ≤ pij ≤ uij|Cmax [36].
In Reference [17], a formula for calculating the stability radius of an optimal schedule is proven,
i.e., the largest value of independent variations of the job durations in a schedule such that this
schedule remains optimal. In Reference [19], a stability analysis of a schedule minimizing the total
completion time was exploited in the branch-and-bound method for solving the job-shop problem
Jm|lij ≤ pij ≤ uij|∑ Ci with m machines. In Reference [29], for the two-machine flow-shop problem
F2|lij ≤ pij ≤ uij|Cmax, sufficient conditions have been identified when the transposition of two jobs
minimizes the makespan.

Reference [37] addresses the total completion time objective in the flow-shop problem with
uncertain durations of the jobs. A geometrical algorithm has been developed for solving the flow-shop
problem Fm|lij ≤ pij ≤ uij, n = 2|∑ Ci with m machines and two jobs. For this problem with two or
three machines, sufficient conditions are determined such that the transposition of two jobs minimizes
∑ Ci. Reference [38] is devoted to the case of separate setup times with the criterion of minimizing the
makespan or total completion time. The job durations are fixed while each setup time is relaxed to
be a distribution-free random variable within the given lower and upper bounds. Local and global
dominance relations have been determined for the flow-shop problem with two machines.

Since, for the problem F2|lij ≤ pij ≤ uij|Cmax there often does not exist a single permutation
of n jobs J = J1,2 which remains optimal for all possible scenarios, an additional criterion may
be introduced for dealing with uncertain scheduling problems. In Reference [39], a robust solution
minimizing the worst-case deviation from optimality was proposed to hedge against uncertainties.
While the deterministic problem F2||Cmax is polynomially solvable (the optimal Johnson’s permutation
may be constructed for the problem F2||Cmax in O(n log n) time), finding a job permutation minimizing
the worst-case regret for the uncertain counterpart with a finite set of possible scenarios is NP hard.

In Reference [40], a binary NP hardness has been proven for finding a pair (πk, πk) ∈ S of
identical job permutations that minimizes the worst-case absolute regret for the uncertain two-machine
flow-shop problem with the criterion Cmax even for two possible scenarios. Minimizing the worst-case
regret implies a time-consuming search over the set of n! job permutations. In order to overcome this
computational complexity in some cases, it is useful to consider a minimal dominant set of schedules
S(T) instead of the whole set S. To solve the flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with job set J ,
one can restrict a search within the set S(T).

We next describe in detail the results published for the flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

since we use them for solving the job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax in Sections 5–7.

4.2. Closed Results

Since each permutation π′ uniquely determines a set of the earliest completion times Ci(π
′) of

the jobs Ji ∈ J for the problem F2||Cmax, one can identify the permutation π′, ((π′, π′) ∈ S), with
the semi-active schedule [1,25,26] determined by the permutation π′. Thus, the set S becomes a set of
n! pairs (π′, π′) of identical permutations of n = m1,2 jobs from the set J = J1,2 since the order for
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processing jobs J1,2 on both machines may be the same in the optimal schedule [28]. Therefore, the
above Definition 1 is supplemented by the following remark.

Remark 2. For the problem F2|lij ≤ pij ≤ uij|Cmax considered in this section, it is assumed that a J-solution
S(T) is a minimal dominant set of Johnson’s permutations of all jobs from the set J1,2, i.e., for each scenario
p ∈ T, the set S(T) contains at least one optimal pair (πk, πk) of identical Johnson’s permutations πk such that
the inequality in Equation (1) holds.

In Reference [36], it is shown how to delete redundant pairs of (identical) permutations from
the set S for constructing a J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J = J1,2.
The order of jobs Jv ∈ J1,2 and Jw ∈ J1,2 is fixed in the J-solution if there exists at least one Johnson’s
permutation of the form πk = (s1, Jv, s2, Jw, s3) for any scenario p ∈ T. In Reference [29], the sufficient
conditions are proven for fixing the order of two jobs from set J = J1,2. If one of the following
conditions holds, then for each scenario p ∈ T, there exists a permutation πk = (s1, Jv, s2, Jw, s3) that is
a Johnson’s one for the problem F2|p|Cmax associated with scenario p:

uv1 ≤ lv2 and uw2 ≤ lw1, (3)

uv1 ≤ lv2 and uv1 ≤ lw1, (4)

uw2 ≤ lw1 and uw2 ≤ lv2. (5)

If at least one condition in Inequalities (3)–(5) holds, then there exists a J-solution S(T) for the
problem F2|lij ≤ pij ≤ uij|Cmax with fixed order Jv → Jw of jobs, i.e., job Jv has to be located before job
Jw in any permutation πi, (πi, πi) ∈ S(T). If both conditions in Inequalities (4) and (5) do not hold,
then there is no J-solution S(T) with fixed order Jv → Jw in all permutations πi, (πi, πi) ∈ S(T). If no
analogous condition holds for the opposite order Jw → Jv, then at least one permutation with job Jv

located before job Jw or that with job Jw located before job Jv have to be included in any J-solution S(T)
for the problem F2|lij ≤ pij ≤ uij|Cmax. Theorem 1 is proven in Reference [41].

Theorem 1. There exists a J-solution S(T) for the problem F2|lij ≤ pij ≤ uij|Cmax with fixed order Jv → Jw

of the jobs Jv and Jw in all permutations πk, (πk, πk) ∈ S(T) if and only if at least one condition of Inequalities
(4) or (5) holds.

In Reference [41], the necessary and sufficient conditions have been proven for the case when
a single-element J-solution S(T) = {(πk, πk)} exists for the problem F2|ljm ≤ pjm ≤ ujm|Cmax.
The partition J = J 0 ∪ J 1 ∪ J 2 ∪ J ∗ of the set J = J1,2 is considered, where

J 0 = {Ji ∈ J : ui1 ≤ li2, ui2 ≤ li1},
J 1 = {Ji ∈ J : ui1 ≤ li2, ui2 > li1} = {Ji ∈ J \ J 0 : ui1 ≤ li2},
J 2 = {Ji ∈ J : ui1 > li2, ui2 ≤ li1} = {Ji ∈ J \ J 0 : ui2 ≤ li1},
J ∗ = {Ji ∈ J : ui1 > li2, ui2 > li1}.
For each job Jk ∈ J 0, inequalities uk1 ≤ lk2 and uk2 ≤ lk1 imply inequalities lk1 = uk1 = lk2 = uk2.

Since both segments of the possible durations of the job Jk on machines M1 and M2 become a point,
the durations pk1 and pk2 are fixed and equal for both machines M1 and M2: pk1 = pk2 =: pk.
In Reference [41], Theorems 2 and 3 have been proven.

Theorem 2. There exists a single-element J-solution S(T) ⊂ S, |S(T)| = 1, for the problem F2|lij ≤ pij ≤
uij|Cmax if and only if

(a) for any pair of jobs Ji and Jj from the set J 1 (from the set J 2, respectively), either ui1 ≤ lj1 or uj1 ≤ li1
(either ui2 ≤ lj2 or uj2 ≤ li2),

(b) |J ∗| ≤ 1; for job Ji∗ ∈ J ∗, the inequalities li∗1 ≥ max{ui1 : Ji ∈ J 1}, li∗2 ≥ max{uj2 : Jj ∈ J 2}
hold; and max{li∗1, li∗2} ≥ pk for each job Jk ∈ J 0.
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Theorem 2 characterizes the simplest case of the problem F2|lij ≤ pij ≤ uij|Cmax when one
permutation πk of the jobs J = J1,2 dominates all other job permutations. The hardest case of this
problem is characterized by the following theorem.

Theorem 3. If max{lik : Ji ∈ J , Mk ∈ M} < min{uik : Ji ∈ J , Mk ∈ M}, then S(T) = S.

The J-solution S(T) may be represented in a compact form using the dominance digraph which
may be constructed in O(n2) time. Let J × J denote the Cartesian product of two sets J . One can
construct the following binary relation A� ⊆ J ×J over set J = J1,2.

Definition 2. For the two jobs Jv ∈ J and Jw ∈ J , the inclusion (Jv, Jw) ∈ A� holds if and only if there
exists a J-solution S(T) for the problem F2|lij ≤ pij ≤ uij|Cmax such that job Jv ∈ J is located before job
Jw ∈ J , v 6= w, in all permutations πk, where (πk, πk) ∈ S(T).

The binary relation (Jv, Jw) ∈ A� is represented as follows: Jv � Jw. Due to Theorem 1, if for
the jobs Jv ∈ J and Jw ∈ J the relation Jv � Jw, v 6= w, holds, then for the jobs Jv and Jw, at least
one of conditions in Inequalities (4) and (5) holds. To construct the binary relation A� of the jobs on
the set J , it is sufficient to check Inequalities (4) and (5) for each pair of jobs Jv and Jw. The binary
relation A� determines the digraph (J ,A�) with vertex set J and arc set A�. It takes O(n2) time
to construct the digraph (J ,A�). In the general case, the binary relation A� may be not transitive.
In Reference [42], it is proven that, if the binary relation A� is not transitive, then J 0 6= ∅. We next
consider the case with the equality J 0 = ∅, i.e., J = J ∗ ∪ J 1 ∪ J 2 (the case with J 0 6= ∅ has been
considered in Reference [41]). For a pair of jobs Jv ∈ J 1 and Jw ∈ J 1 (for a pair of jobs Jv ∈ J 2 and
Jw ∈ J 2, respectively), it may happen that there exist both J-solution S(T) with job Jv located before
job Jw in all permutations πk, (πk, πk) ∈ S(T) and J-solution S′(T) with job Jw located before job Jv in
all permutations πl , (πl , πl) ∈ S′(T).

In Reference [42], the following claim has been proven.

Theorem 4. The digraph (J ,A�) has no circuits if and only if the set J = J ∗ ∪ J 1 ∪ J 2 includes no pair
of jobs Ji ∈ J k and Jj ∈ J k with k ∈ {1, 2} such that lik = uik = ljk = ujk.

The binary relation A≺ ⊂ A� ⊆ J ×J is defined as follows.

Definition 3. For the jobs Jv ∈ J and Jw ∈ J , the inclusion (Jv, Jw) ∈ A≺ holds if and only if Jv � Jw and
Jw 6� Jv, or Jv � Jw and Jw � Jv with v < w.

The relation (Jv, Jw) ∈ A≺ is represented as follows: Jv ≺ Jw. As it is shown in Reference [42], the
relation Jv ≺ Jw implies that Jv � Jw and that at least one condition in Inequalities (4) or (5) must hold.
The relation Jv � Jw implies exactly one of the relations Jv ≺ Jw or Jw ≺ Jv.

Since it is assumed that set J 0 is empty, the binary relation A≺ is an antireflective, antisymmetric,
and transitive relation, i.e., the binary relation A≺ is a strict order. The strict order A≺ determines
the digraph G = (J ,A≺) with arc set A≺. The digraph G = (J ,A≺) has neither a circuit nor
a loop. Properties of the dominance digraph G were studied in Reference [42]. The permutation
πk = (Jk1 , Jk2 , . . . , Jkn), (πk, πk) ∈ S, may be considered as a total strict order of all jobs of the set J .
The total strict order determined by permutation πk is a linear extension of the partial strict order
A≺ if each inclusion (Jkv , Jkw) ∈ A≺ implies inequality v < w. Let Π(G) denote a set of permutations
πk ∈ S1,2 defining all linear extensions of the partial strict order A≺. The cases when Π(G) = S1,2 and
Π(G) = {πk} are characterized in Theorems 2 and 3. In the latter case, the strict order A≺ over set J
can be represented as follows: Jk1 ≺ . . . ≺ Jki

≺ Jki+1
≺ . . . ≺ Jkn1,2

. In Reference [42], the following
claims have been proven.
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Theorem 5. Let J = J ∗ ∪J 1 ∪J 2. For any scenario p ∈ T, the set Π(G) contains a Johnson’s permutation
for the problem F2|p|Cmax.

Corollary 1. If J = J ∗ ∪ J 1 ∪ J 2, then there exists a J-solution S(T) for the problem F2|lij ≤ pij ≤
uij|Cmax such that π′ ∈ Π(G) for all pairs of job permutations, {(π′, π′)} ∈ S(T).

In Reference [42], it was studied how to construct a minimal dominant set S(T) = {(π′, π′)},
π′ ∈ Π(G). Two types of redundant permutations were examined, and the following claim was proven.

Lemma 1. Let J = J ∗ ∪ J1 ∪ J2. If permutation πt ∈ Π(G) is redundant in the set Π(G), then πt is a
redundant permutation either of type 1 or type 2.

Testing whether set Π(G) contains a redundant permutation of type 1 takes O(n2) time, and
testing whether permutation πg ∈ Π(G) is a redundant permutation of type 2 takes O(n) time.
In Reference [42], it is shown how to delete all redundant permutations from the set Π(G). Let Π∗(G)
denote a set of permutations remaining in the set Π(G) after deleting all redundant permutations of
type 1 and type 2.

Theorem 6. Assume the following condition:

max{li,3−k, lj,3−k} < lik = uik = ljk = ujk < min{ui,3−k, uj,3−k}. (6)

If set J = J ∗ ∪ J 1 ∪ J 2 does not contain a pair of jobs Ji ∈ J k and Jj ∈ J k, k ∈ {1, 2}, such that the above
condition holds, then S(T) =< Π∗(G), Π∗(G) >.

To test conditions of Theorem 6 takes O(n) time. Due to Theorem 6 and Lemma 1, if there are
no jobs such that condition (6) holds, then a J-solution can be constructed via deleting redundant
permutations from set Π(G). Since the set Π∗(G) is uniquely determined [42], we obtain Corollary 2.

Corollary 2 ([42]). If set J = J ∗ ∪ J 1 ∪ J 2 does not contain a pair of jobs Ji and Jj such that condition (6)
holds, then the binary relation A≺ determines a unique J-solution S(T) =< Π∗(G), Π∗(G) > for the problem
F2|lij ≤ pij ≤ uij|Cmax.

The condition of Theorem 6 is sufficient for the uniqueness of a J-solution Π∗(G) = S(T) for the
problem F2|lij ≤ pij ≤ uij|Cmax. Due to Theorem 1, one can construct a digraph G = (J ,A≺) in O(n2)

time. The digraph G = (J ,A≺) determines a set S(T) and may be considered a condensed form of
a J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax. The results presented in this section are used in
Section 5 for constructing precedence digraphs for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

5. Properties of the Optimal Pairs of Job Permutations

We consider the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax and prove sufficient
conditions for determining a small dominant set of schedules for this problem. In what follows, we
use Definition 4 of the dominant set DS(T) ⊆ S along with Definition 1 of the J-solution S(T) ⊆ S.

Definition 4. A set of the pairs of job permutations DS(T) ⊆ S is called a dominant set (of schedules) for the
uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax if, for each scenario p ∈ T, the set DS(T) contains at least
one optimal pair of job permutations for the individual deterministic problem J2|p, ni ≤ 2|Cmax with scenario p.

Every J-solution (Definition 1) is a dominant set for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.
Before processing jobs of the set J (before the realization of a schedule s ∈ S), a scheduler does not
know exact values of the job durations. Nevertheless, it is needed to choose a pair of permutations
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of the jobs J , i.e., it is needed to determine orders of jobs for processing them on machine M1 and
machine M2. When all jobs will be processed on machinesM (a schedule will be realized) and the
job durations will take on exact values p∗ij, lij ≤ p∗ij ≤ uij, and so a factual scenario p∗ ∈ T will be
determined. A schedule s chosen for the realization should be optimal for the obtained factual scenario
p∗. In the stability approach, one can use two phases of scheduling for solving an uncertain scheduling
problem: the off-line phase and the on-line phase. The off-line phase of scheduling is finished before
starting the realization of a schedule. At this phase, a scheduler knows only given segments of the
job durations and the aim is to find a pair of job permutations (π′, π′′) which is optimal for the most
scenarios p ∈ T. After constructing a small dominant set of schedules DS(T), a scheduler can choose
a pair of job permutations in the set DS(T), which dominates the most pairs of job permutations
(π′, π′′) ∈ S for the given scenarios T. Note that making a decision at the off-line phase may be
time-consuming since the realization of a schedule is not started.

The on-line phase of scheduling can begin once the earliest job in the schedule (π′, π′′) starts.
At this phase, a scheduler can use additional on-line information on the job duration since, for each
operation Oij, the exact value p∗ij becomes known at the time of the completion of this operation. At the
on-line phase, the selection of a next job for processing should be quick.

In Section 5.1, we investigate sufficient conditions for a pair of job permutations (π′, π′′) such
that equality DS(T) = {(π′, π′′)} holds. In Section 5.2, the sufficient conditions allowing to construct
a single optimal schedule dominating all other schedules in the set S are proven. If a single-element
dominant set DS(T) does not exist, then one should construct two partial strict orders A1,2

≺ and A2,1
≺ on

the set J1,2 and on the set J2,1 of jobs as it is described in Section 4.2. These orders may be constructed
in the form of the two precedence digraphs allowing a scheduler to reduce a size of the dominant set
DS(T). Section 5.4 presents Algorithm 1 for constructing a semi-active schedule, which is optimal for
the problem F2|lij ≤ pij ≤ uij|Cmax for all possible scenarios T provided that such a schedule exists.
Otherwise, Algorithm 1 constructs the precedence digraphs determining a minimal dominant set of
schedules for the problem F2|lij ≤ pij ≤ uij|Cmax.

5.1. Sufficient Conditions for an Optimal Pair of Job Permutations

In the proofs of several claims, we use a notion of the main machine, which is introduced within
the proof of the following theorem.

Theorem 7. Consider the following conditions in Inequalities (7) or (8):

∑
Ji∈J1,2

ui1 ≤ ∑
Ji∈J2,1∪J2

li2 and ∑
Ji∈J1,2

li2 ≥ ∑
Ji∈J2,1∪J1

ui1 (7)

∑
Ji∈J2,1

ui2 ≤ ∑
Ji∈J1,2∪J1

li1 and ∑
Ji∈J2,1

li1 ≥ ∑
Ji∈J1,2∪J2

ui2 (8)

If one of the above conditions holds, then any pair of job permutations (π′, π′′) ∈ S is a single-element dominant
set DS(T) = {(π′, π′′)} for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1

of the given jobs.

Proof. Let the condition in Inequalities (7) hold. Then, we consider an arbitrary pair of job
permutations (π′, π′′) ∈ S with any fixed scenario p ∈ T and show that this pair of job permutations
(π′, π′′) is optimal for the individual deterministic problem J2|p, ni ≤ 2|Cmax with scenario p,
i.e., Cmax(π′, π′′) = Cmax.

Let c1(π
′) (c2(π

′′)) denote a completion time of all jobs J1 ∪ J1,2 ∪ J2,1 (jobs J2 ∪ J1,2 ∪ J2,1)
on machine M1 (machine M2) in the schedule (π′, π′′), where π′ = (π1,2, π1, π2,1) and π′′ =

(π2,1, π2, π1,2). For the problem J2|p, ni ≤ 2|Cmax, the maximal completion time of the jobs in schedule
(π′, π′′) may be calculated as follows: Cmax(π′, π′′) = max{c1(π

′), c2(π
′′)}.
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Machine M1 (machine M2) is called a main machine for the schedule (π′, π′′) if equality
Cmax(π′, π′′) = c1(π

′) holds (equality Cmax(π′, π′′) = c2(π
′′) holds, respectively).

For schedule (π′, π′′) ∈ S, the following equality holds:

c1(π
′) = ∑

Ji∈J1,2∪J2,1∪J1

pi1 + I1; c2(π
′′) = ∑

Ji∈J1,2∪J2,1∪J2

pi2 + I2,

where I1 and I2 denote total idle times of machine M1 and machine M2 in the schedule (π′, π′′),
respectively. We next show that, if the condition in Inequalities (7) holds, then machine M2 is a main
machine for schedule (π′, π′′) and machine M2 has no idle time, i.e., machine M2 is completely filled
in the segment [0, c2(π

′′)] for processing jobs from the set J1,2 ∪ J2,1 ∪ J2. At the initial time t = 0,
machine M2 begins to process jobs from the set J2,1 ∪ J2 without idle times until the time moment
t1 = ∑Ji∈J2,1∪J2

pi2.
From the first inequality in (7), we obtain the following relations:

∑
Ji∈J1,2

pi1 ≤ ∑
Ji∈J1,2

ui1 ≤ ∑
Ji∈J2,1∪J2

li2 ≤ ∑
Ji∈J2,1∪J2

pi2 = t1.

Therefore, at the time moment t1, machine M2 begins to process jobs from the set J1,2 without idle
times and we obtain the following equality: c2(π

′′) = ∑Ji∈J1,2∪J2,1∪J2
pi2, where I2 = 0 and machine

M2 has no idle time. We next show that machine M2 is a main machine for the schedule (π′, π′′).
To this end, we consider the following two possible cases.

(a) Let machine M1 have no idle time.
By summing Inequalities (7), we obtain the following inequality:

∑
Ji∈J1,2∪J2,1∪J1

ui1 ≤ ∑
Ji∈J1,2∪J2,1∪J2

li2.

Thus, the following relations hold:

c1(π
′) = ∑

Ji∈J1,2∪J2,1∪J1

pi1 ≤ ∑
Ji∈J1,2∪J2,1∪J1

ui1 ≤ ∑
Ji∈J1,2∪J2,1∪J2

li2 ≤ ∑
Ji∈J1,2∪J2,1∪J2

pi2 = c2(π
′′).

Hence, machine M2 is a main machine for the schedule (π′, π′′).
(b) Let machine M1 have an idle time.
An idle time of machine M1 is only possible if some job Jj from set J2,1 is processed on machine

M2 at the time moment t2 when this job Jj could be processed on machine M1.
Obviously, after the time moment ∑Ji∈J2,1

pi2 when machine M2 completes all jobs from set J2,1,
machine M1 can process some jobs from set J2,1 without an idle time. Therefore, the inequality
t2 + I1 ≤ ∑Ji∈J2,1

pi2 holds and we obtain the following relations:

c1(π
′) ≤ t2 + I1 + ∑

Ji∈J2,1

pi1 ≤ ∑
Ji∈J2,1

pi2 + ∑
Ji∈J2,1∪J1

pi1 ≤ ∑
Ji∈J2,1

pi2 + ∑
Ji∈J2,1∪J1

ui1

≤ ∑
Ji∈J2,1

pi2 + ∑
Ji∈J1,2

li2 ≤ ∑
Ji∈J2,1

pi2 + ∑
Ji∈J1,2

pi2 ≤ ∑
Ji∈J2,1∪J2∪J1,2

pi2 = c2(π
′′).

We conclude that, in case (b), machine M2 is a main machine for the schedule (π′, π′′). Thus, if the
condition in Inequalities (7) holds, then machine M2 is a main machine for the schedule (π′, π′′) and
machine M2 has no idle time, i.e., equality Cmax(π′, π′′) = c2(π

′′) holds and machine M2 is completely
filled in the segment [0, c2(π

′′)] with processing jobs from the set J1,2 ∪ J2,1 ∪ J2.
Thus, the pair of permutations (π′, π′′) is optimal for scenario p ∈ T. Since scenario p was

chosen arbitrarily in the set T, we conclude that the pair of job permutations (π′, π′′) is a singleton
DS(T) = {(π′, π′′)} for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1
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of the given jobs. As a pair of permutations (π′, π′′) is an arbitrary pair of job permutations in the
set S, any pair of job permutations (π′, π′′) ∈ S is a singleton DS(T) = {(π′, π′′)} for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

The case when the condition in Inequalities (8) holds may be analyzed similarly via replacing
machine M1 by machine M2 and vice versa.

If conditions of Theorem 7 hold, then in the optimal pair of job permutations (π′, π′′) existing for
the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax, the orders of jobs from sets J1,2 ⊆ J and J2,1 ⊆ J may be
chosen arbitrarily. Theorem 7 implies the following two corollaries.

Corollary 3. If the following inequality holds:

∑
Jj∈J1,2

ui1 ≤ ∑
Jj∈J2,1∪J2

li2, (9)

then set < {π1,2}, S2,1 >⊆ S, where π1,2 is an arbitrary permutation in set S1,2, is a dominant set of schedules
for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1 of the given jobs.

Proof. We consider an arbitrary vector p ∈ T of the job durations and an arbitrary permutation π1,2

in the set S1,2. The set S2,1 contains at least one Johnson’s permutation π∗2,1 for the deterministic
problem F2|p2,1|Cmax with job set J2,1 and scenario p2,1 (the components of vector p2,1 are equal
to the corresponding components of vector p). We consider a pair of job permutations (π′, π′′)

= ((π1,2, π1, π∗2,1), (π
∗
2,1, π2, π1,2)) ∈ <{π1,2}, S2,1>⊆ S and show that it is an optimal pair of job

permutations for the problem J2|p, ni ≤ 2|Cmax with job set J and scenario p. Without loss of
generality, both permutations π1 and π2 are ordered in increasing order of the indexes of their jobs.

Similar to the proof of Theorem 7, one can show that, if the condition in Inequalities (9) holds,
then machine M2 processes jobs without idle times and equality c2(π

′′) = ∑Ji∈J1,2∪J2,1∪J2
pi2 holds,

where the value of c2(π
′′) cannot be reduced. If machine M1 has no idle time, we obtain equalities

Cmax(π
′, π′′) = max{c1(π

′), c2(π
′′)} = max{ ∑

Ji∈J1,2∪J2,1∪J1

pi1, ∑
Ji∈J1,2∪J2,1∪J2

pi2} = Cmax.

On the other hand, an idle time of machine M1 is only possible if some job Jj from set J2,1 is
processed on machine M2 at the time moment t2 when job Jj could be processed on machine M1.
In such a case, the value of c1(π

′) is equal to the makespan Cmax(π∗2,1) for the problem F2|p2,1|Cmax

with job set J2,1 and scenario p2,1. As the permutation π∗2,1 is a Johnson’s permutation, the value of
Cmax(π∗2,1) cannot be reduced and we obtain the following equalities:

Cmax(π
′, π′′) = max{c1(π

′), c2(π
′′)} = max{Cmax(π

∗
2,1), ∑

Ji∈J1,2∪J2,1∪J2

pi2} = Cmax.

Thus, the pair of job permutation (π′, π′′) = ((π1,2, π1, π∗2,1), (π
∗
2,1, π2, π1,2)) ∈ <{π1,2}, S2,1 >⊆

S is optimal for the problem J2|p, ni ≤ 2|Cmax with scenario p ∈ T. The optimal pair of job
permutations for the problem J2|p, ni ≤ 2|Cmax with scenario p ∈ T belongs to the set <{π1,2}, S2,1 >.
As vector p is an arbitrary vector in the set T, the set < {π1,2}, S2,1 > contains an optimal pair of
job permutations for all scenarios from set T. Due to Definition 4, the set < {π1,2}, S2,1 >⊆ S is a
dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .

Corollary 4. Consider the following inequality:

∑
Jj∈J2,1

ui2 ≤ ∑
Jj∈J1,2∪J1

li1.
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If the above inequality holds, then set < S1,2, {π2,1} >, where π2,1 is an arbitrary permutation in set S2,1, is a
dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1

of the given jobs.

This claim may be proven similar to Corollary 3. If the conditions of Corollary 3 (Corollary 4)
hold, then the order for processing jobs from set J1,2 ⊆ J (set J2,1 ⊆ J , respectively) in the optimal
schedule (π′, π′′) = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)) for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

may be arbitrary. Since the orders of jobs from the sets J1 and J2 are fixed in the optimal schedule
(Remark 1), we need to determine only orders for processing jobs from set J2,1 (set J1,2, respectively).
To do this, we will consider two uncertain problems F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 ⊆ J
and with the machine route (M1, M2) and that with job set J2,1 ⊆ J and with the opposite machine
route (M2, M1).

Lemma 2. If S′1,2 ⊆ S1,2 is a set of permutations from the dominant set for the problem F2|lij ≤ pij ≤ uij|Cmax

with job set J1,2, then < S′1,2, S2,1 >⊆ S is a dominant set for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

The proof of Lemma 2 and those for other statements in this section are given in Appendix A.

Lemma 3. Let S′2,1 ⊆ S2,1 be a set of permutations from the dominant set for the problem F2|lij ≤ pij ≤
uij|Cmax with job set J2,1, S′2,1 ⊆ S2,1. Then, < S1,2, S′2,1 > is a dominant set for the problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax with job set J .

The proof of this claim is similar to that for Lemma 2 (see Appendix A).

Theorem 8. Let S′1,2 ⊆ S1,2 be a set of permutations from the dominant set for the problem F2|lij ≤ pij ≤
uij|Cmax with job set J1,2, and let S′2,1 ⊆ S2,1 be a set of permutations from the dominant set for the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J2,1. Then, < S′1,2, S′2,1 > ⊆ S is a dominant set for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Theorem 9. Let a pair of identical permutations (π1,2, π1,2) determine a single-element J-solution for the
problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2, and let a pair of identical permutations (π2,1, π2,1)

determine a single-element J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J2,1. Then, the pairs
of permutations {(π1,2, π1, π2,1)and(π1,2, π2, π2,1)} are a single-element dominant set DS(T) for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

The following claim follows directly from Theorem 9.

Corollary 5. If the conditions of Theorem 9 hold, then there exists a single pair of job permutations, which is an
optimal pair of job permutations for the problem J2|p, ni ≤ 2|Cmax with job set J and any scenario p ∈ T.

Theorem 9 implies also the following corollary proven in Appendix A.

Corollary 6. If the conditions of Theorem 9 hold, then there exists a single pair of job permutations which is a
J-solution for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Note that the criterion for a single-element J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax is
given in Theorem 2.
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5.2. Precedence Digraphs Determining a Minimal Dominant Set of Schedules

In Section 4.2, it is assumed that J1,2 = J 1
1,2 ∪ J 2

1,2 ∪ J ∗1,2 and J2,1 = J 1
2,1 ∪ J 2

2,1 ∪ J ∗2,1, i.e.,

J 0
1,2 = J 0

2,1 = ∅. Based on the results presented in Section 4.2, we can determine a binary relation A1,2
≺

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and a binary relation A2,1
≺ for this problem

with job set J2,1. For job set J1,2, the binary relation A1,2
≺ determines the digraph G1,2 = (J1,2, A1,2

≺ )

with the vertex set J1,2 and the arc set A1,2
≺ . For job set J2,1, the binary relation A2,1

≺ determines the
digraph G2,1 = (J2,1, A2,1

≺ ) with the vertex set J2,1 and the arc set A2,1
≺ .

Let us consider the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and the corresponding
digraph G1,2 = (J1,2, A1,2

≺ ) (the same results for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J2,1

can be derived in a similar way).

Definition 5. Two jobs, Jx ∈ J1,2 and Jy ∈ J1,2, x 6= y, are called conflict jobs if they are not in the relation
A1,2
≺ , i.e., (Jx, Jy) 6∈ A1,2

≺ and (Jy, Jx) 6∈ A1,2
≺ .

Due to Definitions 2 and 3, for the conflict jobs Jx ∈ J1,2 and Jy ∈ J1,2, x 6= y, Inequalities (4) and
(5) do not hold either for the case v = x with w = y or for the case v = y with w = x.

Definition 6. The subset Jx ⊆ J1,2 is called a conflict set of jobs if, for any job Jy ∈ J1,2 \ Jx, either relation
(Jx, Jy) ∈ A1,2

≺ or relation (Jy, Jx) ∈ A1,2
≺ holds for each job Jx ∈ Jx (provided that any proper subset of the set

Jx does not possess such a property).

From Definition 6, it follows that the conflict set Jx is a minimal set (with respect to the inclusion).
Obviously, there may exist several conflict sets in the set J1,2. (A conflict set of the jobs Jx ⊆ J2,1 can
be determined similarly.) Let the strict order A1,2

≺ for the problem F2|lij ≤ pij ≤ uij|Cmax with job set
J1,2 be represented as follows:

J1 ≺ J2 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ Jk+r+2 ≺ . . . ≺ Jm1,2 , (10)

where all jobs between braces are conflict ones and each of these jobs is in relation A1,2
≺ with any job

located outside the brackets in Relation (10). In such a case, an optimal order for processing jobs from
the set {J1, J2, . . . , Jk} is determined as follows: (J1, J2, . . . , Jk).

Due to Theorem 5, we obtain that set Π(G1,2) of the permutations generated by the digraph
G1,2 contains an optimal Johnson’s permutation for each vector p1,2 of the durations of jobs from the
set J1,2. Thus, due to Definition 1, the singleton {(π1,2, π1,2)}, where π1,2 ∈ Π(G1,2), is a J-solution
for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2. Analogously, the singleton {(π2,1, π2,1)},
where π2,1 ∈ Π(G2,1), is a J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J2,1. We can
determine a dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J as
follows: <Π(G1,2), Π(G2,1)> ⊆ S. The following theorems allow us to reduce a dominant set for the
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. We use the following notation: L2 = ∑Ji∈J2,1∪J2

li2.

Theorem 10. Let the strict order A1,2
≺ over set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 be determined as follows: J1 ≺ . . . ≺

Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . Consider the following inequality:

k+r

∑
i=1

ui1 ≤ L2 +
k

∑
i=1

li2, (11)

If the above inequality holds, then set S′ = < {π}, Π(G2,1) >⊂ S with π ∈ Π(G1,2) is a dominant set of
schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .
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Proof. We consider an arbitrary vector p ∈ T of the job durations and an arbitrary permutation π

from the set Π(G1,2). The set Π(G2,1) contains at least one optimal Johnson’s permutation π∗2,1 for the
problem F2|p2,1|Cmax with job set J2,1 and vector p2,1 of the job durations (components of this vector
are equal to the corresponding components of the vector p).

We consider a pair of job permutations (π′, π′′) = ((π, π1, π∗2,1), (π
∗
2,1, π2, π)) ∈ S′ and show

that it is an optimal pair of job permutations for the problem J2|p, ni ≤ 2|Cmax with set J of the jobs
and scenario p. To this end, we show that the value of Cmax(π′, π′′) = max{c1(π

′), c2(π
′′)} cannot

be reduced. Indeed, an idle time for machine M1 is only possible if some job Jj from the set J2,1 is
processed on machine M2 at the same time when job Jj could be processed on machine M1. In such
a case, c1(π

′) is equal to the makespan Cmax(π∗2,1) for the problem F2|p2,1|Cmax with job set J2,1 and
vector p2,1 of the job durations. As permutation π∗2,1 is a Johnson’s permutation, the value of

c1(π
′) = max{ ∑

Ji∈J1,2∪J2,1∪J1

pi1, Cmax(π
∗
2,1)}

cannot be reduced. In the beginning of the permutation π, the jobs of set {J1, J2, . . . , Jk} are arranged
in the Johnson’s order. Thus, if machine M2 has an idle time while processing these jobs, this idle time
cannot be reduced. From Inequality (11), it follows that machine M2 has no idle time while processing
jobs from the conflict set.

In the end of the permutation π, jobs of set {Jk+r+1, . . . , Jm1,2} are arranged in Johnson’s order.
Therefore, if machine M2 has an idle time while processing these jobs, this idle time cannot be reduced.
Thus, the value of c2(π

′′) cannot be reduced by changing the order of jobs in the conflict set.
We obtain the qualities Cmax(π′, π′′) = max{c1(π

′), c2(π
′′)} = Cmax. The pair of job permutations

(π′, π′′) = ((π, π1, π∗2,1), (π
∗
2,1, π2, π)) is optimal for the problem J2|p, ni ≤ 2|Cmax with scenario

p ∈ T. Thus, set S′ =<{π}, Π(G2,1)> contains an optimal pair of job permutations for the problem
J2|p, ni ≤ 2|Cmax with scenario p ∈ T. As vector p is an arbitrary vector in set T, set S′ contains an
optimal pair of job permutations for each vector from set T. Due to Definition 4, set S′ is a dominant
set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .

Theorem 11. Let the partial strict order A1,2
≺ over set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 be determined as follows:

J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . Consider the following inequality:

uk+s,1 ≤ L2 +
k+s−1

∑
i=1

(li2 − ui1) (12)

If the above inequality holds for all s ∈ {1, 2, . . . , r}, then the set S′ =< {π}, S2,1 >, where π =

(J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax with job set J .

Proof. We consider an arbitrary scenario p ∈ T and a pair of job permutations (π′, π′′) = ((π, π1, π∗2,1),
(π∗2,1, π2, π)) ∈ S′, where π∗2,1 ∈ S2,1 is a Johnson’s permutation of the jobs from the set J2,1 with
vector p2,1 of the job durations (components of this vector are equal to the corresponding components
of vector p). We next show that this pair of job permutations (π′, π′′) is optimal for the individual
deterministic problem J2|p, ni ≤ 2|Cmax with scenario p, i.e., Cmax(π′, π′′) = Cmax.

If conditions of Theorem 11 hold, then machine M2 processes jobs from the conflict set
{Jk+1, Jk+2, . . . , Jk+r} without idle times. At the initial time t = 0, machine M1 begins to process
jobs from the permutation π without idle times. Let a time moment t1 be as follows: t1 = ∑k+1

i=1 pi1.
At the time moment t1, job Jk+1 is ready for processing on machine M2.

On the other hand, at the time t = 0, machine M2 begins to process jobs from the set J2,1 ∪ J2

without idle times and then jobs from the permutation (J1, J2, . . . , Jk+1). Let t2 denote the first time
moment when machine M2 is ready for processing job Jk+1. Obviously, the following inequality
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holds: t2 ≥ L2 + ∑k+1
i=1 pi2. From the condition in Inequality (12) with s = 1, we obtain inequality

∑k+1
i=1 ui1 ≤ L2 + ∑k

i=1 li2.
Therefore, the following relations hold:

t1 =
k+1

∑
i=1

pi1 ≤
k+1

∑
i=1

ui1 ≤ L2 +
k

∑
i=1

li2 ≤ L2 +
k+1

∑
i=1

pi2 = t2.

Machine M2 processes job Jk+1 without an idle time between job Jk and job Jk+1.
Analogously, using s ∈ {2, 3, . . . , r}, one can show that machine M2 processes jobs from the

conflict set {Jk+1, Jk+2, . . . , Jk+r} without idle times between jobs Jk+1 and Jk+2, between jobs Jk+2 and
Jk+3, and so on to between jobs Jk+r−1 and Jk+r. To end this proof, we have to show that the value of
Cmax(π′, π′′) = max{c1(π

′), c2(π
′′)} cannot be reduced.

An idle time for machine M1 is only possible between some jobs from the set J2,1. However, the
permutation π∗2,1 is a Johnson’s permutation of the jobs from the set J2,1 for the vector p2,1 of the job
durations. Therefore, the value of c1(π

′) cannot be reduced. On the other hand, in the permutation
π, all jobs J1, J2, . . . , Jk and all jobs Jk+r+1, . . . , Jm1,2 are arranged in Johnson’s orders. Therefore, if
machine M2 has an idle time while processing these jobs, this idle time cannot be reduced. It is clear
that machine M2 has no idle time while processing jobs from the conflict set. Thus, the value of
c2(π

′′) cannot be reduced by changing the order of jobs from the conflict set. We obtain the equalities
Cmax(π′, π′′) = max{c1(π

′), c2(π
′′)} = Cmax.

It is shown that the pair of job permutations (π′, π′′) = ((π, π1, π∗2,1), (π
∗
2,1, π2, π)) ∈ S′ is

optimal for the problem J2|p, ni ≤ 2|Cmax with vector p ∈ T of job durations. As vector p is an arbitrary
one in set T, the set S′ contains an optimal pair of job permutations for each scenario from set T. Due to
Definition 4, the set S′ is a dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

with job set J .

The proof of the following theorem is given in Appendix A.

Theorem 12. Let the partial strict order A1,2
≺ over set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 have the form J1 ≺ . . . ≺

Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If inequalities

r+1

∑
i=r−s+2

lk+i,1 ≥
r

∑
j=r−s+1

uk+j,2 (13)

hold for all indexes s ∈ {1, 2, . . . , r}, then the set S′ = < {π}, S2,1 >, where π = (J1, . . . , Jk−1, Jk,
Jk+1, Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set of pairs of permutations for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .

Similarly, one can prove sufficient conditions for the existence of an optimal job permutation for
the problem F2|lij ≤ pij ≤ uij|Cmax with job set J2,1, when the partial strict order A2,1

≺ on the set J2,1 =

J ∗2,1 ∪ J 1
2,1 ∪ J 2

2,1 has the following form: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm2,1 .
To apply Theorems 11 and 12, one can construct a job permutation that satisfies the strict order

A1,2
≺ . Then, one can check the conditions of Theorems 11 and 12 for the constructed permutation.

If the set of jobs {J1, J2, . . . , Jk} is empty in the constructed permutation, one needs to check conditions
of Theorem 12. If the set of jobs {Jk+r+1, . . . , Jm1,2} is empty, one needs to check the conditions of
Theorem 11. It is needed to construct only one permutation to check Theorem 11 and only one
permutation to check Theorem 12.

5.3. Two Illustrative Examples

Example 1. We consider the uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with
lower and upper bounds of the job durations given in Table 1.
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Table 1. Input data for Example 1.

Ji li1 ui1 li2 ui2

J1 6 7 6 7
J2 8 9 5 6
J3 7 9 5 6
J4 2 3 - -
J5 - - 16 20
J6 1 3 3 4
J7 1 3 3 4
J8 1 3 3 4

These bounds determine the set T of possible scenarios. In Example 1, jobs J1, J2, and J3 have
the machine route (M1, M2); jobs J6, J7, and J8 have the machine route (M2, M1); and job J4 (job
J5, respectively) has to be processed only on machine M1 (on machine M2, respectively). Thus,
J1,2 = {J1, J2, J3}, J2,1 = {J6, J7, J8}, J1 = {J4}, J2 = {J5}.

We check the conditions of Theorem 7 for a single pair of job permutations, which is optimal
for all scenarios T. For the given jobs, the condition in Inequalities (7) of Theorem 7 holds due to the
following relations:

∑Ji∈J1,2
ui1 = u1,1 + u2,1 + u3,1 = 7 + 9 + 9 = 25 ≤ ∑Ji∈J2,1∪J2

li2 = l6,2 + l7,2 + l8,2 + l5,2 = 3 + 3 + 3 + 16 = 25;

∑Ji∈J1,2
li2 = l1,2 + l2,2 + l3,2 = 6 + 5 + 5 = 16 ≥ ∑Ji∈J2,1∪J1

ui1 = u6,1 + u7,1 + u8,1 + u4,1 = 3 + 3 + 3 + 3 = 12.

Due to Theorem 7, the order of jobs from the set J1,2 = {J1, J2, J3} and the order of jobs from
the set J2,1 = {J6, J7, J8} may be arbitrary in the optimal pair of job permutations for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax under consideration. Thus, any pair of job permutations (π′, π′′) ∈ S is
a single-element dominant set DS(T) = {(π′, π′′)} for Example 1.

Example 2. Let us now consider the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with numerical input data given
in Table 1 with the following two exceptions: l5,2 = 2 and u5,2 = 3.

We check the condition in Inequalities (7) of Theorem 7 and obtain

∑Ji∈J1,2
ui1 = u1,1 + u2,1 + u3,1 = 7 + 9 + 9 = 25 6≤ ∑Ji∈J2,1∪J2

li2 = l6,2 + l7,2 + l8,2 + l5,2 = 3 + 3 + 3 + 2 = 11. (14)

Thus, the condition of Inequalities (7) does not hold for Example 2. We check the condition of
Inequalities (8) of Theorem 7 and obtain

∑Ji∈J2,1
ui2 = u6,2 + u7,2 + u8,2 = 4 + 4 + 4 = 12 ≤ ∑Ji∈J1,2∪J1

li1 = l1,1 + l2,1 + l3,1 + l4,1 = 6 + 8 + 7 + 2 = 23. (15)

However, we see that the condition of Equation (8) does not hold:

∑Ji∈J2,1
li1 = l6,1 + l7,1 + l8,1 = 1 + 1 + 1 = 3 6≥ ∑Ji∈J1,2∪J2

ui2 = u1,2 + u2,2 + u3,2 + u5,2 = 7 + 6 + 6 + 3 = 22.

From Equation (14), it follows that the condition of Inequalities (9) of Corollary 3 does not
hold. On the other hand, due to Equation (15), conditions of Corollary 4 hold. Thus, the order for
processing jobs from set J2,1 ⊆ J in the optimal schedule (π′, π′′) = ((π1,2, π1, π2,1), (π2,1, π2, π1,2))

for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax may be arbitrary. One can fix permutation π2,1 with
the increasing order of the indexes of their jobs: π2,1 = (J6, J7, J8). Since the orders of jobs from
the sets J1 and J2 are fixed in the optimal schedule (Remark 1), i.e., π1 = (J4) and π2 = (J5), we
need to determine the order for processing jobs in set J1,2. To this end, we consider the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J1,2. We see that conditions of Theorem 2 do not hold for the jobs
in set J1,2 since J1 ∈ J ∗1,2, J2 ∈ J 2

1,2, and J3 ∈ J 2
1,2; however the following inequalities hold: u2,2 > l3,2

and u3,2 > l2,2.
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We next construct the binary relation A1,2
≺ over set J1,2 based on Definition 3 and Theorem 1. Due

to checking Inequalities (4) and (5), we conclude that the inequality in Equation (5) holds for the pair
of jobs J1 and J2. We obtain the relation J1 ≺ J2. Analogously, we obtain the relation J1 ≺ J3. For the
pair of jobs J2 and J3, neither Inequality (4) nor Inequality (5) hold. Therefore, the partial strict order
A1,2
≺ over set J1,2 has the following form: J1 ≺ {J2, J3}. The job set {J2, J3} is a conflict set of these jobs

(Definition 6).
Let us check whether the sufficient conditions given in Section 5.2 hold.
We check the conditions of Theorem 10 for the jobs from set J1,2. For k = 1 and r = 2, we

obtain the following equalities: L2 = ∑Ji∈J2,1∪J2
li2 = l6,2 + l7,2 + l8,2 + l5,2 = 3 + 3 + 3 + 2 = 11.

The condition of Theorem 10 does not hold since the following relations hold:

k+r

∑
i=1

ui1 = u1,1 + u2,1 + u3,1 = 7 + 9 + 9 = 25 6≤ L2 +
k

∑
i=1

li2 = L2 + l1,2 = 11 + 6 = 17.

For checking the conditions of Theorem 11, we need to check both permutations of the jobs from
set J1,2, which satisfy the partial strict order A1,2

≺ : Π(G1,2) = {π1
1,2, π2

1,2}, where π1
1,2 = {J1, J2, J3} and

π2
1,2 = {J1, J3, J2}.

We consider permutation π1
1,2. As in the previous case, L2 = 11, k = 1, r = 2, and we must

consider two inequalities in the condition in Equaiton (12) with s = 1 and s = 2. For s = 1, we obtain
the following:

u1+1,1 = u2,1 = 9 ≤ L2 +
1+1−1

∑
i=1

(li2− ui1) = L2 +
1

∑
i=1

(li2− ui1) = 11+ (l1,2− u1,1) = 11+ (6− 7) = 10.

However, for s = 2, we obtain

u1+2,1 = u3,1 = 9 6≤ L2 +
1+2−1

∑
i=1

(li2 − ui1) = L2 +
2

∑
i=1

(li2 − ui1)

= 11 + (l1,2 − u1,1) + (l2,2 − u2,1) = 11 + (6− 7) + (5− 9) = 6.

Thus, the conditions of Theorem 11 do not hold for permutation π1
1,2.

We consider permutation π2
1,2, where Jk+1 = J3 and Jk+2 = J2. Again, we must test the two

inequalities in Equation (12), where either s = 1 or s = 2. For s = 1, we obtain

uk+1,1 = u3,1 = 9 ≤ L2 +
k+1−1

∑
i=1

(li2− ui1) = L2 +
1

∑
i=1

(li2− ui1) = 11+ (l1,2− u1,1) = 11+ (6− 7) = 10.

However, for s = 2, we obtain

uk+2,1 = u2,1 = 9 6≤ L2 +
k+2−1

∑
i=1

(li2 − ui1) = L2 +
k+1

∑
i=1

(li2 − ui1) = 11 + (l1,2 − u1,1) + (l3,2 − u3,1)

= 11 + (6− 7) + (5− 9) = 6.

Thus, the conditions of Theorem 11 do not hold for permutation π2
1,2.

Note that we do not check the conditions of Theorem 12 since the conflict set of jobs {J2, J3}
is located at the end of the partial strict order A1,2

≺ . We conclude that none of the proven sufficient
conditions are satisfied for a schedule optimality. Thus, there does not exist a pair of permutations of the
jobs in set J = J1,2 ∪ J2,1 ∪ J1 ∪ J2 which is optimal for any scenario p ∈ T. The J-solution S(T) for
Example 2 consists of the following two pairs of job permutations: {(π′1, π′′1 ), (π

′
2, π′′2 )} = S(T), where

π′1 = (π1
1,2, π1, π2,1) = (J1, J2, J3, J4, J6, J7, J8), π′′1 = (π2,1, π2, π1

1,2) = (J6, J7, J8, J5, J1, J2, J3),
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π′2 = (π2
1,2, π1, π2,1) = (J1, J3, J2, J4, J6, J7, J8), π′′2 = (π2,1, π2, π2

1,2) = (J6, J7, J8, J5, J1, J3, J2).

We next show that none of these two pairs of job permutations is optimal for all scenarios
p ∈ T using the following two scenarios: p′ = (7, 6, 9, 5, 9, 6, 2, 0, 0, 2, 1, 3, 1, 3, 1, 3) ∈ T and p′′ =
(7, 6, 9, 6, 9, 5, 2, 0, 0, 2, 1, 3, 1, 3, 1, 3) ∈ T. For scenario p′, only pair of permutations (π′2, π′′2 ) is optimal
with Cmax(π′2, π′′2 ) = 30 since Cmax(π′1, π′′1 ) = 31 > 30. On the other hand, for scenario p′′, only the
pair of permutations (π′1, π′′1 ) is optimal with Cmax(π′1, π′′1 ) = 30 since Cmax(π′2, π′′2 ) = 31 > 30.

Note that the whole set S of the semi-active schedules has the cardinality |S| = m1,2! ·m2,1! =
3! · 3! = 6 · 6 = 36. Thus, for solving Example 2, one needs to consider only two pairs of job
permutations {(π′1, π′′1 ), (π

′
2, π′′2 )} = S(T) ⊂ S instead of 36 semi-active schedules.

5.4. An Algorithm for Checking Conditions for the Existence of a Single-Element Dominant Set

We describe Algorithm 1 for checking the existence of an optimal permutation for the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 if the partial strict order A1,2

≺ on the set J1,2 has the following
form: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . Algorithm 1 considers a set of
conflict jobs and checks whether the sufficient conditions given in Section 5.2 hold. For a conflict set of
jobs, it is needed to construct two permutations and to check the condition in Inequality (12) for the first
permutation and the condition in Inequality (13) for the second one. If at least one of these conditions
holds, Algorithm 1 constructs a permutation which is optimal for the problem F2|lij ≤ pij ≤ uij|Cmax

with any scenario p ∈ T.
Obviously, testing the conditions of Theorems 11 and 12 takes O(r), where the conflict set contains

r jobs. The construction of the permutation of r jobs takes O(r log r). Therefore, the total complexity of
Algorithm 1 is O(r log r).

Remark 3. If Algorithm 1 is completed at Step 7 (STOP 1), we suggest to consider a set of conflict jobs
{Jk+1, Jk+2, . . . , Jk+r} and construct a Johnson’s permutation for the deterministic problem F2|p′|Cmax with job
set J ′ = {Jk+1, Jk+2, . . . Jk+r}, where vector p′ = (p′k+1,1, p′k+1,2, . . . p′k+r,1, p′k+r,2) of the durations of conflict
jobs {Jk+1, Jk+2, . . . Jk+r} is calculated for each operation Oij of the conflict job Ji ∈ {Jk+1, Jk+2, . . . Jk+r} on
the corresponding machine Mj ∈ M as folows:

p′ij = (uij + lij)/2 (16)

Theorem 11 and Theorem 12 imply the following claim.

Corollary 7. Algorithm 1 constructs a permutation π∗ either satisfying conditions of Theorem 11 or Theorem 12
(such permutation π∗ is optimal for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario
p ∈ T) or establishes that an optimal job permutation for the problem F2|lij ≤ pij ≤ uij|Cmax with any scenario
p ∈ T does not exist.

The set of jobs J2,1 for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J = J2,1 can be tested
similarly to the set of jobs J1,2.
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Algorithm 1: Checking conditions for the existence of a single-element dominant set of
schedules for the problem F2|lij ≤ pij ≤ uij|Cmax

Input: Segments [lij, uij] for all jobs Ji ∈ J and machines Mj ∈ M,
a partial strict order A1,2

≺ on the set J1,2 = J ∗1,2 ∪ J 1
1,2 ∪ J 2

1,2 in the form
J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 .

Output: EITHER an optimal job permutation for the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario p ∈ T, (see STOP 0)

OR there no permutation π1,2 of jobs from set J1,2, which is optimal
for all scenarios p ∈ T, (see STOP 1).

Step 1: Set δs = lk+s,2 − uk+s,1 for all s ∈ {1, 2, . . . , r}
construct a partition of the set of conflicting jobs into two subsets X1 and X2,
where Jk+s ∈ X1 if δs ≥ 0, and Jk+s ∈ X2, otherwise.

Step 2: Construct a permutation π1 = (J1, J2, . . . , Jk, π1, π2, Jk+r+1, . . . , Jm1,2 ), where the permutation
π1 contains jobs from the set X1 in the non-decreasing order of the values uk+i,1 and the
permutation π2 contains jobs from the set X2 in the non-increasing order of the values
lk+i,2, renumber jobs in the permutations π1 and π2 based on their orders.

Step 3: IF for the permutation π1 conditions of Theorem 11 hold THEN GOTO step 8.
Step 4: Set δs = lk+s,1 − uk+s,2 for all s ∈ {1, 2, . . . , r}

construct a partition of the set of conflicting jobs into two subsets
Y1 and Y2, where Jk+s ∈ Y1 if δs ≥ 0, and Jk+s ∈ Y2, otherwise.

Step 5: Construct a permutation π2 = (J1, J2, . . . , Jk, π2, π1, Jk+r+1, . . . , Jm1,2 ), where the permutation
π1 contains jobs from the set Y1 in the non-increasing order of the values uk+i,2, and the
permutation π2 contains jobs from the set Y2 in the non-decreasing order of the
values lk+i,1, renumber jobs in the permutations π1 and π2 based on their orders.

Step 6: IF for the permutation π2 conditions of Theorem 12 hold THEN GOTO step 9.
Step 7: ELSE there is no a single dominant permutation for problem

F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario p ∈ T STOP 1.
Step 8: RETURN permutation π1, which is a single dominant permutation

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 STOP 0.
Step 9: RETURN permutation π2, which is a single dominant permutation

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 STOP 0.

6. Algorithms for Constructing a Small Dominant Set of Schedules for the Problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

In this section, we describe Algorithm 2 for constructing a small dominant set DS(T) of schedules
for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Algorithm 2 is developed for use at the off-line phase
of scheduling (before processing any job from the set J ). Based on the initial data, Algorithm 2
checks the conditions of Theorem 7 for a single optimal pair of job permutations for the uncertain
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. If the sufficient conditions of Theorem 7 do not hold,
Algorithm 2 proceeds to consider the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J2,1. For each of these problems, the conditions of Theorem 2 are
checked. If these conditions do not hold, then strict orders of the jobs J based on Inequalities (4)
and (5) are constructed. In this general case, Algorithm 2 constructs a partial strict order A1,2

≺ of the
jobs from set J1,2 and a partial strict order A2,1

≺ of the jobs from set J2,1. Each of these partial orders
may contain one or several conflict sets of jobs. For each such conflict set of jobs, Algorithm 2 checks
whether the sufficient conditions given in Section 5.2 hold. Thus, if some sufficient conditions for a
schedule optimality presented in Sections 4 and 5 are satisfied, then there exists a pair of permutations
of jobs from set J which is optimal for any scenario p ∈ T. Algorithm 2 constructs such a pair of
job permutations {(π′, π′′)} = DS(T). Otherwise, the precedence digraphs determining a minimal
dominant set DS(T) of schedules is constructed by Algorithm 2. The more job pairs are involved in the
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binary relations A1,2
≺ and A2,1

≺ , the more job permutations will be deleted from set S while constructing
a J-solution S(T) ⊆ S for the problems F2|lij ≤ pij ≤ uij|Cmax with job sets J1,2 and J2,1.

Algorithm 2: Construction of a small dominant set of schedules for the problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax

Input: Lower bounds lij and upper bounds uij, 0 < lij ≤ uij, of the durations
of all operations Oij of jobs Ji ∈ J processed on machines Mj ∈ M = {M1, M2}.

Output: EITHER pair of permutations (π′, π′′) = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)),
where π′ is a permutation of jobs from set J1,2 ∪ J1 ∪ J2,1 on machine
M1, π′′ is a permutation of jobs from set J1,2 ∪ J2 ∪ J2,1 on machine M2,
such that {(π′, π′′)} = DS(T), (see STOP 0),

OR permutation π2,1 of jobs from set J2,1 on machines M1 and M2 and
a partial strict order A1,2

≺ of jobs from set J1,2,
OR permutation π1,2 of jobs from set J1,2 on machines M1 and M2 and

a partial strict order A2,1
≺ of jobs from set J2,1,

OR a partial strict order A1,2
≺ of jobs from set J1,2 and

a partial strict order A2,1
≺ of jobs from set J2,1, (see STOP 1).

Step 1: Determine a partition J = J1 ∪ J2 ∪ J1,2 ∪ J2,1 of the job set J ,
permutation π1 of jobs from set J1 and permutation π2 of jobs from
set J2, arrange the jobs in the increasing order of their indexes.

Step 2: IF the first inequality in condition (7) of Theorem 7 holds THEN BEGIN
Construct a permutation π1,2 of jobs from set J1,2,

arrange them in the increasing order of their indexes;
IF the second inequality in condition (7) of Theorem 7 holds

THEN construct a permutation π2,1 of jobs from set J2,1,
arrange them in the increasing order of their indexes GOTO Step 10 END

Step 3: IF the first inequality in condition (8) of Theorem 7 holds THEN BEGIN
Construct a permutation π2,1 of jobs from set J2,1,

arrange them in the increasing order of their indexes;
IF the second inequality in condition (8) of Theorem 7 holds THEN

construct a permutation π1,2 of jobs from set J1,2,
arrange the jobs in the increasing order of their indexes END

Step 4: IF both permutations π1,2 and π2,1 are constructed THEN GOTO Step 10.
Step 5: IF permutation π1,2 is not constructed THEN fulfill Algorithm 3.
Step 6: IF permutation π2,1 is not constructed THEN fulfill Algorithm 4.
Step 7: IF both permutations π1,2 and π2,1 are constructed THEN GOTO Step 10.
Step 8: IF permutation π2,1 is constructed THEN GOTO Step 11.
Step 9: IF permutation π1,2 is constructed THEN GOTO Step 12 ELSE GOTO Step 13.
Step 10: RETURN pair of permutations (π′, π′′), where π′ is the permutation

of jobs from set J1,2 ∪ J1 ∪ J2,1 processed on machine M1 and π′′ is
the permutation of jobs from set J1,2 ∪ J2 ∪ J2,1 processed
on machine M2 such that {(π′, π′′)} = DS(T) STOP 0.

Step 11: RETURN the permutation π2,1 of jobs from set J2,1 processed on machines M1 and M2,
the partial strict order A1,2

≺ of jobs from set J1,2 GOTO Step 14.
Step 12: RETURN the permutation π1,2 of jobs from set J1,2 processed on machines M1 and M2,

the partial strict order A2,1
≺ of jobs from set J2,1 GOTO Step 14.

Step 13: RETURN the partial strict order A1,2
≺ of jobs from set J1,2

and the partial strict order A2,1
≺ of jobs from set J2,1

Step 14: STOP 1.

Algorithm 2 may be applied for solving the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax exactly or
approximately as follows. If at least one of the sufficient conditions proven in Section 5.1 hold, then
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Algorithm 2 constructs a pair of job permutations (π′, π′′) = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)), which is
optimal for any scenario p ∈ T (Step 10).

It may happen that the constructed strict order on the set J1,2 or on the set J2,1 is not a linear
strict order. If for at least one of the sets J1,2 or J2,1, the constructed partial strict order is not a linear
one, a heuristic solution for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is constructed similar to that
for the problem F2|lij ≤ pij ≤ uij|Cmax solved by Algorithm 1 (see Section 5.4). If Algorithm 2 is
completed at Steps 11-13 (STOP 1), we consider a set of conflict jobs {Jk+1, Jk+2, . . . , Jk+r} and construct
a Jackson’s pair of job permutation for the deterministic problem J2|p′, ni ≤ 2|Cmax with job set
J = {Jk+1, Jk+2, . . . Jk+r}, where the vector p′ = (p′k+1,1, p′k+1,2, . . . p′k+r,1, p′k+r,2) of the durations of
conflict jobs {Jk+1, Jk+2, . . . Jk+r} is calculated using the equality of Equation (16) for each operation
Oij of the conflict job Ji ∈ {Jk+1, Jk+2, . . . Jk+r} on the corresponding machine Mj ∈ M (Remark 3).

Algorithm 3: Construction of a strict order A1,2
≺ on the set J1,2

Input: Lower bounds lij and upper bounds uij, 0 < lij ≤ uij, of the durations
of all operations Oij of jobs Ji ∈ J on machines Mj ∈ M = {M1, M2}.

Output: EITHER permutation π1,2, which is optimal for the problem
F2|lij ≤ pij ≤ uij|Cmax with any scenario p ∈ T for the jobs J1,2,

OR partial strict order A1,2
≺ on the set J1,2.

Step 1: Construct a partition J1,2 = J 1
1,2 ∪ J 2

1,2 ∪ J ∗1,2 of the set J1,2 of the jobs.
Step 2: IF conditions of Theorem 2 hold THEN
Step 3: Construct permutation π1,2 = (π1

1,2, J∗1,2, π2
1,2), where π1

1,2 is a permutation for
processing jobs from the set J 1

1,2 in the non-decreasing order of the values ui1,
π2

1,2 is a permutation for processing jobs from the set J 2
1,2

in the non-increasing order of the values ui2 GOTO Step 7 ELSE
Step 4: FOR each pair of jobs Jv ∈ J1,2 and Jw ∈ J1,2, v 6= w, DO

IF at least one of two conditions (4) and (5) holds THEN
determine the relation Jv ≺ Jw

END FOR
Step 5: Renumber jobs in the set J1,2 such that relation v < w holds if Jv ≺ Jw.
Step 6: FOR each conflict set of jobs DO

IF condition of Theorem 10 holds THEN
Order jobs in the conflict set in the increasing order of their indexes GOTO Step 7
ELSE fulfill Algorithm 1

END FOR
Step 7: IF the partial strict order A1,2

≺ is linear THEN
construct a permutation π1,2 generated by the linear order A1,2

≺
STOP.

Algorithm 4 is obtained from the above Algorithm 3 by replacing the set J1,2 of jobs by the set J2,1

of jobs, machine M1 by machine M2, and vice versa. Obviously, testing the conditions of Theorems 11
and 12 takes O(r), where conflict set contains r jobs. Construction of permutation of r jobs takes
O(r log r). Therefore, the total complexity of Algorithm 1 is O(r log r).

Testing the conditions of Theorem 2 takes O(m1,2 log m1,2) time. A strict order A1,2
≺ on the set J1,2

is constructed by comparing no more than m1,2(m1,2 − 1) pairs of jobs in the set J1,2. Thus, it takes
O(m1,2(m1,2 − 1)) time. The complexity of Algorithm 1 is O(r log r) time provided that the conflict
set contains r jobs, where r ≤ m1,2. Since a strict order A1,2

≺ is constructed once in Algorithm 3, we
conclude that a total complexity of Algorithm 3 (and Algorithm 4) is O(n2) time.

In Algorithm 2, testing the condition of Theorem 7 takes O(max{m1,2, m2,1}) time. Every
Algorithm 3 or Algorithm 4 is fulfilled at most once. Therefore, the complexity of Algorithm 2
is O(n2) time.
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7. Computational Experiments

We describe the conducted computational experiments and discuss the results obtained for
randomly generated instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. In the computational
experiments, each tested series consisted of 1000 randomly generated instances with the same numbers
n ∈ {10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10.000} of jobs in the set J provided that a maximum
relative length δ of the given segment of the possible durations of the operations Oij takes the following
values: {5%, 10%, 15%, 20%, 30%, 40%, and 50%}. The lower bounds lij and upper bounds uij for possible
values of the durations pij of the operations Oij, pij ∈ [lij, uij] using the value δ have been determined
as follows. First, a value of the lower bound lij is randomly chosen from the segment [10, 1000] using a
uniform distribution. Then, the upper bound uij is calculated using the following equality:

uij = lij

(
1 +

δ

100

)
(17)

For example, we assume that δ = 5%. Then, for the lower bounds lij = 50 and lij = 500, the upper
bounds uij = 52.5 and uij = 525 are calculated using Reference (17). If δ = 50%, then based on the
lower bounds lij = 50 and lij = 500 and on Reference (17), we obtain the upper bounds uij = 75 and
uij = 750. Thus, rather wide ranges for the tested durations of the jobs J were considered.

In the experiments, the bounds lij and uij were decimal fractions with the maximum possible
number of digits after the decimal point. For all tested instances of the problem J2|lij ≤ pij ≤ uij, ni ≤
2|Cmax, a strict inequality lij < uij was guarantied for each job Ji ∈ J and each machine Mj ∈ M.

We used Algorithms 1 – 4 described in Section 5.4 and Section 6 for solving the problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax. These algorithms were coded in C# and tested on a PC with Intel Core i7-7700
(TM) 4 Quad, 3.6 GHz, and 32.00 GB RAM. Since Algorithms 1 – 4 are polynomial in number n jobs in
set J , the calculations were carried out quickly. In the experiments, we tested 15 classes of randomly
generated instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with different ratios between
numbers m1, m2, m1,2, and m2,1 of the jobs in subsets J1, J2, J1,2, and J2,1 of the set J . The obtained
computational results are presented in Tables A1–A15 for 15 classes of the solved instances. Each tested
class of the instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is characterized by the following
ratio of the percentages of the number of jobs in the subsets J1, J2, J1,2, and J2,1 of the set J :

m1

n
· 100% :

m2

n
· 100% :

m1,2

n
· 100% :

m2,1

n
· 100% (18)

Tables A1–A9 present the computational results obtained for classes 1–9 of the tested instances
characterized by the following ratios (Equation (18)):

25% : 25% : 25% : 25% (Table A1); 10% : 10% : 40% : 40% (Table A2);
10% : 40% : 10% : 40% (Table A3); 10% : 30% : 10% : 50% (Table A4);
10% : 20% : 10% : 60% (Table A5); 10% : 10% : 10% : 70% (Table A6);
5% : 20% : 5% : 70% (Table A7); 5% : 15% : 5% : 75% (Table A8);
5% : 5% : 5% : 85% (Table A9).
Note that all instances from class 1 of the instances with the ratio from Equation (18), 25% : 25% :

25% : 25%, were optimally solved by Algorithm 1 – 4 for all values of δ ∈ {5%, 10%, 15%, 20%, 30%, 40%,
and 50%}. We also tested classes 10–15 of the hard instances of the problem J2|lij ≤ pij ≤ uij, ni ≤
2|Cmax characterized by the following ratios (Equation (18)):

3% : 2% : 5% : 90% (Table A10); 2% : 3% : 5% : 90% (Table A11);
2% : 2% : 1% : 95% (Table A12); 1% : 2% : 2% : 95% (Table A13);
1% : 1% : 3% : 95% (Table A14); 1% : 1% : 1% : 97% (Table A15).
All Tables A1–A15 are organized as follows. Number n of given jobs J in the instances of the

problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax are presented in column 1. The values of δ (a maximum
relative length of the given segment of the job durations) in percentages are presented in the first
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line of each table. For the fixed value of δ, the obtained computational results are presented in four
columns called Opt, NC, SC, and t. The column Opt determines the percentage of instances from the
series of 1000 randomly generated instances which were optimally solved using Algorithms 1 – 4. For
each such instance, an optimal pair (π′, π′′) of the job permutations was constructed in spite of the
uncertain durations of the given jobs J . In other words, the equality Cmax(π′, π′′) = Cmax(π∗, π∗∗)

holds, where (π∗, π∗∗) ∈ S is a pair of job permutations which is optimal for the deterministic problem
J2|p∗, ni ≤ 2|Cmax associated with the factual scenario p∗ ∈ T. The factual scenario p∗ ∈ T for the
instance of the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is assumed to be unknown until
completing the jobs J .

Column NC presents total number of conflict sets of the jobs in the partial strict orders A1,2
≺

on the job sets J1,2 and partial strict orders A2,1
≺ on the job sets J2,1 constructed by Algorithm 2.

The value of NC is equal to the total number of decision points, where Algorithm 2 has to select an
order for processing jobs from the corresponding conflict set. To make a correct decision for such an
order means to construct a permutation of all jobs from the conflict set, which is optimal for the factual
scenario (which is unknown before scheduling). In particular, if all conflict sets have received correct
decisions in Algorithm 2, then the constructed pair of job permutations will be optimal for the problem
J2|p∗, ni ≤ 2|Cmax, where p∗ ∈ T is the factual scenario.

Column SC presents a percentage of the correct decisions made for determining optimal orders
of the conflict jobs by Algorithm 2 with Algorithms 3 and 4. Column t presents a total CPU time
(in seconds) for solving all 1000 instances of the corresponding series.

Average percentages of the instances which were optimally solved (Opt) are presented in Figure 1
for classes 1–9 of the tested instances and in Figure 2 for classes 10–15 of the hard-tested instances.

Figure 1. Average percentages of the instances presented in Tables A1–A9, which were optimally
solved at the off-line phase of scheduling.

Percentages of the average values of the correct decisions (SC) made for determining optimal
orders of the conflict jobs for classes 1–9 are presented in Figure 3. Most instances from these
nine classes were optimally solved (Table 2). If the values of δ were no greater than 20%, i.e.,
δ ∈ {5%, 10%, 15%, 20%}, then more than 80% of the tested instances were optimally solved in spite
of the data uncertainty. If the value δ is increased, the percentage of the optimally solved instances
decreased. If the value δ was equal to 50%, then 45% of the tested instances was optimally solved.

For all series of the hard instances presented in Tables A10–A15 (see the third line in Table 2), only
a few instances were optimally solved. If δ = 5%, then 70% of the tested instances was optimally
solved. If value δ belongs to the set {20%, 30%, 40%, 50%}, then only 1% of the tested instances was
optimally solved. There were no hard-tested instances optimally solved for the value of δ = 50%.
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Figure 2. Average percentages of the instances presented in Tables A10–A15, which were optimally
solved at the off-line phase of scheduling.

Table 2. Average percentage of the instances which were optimally solved.

δ% 5% 10% 15% 20% 30% 40% 50% Average

Instances from Tables A1–A9 99.93 98.48 88.93 80.66 63.97 50.18 44.10 75.18
Instances from Tables A10–A15 69.78 24.89 7.96 2.73 0.20 0.03 0.00 15.08

Percentages of the average values of the correct decisions made for determining optimal orders of
the conflict jobs by Algorithm 2, Algorithm 3 and Algorithm 4 for the hard classes 10–15 of the tested
instances are presented in Figure 4. Note that there is a correlation between values of Opt and SC
presented in Figures 1 and 3 for classes 1–9 of the tested instances and those presented in Figures 2
and 4 for classes 10–15 of the hard-tested instances.

Figure 3. Average percentages of the correct decisions made for constructing permutations of the
conflict jobs for the instances presented in Tables A1–A9.
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Figure 4. Average percentages of the correct decisions made for constructing permutations of the
conflict jobs for the hard instances presented in Tables A10–A15.

8. Concluding Remarks and Future Works

The uncertain flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax and its generalization
the job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax attract the attention of researchers since these
problems are applicable in many real-life scheduling systems. The optimal scheduling decisions for
these problems allow the plant to reduce the costs of productions due to a better utilization of the
available machines and other resources. In Section 5, we proved several properties of the optimal pairs
(π′, π′′) of job permutations (Theorems 7–12). Using these properties, we derived Algorithms 1–4
for constructing optimal pairs (π′, π′′) of job permutations or a small dominant set of schedules for
the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. If it is impossible to construct a single pair (π′, π′′) of job
permutations, which dominates all other pairs of job permutations for all possible scenarios T, then
Algorithm 2 determines the partial strict order A1,2

≺ on the job set J1,2 (Algorithm 3) and the partial
strict order A2,1

≺ on the job set J2,1 (Algorithm 4). The precedence digraphs (J1,2, A1,2
≺ ) and (J2,1, A2,1

≺ )

determine a minimal dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.
From the conducted extensive computational experiments, it follows that pairs of job permutations

constructed using Algorithm 2 are close to the optimal pairs of job permutations, which may be
determined after completing all jobs J when factual operation durations become known. We tested
15 classes of the randomly generated instances J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Most instances from
tested classes 1–9 were optimally solved at the off-line phase of scheduling. If the values of δ were
no greater than 20%, i.e., δ ∈ {5%, 10%, 15%, 20%}, then more than 80% of the tested instances was
optimally solved in spite of the uncertainty of the input data. If δ = 50%, then 45% of the tested
instances was optimally solved. However, less than 5% of the instances with δ ≥ 20% from hard
classes 10–15 were optimally solved at the off-line phase of scheduling (Figure 2). There were no tested
hard instances optimally solved for the value δ = 50%.

In future research, the on-line phase of scheduling will be studied for the problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax. To this end, it will be useful to find sufficient conditions for existing a dominant pair
of job permutations at the on-line phase of scheduling. The additional information on the factual value
of the job duration becomes available once the processing of the job on the corresponding machine
is completed. Using this additional information, a scheduler can determine a smaller dominant set
DS of schedules, which is based on sufficient conditions for schedule dominance. The smaller DS
enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on processing the job becomes available. To solve the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax at the
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on-line phase, a scheduler needs to use fast (better polynomial) algorithms. The investigation of the
on-line phase of scheduling for the uncertain job-shop problem is under development.

We suggest to investigate properties of the optimality box and optimality region for a pair
(π′, π′′) of the job permutations and to develop algorithms for constructing a pair (π′, π′′) of the job
permutations that have the largest optimality box (or the largest optimality region). We also suggest to
apply the stability approach for solving the uncertain flow-shop and job-shop scheduling problems
with |M| > 2 available machines.
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Appendix A. Proofs of the Statements

Appendix A.1. Proof of Lemma 2

We choose an arbitrary vector p in the set T, p ∈ T, and show that set < S′1,2, S2,1 > contains at
least one optimal pair of job permutations for the problem J2|p, ni ≤ 2|Cmax with scenario p ∈ T.

Let (π∗, π∗∗) = ((π∗1,2, π1, π∗2,1), (π
∗
2,1, π2, π∗1,2)) be a Jackson’s pair of job permutations for the

problem J2|p, ni ≤ 2|Cmax with scenario p ∈ T, i.e., Cmax(π∗, π∗∗) = Cmax. Without loss of generality,
one can assume that jobs in both permutations π1 and π2 are ordered in increasing order of their
indexes. It is clear that π∗2,1 ∈ S2,1. If inclusion π∗1,2 ∈ S′1,2 holds as well, then (π∗, π∗∗) ∈ <S′1,2, S2,1>

and set < S′1,2, S2,1 > contains an optimal pair of job permutations for the problem J2|p, ni ≤ 2|Cmax

with scenario p ∈ T. We now assume that π∗1,2 6∈ S′1,2. The set S′1,2 contains at least one optimal
permutation for the problem F2|p1,2|Cmax with job set J1,2 and scenario p1,2 (the components of vector
p1,2 are equal to the corresponding components of vector p). We denote this permutation as π′1,2.
Remember that permutation π′1,2 may be not a Johnson’s permutation for the problem F2|p1,2|Cmax

with job set J1,2 and scenario p1,2. We consider a pair of job permutations (π′, π∗∗) = ((π′1,2, π1, π∗2,1),
(π∗2,1, π2, π′1,2)) ∈ <S′1,2, S2,1> and show that equality Cmax(π′, π∗∗) = Cmax holds. We consider the
following two possible cases.

(j) Cmax(π′, π∗∗) = c1(π
′).

If equality c1(π
′) = ∑Ji∈J1,2∪J2,1∪J1

pi1 holds, then c1(π
′) ≤ c1(π

∗).
We now assume that inequality c1(π

′) > ∑Ji∈J1,2∪J2,1∪J1
pi1 holds. Then, machine M1 has an idle

time. As it is mentioned in the proof of Theorem 7, an idle time for machine M1 is only possible if
some job Jj from the set J2,1 is processed on machine M2 at the time moment t2 when job Jj could
be processed on machine M1. Thus, the value of c1(π

′) is equal to the makespan Cmax(π∗2,1) for the
problem F2|p2,1|Cmax with job set J2,1 and scenario p2,1 (the components of vector p2,1 are equal to the
corresponding components of vector p). As jobs from the set J2,1 are processed as in the permutation
π∗2,1, which is a Johnson’s permutation, the value of c1(π

′) cannot be reduced and so c1(π
′) ≤ c1(π

∗).
We obtain the following relations: Cmax(π′, π∗∗) = c1(π

′) ≤ c1(π
∗) ≤ max{c1(π

∗), c2(π
∗∗)} =

Cmax(π∗, π∗∗) = Cmax. Thus, equality Cmax(π′, π∗∗) = Cmax holds.
(jj) Cmax(π′, π∗∗) = c2(π

∗∗).
Similarly to case (j), we obtain the following equality:

c2(π
∗∗) = max{ ∑

Ji∈J1,2∪J2,1∪J2

pi2, Cmax(π
′
1,2)},
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where Cmax(π′1,2) is the makespan for the problem F2|p1,2|Cmax with job set J1,2 and vector p1,2 of the
job durations (it is assumed that π′1,2 is an optimal permutation for this problem). Thus, the value of
c2(π

∗∗) cannot be reduced and equality Cmax(π′, π∗∗) = Cmax holds.
In both considered cases, the pair of job permutations (π′, π∗∗) is an optimal schedule for the

problem J2|p, ni ≤ 2|Cmax with scenario p ∈ T. Therefore, an optimal pair of job permutations for
the problem J2|p, ni ≤ 2|Cmax with scenario p ∈ T belongs to the set < S′1,2, S2,1 >. As vector p is an
arbitrary vector in set T, the set < S′1,2, S2,1 > contains an optimal pair of job permutations for each
scenario from set T. Due to Definition 4, the set < S′1,2, S2,1 > is a dominant set of schedules for the
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .

Appendix A.2. Proof of Theorem 8

We consider an arbitrary vector p ∈ T of the job durations from set T and relevant vectors
p1,2 and p2,1 of the durations of jobs from set J1,2 and set J2,1, respectively. Set S′1,2 contains an
optimal permutation π′1,2 for the problem F2|p1,2|Cmax with job set J1,2 and with vector p1,2 of the
job durations. Set S′2,1 contains an optimal permutation π′2,1 for the problem F2|p2,1|Cmax with job
set J2,1 and with vector p2,1 of the job durations. We next show that the pair of job permutations
(π′, π′′) = ((π′1,2, π1, π′2,1), (π

′
2,1, π2, π′1,2)) is an optimal pair of job permutations for the problem

J2|p, ni ≤ 2|Cmax with scenario p ∈ T (the jobs in permutations π1 and π2 are ordered in increasing
order of their indexes). From the proofs of Lemmas 2 and 3, we obtain the value of Cmax(π′, π′′) =

max{c1(π
′), c2(π

′′)}

= max{max{ ∑
Ji∈J1,2∪J2,1∪J1

pi1, Cmax(π
′
2,1)}, max{ ∑

Ji∈J1,2∪J2,1∪J2

pi2, Cmax(π
′
1,2)}},

which cannot be reduced. Therefore, Cmax(π′, π′′) = Cmax. An optimal pair of job permutations for
the problem J2|p, ni ≤ 2|Cmax with vector p ∈ T of the job durations belongs to the set < S′1,2, S′2,1 >.
As vector p is arbitrary in set T, the set < S′1,2, S′2,1 > contains an optimal pair of job permutations for
all vectors from set T. Due to Definition 4, the set < S′1,2, S′2,1 >⊆ S is a dominant set of schedules for
the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .

Appendix A.3. Proof of Theorem 9

We consider an arbitrary scenario p ∈ T. Due to Definition 1, the permutation π1,2 is a Johnson’s
permutation for the problem F2|p1,2|Cmax with job setJ1,2 and scenario p1,2 (the components of this vector
are equal to the corresponding components of vector p). Due to Definition 4, the singleton {(π1,2, π1,2)}
is a minimal dominant set of schedules for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2.

Similarly, the singleton {(π2,1, π2,1)} is a minimal dominant set of schedules for the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J2,1. We consider permutations π1 and π2 of the jobs J1 and
J2, respectively (due to Remark 1, the jobs in permutations π1 and π2 are ordered in increasing
order of their indexes). Due to Theorem 8, the pair of permutations ((π1,2, π1, π2,1), (π1,2, π2, π2,1))

is a single-element dominant set (DS(T)) for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set
J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Appendix A.4. Proof of Corollary 6

In the proof of Theorem 9, it is shown that the pair of job permutations ((π1,2, π1, π2,1),
(π1,2, π2, π2,1)) is a single-element dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤
2|Cmax with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1. We next show that the pair of permutations
((π1,2, π1, π2,1), (π1,2, π2, π2,1)) satisfies to Definition 1, i.e., this pair of permutations is a Jackson’s
pair of job permutations for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J (the
minimality condition is obvious). Indeed, due to conditions of Theorem 9, the permutation π1,2

is a Johnson’s permutation for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and the
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permutation π2,1 is a Johnson’s permutation for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J2,1.
Therefore, pair ((π1,2, π1, π2,1), (π1,2, π2, π2,1)) is a Jackson’s pair of permutations for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J . Due to Definition 1, the pair of job permutations
((π1,2, π1, π2,1), (π1,2, π2, π2,1)) is a single-element J-solution for the problem J2|lij ≤ pij ≤ uij, ni ≤
2|Cmax with job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Appendix A.5. Proof of Theorem 12

We consider any fixed scenario p ∈ T and a pair of job permutations (π′, π′′) =

((π, π1, π∗2,1), (π
∗
2,1, π2, π)) ∈ S′, where π∗2,1 ∈ S2,1 is a Johnson’s permutation of the jobs from the set

J2,1 with vector p2,1 of the job durations (components of this vector are equal to the corresponding
components of vector p). We next show that this pair of job permutations (π′, π′′) is optimal for the
individual problem J2|p, ni ≤ 2|Cmax with scenario p, i.e., Cmax(π′, π′′) = Cmax.

At time t = 0, machine M1 begins to process jobs from the permutation π without idle times.
We denote t1 = ∑k+r+1

i=1 pi1. At time moment t1, job Jk+r+1 is ready for processing on machine M2.
From the condition of Inequality (13) with s = 1, it follows that, even if machine M2 has an idle time
before processing job Jk+r+1, machine M2 is available for processing this job at time t1. If in addition,
the condition of Inequality (13) holds with s ∈ {2, 3, . . . , r}, then machine M2 may also have idle times
between processing jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r}. However, machine M2 is available
for processing job Jk+r+1 from the time moment t1 = ∑k+r+1

i=1 pi1.
In permutation π, jobs Jk+r+1, . . . , Jm1,2 are arranged in Johnson’s order. Therefore, if machine M2

has an idle time while processing these jobs, this idle time cannot be reduced.
Thus, the value of c2(π

′′) cannot be reduced by changing the order of jobs from the conflict
set. Note that an idle time for machine M1 is only possible between some jobs from the set J2,1.
Since the permutation π∗2,1 is a Johnson’s permutation of the jobs from set J2,1 with scenario p2,1,
the value of c1(π

′) cannot be reduced. Thus, we obtain Cmax(π′, π′′) = max{c1(π
′), c2(π

′′)} = Cmax

and the pair of permutations (π′, π′′) = ((π, π1, π∗2,1), (π
∗
2,1, π2, π)) ∈ S′ is optimal for the problem

J2|p, ni ≤ 2|Cmax with scenario p ∈ T. As the vector p is an arbitrary vector in the set T, set S′ contains
an optimal pair of job permutations for each vector from the set T. Due to Definition 4, set S′ is a
dominant set of schedules for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with job set J .
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Appendix B. Tables with Computations Results

Table A1. Computational results for randomly generated instances with ratio 25% : 25% : 25% : 25% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

20 100 6 100 0 100 19 100 0 100 35 100 0 100 70 100 0 100 139 100 0 100 250 100 0 100 339 100 0
40 100 0 - 0 100 4 100 0 100 20 100 0 100 33 100 0 100 101 100 0 100 136 100 0 100 333 100 0
50 100 7 100 0 100 3 100 0 100 16 100 0 100 8 100 0 100 50 100 0 100 114 100 0 100 224 100 0
70 100 0 - 0 100 0 - 0 100 2 100 0 100 3 100 0 100 11 100 0 100 71 100 0 100 149 100 0
80 100 0 - 0 100 0 - 0 100 0 - 0 100 3 100 0 100 0 - 0 100 35 100 0 100 122 100 0

100 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 19 100 0 100 84 100 0
200 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 5 100 0
300 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
400 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
500 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
600 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
700 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
800 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
900 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
1000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
2000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
3000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
4000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
5000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
6000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
7000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
8000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0
9000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0

10,000 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0 100 0 - 0

Aver. 100 0.54 100 0 100 1.08 100 0 100 3.04 100 0 100 4.88 100 0 100 12.54 100 0 100 26.04 100 0 100 52.33 100 0
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Table A2. Computational results for randomly generated instances with ratio 10% : 10% : 40% : 40% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

10 100 71 100 0 100 153 100 0 99.6 241 98.34 0 99.4 320 98.13 0 98.1 481 96.05 0 95.8 618 93.20 0 91.9 713 88.64 0
20 100 235 100 0 100 531 100 0 100 811 100 0 100 1032 100 0 100 1341 100 0 99.9 1450 99.93 0 99.5 1424 99.65 0
30 100 460 100 0 100 887 100 0 100 1334 100 0 100 1643 100 0 100 1912 100 0 99.9 1893 99.95 0 100 1808 100 0
40 100 636 100 0 100 1185 100 0 100 1659 100 0 100 2068 100 0 100 2352 100 0 100 2162 100 0 99.9 1953 99.95 0
50 100 824 100 0 100 1496 100 0 100 2074 100 0 100 2411 100 0 100 2546 100 0 100 2211 100 0 100 2009 100 0
60 100 893 100 0 100 1542 100 0 100 2222 100 0 100 2619 100 0 100 2758 100 0 100 2440 100 0 100 2109 100 0
70 100 841 100 0 100 1589 100 0 100 2285 100 0 100 2775 100 0 100 2935 100 0 100 2477 100 0 100 2106 100 0
80 100 981 100 0 100 1570 100 0 100 2342 100 0 100 2896 100 0 100 2995 100 0 100 2567 100 0 100 2249 100 0
90 100 878 100 0 100 1660 100 0 100 2310 100 0 100 2905 100 0 100 3103 100 0 100 2598 100 0 100 2273 100 0

100 100 826 100 0 100 1633 100 0 100 2368 100 0 100 3056 100 0 100 3114 100 0 100 2585 100 0 100 2321 100 0
200 100 411 100 0 100 1145 100 0 100 1999 100 0 100 3065 100 0 100 3392 100 0 100 2709 100 0 100 2250 100 0
300 100 181 100 0 100 721 100 0 100 1708 100 0 100 2888 100 0 100 3365 100 0 100 2579 100 0 100 2117 100 0
400 100 51 100 0 100 302 100 0 100 981 100 0 100 2466 100 0 100 3263 100 0 100 2469 100 0 100 1966 100 0
500 100 11 100 0 100 240 100 0 100 813 100 0 100 2307 100 0 100 3138 100 0 100 2362 100 0 100 1838 100 0
600 100 0 - 0 100 88 100 0 100 499 100 0 100 2076 100 0 100 2951 100 0 100 2202 100 0 100 1692 100 0
700 100 0 - 0 100 45 100 0 100 528 100 0 100 1894 100 0 100 2779 100 1 100 2015 100 1 100 1585 100 1
800 100 0 - 0 100 36 100 0 100 294 100 0 100 1707 100 0 100 2656 100 0 100 1866 100 1 100 1485 100 1
900 100 0 - 0 100 0 - 0 100 318 100 0 100 1442 100 0 100 2392 100 1 100 1677 100 1 100 1420 100 1

1000 100 0 - 0 100 0 - 0 100 196 100 0 100 1275 100 0 100 2255 100 1 100 1630 100 1 100 1298 100 1
2000 100 0 - 0 100 0 - 0 100 3 100 0 100 441 100 0 100 1452 100 3 100 1137 100 3 100 1044 100 2
3000 100 0 - 0 100 0 - 0 100 0 - 0 100 160 100 0 100 1127 100 6 100 1025 100 5 100 1011 100 4
4000 100 0 - 0 100 0 - 0 100 0 - 0 100 86 100 0 100 1032 100 9 100 1005 100 8 100 1000 100 7
5000 100 0 - 0 100 0 - 0 100 0 - 0 100 34 100 0 100 1011 100 14 100 1000 100 12 100 1000 100 10
6000 100 0 - 0 100 0 - 0 100 0 - 0 100 23 100 0 100 1002 100 21 100 1001 100 17 100 1001 100 14
7000 100 0 - 0 100 0 - 0 100 0 - 0 100 8 100 0 100 1000 100 28 100 1000 100 23 100 1000 100 19
8000 100 0 - 0 100 0 - 0 100 0 - 0 100 6 100 0 100 1001 100 37 100 1000 100 31 100 1000 100 25
9000 100 0 - 0 100 0 - 0 100 0 - 0 100 3 100 0 100 1000 100 48 100 1000 100 39 100 1000 100 32

10,000 100 0 - 0 100 0 - 0 100 0 - 0 100 4 100 1 100 1000 100 61 100 1000 100 49 100 1000 100 40

Aver. 100 261 100 0 100 529 100 0 99.99 892 99.92 0 99.98 1486 99.93 0.04 99.93 2120 99.86 8.21 99.84 1774 99.75 6.82 99.69 1560 99.58 5.61
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Table A3. Computational results for randomly generated instances with ratio 10% : 40% : 10% : 40% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

10 98.7 104 87.5 0 97.3 207 86.96 0 96.9 287 89.20 0 94.5 359 84.68 0 92.5 543 86.19 0 88.5 597 80.74 0 81.5 713 74.05 0
20 99.7 466 99.36 0 99.6 830 99.52 0 99.3 1057 99.24 0 98.5 1244 98.79 0 95.3 1433 96.65 0 91 1467 93.73 0 84.6 1501 89.61 0
30 100 1070 100 0 99.8 1597 99.87 0 99.7 1879 99.84 0 98.2 2007 99.10 0 96.7 2053 98.30 0 91.4 1945 95.58 0 82.1 1790 89.83 0
40 100 1700 100 0 100 2355 100 0 99.8 2660 99.92 0 99.7 2628 99.89 0 97.6 2462 99.03 0 92.4 2135 96.35 0 85.5 1979 92.52 0
50 100 2425 100 0 99.7 3174 99.91 0 99.9 3197 99.97 0 99.8 3048 99.93 0 97.8 2664 99.17 0 92.5 2283 96.54 0 82.2 2075 91.42 0
60 100 3218 100 0 100 3808 100 0 100 3702 100 0 99.9 3394 99.97 0 98.5 2881 99.41 0 91.9 2442 96.60 0 80.5 2172 90.75 0
70 100 3911 100 0 100 4385 100 0 99.9 4063 99.98 0 99.9 3648 99.97 0 98.7 2959 99.56 0 91.9 2517 96.62 0 78 2146 89.47 0
80 100 4817 100 0 100 4902 100 0 99.8 4370 99.95 0 99.9 3829 99.97 0 98.5 3103 99.52 0 92.2 2627 96.99 0 77.3 2257 89.77 0
90 100 5518 100 0 100 5398 100 0 100 4656 100 0 100 3910 100 0 97.7 3154 99.21 0 92.5 2675 97.12 0 79.5 2249 90.84 0

100 100 6195 100 0 100 5697 100 0 99.9 4853 99.98 0 100 4047 100 0 98.2 3207 99.44 0 91.3 2706 96.78 0 75.6 2328 89.48 0
200 100 10,620 100 0 100 7608 100 0 100 5717 100 0 100 4645 100 0 98.9 3320 99.64 0 90.8 2717 96.61 0 72.7 2281 87.90 0
300 100 13,110 100 0 100 8259 100 0 100 6070 100 0 100 4782 100 0 99.5 3369 99.85 0 94.3 2605 97.81 0 74.5 2117 87.81 0
400 100 14,309 100 1 100 8634 100 0 100 6113 100 0 100 4650 100 0 99.8 3247 99.94 0 94.3 2460 97.68 0 73.1 2002 86.56 0
500 100 14,935 100 0 100 8658 100 0 100 6102 100 0 100 4630 100 0 99.9 3137 99.97 0 95.1 2297 97.87 0 78.5 1808 88.11 0
600 100 15,780 100 0 100 8832 100 0 100 6021 100 0 100 4492 100 0 100 2911 100 0 97.2 2153 98.70 0 77.8 1705 86.98 0
700 100 15,971 100 0 100 8753 100 0 100 5789 100 0 100 4379 100 0 100 2786 100 0 97.7 1996 98.85 0 82.4 1613 89.09 0
800 100 16,439 100 0 100 8806 100 0 100 5793 100 0 100 4176 100 0 100 2533 100 0 98.8 1846 99.35 0 84 1487 89.24 0
900 100 16,268 100 0 100 8574 100 1 100 5608 100 1 100 4005 100 1 100 2379 100 0 98.8 1717 99.30 0 89.1 1366 92.02 0
1000 100 16,614 100 1 100 8419 100 1 100 5400 100 1 100 3807 100 1 100 2279 100 1 99.6 1655 99.76 1 90.9 1302 93.01 0
2000 100 15,539 100 2 100 6906 100 2 100 3715 100 2 100 2422 100 2 100 1401 100 1 100 1135 100 1 98.4 1040 98.46 1
3000 100 13,884 100 4 100 5259 100 4 100 2599 100 4 100 1624 100 3 100 1109 100 3 100 1021 100 3 99.8 1006 99.80 3
4000 100 12,302 100 7 100 3911 100 7 100 1874 100 6 100 1291 100 6 100 1044 100 5 100 1004 100 4 99.8 1001 99.80 4
5000 100 10,421 100 13 100 2935 100 11 100 1485 100 10 100 1126 100 9 100 1008 100 8 100 1000 100 6 100 1000 100 5
6000 100 8822 100 17 100 2299 100 16 100 1262 100 14 100 1043 100 13 100 1004 100 10 100 1000 100 9 100 1000 100 8
7000 100 7426 100 24 100 1855 100 22 100 1145 100 20 100 1026 100 17 100 1000 100 14 100 1001 100 11 100 1000 100 10
8000 100 6346 100 33 100 1569 100 30 100 1084 100 26 100 1007 100 23 100 1000 100 18 100 1000 100 15 100 1000 100 13
9000 100 5378 100 42 100 1362 100 38 100 1038 100 33 100 1002 100 30 100 1000 100 24 100 1000 100 19 100 1000 100 17

10,000 100 4529 100 54 100 1237 100 48 100 1028 100 42 100 1000 100 38 100 1000 100 29 100 1000 100 24 100 1000 100 20

Aver. 99.94 8861 99.53 7.07 99.87 4865 99.51 6.43 99.83 3520 99.57 5.68 99.66 2829 99.37 5.11 98.91 2142 99.14 4.04 95.79 1786 97.61 3.32 86.71 1569 92.38 2.89
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Table A4. Computational results for randomly generated instances with ratio 10% : 30% : 10% : 50% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

10 99.4 194 96.91 0 97.4 334 92.22 0 95.5 474 90.51 0 94.3 566 89.93 0 88.3 749 84.38 0 79.1 849 75.03 0 74.1 934 71.95 0
20 99.9 767 99.87 0 99.4 1232 99.51 0 98.4 1489 98.86 0 97.5 1680 98.39 0 94.7 1762 96.99 0 85.6 1770 91.64 0 75.1 1724 85.15 0
30 99.7 1532 99.80 0 99.5 2150 99.77 0 99.2 2399 99.67 0 99 2499 99.52 0 96 2367 98.31 0 86.8 2200 93.77 0 71.7 1941 85.27 0
40 99.8 2422 99.92 0 99.7 3151 99.90 0 99.8 3295 99.94 0 98.9 2972 99.63 0 95.2 2581 98.06 0 83 2326 92.48 0 69.5 2055 85.06 0
50 100 3422 100 0 99.9 4013 99.98 0 99.9 3844 99.97 0 99.5 3451 99.86 0 95.3 2857 98.35 0 82.1 2486 92.76 0 64.2 2202 83.47 0
60 100 4425 100 0 100 4681 100 0 99.9 4189 99.98 0 99.4 3750 99.84 0 94.8 2981 98.26 0 83.7 2566 93.53 0 64 2238 83.60 0
70 100 5338 100 0 100 5181 100 0 100 4569 100 0 99.3 4027 99.83 0 94.3 3183 98.21 0 79.6 2594 92.14 0 61.1 2284 82.75 0
80 100 6169 100 0 100 5770 100 0 99.9 4915 99.98 0 99.6 4112 99.90 0 95.6 3257 98.62 0 80.5 2625 92.42 0 58 2260 81.15 0
90 100 6998 100 0 100 6018 100 0 100 4984 100 0 99.6 4213 99.91 0 94.6 3332 98.38 0 78.5 2680 91.87 0 52.3 2270 78.72 0

100 100 7714 100 0 100 6298 100 0 100 5197 100 0 99.6 4358 99.91 0 94.5 3367 98.31 0 75.8 2642 90.61 0 54.6 2299 79.99 0
200 100 12,228 100 0 100 7920 100 0 100 5951 100 0 100 4748 100 0 95.7 3330 98.71 0 73.5 2665 90.02 0 45.4 2233 75.41 0
300 100 14,375 100 0 100 8735 100 0 100 6096 100 0 100 4723 100 0 96.4 3285 98.90 0 69.6 2464 87.66 0 43.4 2064 72.53 0
400 100 15,022 100 0 100 8762 100 0 100 6135 100 0 100 4712 100 0 96.4 3036 98.81 0 70.5 2286 87.05 0 48.1 1820 71.43 0
500 100 15,705 100 0 100 8823 100 0 100 5876 100 0 100 4497 100 0 97.5 2842 99.12 0 73.5 2100 87.38 0 55.1 1686 73.37 0
600 100 16,442 100 0 100 8712 100 0 100 5753 100 0 100 4252 100 0 97.6 2674 99.10 0 74.8 1941 87.02 0 62.6 1530 75.56 0
700 100 15,910 100 0 100 8670 100 0 100 5609 100 0 100 3976 100 0 99.1 2510 99.64 0 76.5 1776 86.77 0 69.3 1420 78.31 0
800 100 16,215 100 1 100 8419 100 1 100 5492 100 1 100 3773 100 1 99.3 2271 99.69 1 81.9 1648 89.02 1 75.9 1319 81.73 1
900 100 16,347 100 1 100 8268 100 1 100 5254 100 1 100 3597 100 1 99.2 2173 99.63 1 84.8 1575 90.35 1 80.7 1245 84.50 1
1000 100 16,355 100 1 100 8133 100 1 100 5064 100 1 100 3369 100 1 99.7 1998 99.85 1 86.8 1426 90.74 1 84.9 1189 87.30 1
2000 100 14,679 100 3 100 5955 100 3 100 3095 100 3 100 1972 100 2 100 1243 100 2 98.6 1056 98.67 2 97.7 1017 97.74 2
3000 100 12,643 100 6 100 4207 100 6 100 2036 100 5 100 1354 100 5 100 1038 100 4 99.9 1003 99.90 4 100 1001 100 3
4000 100 10,375 100 12 100 2927 100 11 100 1467 100 10 100 1152 100 9 100 1011 100 7 100 1000 100 6 100 1000 100 6
5000 100 8524 100 19 100 2140 100 18 100 1205 100 15 100 1032 100 14 100 1003 100 11 100 1000 100 9 100 1000 100 8
6000 100 6942 100 28 100 1724 100 26 100 1095 100 23 100 1014 100 20 100 1000 100 16 100 1000 100 14 100 1000 100 12
7000 100 5463 100 40 100 1398 100 35 100 1050 100 32 100 1007 100 28 100 1002 100 23 100 1000 100 18 100 1000 100 16
8000 100 4543 100 54 100 1240 100 48 100 1028 100 43 100 1002 100 45 100 1000 100 30 100 1000 100 24 100 1000 100 21
9000 100 3751 100 69 100 1135 100 62 100 1005 100 55 100 1001 100 48 100 1000 100 38 100 1000 100 32 100 1000 100 26

10,000 100 3056 100 86 100 1078 100 77 100 1003 100 68 100 1000 100 60 100 1000 100 48 100 1000 100 40 100 1000 100 33

Aver. 99.96 8841 99.87 11.43 99.85 4896 99.69 10.32 99.74 3556 99.60 9.18 99.53 2850 99.53 8.36 97.29 2138 98.62 6.50 85.90 1774 92.89 5.43 75.28 1562 86.25 4.64
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Table A5. Computational results for randomly generated instances with ratio 10% : 20% : 10% : 60% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

10 98.8 263 95.44 0 97.5 491 94.91 0 94.5 657 91.48 0 91 791 88.50 0 81.5 1014 81.36 0 74.9 1102 76.59 0 66 1186 70.49 0
20 99.7 1034 99.71 0 98.8 1601 99.19 0 98.8 1904 99.32 0 97.6 1984 98.74 0 89.9 2113 95.13 0 80.4 1968 89.94 0 63 1845 79.73 0
30 99.9 2131 99.95 0 99.8 2778 99.93 0 99 3059 99.67 0 98.3 2878 99.37 0 89.6 2608 95.82 0 74.3 2270 88.46 0 60.3 2060 80.34 0
40 100 3224 100 0 99.9 3747 99.97 0 99.8 3698 99.95 0 98.3 3392 99.50 0 90.9 2877 96.63 0 71.8 2469 88.42 0 52 2174 77.60 0
50 100 4370 100 0 100 4704 100 0 99.6 4174 99.90 0 99 3701 99.73 0 89.4 2988 96.32 0 66.6 2566 86.83 0 47.1 2228 75.94 0
60 100 5473 100 0 100 5368 100 0 99.9 4608 99.98 0 98.2 3987 99.55 0 89.3 3098 96.51 0 67.2 2643 87.48 0 42.6 2279 74.59 0
70 100 6454 100 0 100 5985 100 0 99.9 4968 99.98 0 99.4 4125 99.85 0 87.5 3214 96.02 0 62.6 2669 85.69 0 38.6 2291 72.85 0
80 100 7498 100 0 99.9 6235 99.98 0 99.8 5194 99.94 0 98.8 4333 99.70 0 87.3 3372 96.14 0 61.4 2716 85.64 0 33.6 2260 70.40 0
90 99.9 8281 99.99 0 100 6560 100 0 99.8 5243 99.96 0 98.9 4502 99.76 0 87.8 3388 96.40 0 61.4 2757 85.78 0 32 2361 71.03 0

100 100 9169 100 0 100 7056 100 0 99.7 5507 99.95 0 99.2 4586 99.83 0 83.7 3360 94.97 0 58.2 2689 84.27 0 27.7 2287 68.21 0
200 100 13,366 100 0 100 8131 100 0 99.9 6029 99.98 0 99 4814 99.79 0 83.1 3329 94.89 0 43.9 2541 77.80 0 10.3 2172 58.52 0
300 100 14,999 100 0 100 8869 100 0 100 6010 100 0 98.9 4675 99.76 0 82 3127 94.18 0 32.2 2329 70.85 0 4.6 1870 48.66 0
400 100 15,704 100 0 100 8848 100 0 100 6048 100 0 99.7 4490 99.93 0 82.5 2899 93.96 0 28.3 2120 66.08 0 1.3 1710 42.28 0
500 100 15,775 100 0 100 8720 100 0 100 5825 100 0 99.7 4290 99.93 0 83.2 2638 93.63 0 21.6 1885 58.30 0 0.7 1541 35.56 0
600 100 16,336 100 0 100 8420 100 1 100 5582 100 0 100 3938 100 0 87.7 2420 94.88 1 18 1727 52.52 0 0 1408 28.98 0
700 100 16,298 100 1 100 8466 100 1 100 5360 100 1 100 3733 100 1 88.4 2203 94.73 1 15 1574 46.00 1 0 1282 22.00 1
800 100 16,707 100 1 100 8030 100 1 100 5023 100 1 99.9 3479 99.97 1 88.7 2077 94.56 1 12.9 1457 40.15 1 0.2 1207 17.32 1
900 100 16,135 100 1 100 7936 100 1 100 4808 100 1 100 3265 100 1 89.5 1934 94.52 1 10.8 1368 34.80 1 0 1172 14.68 1
1000 100 16,015 100 1 100 7665 100 1 100 4528 100 1 100 3049 100 1 91.6 1737 95.16 1 9.6 1314 31.20 1 0 1144 12.59 1
2000 100 13,921 100 4 100 5101 100 4 100 2549 100 4 100 1622 100 3 98.6 1138 98.77 3 1.2 1024 3.52 3 0 1002 0.20 3
3000 100 11,344 100 9 100 3400 100 9 100 1636 100 8 100 1210 100 7 99.8 1014 99.80 6 0.4 1003 0.70 5 0 1000 0 5
4000 100 8769 100 17 100 2283 100 16 100 1245 100 14 100 1054 100 13 100 1003 100 10 0.1 1000 0.1 9 0 1000 0 8
5000 100 6948 100 28 100 1691 100 25 100 1102 100 27 100 1023 100 21 100 1001 100 16 0 1000 0 14 0 1000 0 11
6000 100 5409 100 42 100 1362 100 38 100 1041 100 34 100 1003 100 30 100 1000 100 27 0 1000 0 20 0 1000 0 17
7000 100 4121 100 59 100 1214 100 53 100 1016 100 47 100 1001 100 42 100 1000 100 34 0 1000 0 27 0 1000 0 23
8000 100 3368 100 80 100 1093 100 71 100 1006 100 62 100 1000 100 66 100 1000 100 43 0 1000 0 36 0 1000 0 30
9000 100 2646 100 102 100 1048 100 90 100 1000 100 80 100 1000 100 71 100 1000 100 56 0 1000 0 47 0 1000 0 39

10,000 100 2248 100 126 100 1024 100 119 100 1002 100 100 100 1000 100 89 100 1000 100 70 0 1000 0 63 0 1000 0 48

Aver. 99.94 8857 99.82 16.82 99.85 4923 99.79 15.36 99.67 3565 99.65 13.57 99.14 2854 99.43 12.36 91.14 2127 96.23 9.64 31.17 1757 47.90 8.14 17.14 1553 36.50 6.71
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Table A6. Computational results for randomly generated instances with ratio 10% : 10% : 10% : 70% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

10 98.6 371 96.23 0 96.2 612 93.63 0 93.6 853 92.15 0 89.5 1015 89.06 0 82.1 1231 84.73 0 67.1 1301 73.10 0 54.3 1348 63.65 0
20 99.8 1432 99.86 0 99.3 1988 99.65 0 97.2 2273 98.77 0 95.5 2345 98.04 0 85.9 2222 93.61 0 67.5 2119 84.29 0 50.7 1952 74.13 0
30 99.7 2713 99.89 0 99.6 3341 99.88 0 99.2 3397 99.76 0 96.9 3204 99.03 0 85.9 2777 94.63 0 65.2 2344 84.98 0 43.5 2139 72.98 0
40 99.9 4056 99.98 0 99.7 4439 99.93 0 99.2 4015 99.80 0 97.1 3722 99.19 0 85 2983 94.90 0 58.4 2525 82.89 0 36.5 2191 70.61 0
50 100 5231 100 0 99.9 5130 99.98 0 99.7 4593 99.93 0 97.7 3952 99.42 0 80.4 3165 93.52 0 55 2595 82.35 0 28.6 2200 67.18 0
60 100 6574 100 0 99.9 5804 99.98 0 99.3 4934 99.84 0 97.1 4182 99.26 0 84.1 3283 94.94 0 49.9 2656 80.80 0 25.6 2255 66.39 0
70 99.9 7444 99.99 0 100 6365 100 0 99.4 5115 99.88 0 97.8 4328 99.49 0 80.4 3261 93.90 0 48.3 2706 80.60 0 21 2330 65.75 0
80 100 8505 100 0 100 6737 100 0 99.7 5415 99.94 0 96.5 4422 99.21 0 75.3 3304 92.37 0 42.7 2667 78.29 0 16.8 2258 63.02 0
90 100 9185 100 0 99.8 7333 99.97 0 99.8 5623 99.96 0 97.7 4555 99.50 0 76.4 3417 92.98 0 37.6 2696 76.34 0 13.3 2288 61.32 0

100 100 9909 100 0 99.9 7305 99.99 0 99.6 5571 99.93 0 98.2 4546 99.60 0 74.4 3449 92.49 0 35.8 2695 75.92 0 11.8 2314 61.62 0
200 100 13,806 100 0 100 8387 100 0 99.8 6146 99.97 0 96.2 4736 99.18 0 63.5 3261 88.75 0 16.1 2527 66.68 0 2.7 2006 51.40 0
300 100 15,550 100 0 100 8870 100 0 99.9 6084 99.98 0 97.3 4563 99.41 0 53.6 3067 84.84 0 6.9 2215 57.97 0 0.6 1765 43.63 0
400 100 15,856 100 0 100 8573 100 0 99.9 5852 99.98 0 96.9 4304 99.28 0 48.3 2737 81.11 0 3.4 2049 52.76 0 0 1596 37.34 0
500 100 16,158 100 0 100 8576 100 0 100 5760 100 0 97.9 4067 99.48 1 44.9 2471 77.70 0 1.8 1727 43.14 0 0.1 1402 28.74 0
600 100 16,216 100 1 100 8425 100 1 99.9 5416 99.98 1 98.8 3724 99.68 1 42.9 2217 74.24 1 1.6 1539 36.00 1 0 1279 21.81 1
700 100 16,338 100 1 100 8142 100 1 100 5055 100 1 99.1 3432 99.74 1 40.4 2059 71.01 1 1.4 1420 30.56 1 0 1197 16.46 1
800 100 16,548 100 1 100 7909 100 1 100 4744 100 1 99 3206 99.69 1 36.8 1821 65.29 1 0.4 1319 24.49 1 0 1133 11.74 1
900 100 16,000 100 1 100 7494 100 1 100 4477 100 1 99 2929 99.66 1 30.5 1716 59.50 1 0.1 1264 20.97 1 0 1098 8.93 1
1000 100 15,806 100 1 100 7294 100 1 100 4123 100 1 99.3 2694 99.74 1 36.1 1535 58.37 1 0.1 1177 15.12 1 0 1057 5.39 1
2000 100 13,179 100 6 100 4424 100 5 100 2200 100 5 100 1431 100 4 24.3 1059 28.52 4 0 1007 0.70 3 0 1002 0.20 3
3000 100 9960 100 13 100 2746 100 12 100 1407 100 11 100 1103 100 10 20.2 1007 20.75 8 0 1000 0 7 0 1001 0.10 7
4000 100 7402 100 24 100 1843 100 22 100 1130 100 20 100 1027 100 17 16.2 1000 16.2 15 0 1000 0 12 0 1000 0 10
5000 100 5616 100 40 100 1450 100 36 100 1042 100 31 100 1008 100 28 12.2 1000 12.2 23 0 1000 0 19 0 1000 0 15
6000 100 4234 100 59 100 1204 100 53 100 1019 100 56 100 1000 100 42 9.8 1000 9.8 34 0 1000 0 28 0 1000 0 23
7000 100 3236 100 82 100 1083 100 64 100 1007 100 65 100 1000 100 58 7.7 1000 7.7 47 0 1000 0 38 0 1000 0 31
8000 100 2511 100 121 100 1040 100 98 100 1002 100 90 100 1000 100 76 7.6 1000 7.6 61 0 1000 0 51 0 1000 0 43
9000 100 2059 100 140 100 1015 100 124 100 1001 100 110 100 1000 100 96 6.2 1000 6.2 79 0 1000 0 65 0 1000 0 52

10,000 100 1728 100 174 100 1011 100 154 100 1001 100 159 100 1000 100 120 5 1000 5 97 0 1000 0 80 0 1000 0 65

Aver. 99.93 8844 99.85 23.71 99.80 4948 99.75 20.46 99.51 3581 99.64 19.71 98.13 2839 99.20 16.32 47.00 2109 60.82 13.32 19.98 1734 41.00 11 10.91 1529 31.87 9.07
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Table A7. Computational results for randomly generated instances with ratio 5% : 20% : 5% : 70% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

20 98.8 1353 99.04 0 96.7 1993 98.29 0 93.3 2325 97.08 0 86.9 2343 94.15 0 71.4 2210 86.38 0 52.1 2091 76.09 0 34.8 1941 65.33 0
40 99.2 4101 99.80 0 98.7 4426 99.71 0 93.5 3918 98.34 0 88.8 3685 96.93 0 60.9 3007 86.63 0 33.2 2539 73.02 0 19 2189 62.27 0
60 99.1 6628 99.86 0 98.7 5712 99.75 0 93.1 4893 98.51 0 82.5 4106 95.64 0 48.8 3176 83.44 0 21.1 2584 68.89 0 10.9 2267 60.17 0
80 99.5 8614 99.93 0 98.3 6701 99.75 0 94.7 5335 98.93 0 79.5 4447 95.21 0 38.9 3272 80.96 0 14.5 2738 68.04 0 5.7 2254 57.59 0
100 99.9 10,165 99.99 0 98.7 7202 99.81 0 92.6 5740 98.69 0 76.5 4634 94.80 0 29.4 3338 78.16 0 10.5 2711 66.58 0 2.7 2224 55.94 0
200 100 13,856 100 0 98.6 8509 99.84 0 87.5 6083 97.93 0 59.5 4691 91.20 0 13.4 3333 73.69 0 4.8 2546 62.33 0 0.7 2041 51.20 0
300 100 15,201 100 0 99.3 8705 99.92 0 82.4 6187 97.07 0 44.5 4566 87.69 0 7.3 3025 69.16 0 2.4 2287 57.24 0 0.1 1833 45.50 0
400 99.9 15,924 99.99 0 98.4 8964 99.82 0 75.3 5888 95.77 0 32.3 4338 84.23 0 9.2 2727 66.59 0 1.9 1970 50.20 0 0.1 1592 37.25 0
500 100 16,186 100 0 98 8588 99.76 0 71 5652 94.80 0 28.6 3987 81.89 1 12.6 2468 64.55 0 1.5 1794 45.09 0 0 1379 27.48 0
600 100 16,531 100 1 97.5 8437 99.70 1 65.2 5391 93.51 1 26.8 3660 79.92 1 16.4 2184 61.72 1 0.6 1556 36.05 1 0 1287 22.30 1
700 100 16,251 100 1 98.7 8282 99.84 1 63.8 4967 92.65 1 24.6 3441 78.00 1 17.1 2087 60.28 2 0.3 1452 31.34 1 0 1186 15.68 1
800 100 16,462 100 1 98.3 7937 99.79 1 62.1 4736 91.91 1 26.5 3192 76.94 1 19.3 1806 55.26 1 0 1338 25.26 1 0 1131 11.58 1
900 100 16,099 100 1 97 7613 99.61 1 58.8 4439 90.70 1 28.7 2885 75.22 1 23.5 1694 54.84 1 0.4 1237 19.48 1 0 1118 10.55 1

1000 100 15,750 100 1 96.6 7157 99.52 1 59.2 4186 90.18 1 29.7 2708 74.04 1 23 1551 50.35 1 0.1 1211 17.51 1 0 1080 7.41 1
2000 100 13,055 100 6 97.8 4521 99.51 5 65.8 2164 84.20 5 76.3 1416 83.26 5 23.5 1063 28.03 4 0 1012 1.19 3 0 1003 0.30 3
3000 100 10,038 100 13 99.5 2766 99.82 12 86.4 1403 90.31 11 94 1109 94.59 10 17.9 1007 18.47 8 0 1000 0 7 0 1000 0 6
4000 100 7568 100 25 99.6 1823 99.78 22 96.3 1118 96.69 20 98.5 1021 98.53 18 15.9 1001 15.98 14 0 1000 0 12 0 1000 0 10
5000 100 5613 100 40 100 1430 100 35 97.4 1056 97.54 32 99.5 1008 99.50 29 11.4 1000 11.4 23 0 1000 0 19 0 1000 0 16
6000 100 4157 100 59 100 1187 100 54 99.5 1014 99.51 48 99.9 1002 99.90 46 10.4 1000 10.4 34 0 1000 0 33 0 1000 0 23
7000 100 3108 100 85 100 1076 100 74 99.7 1007 99.70 66 100 1000 100 60 8.6 1000 8.6 47 0 1000 0 39 0 1000 0 31
8000 100 2581 100 110 100 1051 100 98 99.7 1004 99.70 88 100 1000 100 78 6.4 1000 6.4 65 0 1000 0 50 0 1000 0 41
9000 100 2029 100 140 100 1014 100 131 100 1000 100 115 100 1000 100 99 6.7 1000 6.7 79 0 1000 0 63 0 1000 0 52

10,000 100 1672 100 175 100 1010 100 166 100 1000 100 138 100 1000 100 122 5.9 1000 5.9 99 0 1000 0 80 0 1000 0 66

Aver. 99.84 9693 99.94 28.61 98.71 5048 99.75 26.17 84.23 3500 95.81 22.96 68.85 2706 90.51 20.57 21.65 1954 47.13 16.48 6.23 1612 30.36 13.52 3.22 1414 23.07 11
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Table A8. Computational results for randomly generated instances with ratio 5% : 15% : 5% : 75% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

20 99 1475 99.32 0 96.5 2242 98.44 0 93.4 2450 97.18 0 84.7 2514 93.52 0 68.7 2340 86.07 0 49.2 2103 74.99 0 30.8 1952 63.73 0
40 99.4 4487 99.84 0 98.2 4516 99.53 0 93.5 4245 98.35 0 85.9 3850 96.21 0 52.9 3112 84.38 0 30.1 2565 71.85 0 13.7 2149 59.19 0
60 100 6924 100 0 97.6 5942 99.58 0 91.7 4936 98.30 0 80.3 4225 95.24 0 43.5 3242 82.02 0 17.7 2620 67.82 0 5.9 2282 58.15 0
80 99.8 9113 99.98 0 98.7 6863 99.78 0 92.2 5512 98.55 0 75.3 4487 94.25 0 32.8 3350 79.37 0 12.3 2686 66.57 0 3.1 2301 57.32 0

100 99.9 10,503 99.99 0 98.3 7707 99.78 0 91.4 5884 98.45 0 73 4606 93.90 0 25.9 3411 77.84 0 4.4 2744 64.72 0 1.1 2292 56.68 0
200 100 14,104 100 0 97.7 8731 99.73 0 83.2 6090 97.14 0 53 4744 89.80 0 10.2 3300 72.42 0 0.9 2486 59.90 0 0 2009 50.02 0
300 99.8 15,767 99.99 0 98.2 8987 99.80 0 77.5 6167 96.25 0 36.8 4562 85.88 0 2.3 2969 66.86 0 0 2144 53.36 0 0 1739 42.50 0
400 99.9 15,948 99.99 0 97.5 8704 99.71 0 69 5775 94.53 0 25.9 4239 82.33 0 2.1 2675 63.18 0 0 1939 48.38 0 0 1522 34.30 0
500 99.9 16,456 99.99 1 96.7 8566 99.61 1 63.5 5460 93.28 1 20.8 3926 79.67 1 1.3 2393 58.71 1 0 1695 40.94 0 0 1357 26.31 0
600 100 16,327 100 1 96.6 8386 99.59 1 58.8 5149 91.96 1 17 3616 76.94 1 1.5 2102 53.09 1 0 1510 33.77 1 0 1280 21.88 1
700 100 16,349 100 1 95.8 8152 99.48 1 52.1 4831 90.04 1 14.2 3287 73.81 1 0.6 1911 47.83 1 0 1373 27.17 1 0 1190 15.97 1
800 100 16,329 100 1 94.8 7753 99.33 1 52 4584 89.49 1 15.7 3044 72.17 1 0.4 1732 42.44 1 0 1311 23.72 1 0 1123 10.95 1
900 100 16,036 100 1 96.4 7430 99.52 2 50.3 4206 88.11 1 17.4 2760 70.04 1 0.4 1550 35.68 1 0 1223 18.23 1 0 1084 7.75 1

1000 100 15,802 100 2 94.9 7018 99.27 2 50.3 3859 87.12 2 18.8 2588 68.62 2 0.2 1460 31.64 1 0 1155 13.42 1 0 1057 5.39 1
2000 100 12,622 100 6 94.3 4221 98.63 6 65.2 2006 82.65 6 36.5 1340 52.61 5 0 1044 4.21 4 0 1009 0.89 4 0 1000 0 3
3000 100 9378 100 15 97.3 2524 98.93 14 84.7 1308 88.30 13 36.7 1080 41.39 12 0 1008 0.79 11 0 1000 0 8 0 1000 0 7
4000 100 6813 100 28 99.7 1677 99.82 25 96.4 1092 96.70 23 40.8 1012 41.50 20 0 1000 0 16 0 1000 0 14 0 1000 0 11
5000 100 4874 100 48 99.8 1318 99.85 42 98.6 1031 98.64 38 38.1 1004 38.35 33 0 1000 0 27 0 1000 0 21 0 1000 0 18
6000 100 3737 100 69 100 1178 100 62 99.4 1010 99.41 55 37.8 1003 37.99 49 0 1000 0 39 0 1000 0 31 0 1000 0 26
7000 100 2782 100 96 100 1062 100 84 99.8 1004 99.80 77 35.9 1000 35.9 68 0 1000 0 54 0 1000 0 41 0 1000 0 36
8000 100 2280 100 128 100 1024 100 112 100 1000 100 101 33.2 1000 33.2 90 0 1000 0 71 0 1000 0 57 0 1000 0 52
9000 100 1802 100 163 100 1006 100 142 99.9 1001 99.9 127 33.9 1000 33.9 112 0 1000 0 94 0 1000 0 73 0 1000 0 61

10,000 100 1536 100 199 100 1010 100 176 100 1000 100 160 31 1000 31 141 0 1000 0 114 0 1000 0 91 0 1000 0 75

Aver. 99.9 9628 99.96 33 97.78 5044 99.58 29.17 81.00 3461 94.96 26.39 40.99 2691 66.01 23.35 10.56 1939 38.55 18.96 4.98 1590 28.95 15 2.37 1406 22.18 12.78
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Table A9. Computational results for randomly generated instances with ratio 5% : 5% : 5% : 85% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

20 98.8 1896 99.31 0 94.9 2585 97.95 0 90.4 2763 96.20 0 82.2 2777 93.30 0 61.1 2532 83.37 0 41.9 2220 72.03 0 24.2 2063 61.66 0
40 99.5 5138 99.90 0 97.4 5066 99.49 0 92.9 4468 98.30 0 79.9 3928 94.63 0 46.8 3040 81.71 0 21.4 2588 68.66 0 8.7 2231 58.09 0
60 99.8 7963 99.97 0 98 6409 99.69 0 91.5 5209 98.33 0 72.5 4332 93.44 0 35.5 3301 80.01 0 11.5 2681 66.21 0 3.2 2349 58.49 0
80 99.7 9889 99.97 0 97.8 7272 99.68 0 88.7 5564 97.90 0 62.9 4545 91.44 0 25 3415 77.39 0 6.7 2718 65.16 0 0.6 2273 55.70 0

100 99.4 11,142 99.95 0 97.5 7878 99.67 0 86.9 5749 97.67 0 64.1 4732 92.16 0 17.4 3326 74.74 0 3.5 2705 64.07 0 0.2 2257 55.38 0
200 99.8 14,582 99.99 0 96.9 8778 99.64 0 73.5 6081 95.54 0 38.2 4773 86.80 0 2.9 3190 69.28 0 0.2 2407 58.33 0 0 1915 47.78 0
300 100 15,862 100 0 95.8 8856 99.51 0 63.9 5907 93.84 0 21.9 4440 82.27 0 0.6 2808 64.32 0 0 2070 51.64 0 0 1651 39.37 0
400 100 16,410 100 0 93.8 8685 99.25 0 51.1 5715 91.32 0 11.6 4129 78.40 0 0.1 2496 59.90 0 0 1777 43.73 0 0 1438 30.39 0
500 100 16,610 100 1 92.8 8433 99.13 1 43.5 5286 89.14 1 8.4 3665 74.92 1 0 2170 53.98 1 0 1514 33.95 1 0 1280 21.88 1
600 100 16,129 100 1 90.5 8109 98.79 1 37.3 4975 87.32 1 4.5 3355 71.51 1 0 1966 49.14 1 0 1407 28.86 1 0 1178 15.11 1
700 100 16,180 100 1 90.6 7795 98.78 1 34.7 4557 85.63 1 2.6 3089 68.37 1 0 1757 43.09 1 0 1289 22.34 1 0 1117 10.47 1
800 100 15,972 100 1 90.8 7404 98.76 1 29.3 4281 83.44 1 2.1 2723 63.90 1 0 1607 37.77 1 0 1206 17.08 1 0 1090 8.26 1
900 100 15,602 100 2 88.3 6867 98.28 2 24.7 3918 80.78 2 0.7 2547 61.01 2 0 1448 30.94 1 0 1145 12.66 1 0 1044 4.21 1
1000 100 15,428 100 2 86.6 6570 97.95 2 19.3 3586 77.44 2 0.3 2279 56.16 2 0 1314 23.90 2 0 1093 8.51 2 0 1031 3.01 1
2000 100 11,672 100 8 83 3610 95.29 8 6.2 1716 45.34 7 0 1220 18.03 7 0 1029 2.82 6 0 1010 0.99 5 0 1000 0 4
3000 100 8320 100 19 79.4 2171 90.51 18 1.9 1186 17.28 17 0 1044 4.21 15 0 1001 0.10 12 0 1000 0 10 0 1000 0 8
4000 100 5648 100 37 80.9 1472 87.02 34 1.5 1050 6.19 30 0 1007 0.70 27 0 1000 0 22 0 1000 0 18 0 1000 0 15
5000 100 4110 100 61 82.8 1186 85.50 56 0.3 1019 2.16 49 0 1002 0.20 44 0 1000 0 35 0 1000 0 29 0 1000 0 23
6000 100 2976 100 91 83.8 1091 85.15 80 0.3 1003 0.60 72 0 1000 0 91 0 1000 0 51 0 1000 0 44 0 1000 0 34
7000 100 2280 100 125 89 1036 89.38 110 0.1 1001 0.20 99 0 1000 0 88 0 1000 0 70 0 1000 0 57 0 1000 0 53
8000 100 1803 100 164 88.8 1010 88.91 145 0 1000 0 136 0 1000 0 115 0 1000 0 93 0 1000 0 75 0 1000 0 62
9000 100 1517 100 209 89.5 1003 89.53 184 0.1 1000 0.1 164 0 1000 0 147 0 1000 0 117 0 1000 0 96 0 1000 0 79

10,000 100 1290 100 270 90.5 1003 90.53 230 0 1000 0 204 0 1000 0 182 0 1000 0 147 0 1000 0 119 0 1000 0 98

Aver. 99.87 9496 99.96 43.13 90.41 4969 95.15 37.96 36.44 3393 58.47 34.17 19.65 2634 49.19 31.48 8.23 1887 36.19 24.35 3.70 1558 26.70 20 1.60 1388 20.43 16.61
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Table A10. Computational results for randomly generated instances with ratio 3% : 2% : 5% : 90% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

100 99.7 11511 0.9997 0 95.4 8016 0.994 0 79 5914 0.963 0 50.5 4697 0.892 0 0.6 3217 0.688 0 1 2712 0.631 0 0 2282 0.559 0
200 99.7 15,060 0.9998 0 94 8798 0.993 0 60.4 6244 0.935 0 24.3 4606 0.833 0 0.1 2812 0.643 0 0 2352 0.574 0 0 1897 0.472 0
300 99.6 15,656 0.9997 0 88 8797 0.986 0 41 5866 0.898 0 10.2 4394 0.792 0 0 2395 0.582 1 0 2002 0.499 0 0 1572 0.364 0
400 99.5 16,208 0.9997 0 81.6 8503 0.978 1 26 5641 0.868 1 3.5 3960 0.756 1 0 2142 0.533 1 0 1721 0.418 0 0 1376 0.273 1
500 99.7 16,397 0.9998 1 77.2 8360 0.973 1 20.3 5140 0.844 1 1.4 3621 0.726 1 0 1868 0.464 1 0 1555 0.357 1 0 1242 0.195 1
600 99.6 16,083 0.9998 1 71.9 7983 0.964 1 14.2 4801 0.821 1 0.7 3294 0.697 1 0 1688 0.408 1 0 1374 0.272 1 0 1171 0.146 1
700 99.6 15,873 0.9997 1 69.1 7623 0.959 1 11.2 4438 0.800 1 0.4 2956 0.663 1 0 1525 0.344 1 0 1221 0.181 1 0 1093 0.085 1
800 99.6 15,935 0.9997 2 64.6 7140 0.950 2 8.1 4116 0.776 2 0.5 2671 0.627 2 0 1403 0.287 2 0 1178 0.151 1 0 1066 0.062 1
900 99.6 15,490 0.9997 2 63.6 6760 0.945 2 4.9 3735 0.745 2 0.1 2368 0.578 2 0 1324 0.245 2 0 1110 0.099 2 0 1045 0.043 1
1000 99.7 15,121 0.9998 2 60.5 6413 0.937 3 4.4 3405 0.719 2 0 2154 0.536 2 0 1019 0.019 7 0 1091 0.083 2 0 1027 0.026 2
2000 99.9 11,277 0.9999 10 30.5 3309 0.790 9 0 1624 0.384 9 0 1195 0.163 8 0 1003 0.003 14 0 1004 0.004 7 0 1000 0 5
3000 99.8 7873 0.9997 25 19.2 1949 0.585 21 0 1154 0.133 21 0 1027 0.026 17 0 1000 0 25 0 1001 0.001 12 0 1000 0 10
4000 99.7 5275 0.9994 43 15.6 1380 0.388 39 0 1042 0.040 35 0 1007 0.007 31 0 1000 0 40 0 1000 0 22 0 1000 0 17
5000 99.9 3641 0.9997 70 9.8 1141 0.209 64 0 1008 0.008 57 0 1001 0.001 50 0 1000 0 59 0 1000 0 33 0 1000 0 27
6000 100 2667 1 102 9.1 1041 0.127 98 0 1001 0.001 82 0 1000 0 73 0 1000 0 62 0 1000 0 48 0 1000 0 39
7000 100 2045 1 141 7.6 1024 0.098 127 0 1001 0.001 118 0 1000 0 100 0 1000 0 92 0 1000 0 73 0 1000 0 54
8000 100 1633 1 186 6.2 1005 0.067 166 0 1000 0 147 0 1000 0 163 0 1000 0 105 0 1000 0 85 0 1000 0 71
9000 100 1407 1 236 4.5 1003 0.048 210 0 1000 0 186 0 1000 0 165 0 1000 0 133 0 1000 0 109 0 1000 0 89

10,000 100 1248 1 294 2.5 1000 0.025 274 0 1000 0 231 0 1000 0 206 0 1000 0 168 0 1000 0 137 0 1000 0 112

Aver. 99.77 10021 1.00 58.74 45.84 4803 0.63 53.63 14.18 3112 0.47 47.16 4.82 2313 0.38 43.32 0.04 1495 0.22 37.58 0.05 1333 0.17 28.11 0 1198 0.12 22.74
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Table A11. Computational results for randomly generated instances with ratio 2% : 3% : 5% : 90% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

100 99 11,556 0.999 0 94 7914 0.992 0 75 5859 0.956 0 46.8 4631 0.881 0 9.3 3418 0.731 0 0.9 2679 0.624 0 0 2206 0.544 0
200 99.3 14,862 1.000 0 90.1 8619 0.988 0 51.3 6177 0.919 0 18.5 4644 0.820 0 0.4 3093 0.676 0 0 2324 0.567 0 0 1889 0.468 0
300 99.4 15,924 1.000 0 85.8 8892 0.984 0 35.3 5901 0.888 0 6.7 4360 0.783 0 0.2 2749 0.635 0 0 2034 0.508 0 0 1611 0.379 0
400 99.6 16,312 1.000 0 77.8 8622 0.974 1 22.4 5652 0.861 1 2.6 3936 0.752 1 0 2412 0.585 1 0 1733 0.422 1 0 1371 0.270 0
500 99.7 16,305 1.000 1 72.6 8415 0.967 1 13.2 5135 0.829 1 1.2 3653 0.728 1 0 2122 0.528 1 0 1528 0.346 1 0 1232 0.188 1
600 99.2 16,297 1.000 1 66.1 7956 0.956 1 9.5 4917 0.814 1 0.5 3199 0.688 1 0 1850 0.459 1 0 1388 0.280 1 0 1179 0.152 1
700 99.7 16,252 1.000 1 58.2 7472 0.943 1 7.6 4480 0.793 2 0 2895 0.655 1 0 1660 0.398 1 0 1233 0.189 1 0 1080 0.074 1
800 99.5 16,075 1.000 2 51.8 7186 0.933 2 3.3 4088 0.763 2 0 2662 0.624 2 0 1506 0.336 1 0 1178 0.151 1 0 1061 0.057 1
900 99.4 15,617 1.000 2 48.6 6771 0.923 2 2.6 3828 0.744 2 0 2398 0.583 2 0 1379 0.275 2 0 1141 0.124 3 0 1036 0.035 1

1000 99.4 15,297 1.000 2 42.5 6381 0.909 3 2.2 3435 0.715 4 0 2114 0.527 2 0 1352 0.260 2 0 1092 0.084 3 0 1025 0.024 2
2000 98.8 11,349 0.999 10 20.1 3332 0.760 9 0 1646 0.392 9 0 1182 0.154 8 0 1024 0.023 7 0 1000 0 6 0 1001 0.001 5
3000 98.1 7777 0.998 23 5.4 1938 0.512 21 0 1166 0.142 19 0 1038 0.037 17 0 1002 0.002 14 0 1000 0 13 0 1000 0 10
4000 97.4 5297 0.995 45 3.9 1391 0.309 47 0 1037 0.036 35 0 1003 0.003 31 0 1000 0 26 0 1000 0 20 0 1000 0 17
5000 99.1 3802 0.998 70 2.2 1131 0.135 64 0 1009 0.009 56 0 1000 0 50 0 1000 0 46 0 1000 0 33 0 1000 0 27
6000 99 2686 0.996 102 0.8 1047 0.053 99 0 1003 0.003 82 0 1000 0 84 0 1000 0 58 0 1000 0 47 0 1000 0 39
7000 99.6 1996 0.998 142 0.5 1011 0.016 126 0 1001 0.001 112 0 1000 0 100 0 1000 0 87 0 1000 0 66 0 1000 0 54
8000 99.9 1641 0.999 185 0.2 1004 0.006 178 0 1000 0 150 0 1000 0 132 0 1000 0 106 0 1000 0 86 0 1000 0 70
9000 99.8 1387 0.999 236 0.2 1005 0.007 211 0 1000 0 186 0 1000 0 180 0 1000 0 134 0 1000 0 109 0 1000 0 89

10,000 99.9 1247 0.999 293 0 1001 0.001 260 0 1000 0 231 0 1000 0 205 0 1000 0 165 0 1000 0 134 0 1000 0 111

Aver. 99.25 10,088 1.00 58.68 37.94 4794 0.60 54 11.71 3123 0.47 47 4.02 2301 0.38 43 0.52 1609 0.26 34.32 0.05 1333 0.17 27.63 0 1194 0.12 22.58
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Table A12. Computational results for randomly generated instances with ratio 2% : 2% : 1% : 95% of the numbers of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

100 97.4 12,124 0.998 0 86.5 7871 0.982 0 58.4 5867 0.926 0 27.3 4689 0.840 0 2.8 3377 0.705 0 0.2 2727 0.630 0 0 1898 0.473 0
200 97.1 15,322 0.998 0 74.2 8612 0.969 0 30.8 6247 0.886 0 6.1 4774 0.799 0 0 3086 0.674 0 0 2326 0.568 0 0 1586 0.369 0
300 95.5 15,872 0.997 0 57 8728 0.950 0 10.8 5787 0.843 0 0.9 4379 0.771 0 0 2664 0.624 0 0 1969 0.492 0 0 1348 0.258 0
400 95 16,354 0.997 1 40.9 8608 0.930 1 5.4 5518 0.827 1 0 3918 0.743 1 0 2334 0.570 1 0 1685 0.407 1 0 1232 0.188 1
500 94.1 16,103 0.996 1 30.9 8194 0.914 1 1.1 5012 0.801 1 0 3606 0.720 1 0 2076 0.518 1 0 1439 0.305 1 0 1135 0.119 1
600 91.4 16,241 0.995 1 21 7792 0.898 1 0.7 4690 0.787 1 0 3096 0.677 1 0 1750 0.429 1 0 1322 0.244 2 0 1067 0.063 1
700 92.3 16,138 0.995 1 16.7 7403 0.886 2 0 4265 0.765 2 0 2837 0.647 2 0 1604 0.377 1 0 1201 0.167 1 0 1058 0.055 1
800 89.6 15,785 0.993 2 10.7 7081 0.873 2 0.2 3909 0.744 2 0 2544 0.606 2 0 1464 0.317 2 0 1150 0.130 1 0 1039 0.038 2
900 87.3 15,368 0.992 2 6.9 6505 0.856 2 0 3595 0.721 2 0 2321 0.569 2 0 1347 0.258 2 0 1094 0.086 2 0 1019 0.019 2

1000 84.5 15,200 0.990 3 5.2 6203 0.847 3 0 3266 0.694 3 0 2082 0.520 3 0 1254 0.203 2 0 1069 0.065 2 0 1000 0 6
2000 48.3 10,867 0.952 11 0.1 3141 0.682 11 0 1536 0.349 10 0 1163 0.140 9 0 1015 0.015 7 0 1002 0.002 6 0 1000 0 11
3000 27.9 7207 0.900 26 0 1847 0.459 24 0 1124 0.110 21 0 1011 0.011 19 0 1001 0.001 16 0 1000 0 13 0 1000 0 21
4000 14.1 4913 0.825 49 0 1304 0.233 46 0 1019 0.019 41 0 1003 0.003 35 0 1000 0 28 0 1000 0 23 0 1000 0 30
5000 6.9 3353 0.722 80 0 1125 0.111 71 0 1002 0.002 63 0 1001 0.001 57 0 1000 0 48 0 1000 0 36 0 1000 0 47
6000 3.4 2359 0.591 118 0 1037 0.036 104 0 1003 0.003 92 0 1000 0 81 0 1000 0 65 0 1000 0 53 0 1000 0 44
7000 1.9 1895 0.482 175 0 1017 0.017 142 0 1000 0 126 0 1001 0.001 112 0 1000 0 90 0 1000 0 73 0 1000 0 65
8000 0.8 1509 0.343 210 0 1003 0.003 184 0 1000 0 164 0 1000 0 146 0 1000 0 138 0 1000 0 95 0 1000 0 78
9000 0.7 1308 0.241 269 0 1001 0.001 235 0 1000 0 210 0 1000 0 187 0 1000 0 150 0 1000 0 121 0 1000 0 164

10,000 0.5 1155 0.139 330 0 1001 0.001 290 0 1000 0 257 0 1000 0 230 0 1000 0 183 0 1000 0 151 0 1000 0 123

Aver. 54.14 9951 0.80 67.32 18.43 4709 0.56 58.89 5.65 3044 0.45 52.42 1.81 2286 0.37 46.74 0.15 1577 0.25 38.68 0.01 1315 0.16 30.58 0 1125 0.08 31.42
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Table A13. Computational results for randomly generated instances with ratio 1% : 2% : 2% : 95% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

100 97.3 11,883 0.998 0 85.4 8060 0.981 0 58.5 5861 0.928 0 30.4 4718 0.846 0 3.2 3449 0.714 0 0.5 2646 0.621 0 0 2167 0.537 0
200 96.1 15,255 0.997 0 72.7 8727 0.968 0 29 6058 0.881 0 4.9 4698 0.795 0 0 3070 0.673 0 0 2301 0.565 0 0 1828 0.451 0
300 96.9 16,030 0.998 0 57.9 8787 0.950 0 10.6 5869 0.845 0 1.7 4304 0.770 0 0 2730 0.632 0 0 1956 0.488 0 0 1545 0.353 0
400 93.7 15,829 0.996 1 44.7 8623 0.934 1 3.9 5462 0.823 1 0 3931 0.745 1 0 2349 0.574 1 0 1629 0.386 1 0 1389 0.280 1
500 92.8 16,212 0.995 1 31.2 8178 0.915 1 1.4 5161 0.806 1 0.2 3590 0.721 1 0 2038 0.508 1 0 1472 0.321 1 0 1241 0.194 1
600 94 16,414 0.996 1 22.9 7766 0.899 1 0.8 4733 0.789 1 0 3212 0.687 1 0 1806 0.446 1 0 1310 0.237 1 0 1160 0.138 1
700 91.4 15,944 0.994 1 14 7296 0.880 2 0.2 4171 0.760 2 0 2799 0.643 1 0 1562 0.360 1 0 1235 0.190 1 0 1077 0.071 1
800 89.7 15,772 0.993 2 9.3 7079 0.870 2 0.1 3918 0.745 2 0 2510 0.602 2 0 1452 0.311 2 0 1135 0.119 1 0 1064 0.060 1
900 85.4 15,267 0.990 2 6.2 6618 0.858 2 0 3584 0.720 2 0 2259 0.557 2 0 1314 0.239 2 0 1106 0.096 2 0 1025 0.024 2

1000 84 15,005 0.989 3 3.3 6135 0.841 3 0 3251 0.692 3 0 2074 0.517 3 0 1263 0.208 2 0 1066 0.062 2 0 1014 0.014 2
2000 48.7 10,938 0.953 13 0 3157 0.683 10 0 1501 0.334 9 0 1145 0.127 9 0 1007 0.007 7 0 1001 0.001 6 0 1000 0 6
3000 27.6 7287 0.900 28 0 1792 0.441 24 0 1115 0.103 21 0 1021 0.021 22 0 1001 0.001 16 0 1000 0 13 0 1000 0 11
4000 13.7 4925 0.825 49 0 1290 0.225 44 0 1029 0.028 39 0 1006 0.006 35 0 1000 0 28 0 1000 0 24 0 1000 0 21
5000 7.9 3378 0.727 80 0 1102 0.093 72 0 1006 0.006 63 0 1000 0 56 0 1000 0 45 0 1000 0 36 0 1000 0 34
6000 4.4 2449 0.610 117 0 1049 0.047 104 0 1000 0 91 0 1000 0 81 0 1000 0 67 0 1000 0 53 0 1000 0 43
7000 2.1 1878 0.479 160 0 1019 0.019 141 0 1001 0.001 126 0 1000 0 112 0 1000 0 89 0 1000 0 74 0 1000 0 60
8000 0.9 1514 0.345 210 0 1004 0.004 185 0 1000 0 169 0 1000 0 147 0 1000 0 117 0 1000 0 96 0 1000 0 78
9000 0.4 1298 0.233 286 0 1001 0.001 236 0 1000 0 208 0 1000 0 186 0 1000 0 149 0 1000 0 121 0 1000 0 100

10,000 0.2 1165 0.143 330 0 1000 0 290 0 1000 0 303 0 1000 0 230 0 1000 0 184 0 1000 0 149 0 1000 0 123

Aver. 54.06 9918 0.80 67.58 18.29 4720 0.56 58.84 5.50 3034 0.45 54.79 1.96 2277 0.37 46.79 0.17 1581 0.25 37.47 0.03 1308 0.16 30.58 0 1185 0.11 25.53
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Table A14. Computational results for randomly generated instances with ratio 1% : 1% : 3% : 95% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

100 98.6 11,377 0.999 0 88.5 7897 0.985 0 61.8 5894 0.933 0 30 4695 0.846 0 3.5 3376 0.708 0 0.4 2676 0.620 0 0 2222 0.545 0
200 98 15,012 0.999 0 76.8 8729 0.972 0 30.8 6003 0.881 0 8.4 4701 0.800 0 0 3170 0.682 0 0 2327 0.569 0 0 1856 0.460 0
300 97.4 15,847 0.998 0 67.8 8727 0.963 0 14.3 5842 0.851 0 1.5 4258 0.767 0 0 2746 0.634 0 0 1959 0.489 0 0 1558 0.358 0
400 96.7 16,261 0.998 1 49.6 8486 0.939 1 6.1 5500 0.828 1 0.4 3922 0.745 1 0 2339 0.572 1 0 1724 0.420 1 0 1330 0.248 0
500 95.9 16,266 0.997 1 38.1 8240 0.923 1 2.7 5142 0.810 1 0 3540 0.716 1 0 2060 0.515 1 0 1457 0.314 1 0 1230 0.187 1
600 95 15,911 0.997 1 29.3 7829 0.909 1 1.3 4759 0.791 1 0 3151 0.682 1 0 1830 0.454 1 0 1325 0.245 1 0 1126 0.112 1
700 92.6 15,922 0.995 1 23.1 7315 0.894 2 0.3 4317 0.769 2 0 2806 0.643 2 0 1643 0.391 1 0 1208 0.172 1 0 1093 0.085 1
800 94.4 15,727 0.996 2 15.8 7005 0.879 2 0.4 3906 0.745 2 0 2508 0.601 2 0 1469 0.319 2 0 1154 0.133 1 0 1051 0.049 1
900 92.4 15,311 0.995 2 12.7 6628 0.868 2 0 3606 0.721 2 0 2262 0.557 2 0 1380 0.275 2 0 1102 0.093 2 0 1030 0.029 2

1000 90.2 14,979 0.993 3 8.1 6215 0.852 3 0 3231 0.690 3 0 2011 0.503 3 0 1255 0.203 3 0 1060 0.057 2 0 1020 0.020 2
2000 67.9 10,778 0.970 11 0.5 3068 0.676 10 0 1567 0.362 9 0 1147 0.128 9 0 1013 0.013 7 0 1000 0 6 0 1000 0 5
3000 51.3 7398 0.934 27 0 1775 0.437 24 0 1129 0.114 22 0 1024 0.023 19 0 1000 0 17 0 1000 0 13 0 1000 0 18
4000 34.2 4903 0.866 49 0 1306 0.234 48 0 1017 0.017 39 0 1003 0.003 35 0 1000 0 28 0 1000 0 23 0 1000 0 19
5000 22.9 3312 0.767 79 0 1113 0.102 71 0 1009 0.009 63 0 1000 0 56 0 1000 0 45 0 1000 0 36 0 1000 0 30
6000 17.6 2440 0.662 116 0 1030 0.029 103 0 1001 0.001 92 0 1000 0 82 0 1000 0 65 0 1000 0 53 0 1000 0 44
7000 15.4 1838 0.540 160 0 1016 0.016 141 0 1000 0 125 0 1000 0 111 0 1000 0 89 0 1000 0 73 0 1000 0 60
8000 10 1470 0.388 208 0 1007 0.007 185 0 1000 0 165 0 1000 0 146 0 1000 0 117 0 1000 0 95 0 1000 0 79
9000 8.4 1339 0.316 266 0 1000 0 236 0 1000 0 208 0 1000 0 185 0 1000 0 148 0 1000 0 121 0 1000 0 100

10,000 7.8 1171 0.213 331 0 1000 0 292 0 1000 0 322 0 1000 0 229 0 1000 0 200 0 1000 0 162 0 1000 0 124

Aver. 62.46 9856 0.82 66.21 21.59 4705 0.56 59.05 6.19 3049 0.45 55.63 2.12 2265 0.37 46.53 0.18 1594 0.25 38.26 0.02 1315 0.16 31.11 0 1185 0.11 25.63
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Table A15. Computational results for randomly generated instances with ratio 1% : 1% : 1% : 97% of the number of jobs in the subsets.

δ% 5% 10% 15% 20% 30% 40% 50%

n Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t Opt NC SC t

100 96.9 12,063 0.997 0 84.9 7901 0.980 0 52.5 5921 0.916 0 26.1 4713 0.837 0 2.4 3366 0.705 0 0 2618 0.612 0 0 2180 0.534 0
200 96.1 15,300 0.997 0 68.1 8663 0.962 0 22.1 6051 0.868 0 4.1 4665 0.791 0 0 3116 0.677 0 0 2355 0.574 0 0 1837 0.456 0
300 93.6 15,913 0.996 0 50.4 8790 0.942 0 6.9 5883 0.840 0 0.8 4267 0.765 0 0 2741 0.634 0 0 1939 0.483 0 0 1554 0.356 0
400 93.4 16,711 0.996 1 32.3 8577 0.919 1 3.1 5548 0.822 1 0 3935 0.745 1 0 2357 0.576 1 0 1667 0.400 1 0 1328 0.247 1
500 90.6 16,157 0.994 1 20.6 8180 0.902 1 1.2 5054 0.803 1 0 3430 0.708 1 0 2048 0.512 1 0 1447 0.309 1 0 1198 0.165 1
600 89.5 16,069 0.993 1 13.2 7871 0.889 1 0.1 4747 0.788 1 0 3089 0.676 1 0 1808 0.447 1 0 1326 0.246 1 0 1128 0.113 1
700 87.1 16,038 0.992 2 8.4 7320 0.874 2 0 4260 0.763 2 0 2710 0.630 1 0 1641 0.389 1 0 1200 0.167 1 0 1093 0.085 1
800 84.6 15,770 0.990 2 4.5 7035 0.863 2 0 3760 0.733 2 0 2510 0.602 2 0 1458 0.314 2 0 1148 0.129 1 0 1040 0.038 1
900 78.4 15,360 0.986 2 3.8 6525 0.851 3 0 3467 0.711 2 0 2233 0.552 2 0 1354 0.261 2 0 1091 0.083 2 0 1024 0.023 2

1000 73.7 15,050 0.982 3 2.1 6045 0.837 3 0 3186 0.686 3 0 2041 0.510 3 0 1236 0.191 2 0 1073 0.068 2 0 1016 0.016 2
2000 30.1 10,811 0.935 12 0 3034 0.670 11 0 1538 0.350 10 0 1147 0.128 9 0 1012 0.012 8 0 1003 0.003 7 0 1000 0 6
3000 11.8 7095 0.875 28 0 1790 0.441 25 0 1110 0.099 22 0 1020 0.020 20 0 1000 0 16 0 1000 0 13 0 1000 0 11
4000 3.5 4711 0.795 51 0 1274 0.215 61 0 1030 0.029 41 0 1001 0.001 36 0 1000 0 29 0 1000 0 24 0 1000 0 21
5000 0.7 3274 0.696 84 0 1104 0.094 74 0 1003 0.003 67 0 1000 0 59 0 1000 0 47 0 1000 0 41 0 1000 0 32
6000 0.3 2335 0.573 121 0 1039 0.038 107 0 1001 0.001 95 0 1000 0 85 0 1000 0 68 0 1000 0 55 0 1000 0 46
7000 0.1 1747 0.428 166 0 1009 0.009 147 0 1000 0 130 0 1000 0 117 0 1000 0 93 0 1000 0 76 0 1000 0 63
8000 0 1487 0.328 218 0 1005 0.005 194 0 1000 0 170 0 1000 0 151 0 1000 0 123 0 1000 0 100 0 1000 0 81
9000 0 1281 0.219 280 0 1000 0 266 0 1000 0 217 0 1000 0 194 0 1000 0 155 0 1000 0 126 0 1000 0 105

10,000 0 1164 0.141 344 0 1000 0 305 0 1000 0 268 0 1000 0 239 0 1000 0 298 0 1000 0 156 0 1000 0 130

Aver. 48.97 9912 0.78 69.26 15.17 4693 0.55 63.32 4.52 3029 0.44 54.32 1.63 2251 0.37 48.47 0.13 1586 0.25 44.58 0 1309 0.16 31.95 0 1179 0.11 26.53
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