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Abstract: The Traveling Salesman Problem (TSP) aims at finding the shortest trip for a salesman,
who has to visit each of the locations from a given set exactly once, starting and ending at the same
location. Here, we consider the Euclidean version of the problem, in which the locations are points
in the two-dimensional Euclidean space and the distances are correspondingly Euclidean distances.
We propose simple, fast, and easily implementable heuristics that work well, in practice, for large
real-life problem instances. The algorithm works on three phases, the constructive, the insertion, and
the improvement phases. The first two phases run in time O(n2) and the number of repetitions in the
improvement phase, in practice, is bounded by a small constant. We have tested the practical behavior
of our heuristics on the available benchmark problem instances. The approximation provided by our
algorithm for the tested benchmark problem instances did not beat best known results. At the same
time, comparing the CPU time used by our algorithm with that of the earlier known ones, in about
92% of the cases our algorithm has required less computational time. Our algorithm is also memory
efficient: for the largest tested problem instance with 744,710 cities, it has used about 50 MiB, whereas
the average memory usage for the remained 217 instances was 1.6 MiB.

Keywords: heuristic algorithm; traveling salesman problem; computational experiment; time
complexity

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most studied strongly NP-hard combinatorial
optimization problems. Given an n× n matrix of distances between n objects, call them cities, one
looks for a shortest possible feasible tour which can be seen as a permutation of the given n objects:
a feasible tour visits each of the n cities exactly once except the first visited city with which the tour
ends. The cost of a tour is the sum of the distances between each pair of the neighboring cities in that
tour. This problem can also be described in graph terms. We have an undirected weighted complete
graph G = (V, E), where V is the set of n = |V| vertices (cities) and E is the set of the n2 − n edges
(i, j) = (j, i), i 6= j. A non-negative weight of an edge (i, j), w(i, j) is the distance between vertices i
and j. There are two basic sets of restrictions that define feasible solution (a tour that has to start and
complete at the same vertex and has to contain all the vertices from set V exactly once). A feasible tour
T can be represented as:
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T = (i1, i2, · · · , in−1, in, i1); ik ∈ V, (1)

and its cost is

C(T) =
n−1

∑
k=1

w(ik, ik+1) + w(in, i1). (2)

The objective is to find an optimal tour, a feasible one with the minimum cost minT C(T).
Some special cases of the problem have been commonly considered. For instance, in the symmetric

version, the distance matrix is symmetric (i.e., for each edge (i, j), w(i, j) = w(j, i)); in another setting,
the distances between the cities are Euclidean distances (i.e., set V can be represented as points in the
two-dimensional Euclidean space). Clearly, the Euclidean TSP is also a symmetric TSP but not vice
versa. The Euclidean TSP has a straightforward immediate application in the real-life scenario when a
salesman wishes to visit the cities using the shortest possible tour. Because in the Euclidean version
the cities are points in plane, for each pair of points, the triangle inequality holds, which makes the
problem a bit more accessible in the sense that simple geometric rules can be used for calculating the
cost of a tour or the cost of the inclusion of a new point in a partial tour, unlike the general setting.
Nevertheless, the Euclidean TSP remains strongly NP-hard; see Papadimitriou [1] and Garey et al. [2].

The exact solution methods for TSP can only solve problem instances with a moderate number
of cities; hence, approximation algorithms are of a primary interest. There exist a vast amount of
approximation heuristic algorithms for TSP. The literature on TSP is very wide-ranging, and it is not
our goal to overview all the important relevant work here (we refer the reader, e.g., to a book by
Lawler et al. [3] and an overview chapter by Jünger [4]).

The literature distinguishes two basic types of approximation algorithms for TSP: tour
construction and loop improvement algorithms. The construction heuristics create a feasible tour
in one pass so that the taken decisions are not reconsidered later. A feasible solution delivered by
a construction heuristic can be used in a loop improvement heuristic as an initial feasible solution
(though such initial solution can be constructed randomly). Given the current feasible tour, iteratively,
an improvement algorithm, based on some local optimality criteria, makes some changes in that
tour resulting in a new feasible solution with less cost. Well-known examples of tour improvement
algorithms are 2-Opt Croes 2-Opt, its generalizations 3-Opt and k-Opt, and the algorithm by Lin and
Kernighan [5], to mention a few.

The most successful algorithms we have found in the literature for large-scale TSP instances are
Ant Colony Optimization (ACO) meta heuristics, with which we compare our results. On one hand,
these algorithms give a good approximation. On the other hand, the traditional ACO-based algorithms
tend to require a considerable computer memory, which is necessary to keep an n× n pheromone
matrix. Typically, the time complexity of the selection of each next move using ACO is also costly.
These drawbacks are addressed in some recent ACO-based algorithms in which, at each iteration of the
calculation of the pheromone levels, the intermediate data are reduced storing only a limited number
of the most promising tours in computer memory. With Partial ACO (PACO), only some part of a
known good tour is altered. A PACO-based heuristic was proposed in Chitty [6] and the experimental
results for four problem instances from library Art Gallery were reported. Effective Strategies + ACO
(ESACO) uses pheromone values directly in the 2-opt local search for the solution improvement and
reduces the pheromone matrix, yielding linear space complexity (see, for example, Ismkman [7]).
Parallel Cooperative Hybrid Algorithm ACO (PACO-3Opt) uses a multi-colony of ants to prevent a
possible stagnation (see, for example, Gülcü et al. [8]). In a very recent Restricted Pheromone Matrix
Method (RPMM) [9], the pheromone matrix is reduced with a linear memory complexity, resulting in
an essentially lower memory consumption. Another recent successful ACO-based Dynamic Flying
ACO (DFACO) heuristic was proposed by Dahan et al. [10]. Besides these ACO-based heuristics, we
have compared our heuristics with other two meta-heuristics. One of them is a parallel algorithm based
on the nearest neighborhood search suggested by Al-Adwan et al. [11], and the other one, proposed
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by Zhong et al. [12], is a Discrete Pigeon-Inspired Optimization (DPIO) metaheuristic. We have also
implemented directly the Nearest Neighborhood (NN) algorithm for the comparison purposes (see
Section 4 and Appendix A).

In Table A1 in Appendix A, we give a summary of the above heuristics including the information
on the type and the number of the instances for which these algorithms were tested and the number
of the runs of each of these algorithms. Unlike these heuristics, the heuristic that we propose here is
deterministic, in the sense that, for any input, it delivers the same solution each time it is invoked;
hence, there is no need in the repeated runs of our algorithm. We have tested the performance of
our algorithm on 218 benchmark problem instances (the number of the reported instances for the
algorithms from Table A1 vary from 6 to 36). The relative error of our algorithm for the tested instances
did not beat the earlier known best results; however, for some instances, our error was better than that
of the above-mentioned algorithms (see Table 9 at the end of Section 3). The error percentage provided
by our algorithm has varied from 0% to 17%, with an average relative error of 7.16%. The standard
error deviation over all the tested instances was 0.03.

In terms of the CPU time, our algorithm was faster than ones from Table A1 except for six instances
from Art Gallery RPMM [9] and Partial-ACO [6], and for two instances from TSPLIB DPIO [12] were
faster (see Table 10). Among all the comparisons we made, in about 92% of the cases, our algorithm
has required less computational time. We have halted the execution of our algorithm for the two of
the above-mentioned largest problem instances in 15 days, and for the next largest instance ara238025
with 238,025 cities our algorithm has halted in about 36 h. The average CPU time for the remained
instances were 19.2 min. The standard CPU time deviation for these instances was 89.3 min (for all the
instances, including the above-mentioned three largest ones, it was 2068.4 min).

Our algorithm consumes very little computer memory. For the largest problem instance with
744,710 cities, it has used only about 50 MiB (mebibytes). The average memory usage for the remained
217 instances was 1.6 MiB (the average for all the instances including the above largest one was 1.88
MiB). The standard deviation of the usage of the memory is 4.6 MiB. Equation (3) below (see also
Figure 15 in Section 3) shows the dependence of the memory required by our algorithm on the total
number of cities n. As we can observe, this dependence is linear:

RAM = 0.0000685n + 0.563 MiB. (3)

Our algorithm consists of the constructive, the insertion and the improvement phases, we call it
the Constructive, Insertion, and Improvement algorithm, the CII-algorithm, for short. The constructive
heuristics of Phase 1 deliver a partial tour that includes solely the points of the girding polygon.
The insertion heuristic of Phase 2 completes the partial tour of Phase 1 to a complete feasible tour using
the cheapest insertion strategy: iteratively, the current partial tour is augmented with a new point,
one yielding the minimal increase in the cost in an auxiliary, specially formed tour. We use simple
geometry in the decision-making process at Phases 2 and 3. The tour improvement heuristic of Phase 3
improves iteratively the tour of Phase 2 based on the local optimality conditions: it uses two heuristic
algorithms which carry out some local rearrangement of the current tour. At Phase 1, the girding
polygon for the points of set V and an initial, yet infeasible (partial) tour including the vertices of that
polygon is constructed in time O(n2). The initial tour of Phase 1 is iteratively extended with the new
points from the internal area of the polygon at Phase 2. Phase 2 also runs in time O(n2) and basically
uses the triangle inequality for the selection of each newly added point. Phase 3 uses two heuristic
algorithms. The first one, called 2-Opt, is a local search algorithm proposed by Croes [13]. The second
one is based on the procedure of Phase 2. The two heuristics are repeatedly applied in the iterative
improvement cycle until a special approximation condition is satisfied. The number of repetitions in
the improvement cycle, in practice, is bounded by a small constant. In particular, the average number
of the repetitions for all the tested instances was about 9 (the maximum of 49 repetitions was attained
for one of the moderate sized instances lra498378, and for the largest instance lrb744710 with 744,710
points, Phase 3 was repeated 18 times).



Algorithms 2020, 13, 5 4 of 30

The rest of the paper is organized as follows. In Section 2, we describe the CII-algorithm
and show its time complexity. In Section 3, we give the implementation details and the results
of our computational experiments, and, in Section 4, we give some concluding remarks and possible
directions for the future work. The tables presented in Appendix A contain the complete data of our
computational results.

2. Methods

We start this section with a brief aggregated description of our algorithm and in the following
subsections we describe its three phases (Figure 1).

CII-algorithm

Phase 2Phase 1

Delivers a
partial

(yet infeasible) 
solution

TSP 
instance

Extends partial 
solution of Phase 
1 to a complete 
feasible solution

Phase 3

The latter solution 
is further 
improved

Solution 
for the TSP

Figure 1. Block diagram of the CII-algorithm: (a) Phase 1 delivers a partial (yet infeasible) solution,
(b) Phase 2 extends the partial solution of Phase 1 to a complete feasible solution, and, (c) at Phase 3,
the latter solution is further improved.

2.1. Phase 1

2.1.1. Procedure to Locate the Extreme Points

At Phase 1, we construct the girding polygon for the points of set V and construct an initial
yet infeasible (partial) tour that includes the points of that polygon. The construction of this
polygon employs four extreme points v1, v2, v3 and v4; the uppermost, leftmost, lowermost, and
rightmost, respectively [14], with ones from set V defined as follows. First, we define the sets of
points T′, L′, B′ and R′ with T′ = {i | yi is maximum, i ∈ V}, L′ = {i | xi is minimum, i ∈ V},
B′ = {i | yi is minimum, i ∈ V}, and R′ = {i | xi is maximum, i ∈ V}. Then,

v1 = j | xj is maximum; j ∈ T′, (4)

v2 = j | yj is maximum; j ∈ L′, (5)

v3 = j | xj is minimum; j ∈ B′, (6)

and
v4 = j | yj is minimum; j ∈ R′. (7)

See the next procedure for the extreme points in Table 1.
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Table 1. Procedure extreme_points.

PROCEDURE extreme_points(V = {i1, i2, · · · , in})

1 ymax := yi1 //Initializing variables
2 xmin := xi1

3 ymin := xi1

4 xmax := yi1

5 FOR j := 2 TO n DO
6 IF yij > ymax THEN ymax := yij

7 IF xij < xmin THEN xmin := xij

8 IF yij < ymin THEN ymin := yij

9 IF xij > xmax THEN xmax := xij

10 T′ = L′ = B′ = R′ := ∅
11 FOR j := 1 TO n DO
12 IF yij = ymax THEN T′ := T′ ∪ {ij}
13 IF xij = xmin THEN L′ := L′ ∪ {ij}
14 IF yij = ymin THEN B′ := B′ ∪ {ij}
15 IF xij = xmax THEN R′ := R′ ∪ {ij}
16 v1 := t′1 // T′ = {t′1, t′2, · · · , t′|T′ |}, |T

′| ≤ n
17 v2 := l′1 // L′ = {l′1, l′2, · · · , l′|L′ |}, |L

′| ≤ n
18 v3 := b′1 // B′ = {b′1, b′2, · · · , b′|B′ |}, |B

′| ≤ n
19 v4 := r′1 // R′ = {r′1, r′2, · · · , r′|R′ |}, |R

′| ≤ n
20 FOR j := 2 TO |T′| DO
21 IF xt′j

> xv1 THEN v1 := t′j
22 FOR j := 2 TO |L′| DO
23 IF xl′j

> xv2 THEN v2 := l′j
24 FOR j := 2 TO |B′| DO
25 IF xb′j

> xv3 THEN v3 := b′j
26 FOR j := 2 TO |R′| DO
27 IF xr′j

> xv4 THEN v4 := r′j
28 RETURN v1, v2, v3, v4

Lemma 1. The time complexity of Procedure extreme_points is O(n).

Proof of Lemma 1. In this and in the following proofs, we only consider those lines in the formal
descriptions in which the number of elementary operations, denote it by f (n), depends on n (ignoring
the lines yielding a constant number of operations). In lines 5–9, there is a loop with n− 1 cycles, hence
{ f (n) = n− 1}. In lines 11–15, there is a loop with n cycles, hence { f (n) = n} In lines 20–21, 22–23,
24–25 and 26–27; there are four loops, each one with at most has n cycles, so { f (n) = 4n}. Hence,
the total cost is O(n).

2.1.2. Procedure for the Construction of the Girding Polygon

Before we describe the procedure, let us define function θ(i, j), returning the angle formed between
the edge (i, j) and the positive direction of the x-axis (Equation (8) and Figure 2):

θ(i, j) =


arccos

xj − xi

w(i, j)
i f arcsin

yj − yi

w(i, j)
≥ 0,

− arccos
xj − xi

w(i, j)
i f arcsin

yj − yi

w(i, j)
< 0.

(8)
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Figure 2. Angle θ(i, j).

The girding Polygon P = P(V) is a convex geometric figure in a two-dimensional plane, such
that any point in V either belongs to that polygon or to the area of that polygon Vakhania et al. [14].

The input of our procedure for the construction of polygon P (see Table 2), consists of (i) the set of
vertices V and (ii) the distinguished extreme points v1, v2, v3 and v4. Abusing slightly the notation, in
the description below, we use: (i) P, for the array of the points that form the girding polygon, and (ii) k
for the last vertex included so far into the array P. Initially, P := (v1) and k := v1.

Table 2. Procedure polygon.

PROCEDURE polygon(V, v1, v2, v3, v4 )

1 P := (v1) //Initializing variables
2 k := v1

3 WHILE k 6= v2 DO //Step 1
4 form a subset of vertices V∗ := { i | xi < xk ∧ yi ≥ yv2 ; i ∈ V} //V∗ ⊂ V
5 form a subset of edges E∗ := {(k, j); j ∈ V∗} //E∗ ⊂ E
6 form a set of angles Θ∗ := {θ(k, j); (k, j) ∈ E∗}
7 get the minimum angle θ(k, l) from Θ∗

8 append the vertex l to P and update k equal to l.
9

10 WHILE k 6= v3 DO //Step 2
11 form a subset of vertices V∗ := { i | xi ≤ xv3 ∧ yi < yk ; i ∈ V}
12 form a subset of edges E∗ := {(k, j); j ∈ V∗}
13 form a set of angles Θ∗ := {θ(k, j); (k, j) ∈ E∗}
14 get the minimum angle θ(k, l) from Θ∗

15 append the vertex l to P and update k equal to l.
16
17 WHILE k 6= v4 DO //Step 3
18 form a subset of vertices V∗ := { i | xi > xk ∧ yi ≤ yv4 ; i ∈ V}
19 form a subset of edges E∗ := {(k, j); j ∈ V∗}
20 form a set of angles Θ∗ := {θ(k, j); (k, j) ∈ E∗}
21 get the minimum angle θ(k, l) from Θ∗

22 append the vertex l to P and update k equal to l.
23
24 WHILE k 6= v1 DO //Step 4
25 form a subset of vertices V∗ := { i | xi ≥ xv1 ∧ yi > yk ; i ∈ V}
26 form a subset of edges E∗ := {(k, j); j ∈ V∗}
27 form a set of angles Θ∗ := {θ(k, j); (k, j) ∈ E∗}
28 get the minimum angle θ(k, l) from Θ∗

29 append the vertex l to P and update k equal to l.

Lemma 2. The time complexity of Procedure polygon is O(n2).

Proof of Lemma 2. There are four independent while statements with similar structure, each of which
can be repeated at most n times. In the first line of each of these while statements, in lines 4, 11, 18, and
25, the set of points V∗ is formed that yields { f (n) = 2n} operations. In lines 5, 12, 19, and 26, the
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set of n− 1 edges E∗ is formed in time { f (n) = n− 1}. In lines 6, 13, 20, and 27, the set of angles Θ∗

consisting of at most n− 1 elements is formed in time { f (n) = n− 1}. In lines 7, 14, 21, and 28 to find
the minimum angle in set Θ∗ at most n− 1 comparisons are needed and the lemma follows.

In Figure 3, we illustrate an example with V = {1, 2, · · · , 6}with coordinates X = {x1, x2, · · · , x6}
and Y = {y1, y2, · · · , y6}. The extreme points are: v1 = 4, v2 = 2, v3 = 5 and v4 = 5 and P = (4, 2, 5, 4).
Initially, P = (4). Then, vertex 2 is added to polygon in Step 1, vertex 5 is added in Step 2; Step 3 is not
carried out because v3 = v4; vertex 4 is added at Step 4.

1

3

6

5
y

2
y

y
4

y=y
61
y

3

x2
x3

x6
x1

x4 x5

5=v =v

1

3 4

2=v2

4=v

Y

X

Figure 3. Example that shows the extreme vertices and girding polygon.

Using polygon P(V) constructed by the Procedure Polygon, we obtain our initial, yet infeasible
(partial) tour T0 = (t1, t2, · · · , tm, t1) that is merely formed by all the points t1, t2, · · · , tm of that
polygon, where t1 = v1 and m is the number of the points.

In the example of Figure 3, P is the initial infeasible tour T0 = (4, 2, 5, 4). V \ T0 = {1, 3, 6} is the
set of points that will be inserted into the final tour.

2.2. Phase 2

The initial tour of Phase 1 is iteratively extended with new points from the internal area of polygon
P(V) using the cheapest insertion strategy at Phase 2 [15].

Let l 6∈ Th−1 be a candidate point to be included in tour Th−1, resulting in an extended tour Th
of iteration h > 0, and let ti ∈ Th−1. Due to the triangle inequality, w(ti, l) + w(l, ti+1) ≥ w(ti, ti+1);
i.e., the insertion of point l between points ti and ti+1, will increase the current total cost C(Th−1) by
w(ti, l) + w(l, ti+1)− w(ti, ti+1) ≥ 0 (see Figure 4). Once point l is included between points ti and ti+1,
for the convenience of the presentation, we let tm := tm−1, tm−1 := tm−2, · · · , ti+3 := ti+2, ti+2 := ti+1
and ti+1 := l (due to the way in which we represent our tours, this re-indexing yields no extra cost in
our algorithm).
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Figure 4. The triangle inequality.
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In Table 3, we give a formal description of our procedure that inserts point l between points ti
and ti+1 in tour T.

Table 3. Procedure insert_point_in_tour.

PROCEDURE insert_point_in_tour(T, l, i)

1 p := |T|
2 IF i < p THEN
3 j := p + 1
4 WHILE j > i + 1 DO
5 tj := tj−1
6 j := j− 1
7 ti+1 := l
8 RETURN T

Procedure construc_tour

At each iteration h, the current tour Th−1 is extended by point lh ∈ V \ Th−1 yielding the minimum
cost ch

l (defined below), which represents the increase in the the current total cost C(Th−1) if that point
is included into the current tour Th−1. The cost for point l ∈ V \ Th−1 is defined as follows:

ch
l = min

ti∈Th−1
{w(ti, l) + w(l, ti+1)− w(ti, ti+1)}. (9)

For further references, we denote by i(l) the index of point ti for which the above minimum
for point l is reached, i.e., w(ti(l), l) + w(l, ti(l)+1)− w(ti(l), ti(l)+1) = minti∈Th−1{w(ti, l) + w(l, ti+1)−
w(ti, ti+1)}.

Thus, lh is a point that attains the minimum

min{ch
l |l ∈ V \ Th−1}, (10)

whereas the ties can be broken arbitrarily.
To speed up the procedure, we initially calculate the minimum cost for each point l ∈ V \ Th−1.

After the insertion of point lh, the minimum cost ch
l is updated as follows:

ch
l := min{ch−1

l , w(ti, l) + w(l, ti+1)− w(ti, ti+1), w(ti+1, l) + w(l, ti+2)− w(ti+1, ti+2)}. (11)

We can describe now Procedure construct_tour as shown in Table 4.

Table 4. Procedure construct_tour.

PROCEDURE construct_tour(V, T0 )

1 h := 1
2 FOR each point l ∈ V \ Th−1 DO
3 ch

l := min ti∈Th−1{w(ti, l) + w(l, ti+1)− w(ti, ti+1) }
4 WHILE exists a vertex l ∈ V \ Th−1 DO
5 get lh

6 insert_point_in_tour (Th−1, lh, i(lh))
7 FOR each point l ∈ V \ Th DO
8 ch+1

l := min{ch
l , w(ti, l) + w(l, ti+1)− w(ti, ti+1), w(ti+1, l) + w(l, ti+2)− w(ti+1, ti+2)}

9 h := h + 1

Lemma 3. The time complexity of the Procedure construct_tour is O(n2).
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Proof of Lemma 3. In lines 2–3, there is a for statement with n− (m + h− 1) repetitions. To calculate
ch

l in line 3, the same number of repetitions is needed and the total cost of the for statement is
[n− (m + h− 1)][n− (m + h− 1)] = [n2− 2(m + h− 1)n + (m + h− 1)2]. The while statement in lines
4–9 is repeated at most n− (m + h− 1) times. In line 5, to calculate ch

lh (Equation (10)) n− (m + h− 1)
comparisons are required. In lines 7–8, there is a for statement nested in the above while statement with
n− (m + h) repetitions. Hence, the total cost is [n2 − 2(m + h− 1)n + (m + h− 1)2] + [n− (m + h−
1)]{[n− (m + h− 1)] + [n− (m + h)]} = [n2 − 2(m + h− 1)n + (m2 − 2m− 2h + h2 + 1)] + [n− (m +

h− 1)][2n− (2m + 2h− 1)] = [n2 − (2m + 2h− 2)n + (m2 − 2m− 2h + h2 + 1)] + [2n2 − (4m + 4h−
3)n+(2m2 + 4mh− 3m− 3h+ 2h2 + 1)] = 3n2− (6m+ 6h− 5)n+(3m2 + 4mh− 5m− 5h+ 3h2 + 2) =
O(n2).

In the example of Figure 5, T0 = (4, 2, 5). The costs c1
l , l ∈ V \ T0, are calculated as follows:

c1
1 = min{w(4, 1) + w(1, 2)− w(4, 2), w(2, 1) + w(1, 5)− w(2, 5), w(5, 1) + w(1, 4)− w(5, 4)}
= w(5, 1) + w(1, 4)− w(5, 4),

c1
3 = min{w(4, 3) + w(3, 2)− w(4, 2), w(2, 3) + w(3, 5)− w(2, 5), w(5, 3) + w(3, 4)− w(5, 4)}
= w(4, 3) + w(3, 2)− w(4, 2),

c1
6 = min{w(4, 6) + w(6, 2)− w(4, 2), w(2, 6) + w(6, 5)− w(2, 5), w(5, 6) + w(6, 4)− w(5, 4)}
= w(4, 6) + w(6, 2)− w(4, 2).
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Figure 5. Points 1, 3, and 6 that can be inserted between point 4 and 2, 2 and 5, or 5 and 4 from partial
tour T0 are depicted in Figures (a), (b), and (c), respectively.

Hence, min{c1
1, c1

3, c1
6} = c1

6 = w(4, 6) + w(6, 2)− w(4, 2); l1 = 6 and i(6) = 4. Therefore, point 6
will be included in tour T1 between points 4 and 2 (Figure 6).
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Figure 6. Point 6 was inserted in the tour T0 between points 4 and 2.

Now, T1 = (4, 6, 2, 5, 4) and the minimum costs c2
l for each point l ∈ V \ T1 are:

c2
1 = {c1

1, w(4, 1) + w(1, 6)− w(4, 6), w(6, 1) + w(1, 2)− w(6, 2)}
= w(4, 1) + w(1, 6)− w(4, 6).
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c2
3 = {c1

3, w(4, 3) + w(3, 6)− w(4, 6), w(6, 3) + w(3, 2)− w(6, 2)}
= w(6, 3) + w(3, 2)− w(6, 2).

Hence, min{c2
1, c2

3} = c2
3 = w(6, 3) + w(3, 2)−w(6, 2); l2 = 3 and i(3) = 6. Therefore, point 3 will

be included in tour T2 between points 6 and 2 (Figure 7).
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Figure 7. Point 3 was inserted in the tour T1 between points 6 and 2.

Now, T2 = (4, 6, 3, 2, 5, 4) and the minimum costs c3
l , l ∈ V \ T2 are

c3
1 = {c2

1, w(6, 1) + w(1, 3)− w(6, 3), w(3, 1) + w(1, 2)− w(3, 2) = c2
1.

Hence, min{c3
1} = c2

1 = w(4, 1) + w(1, 6)− w(4, 6); l3 = 1 and = i(1) = 4. Therefore, point 1 will
be included in tour T3 between points 4 and 6 (Figure 8).
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Figure 8. Point 1 be inserted in the tour T2 between points 4 and 6.

The resultant tour T = T3 = (4, 1, 6, 3, 2, 5, 4) includes all points from set V and Procedure
construct_tour halts.

2.3. Phase 3

At Phase 3, we iteratively improve the feasible tour T delivered by Phase 2. We use two heuristic
algorithms. The first one is called 2-Opt, which is a local search algorithm proposed by Croes [13].
The second one is based on our construct_tour procedure, named improve_tour. The current solution
(initially, it is the tour delivered by Phase 2) is repeatedly improved first by 2-Opt-heuristics and then
by Procedure improve_tour, until there is an improvement. Phase 3 halts if either the output of one
of the heuristics has the same objective value as the input (by the construction, the output cannot be
worse than the input) or the following condition is satisfied:

C(Tin)− C(Tout) ≤ di fmin, (12)

where di fmin is a constant (for instance, we let di fmin = 0.0001). Thus, initially, 2-Opt-heuristics runs
with input T. Repeatedly, Condition (12) is verified for the the output of every call of each of the
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heuristics. If it is satisfied, Phase 3 halts; otherwise, for the output of the last called heuristics, the other
one is invoked and the whole procedure is repeated; see Figure 9.

PHASE 3

Feasible
Solution

T
given by 
Phase 2

2-Opt Solution 
for the TSPimprove_tour

No
C(T ‘)- C(T “) ≤ difminC(T)- C(T ‘) ≤ difmin

T:=T’

T:=T”
Yes

T ‘ T “

Yes

No

T:=T “

Figure 9. Block diagram of Phase 3.

2.3.1. Procedure 2-Opt

Procedure 2-Opt is a local search algorithm improving feasible solution T = (t1, t2, · · · , tn, t1)

(n = |V|). It is well-known that the time complexity of this procedure is O(n2). For the completeness
of our presentation, we give a formal description of this procedure in Table 5.

Table 5. Procedure 2-Opt.

PROCEDURE 2-Opt(V,T)

1 i := 1
2 n := |V|
3 WHILE i < n− 2 DO
4 j := i + 1;
5 WHILE j < n− 1 DO
6 IF w(ti, tj) + w(ti+1, tj+1) < w(ti, ti+1) + w(tj, tj+1) THEN
7 x := i + 1
8 y := j
9 WHILE x < y DO

10 taux := tx
11 tx := ty
12 ty := taux
13 x := x + 1
14 y := y− 1
15 j := j + 1
16 i := i + 1
17 RETURN T

The result of a local replacement carried out by the procedure is represented schematically in the
Figure 10).
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Figure 10. (a) a fragment of a solution before applying the algorithm 2-Opt; (b) the corresponding
fragment after applying algorithm 2-Opt.

2.3.2. Procedure improve_tour

We also use our algorithm construct_tour to improve a feasible solution T = (t1, t2, · · · , tn, t1),
n = |V|. Iteratively, point ti+1, 1 ≤ i < n, is removed from the tour T and is reinserted by a call of
procedure construct_tour(V, T \ {ti+1}). If a removed point gets reinserted in the same position, then
i := i + 1 and the procedure continues until i ≤ n (see Table 6).

Table 6. Procedure improve_tour.

PROCEDURE improve_tour(V,T)

1 i := 1
2 WHILE i < n DO
3 tj := ti+1
4 remove ti+1 from the tour T //now T is infeasible
5 construct_tour(V, T \ {ti+1}) //T is feasible again
6 IF ti+1 = tj THEN
7 i := i + 1
8 RETURN T

Figure 11 illustrates the iterative improvement in the cost of the solutions obtained at Phase 3
for a sample problem instance usa115475. The initial solution T0 of Phase 2 is iteratively improved as
shown in the diagram.

Figure 11. The improvement rate at Phase 3 for instance usa115475.
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Lemma 4. The time complexity of the Procedure improve_tour is O(n2).

Proof of Lemma 4. In lines 2–7, there is a while statement with n− 1 repetitions. The call of Procedure
construct_tour in line 5 yields the cost O(n) since with m = n− 1, h = 1; see the proof of Lemma 3 (m is
the number of points in the current partial tour). The lemma follows.

3. Implementation and Results

CII-algorithm was coded in C++ and compiled in g++ on a server with processor 2x Intel Xeon
E5-2650 0 @ 2.8 GHz (Cuernavaca, Mor., Mexico), 32 GB in RAM and Ubuntu 18.04 (bionic) operating
system (we have used only one CPU in our experiments). We did not keep the cost matrix in computer
memory, but we have rather calculated the costs using the coordinates of the points. This does not
increase the computation time too much and saves considerably the required computer memory.

We have tested the performance of CII-algorithm for 85 benchmark instances from TSPLIB [16]
library and for 135 benchmark instances from TSP Test Data [17] library. The detailed results are
presented in the Appendix. In our tables, parameter “Error” specifies the approximation factor of
algorithm H compared to cost of the best known solution (C(BKS)):

ErrorH =

∣∣∣∣C(BKS)− C(TH)

C(BKS)

∣∣∣∣ 100%. (13)

In Table 7 below, we give the data on the average performance of our heuristics. The average error
percentage of our heuristics is calculated using Formula (13). It shows, for each group of instances, the
average error of the solutions delivered by Phase 2 and, at Phase 3, the number of cycles at Phase 3
and the average decrease in the cost of the solution decreased at Phase 3 compared to that Phase 3.

Table 7. Statistics about the solutions delivered by CII.

Description TSPLIB NATIONAL ART
GALLERY VLSI All

Number of instances 83 27 6 102 218

Average error percentage of the
solutions at Phase 2 11.8% 17.7% 6.7% 18.4% 15.4%

Average number of cycles
performed at Phase 3 7 11 11 10 9

Average decrease in error at Phase 3 6.5% 9.6% 3.1% 9.8% 8.3%
Final average error percentage 5.3% 8.2% 3.6% 8.6% 7.2%
Average memory usage 0.8 MiB 1.6 MiB 10.9 MiB 2.3 MiB 1.88 MiB

In the diagrams below (on the left hand-side), we illustrate the dependence of the approximation
given by our algorithm on the size of the tested instances, and the dependence of the execution time of
our algorithm on the size of the instances (right hand-side diagrams). We classify the tested instance
into three groups: the small ones (from 1 to 199 points in Figure 12), the middle-sized ones (from 200 to
9999 points in Figure 13), and large instances (from 10,000 to 250,000 in Figure 14). We do not include
the data for the largest two problem instances lra498378 and lrb744710 because of the visualization
being technically complicated. The error for these instances is 12.5% and 15.9%, respectively, and
the CPU time was limited to two weeks for both instances. As we can see, at Phase 3, there is an
improvement in the quality of the solutions delivered by Phase 2.
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Figure 12. (a) error vs. number of points, and (b) processing time vs. number of points, where
1 ≤ |V| < 200.

Figure 13. (a) error vs. number of points, and (b) processing time vs. number of points, where
200 ≤ |V| < 10, 000.

Figure 14. (a) error vs. number of points, and (b) processing time vs. number of points, where
10, 000 ≤ |V| < 250, 000.

Table 8 shows the summary of the comparison statistics of the solutions delivered by our algorithm
CII with the solutions obtained by the heuristics that we have mentioned in the introduction (namely,
DFACO [10], ACO-3Opt [10], ESACO [7], PACO-3Opt [8], DPIO [12], ACO-RPMM [9], Partial ACO [6],
and PRNN [11]). We may observe in Table 9 that algorithm CII has attained an improved approximation
for 17 instances. At the same time, in terms of the execution time, our heuristic dominates the other
heuristics.

Table 8. Statistics between CII and other heuristics.

Description TSPLIB NATIONAL ART
GALLERY VLSI All

Number of instances 83 27 6 102 218
Number of the known results from
other heuristics 142 0 10 12 164

Number of time CII gave a better
error than other heuristics 2 0 4 12 18

Number of times CII has improved
the earlier known best execution
time

140 0 0 140
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In the Table 9, we specify the problem instances for which our algorithm provided a better relative
error than some of the earlier cited algorithms.

Table 9. Comparative relative errors for some problem instances.

Description ErrorCII ErrorH

TSPLIB/rat783 7.4% 19.1% and 19.5% (DFACO [10] and ACO-3Opt [10])

ART/Mona-lisa100K 3.4% 5.5% (Partial ACO [6])

ART/Vangogh120K 3.5% 5.8% (Partial ACO [6])

ART/Venus140K 3.4% 5.8% (Partial ACO [6])

ART/Earring200K 3.9% 7.2% (Partial ACO [6])

VLSI/dca1376 7.6% 19.6% (PRNN [11])

VLSI/djb2036 10.0% 23.4% (PRNN [11])

VLSI/xqc2175 9.1% 21.4% (PRNN [11])

VLSI/xqe3891 9.7% 21.7% (PRNN [11])

VLSI/bgb4355 8.4% 22.8% (PRNN [11])

VLSI/xsc6880 10.1% 21.9% (PRNN [11])

VLSI/bnd7168 9.2% 21.7% (PRNN [11])

VLSI/ida8197 7.2% 23.2% (PRNN [11])

VLSI/dga9698 9.6% 21.1% (PRNN [11])

VLSI/xmc10150 9.6% 20.3% (PRNN [11])

VLSI/xvb13584 9.5% 23.6% (PRNN [11])

VLSI/frh19289 9.3% 22.5% (PRNN [11])

In terms of the CPU time comparison, see Table 10.

Table 10. Comparative CPU time for the problem instances for which the other heuristics were faster.

Description TimeCII TimeH

TSPLIB/pla33810 25.7 m 21.0 m (DPIO [12])
TSPLIB/pla85900 4.1 h 1.4 h (DPIO [12])
Art Gallery/mona-lisa100K 2.3 h 1.4 h and 1.1 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/vangogh120K 4.6 h 1.9 h and 1.5 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/venus140K 4.8 h 2.6 h and 2.1 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/pareja160K 7.7 h 3.5 h (ACO-RPMM [9])
Art Gallery/coubert180K 10.1 h 4.5 h (ACO-RPMM [9])
Art Gallery/earring200K 15.1 h 6.0 h and 5.1 h (ACO-RPMM [9] and Partial ACO [6])

In the diagram below (Figure 15), we illustrate the dependence of the memory used by our
algorithm of all tested instances.
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Figure 15. RAM vs. number of points for all the tested instances.

4. Conclusions and Future Work

We have presented a simple, easily implementable and fast heuristic algorithm for the Euclidean
traveling salesman problem that solves both small and large scale instances with an acceptable
approximation and consumes a little computer memory. Since the algorithm uses simple geometric
calculations, it is easily implementable. The algorithm is fast, the first two phases run in time O(n2),
whereas the number of the improvement repetitions in the third phase, in practice, is not large. The
first two phases might be used independently from the third phase, for instance, for the generation of
an initial tour in more complex loop improvement heuristics. The quality of the solution delivered
already by Phase 2 is acceptable and is expected to greatly outperform that of a random solution used
normally to initiate meta-heuristic algorithms. We have implemented NN (Nearest Neighborhood)
heuristics and run the code for the benchmark instances (the initial vertex for NN heuristic was selected
randomly). Phase 2 gave essentially better results. In average, for the tested 135 instances (6 large,
32 Medium and 97 small ones), the difference between the approximation factor obtained by the
procedure of Phase 2 and that of Nearest Neighbor heuristic was 9.65% (the average error of Phase
2 was 16.89% and that of NN was 26.55%, whereas the standard deviations were similar, 0.05% and
0.04%, respectively). As for the overall algorithm, it uses a negligible computer memory. Although for
most of the tested benchmark instances it did not improve the best known results, the execution time
of our heuristic, on average, was better than the earlier reported best known times. For future work,
we intend to create a more powerful, yet more complex, CII-algorithm by augmenting each of the
three phases of our algorithm with alternative ways for the creation of the initial tour and alternative
insertion and improvement procedures.
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Appendix A

In the table below (Table A1), we give some details on the earlier mentioned heuristics with which
we compare our results (the entries in the column “Runs” specify the number of the reported runs of
the corresponding heuristic).
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Table A1. Heuristics used to compare the CII-algorithm.

Heuristic Id Heuristic Name Number of Reported
Instances

Runs

ACO-RPMM [9] ACO - Restricted Pheromone
Matrix Method

6 Large 10

Partial ACO [6] Partial ACO 4 Large and 5 Small 100

DFACO [10] Dynamic Flying ACO 30 Small 100

ACO-3Opt [10] ACO-3Opt 30 Small 100

DPIO [12] Discrete Pigeon-inspired
optimization with Metropolis

acceptance

1 Large, 6 Medium and 28
Small

25

PACO-3Opt [8] Parallel Cooperative Hybrid
Algorithm ACO

21 Small 20

ESACO [7] Effective Strategies + ACO 5 Medium and 17 Small 20

PRNN [11] Parallel Repetitive Nearest
Neighbor

3 Medium and 9 Small n =
|V|

NN Nearest Neighbor Algorithm 4 Large, 25 Medium and 61
Small

1

The next table (Table A2) discloses the headings of our tables.

Table A2. Description of the headings of Tables A3–A6.

Header Header Description

|V| the number of vertices in the instance
Opt? “yes” if Best Known Solution (BKS) is optimal, “no” otherwise

C(BKS) the cost of BKS
C(T) Cost of the solution constructed by CII heuristic
RAM RAM used by CII heuristics

# the number of cycles at Phase 3 of CII heuristic
Error as defined in Formula (13)

Cavg(TH) the average cost of the solution obtained by heuristic H
Heuristic Id nomenclature used in Table A1

Time the processing time of a heuristic
ms, s, m, h, d time units for milliseconds, seconds, minutes, hours and days respectively.

In the tables below, each line corresponds to a particular benchmark instance. For each of these
instances, we indicate the performance of Phase 2 and Phase 3, separately, and that of the other
heuristics reporting the results for that instance. In addition, 85 benchmark instances were taken from
TSPLIB [16] and 135 instances are from TSP Test Data [17] libraries. Tables A3, A4, and A6 include the
earlier known results.

In some lines of our tables (e.g., line 1, Table A5), a slight difference in the approximation errors of
our algorithm and those of the algorithms from the “Results for National TSP Benchmarks" table can
be seen due to the way the distances in the obtained solutions are represented in our algorithm (we do
not round the distances represented as decimal numbers, whereas the distances in the best known
solutions are rounded).



Algorithms 2020, 13, 5 18 of 30

Table A3. Results for TSPLIB benchmarks.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

eil51 51 yes 426 454 6.6% 0.4 ms 454 6.6% 1.0 ms 0.5 MiB 1 426 0.0% 1.0 s DFACO
426 0.0% 1.0 s ACO-3Opt
426 0.0% 1.1 s ESACO

berlin52 52 yes 7542 8058 6.8% 1.1 ms 8058 6.8% 4.5 ms 0.6 MiB 3 7542 0.0% 1.0 s DFACO
7542 0.0% 1.0 s ACO-3Opt

st70 70 yes 675 710 5.2% 0.6 ms 701 3.8% 11.1 ms 0.6 MiB 3 826 22.3% 0.4 ms NN

eil76 76 yes 538 576 7.0% 0.7 ms 556 3.4% 2.2 ms 0.6 MiB 3 538 0.0% 3.0 s DFACO
538 0.0% 3.0 s ACO-3Opt
538 0.0% 1.4 s ESACO

pr76 76 yes 108,159 114,808 6.1% 0.7 ms 112,911 4.4% 3.0 ms 0.6 MiB 4 148,348 37.2% 0.5 ms NN

rat99 99 yes 1211 1294 6.9% 1.0 ms 1230 1.5% 9.4 ms 0.6 MiB 3 1442 19.1% 0.8 ms NN

kroA100 100 yes 21,282 23,050 8.3% 1.1 ms 21,443 0.8% 3.5 ms 0.6 MiB 3 21,282 0.0% 2.0 s DFACO
21,282 0.0% 2.0 s ACO-3Opt
21,282 0.0% 2.6 s ESACO

kroB100 100 yes 22,141 23,247 5.0% 1.1 ms 22,716 2.6% 3.3 ms 0.6 MiB 3 22,141 0.0% 2.0 s DFACO
22,141 0.0% 2.0 s ACO-3Opt

kroC100 100 yes 20,749 21,632 4.3% 1.1 ms 20,922 0.8% 3.8 ms 0.6 MiB 3 20,749 0.0% 2.0 s DFACO
20,749 0.0% 2.0 s ACO-3Opt

kroD100 100 yes 21,294 21,712 2.0% 1.1 ms 21,582 1.4% 3.4 ms 0.6 MiB 3 21,294 0.0% 3.0 s DFACO
21,294 0.0% 3.0 s ACO-3Opt

kroE100 100 yes 22,068 22,870 3.6% 1.0 ms 22,528 2.1% 8.3 ms 0.6 MiB 3 22,068 0.0% 2.0 s DFACO
22,068 0.0% 2.0 s ACO-3Opt

rd100 100 yes 7910 8465 7.0% 1.2 ms 8245 4.2% 3.8 ms 0.6 MiB 3 7910 0.0% 2.0 s DFACO
7910 0.0% 2.0 s ACO-3Opt

eil101 101 yes 629 679 7.9% 1.1 ms 666 5.9% 19.5 ms 0.6 MiB 3 629 0.0% 12.0 s DFACO
629 0.0% 10.0 s ACO-3Opt
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Table A3. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

lin105 105 yes 14,379 14,913 3.7% 1.2 ms 14,440 0.4% 3.8 ms 0.6 MiB 3 14,379 0.0% 2.0 s DFACO
14,379 0.0% 2.0 s ACO-3Opt
14,379 0.0% 2.0 s ESACO

pr107 107 yes 44,303 45,730 3.2% 1.1 ms 45,262 2.2% 18.1 ms 0.6 MiB 5 54,121 22.2% 0.9 ms NN

pr124 124 yes 59,030 62,193 5.4% 1.4 ms 60,055 1.7% 5.3 ms 0.6 MiB 3 73,008 23.7% 1.3 ms NN

bier127 127 yes 118,282 121,544 2.8% 5.4 ms 121,544 2.8% 5.6 ms 0.6 MiB 3 118,282 0.0% 47.0 s DFACO
118,282 0.0% 56.0 s ACO-3Opt

ch130 130 yes 6110 6676 9.3% 1.7 ms 6190 1.3% 27.9 ms 0.6 MiB 9 6110 0.0% 13.0 s DFACO
6110 0.0% 16.0 s ACO-3Opt

pr136 136 yes 96,772 102,934 6.4% 1.7 ms 98,711 2.0% 9.9 ms 0.6 MiB 5 125,458 29.6% 1.2 ms NN

pr144 144 yes 58,537 60,625 3.6% 2.1 ms 59,902 2.3% 6.8 ms 0.6 MiB 3 64,886 10.8% 1.4 ms NN

ch150 150 yes 6528 7038 7.8% 2.1 ms 6746 3.3% 11.5 ms 0.6 MiB 3 6,528 0.0% 24.0 s DFACO
6528 0.0% 17.0 s ACO-3Opt

kroA150 150 yes 26,524 28,814 8.6% 2.2 ms 27,230 2.7% 10.2 ms 0.6 MiB 5 26,524 0.0% 57.0 s DFACO
26,524 0.0% 1.4 m ACO-3Opt

kroB150 150 yes 26,130 27,476 5.2% 2.2 ms 26,399 1.0% 26.4 ms 0.6 MiB 5 26,130 0.0% 7.0 s DFACO
26,130 0.0% 9.0 s ACO-3Opt

pr152 152 yes 73,682 76,952 4.4% 2.3 ms 74,605 1.3% 19.0 ms 0.6 MiB 5 86,906 17.9% 1.4 ms.

u159 159 yes 42,080 47,591 13.1% 2.6 ms 46,875 11.4% 15.7 ms 0.6 MiB 3 53,918 28.1% 1.6 ms NN

rat195 195 yes 2323 2569 10.6% 3.7 ms 2485 7.0% 16.2 ms 0.6 MiB 4 2826 21.7% 2.0 ms NN

d198 198 yes 15,780 16,862 6.9% 3.9 ms 16,119 2.1% 32.6 ms 0.6 MiB 4 15,780 0.0% 6.5 s ESACO

kroA200 200 yes 29,368 31,792 8.3% 3.9 ms 30,767 4.8% 17.5 ms 0.6 MiB 5 29,368 0.0% 2.8 m DFACO
29,379 0.04% 3.5 m ACO-3Opt
29,368 0.0% 4.7 s ESACO
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Table A3. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

kroB200 200 yes 29,437 32,123 9.1% 3.7 ms 30,631 4.1% 11.8 ms 0.6 MiB 3 29,442 0.02% 3.1 m DFACO
29,443 0.02% 2.3 m ACO-3Opt

ts225 225 yes 126,643 157,163 24.1% 4.5 ms 132,803 4.9% 30.6 ms 0.6 MiB 7 151,685 19.8% 2.5 ms NN

tsp225 225 yes 3916 4442 13.4% 4.9 ms 4183 6.8% 22.9 ms 0.6 MiB 5 4733 20.9% 2.7 ms NN

pr226 226 yes 80,369 83,637 4.1% 4.8 ms 82,151 2.2% 18.2 ms 0.6 MiB 3 94,258 17.3% 2.5 ms

gil262 262 yes 2378 2681 12.8% 6.5 ms 2539 6.8% 45.4 ms 0.6 MiB 6 3102 30.5% 3.4 ms NN

pr264 264 yes 49,135 53,416 8.7% 6.4 ms 50,402 2.6% 41.4 ms 0.6 MiB 5 58,615 19.3% 3.6 ms NN

a280 280 yes 2579 2686 4.1% 33.6 ms 2686 4.1% 52.9 ms 0.6 MiB 5 2579 0.0% 4.5 s ESACO

pr299 299 yes 48,191 52,912 9.8% 8.1 ms 50,225 4.2% 43.6 ms 0.6 MiB 5 63,254 31.3% 4.3 ms NN

lin318 318 yes 42,029 46,904 11.6% 9.4 ms 45,063 7.2% 38.8 ms 0.6 MiB 4 42,228 0.5% 6.4 m DFACO
42,244 0.5% 5.8 m ACO-3Opt
42,054 0.06% 10.2 s ESACO

linhp318 318 yes 41,345 46,904 13.4% 9.4 ms 45,063 9.0% 37.3 ms 0.6 MiB 4 50,299 21.7% 5.1 ms NN

rd400 400 yes 15,281 17,146 12.2% 14.7 ms 16,158 5.7% 92.8 ms 0.6 MiB 6 15,384 0.7% 2.2 m PACO-3Opt
15,614 2.2% 24.9 m DFACO

fl417 417 yes 11,861 12,680 6.9% 14.6 ms 12,295 3.7% 119 ms 0.6 MiB 8 11,880 0.2% 1.6 m PACO-3Opt
11,987 1.1% 34.1 m DFACO

pr439 439 yes 107,217 120,679 12.6% 17.8 ms 112,531 5.0% 66.7 ms 0.6 MiB 3 107,516 0.3% 2.4 m PACO-3Opt
108,702 1.4% 35.5 m DFACO

pcb442 442 yes 50,778 58,746 15.7% 17.7 ms 53,275 4.9% 126 ms 0.7 MiB 7 51,047 0.5% 2.2 m PACO-3Opt
52,202 2.8% 34.8 m DFACO
50,804 0.05% 11.5 s ESACO

d493 493 yes 35,002 39,050 11.6% 21.8 ms 37,045 5.8% 129 ms 0.6 MiB 5 35,266 0.8% 2.3 m PACO-3Opt
35,841 2.4% 52.9 m DFACO

u574 574 yes 36,905 42,435 15.0% 29.7 ms 39,355 6.6% 247 ms 0.6 MiB 9 37,367 1.3% 1.9 m PACO-3Opt
38,031 3.0% 1.5 h DFACO
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Table A3. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

rat575 575 yes 6773 7692 13.6% 29.4 ms 7215 6.5% 231 ms 0.7 MiB 8 7012 3.5% 1.4 h PACO-3Opt

p654 654 yes 34,643 37,542 8.4% 37.6 ms 36,441 5.2% 179 ms 0.6 MiB 5 34,741 0.3% 1.7 m DFACO
35,075 1.2% 2.5 h PACO-3Opt

d657 657 yes 48,912 56,268 15.0% 36.7 ms 51,553 5.4% 265 ms 0.6 MiB 7 49,463 1.1% 2.3 m DFACO
50,277 2.8% 2.4 h PACO-3Opt

u724 724 yes 41,910 48,198 15.0% 60.9 ms 44,748 6.8% 264 ms 0.7 MiB 6 42,438 1.3% 2.3 m DFACO
43,122 2.9% 3.2 h PACO-3Opt

rat783 783 yes 8806 10,218 16.0% 54.1 ms 9454 7.4% 332 ms 0.7 MiB 6 10,492 19.1% 2.5 m DFACO
10,525 19.5% 15.4 m ACO-3Opt
9127 3.6% 4.0 h PACO-3Opt
8810 0.04% 22.6 s ESACO

dsj1000 1000 yes 18,659,688 21,836,514 17.0% 83.6 ms 20,225,584 8.4% 460 ms 0.7 MiB 5 18,732,088 0.4% 16.6 s DPIO

dsj1000ceil 1000 yes 18,660,188 21,836,514 17.0% 83.5 ms 20,225,584 8.4% 452 ms 0.6 MiB 5 23,813,050 27.6% 39 ms NN

pr1002 1002 yes 259,045 295,879 14.2% 87.7 ms 276,122 6.6% 744 ms 0.7 MiB 5 260,426 0.5% 14.3 s DPIO
259,509 0.2% 35.8 s ESACO
260,366 0.5% 14.1 s DPIO

u1060 1060 yes 224,094 261,093 16.5% 99.5 ms 239,705 7.0% 1.0 s 0.7 MiB 11 224,932 0.4% 15.3 s DPIO

vm1084 1084 yes 239,297 275,989 15.3% 104 ms 257,399 7.6% 901 ms 0.6 MiB 9 240,079 0.3% 17.4 s DPIO

pcb1173 1173 yes 56,892 67,497 18.6% 124 ms 60,792 6.9% 775 ms 0.7 MiB 7 57,243 0.6% 17.8 s DPIO

d1291 1291 yes 50,801 58,230 14.6% 136 ms 54,285 6.9% 927 ms 0.7 MiB 7 51,459 1.3% 19.4 s DPIO

rl1304 1304 yes 252,948 302,661 19.7% 148 ms 277,193 9.6% 1.2 s 0.7 MiB 9 253,740 0.3% 21.5 s DPIO

rl1323 1323 yes 270,199 322,964 19.5% 157 ms 288,501 6.8% 1.3 s 0.7 MiB 9 273,368 1.2% 38.1 m DFACO
273,970 1.4% 37.8 m ACO-3Opt
271,245 0.4% 22.2 s ACO-3Opt
271,301 0.4% 22.0 s DPIO

nrw1379 1379 yes 56,638 64,925 14.6% 168 ms 59,905 5.8% 1.2 s 0.7 MiB 8 56,932 0.5% 23.2 s DPIO
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Table A3. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

fl1400 1400 yes 20,127 21,800 8.3% 162 ms 21,071 4.7% 1.8 s 0.7 MiB 10 20,301 0.9% 40.9 m DFACO
20,292 0.8% 41.2 m ACO-3Opt
20,342 1.1% 24.6 s ACO-3Opt
20,211 0.4% 24.5 s DPIO

u1432 1432 yes 152,970 171,179 11.9% 181 ms 160,260 4.8% 1.1 s 0.7 MiB 7 153,564 0.4% 23.9 s DPIO

fl1577 1577 yes 22,249 25,513 14.7% 210 ms 24,518 10.2% 1.4 s 0.7 MiB 7 22,289 0.2% 25.3 s DPIO
22,293 0.2% 46.4 s ESACO

d1655 1655 yes 62,128 70,779 13.9% 225 ms 65,520 5.5% 1.5 s 0.7 MiB 7 63,708 2.5% 25.4 m DFACO
63,722 2.6% 29.2 m ACO-3Opt
62,769 1.0% 27.5 s ACO-3Opt
62,357 0.4% 27.2 s DPIO

vm1748 1748 yes 336,556 394,389 17.2% 267 ms 365,608 8.6% 2.0 s 0.7 MiB 7 338,118 0.5% 34.3 s DPIO

u1817 1817 yes 57,201 65,783 15.0% 395 ms 61,453 7.4% 1.8 s 0.7 MiB 7 57,522 0.6% 30.3 s DPIO

rl1889 1889 yes 316,536 376,715 19.0% 319 ms 344,514 8.8% 2.1 s 0.8 MiB 7 318,714 0.7% 36.6 s DPIO

d2103 2103 yes 80,450 86,286 7.3% 373 ms 82,856 3.0% 2.5 s 0.7 MiB 7 80,567 0.1% 23.8 s DPIO

u2152 2152 yes 64,253 75,216 17.1% 516 ms 68,766 7.0% 2.7 s 0.7 MiB 7 64,791 0.8% 25.9 s DPIO

u2319 2319 yes 234,256 254,420 8.6% 501 ms 238,785 1.9% 3.1 s 0.7 MiB 7 236,158 0.8% 34.2 s DPIO

pr2392 2392 yes 378,032 443,372 17.3% 495 ms 408,237 8.0% 3.0 s 0.7 MiB 6 380,346 0.6% 29.7 s DPIO

pcb3038 3038 yes 137,694 160,909 16.9% 807 ms 146,378 6.3% 6.2 s 0.8 MiB 9 138,684 0.7% 43.5 s DPIO

fl3795 3795 yes 28,772 33,002 14.7% 1.2 s 29,882 3.9% 35.6 s 0.9 MiB 34 29,209 1.5% 1.1 m DPIO
28,883 0.4% 2.0 m ESACO

fnl4461 4461 yes 182,566 211,064 15.6% 1.9 s 195,786 7.2% 11.1 s 0.9 MiB 7 184,560 1.1% 44.2 s DPIO
183,446 0.5% 3.2 m ESACO

rl5915 5915 yes 565,530 664,788 17.6% 3.1 s 605,687 7.1% 31.2 s 1.0 MiB 11 571,214 1.0% 1.1 m DPIO
568,935 0.6% 3.6 m ESACO

rl5934 5934 yes 556,045 666,295 19.8% 3.2 s 599,066 7.7% 25.8 s 1.0 MiB 9 561,878 1.0% 48.7 s DPIO
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Table A3. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

pla7397 7397 yes 23,260,728 27,709,175 19.1% 4.4 s 25,075,678 7.8% 45.3 s 1.1 MiB 11 23,605,219 1.5% 1.8 m DPIO
23,389,341 0.6% 3.6 m ESACO

rl11849 11,849 yes 923,288 1,103,854 19.6% 12.4 s 994,606 7.7% 2.3 m 1.4 MiB 11 933,093 1.1% 5.0 m DPIO
930,338 0.8% 9.6 m ESACO

usa13509 13,509 yes 19,982,859 24,125,443 20.7% 16.2 s 21,907,190 9.6% 2.8 m 1.5 MiB 10 20,217,458 1.2% 4.5 m DPIO
20,195,089 1.1% 15.2 m ESACO

brd14051 14,051 yes 469,385 552,658 17.7% 15.9 s 506,668 7.9% 3.1 m 1.5 MiB 11 474,788 1.1% 5.1 m DPIO
474,087 1.0% 11.4 m ESACO

d15112 15,112 yes 1,573,084 1,847,377 17.4% 19.2 s 1,705,664 8.4% 3.6 m 1.6 MiB 11 1,588,563 1.0% 8.7 m DPIO
1,589,288 1.0% 12.9 m ESACO

d18512 18,512 yes 645,238 756,668 17.3% 28.1 s 696,542 8.0% 5.8 m 1.9 MiB 12 652,613 1.1% 8.3 m DPIO
653,154 1.2% 11.4 m ESACO

pla33810 33,810 yes 66,048,945 76,625,752 16.0% 1.6 m 69,626,380 5.4% 25.7 m 2.9 MiB 17 67,185,647 1.7% 21.0 m DPIO

pla85900 85,900 yes 142,382,641 167,355,049 17.5% 10.5 m 149,546,776 5.0% 4.1 h 6.5 MiB 27 144,334,707 1.4% 1.4 h DPIO

Table A4. Results for Art TSP benchmarks.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

mona-lisa 100,000 no 5,757,191 6,123,262 6.4% 14.4 m 5,951,462 3.4% 2.3 h 7.5 MiB 9 5,855,063 1.7% 1.4 h ACO-RPMM
100K 6,070,958 5.5% 1.1 h Partial ACO

vangogh 120,000 no 6,543,610 6,971,470 6.5% 20.8 m 6,773,421 3.5% 4.6 h 8.8 MiB 12 6,661,395 1.8% 1.9 h ACO-RPMM
120K 6,924,448 5.8% 1.5 h Partial ACO

venus 140,000 no 6,810,665 7,245,012 6.4% 28.0 m 7,043,702 3.4% 4.8 h 10.2 MiB 9 6,933,257 1.8% 2.6 h ACO-RPMM
140K 7,206,365 5.8% 2.1 h Partial ACO

pareja 160K 160,000 no 7,619,953 8,113,501 6.5% 37.3 m 7,888,641 3.5% 7.7 h 11.6 MiB 11 7,760,922 1.9% 3.5 h ACO-RPMM

courbet 180K 180,000 no 7,888,733 8,439,701 7.0% 48.2 m 8,179,440 3.7% 10.1 h 13.0 MiB 11 8,038,619 1.9% 4.5 h ACO-RPMM

earring 200,000 no 8,171,677 8,781,766 7.5% 58.7 m 8,493,724 3.9% 15.1 h 14.3 MiB 12 8,335,111 2.0% 6.0 h ACO-RPMM
200K 8,760,038 7.2% 5.1 h Partial ACO
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Table A5. Results for National TSP benchmarks.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

wi29 29 yes 27,603 27,739 0.5% 0.3 ms 27,601 0.0% 28.0 ms 0.6 MiB 3 35,474 28.5% 0.2 ms NN

dj38 38 yes 6656 6863 3.1% 0.3 ms 6659 0.1% 11.2 ms 0.6 MiB 5 8165 22.7% 0.3 ms NN

qa194 194 yes 9352 10,505 12.3% 3.8 ms 9886 5.7% 37.1 ms 0.6 MiB 7 12,481 33.5% 2.6 ms NN

zi929 929 yes 95,345 110,187 15.6% 73.5 ms 100,842 5.8% 630 ms 0.7 MiB 8 119,685 25.5% 36.7 ms NN

lu980 980 yes 11,340 12,834 13.2% 86.4 ms 12,077 6.5% 404 ms 0.6 MiB 5 14,284 26.0% 29.4 ms NN

rw1621 1621 yes 26,051 30,315 16.4% 233 ms 28,771 10.4% 1.6 s 0.7 MiB 8 33,493 28.6% 71.5 ms NN

mu1979 1979 yes 86,891 99,356 14.3% 350 ms 91,684 5.5% 3.8 s 0.8 MiB 10 113,362 30.5% 112 ms NN

nu3496 3496 yes 96,132 111,981 16.5% 1.1 s 103,717 7.9% 9.2 s 0.8 MiB 10 121,713 26.6% 327 ms NN

ca4663 4663 yes 1290319 1,557,923 20.7% 1.9 s 1,407,891 9.1% 18.2 s 0.9 MiB 10 1,637,468 26.9% 564 ms NN

tz6117 6117 no 394,718 477,869 21.1% 3.5 s 433,784 9.9% 40.0 s 1 MiB 14 494,624 25.3% 843 ms NN

eg7146 7146 no 172,386 198,566 15.2% 4.5 s 182,979 6.1% 57.9 s 1.1 MiB 14 219,365 27.3% 1.1 s NN

ym7663 7663 yes 238,314 285,881 20.0% 5.0 s 259,780 9.0% 1.4 m 1.1 MiB 18 308,219 29.3% 1.1 s NN

pm8079 8079 no 114,855 137,182 19.4% 5.7 s 126,746 10.4% 55.6 s 1.2 MiB 10 148,936 29.7% 1.2 s NN

ei8246 8246 yes 206,171 248,695 20.6% 6.0 s 225,178 9.2% 1.0 m 1.1 MiB 11 254,553 23.5% 1.2 s NN

ar9152 9152 no 837,479 1,014,041 21.1% 8.4 s 927,348 10.7% 1.2 m 1.2 MiB 10 1,063,376 27.0% 1.5 s NN

ja9847 9847 yes 491,924 611,959 24.4% 8.7 s 544,411 10.7% 2.0 m 1.2 MiB 16 630,169 28.1% 1.9 s NN

gr9882 9882 yes 300,899 356,753 18.6% 8.5 s 325,599 8.2% 1.8 m 1.3 MiB 14 395,267 31.4% 2.3 s NN

kz9976 9976 no 1,061,881 1,298,405 22.3% 8.9 s 1,168,843 10.1% 1.6 m 1.3 MiB 12 1,344,845 26.6% 1.8 s NN

fi10639 10639 yes 520,527 633,623 21.7% 9.8 s 574,001 10.3% 2.1 m 1.3 MiB 14 659,800 26.8% 2.0 s NN
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Table A5. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

mo14185 14185 no 427,377 516,028 20.7% 17.3 s 465,202 8.9% 3.8 m 1.6 MiB 14 529,396 23.9% 4.6 s NN

ho14473 14473 no 177,092 207,322 17.1% 18.5 s 193,672 9.4% 3.0 m 1.6 MiB 10 216,776 22.4% 4.0 s NN

it16862 16862 yes 557315 670,706 20.3% 24.8 s 613,132 10.0% 4.8 m 1.7 MiB 12 706,420 26.8% 6.2 s NN

vm22775 22775 yes 569,288 688,981 21.0% 44.3 s 617,703 8.5% 11.0 m 2.1 MiB 16 720,288 26.5% 9.9 s NN

sw24978 24978 yes 855,597 1,042,499 21.8% 53.5 s 944,536 10.4% 10.2 m 2.3 MiB 12 1,073,993 25.5% 12.2 s NN

bm33708 33708 no 959,289 1,151,420 20.0% 1.6 m 1,046,776 9.1% 22.1 m 2.9 MiB 14 1,209,682 26.1% 21.5 s NN

ch71009 71009 no 4,566,506 5,475,575 19.9% 7.4 m 4,986,973 9.2% 1.7 h 5.5 MiB 14 5,629,331 23.3% 1.6 m NN

usa115475 115475 no 6,204,999 7,492,272 20.7% 19.0 m 6,779,417 9.3% 4.3 h 8.5 MiB 13 7,691,402 24.0% 4.1 m NN

Table A6. Results for the VLSI TSP benchmark.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

xqf131 131 yes 564 624 10.6% 1.8 ms 600 6.3% 16.4 ms 0.6 MiB 3 712 26.3% 1.0 ms NN

xqg237 237 yes 1019 1166 14.4% 5.0 ms 1064 4.4% 31.9 ms 0.6 MiB 7 1325 30.0% 3.0 ms NN

pma343 343 yes 1368 1490 8.9% 10.0 ms 1425 4.2% 58.9 ms 0.6 MiB 5 1846 35.5% 7.4 ms NN

pka379 379 yes 1332 1422 6.8% 12.1 ms 1391 4.4% 66.4 ms 0.6 MiB 4 1606 20.6% 7.5 ms NN

bcl380 380 yes 1621 1894 16.9% 12.4 ms 1781 9.9% 97.0 ms 0.6 MiB 6 2055 26.8% 6.6 ms NN

pbl395 395 yes 1281 1432 11.8% 13.6 ms 1349 5.3% 95.9 ms 0.6 MiB 7 1581 23.5% 7.9 ms NN

pbk411 411 yes 1343 1505 12.1% 14.4 ms 1431 6.6% 111 ms 0.6 MiB 7 1789 33.2% 7.7 ms NN

pbn423 423 yes 1365 1573 15.2% 15.1 ms 1460 7.0% 77.1 ms 0.6 MiB 5 1811 32.6% 9.2 ms NN

pbm436 436 yes 1443 1638 13.5% 16.4 ms 1565 8.4% 93.5 ms 0.6 MiB 5 1783 23.6% 9.0 ms NN
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Table A6. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

xql662 662 yes 2513 2995 19.2% 36.4 ms 2742 9.1% 269 ms 0.6 MiB 8 3147 25.2% 19 ms NN

rbx711 711 yes 3115 3612 16.0% 42.8 ms 3348 7.5% 312 ms 0.6 MiB 8 3748 20.3% 22 ms NN

rbu737 737 yes 3314 3899 17.6% 45.0 ms 3557 7.3% 230 ms 0.6 MiB 5 4090 23.4% 24 ms NN

dkg813 813 yes 3199 3763 17.6% 53.7 ms 3470 8.5% 369 ms 0.6 MiB 5 4126 29.0% 26 ms NN

lim963 963 yes 2789 3199 14.7% 78.8 ms 2974 6.6% 929 ms 0.6 MiB 10 3583 28.5% 37 ms NN

pbd984 984 yes 2797 3189 14.0% 80.8 ms 2950 5.5% 641 ms 0.6 MiB 9 3521 25.9% 36 ms NN

xit1083 1083 yes 3558 4082 14.7% 98.8 ms 3800 6.8% 763 ms 0.7 MiB 8 4781 34.4% 42 ms NN

dka1376 1376 yes 4666 5546 18.8% 167 ms 5082 8.9% 1.0 s 0.7 MiB 7 5924 27.0% 65 ms NN

dca1389 1389 yes 5085 6045 18.9% 156 ms 5471 7.6% 1.0 s 0.7 MiB 7 6080 19.6% ‘NR’ PRNN

dja1436 1436 yes 5257 6236 18.6% 168 ms 5628 7.1% 1.3 s 0.7 MiB 8 6656 26.6% 72 ms NN

icw1483 1483 yes 4416 5124 16.0% 180 ms 4761 7.8% 1.1 s 0.7 MiB 5 5572 26.2% 75 ms NN

fra1488 1488 yes 4264 4728 10.9% 179 ms 4479 5.1% 1.6 s 0.6 MiB 8 5578 30.8% 76 ms NN

rbv1583 1583 yes 5387 6207 15.2% 205 ms 5777 7.2% 2.2 s 0.7 MiB 11 6876 27.6% 80 ms NN

rby1599 1599 yes 5533 6345 14.7% 215 ms 5999 8.4% 1.9 s 0.7 MiB 10 6809 23.1% 83 ms NN

fnb1615 1615 yes 4956 5675 14.5% 213 ms 5259 6.1% 1.6 s 0.7 MiB 8 6377 28.7% 83 ms NN

djc1785 1785 yes 6115 7225 18.2% 261 ms 6656 8.9% 2.1 s 0.7 MiB 9 7719 26.2% 103 ms NN

dcc1911 1911 yes 6396 7484 17.0% 296 ms 6872 7.4% 2.0 s 0.7 MiB 7 8045 25.8% 116 ms NN

dkd1973 1973 yes 6421 7280 13.4% 302 ms 6892 7.3% 2.1 s 0.7 MiB 7 8502 32.4% 119 ms NN

djb2036 2036 yes 6197 7495 20.9% 337 ms 6819 10.0% 2.2 s 0.7 MiB 7 7645 23.4% ‘NR’ PRNN

dcb2086 2086 yes 6600 8066 22.2% 354 ms 7307 10.7% 2.9 s 0.7 MiB 9 8335 26.3% 124 ms NN

bva2144 2144 yes 6304 7494 18.9% 362 ms 6870 9.0% 2.6 s 0.7 MiB 7 8264 31.1% 129 ms NN

xqc2175 2175 yes 6830 8167 19.6% 386 ms 7453 9.1% 5.2 s 0.7 MiB 13 8291 21.4% ‘NR’ PRNN

bck2217 2217 yes 6764 8153 20.5% 398 ms 7408 9.5% 3.3 s 0.7 MiB 9 8515 25.9% 141 ms NN
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Table A6. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

xpr2308 2308 yes 7219 8663 20.0% 434 ms 7837 8.6% 3.3 s 0.7 MiB 8 9130 26.5% 155 ms NN

ley2323 2323 yes 8352 10,146 21.5% 439 ms 9014 7.9% 4.9 s 0.7 MiB 11 10,330 23.7% 148 ms NN

dea2382 2382 yes 8017 9782 22.0% 455 ms 8726 8.8% 4.4 s 0.7 MiB 9 9962 24.3% 157 ms NN

rbw2481 2481 yes 7724 9548 23.6% 495 ms 8511 10.2% 4.1 s 0.7 MiB 9 9867 27.7% 169 ms NN

pds2566 2566 yes 7643 9100 19.1% 523 ms 8310 8.7% 4.2 s 0.8 MiB 8 9867 29.1% 190 ms NN

mlt2597 2597 yes 8071 9850 22.0% 547 ms 8889 10.1% 5.0 s 0.8 MiB 10 10,295 27.6% 183 ms NN

bch2762 2762 yes 8234 10,020 21.7% 614 ms 8934 8.5% 5.0 s 0.7 MiB 9 10,394 26.2% 205 ms NN

irw2802 2802 yes 8423 10,044 19.2% 625 ms 9131 8.4% 5.9 s 0.7 MiB 9 11,087 31.6% 210 ms NN

lsm2854 2854 yes 8014 9445 17.9% 658 ms 8753 9.2% 5.6 s 0.7 MiB 9 10,105 26.1% 218 ms NN

dbj2924 2924 yes 10,128 12,069 19.2% 676 ms 10,922 7.8% 4.6 s 0.7 MiB 7 12,935 27.7% 229 ms NN

xva2993 2993 yes 8492 9936 17.0% 719 ms 9226 8.6% 5.9 s 0.8 MiB 9 10,821 27.4% 237 ms NN

pia3056 3056 yes 8258 9749 18.1% 757 ms 8918 8.0% 8.2 s 0.8 MiB 11 10,585 28.2% 245 ms NN

dke3097 3097 yes 10,539 12,767 21.1% 766 ms 11,481 8.9% 5.1 s 0.8 MiB 7 3249 25.7% 247 ms NN

lsn3119 3119 yes 9114 10,784 18.3% 803 ms 9895 8.6% 8.0 s 0.8 MiB 11 11,467 25.8% 260 ms NN

lta3140 3140 yes 9517 11,160 17.3% 805 ms 10,330 8.5% 7.5 s 0.8 MiB 10 12,455 30.9% 260 ms NN

fdp3256 3256 yes 10,008 11,661 16.5% 908 ms 10,749 7.4% 7.1 s 0.8 MiB 8 12,677 26.7% 276 ms NN

beg3293 3293 yes 9772 11,693 19.7% 877 ms 10,598 8.5% 10.2 s 0.7 MiB 13 12,636 29.3% 283 ms NN

dhb3386 3386 yes 11,137 13,349 19.9% 932 ms 12,082 8.5% 8.0 s 0.7 MiB 9 13,894 24.8% 302 ms NN

fjs3649 3649 yes 9272 10,345 11.6% 1.1 s 9812 5.8% 7.3 s 0.7 MiB 7 12,786 37.9% 326 ms NN

fjr3672 3672 yes 9601 10,854 13.1% 1.1 s 10,181 6.0% 8.7 s 0.7 MiB 8 12,840 33.7% 331 ms NN

dlb3694 3694 yes 10,959 12,818 17.0% 1.2 s 11,763 7.3% 10.4 s 0.7 MiB 10 13,986 27.6% 344 ms NN

ltb3729 3729 yes 11,821 13,874 17.4% 1.1 s 12,948 9.5% 10.3 s 0.7 MiB 9 15,259 29.1% 361 ms NN

xqe3891 3891 yes 11,995 14,672 22.3% 1.3 s 13,153 9.7% 10.0 s 0.8 MiB 9 14,592 21.7% ‘NR’ PRNN
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Table A6. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

xua3937 3937 yes 11,239 13,412 19.3% 1.2 s 12,285 9.3% 13.3 s 0.8 MiB 11 14,520 29.2% 373 ms NN

dkc3938 3938 yes 12,503 14,817 18.5% 1.3 s 13,619 8.9% 10.5 s 0.7 MiB 9 15,932 27.4% 396 ms NN

dkf3954 3954 yes 12,538 14,939 19.1% 1.3 s 13,728 9.5% 11.6 s 0.8 MiB 10 15,679 25.1% 412 ms NN

bgb4355 4355 yes 12,723 14,948 17.5% 1.5 s 13,789 8.4% 14.0 s 0.9 MiB 10 15,623 22.8% ‘NR’ PRNN

bgd4396 4396 yes 13,009 16,239 24.8% 1.6 s 14,385 10.6% 15.7 s 0.8 MiB 11 16,726 28.6% 472 ms NN

frv4410 4410 yes 10,711 12,440 16.1% 1.5 s 11,587 8.2% 10.3 s 0.8 MiB 7 13,756 28.4% 518 ms NN

bgf4475 4475 yes 13,221 15,989 20.9% 1.6 s 14,562 10.1% 22.6 s 0.8 MiB 15 16,439 24.3% 487 ms NN

xqd4966 4966 yes 15,316 17,630 15.1% 2.0 s 16,545 8.0% 19.8 s 0.8 MiB 10 19,807 29.3% 571 ms NN

fqm5087 5087 yes 13,029 14,877 14.2% 2.1 s 14,041 7.8% 18.1 s 0.8 MiB 9 17,554 34.7% 586 ms NN

fea5557 5557 yes 15,445 18,171 17.6% 2.4 s 16,629 7.7% 30.4 s 0.9 MiB 13 19,738 27.8% 688 ms NN

xsc6880 6880 yes 21,535 26,404 22.6% 3.9 s 23,704 10.1% 36.0 s 1.1 MiB 10 26,243 21.9% ‘NR’ PRNN

bnd7168 7168 yes 21,834 25,963 18.9% 4.1 s 23,848 9.2% 50.3 s 1.1 MiB 13 26,574 21.7% ‘NR’ PRNN

lap7454 7454 yes 19,535 23,107 18.3% 4.5 s 21,345 9.3% 50.7 s 1 MiB 12 24,184 23.8% 1.1 s NN

ida8197 8197 yes 22,338 26,152 17.1% 5.4 s 23,954 7.2% 1.1 m 1.2 MiB 13 27,513 23.2% ‘NR’ PRNN

dga9698 9698 yes 27,724 33,533 21.0% 7.9 s 30,374 9.6% 1.4 m 1.3 MiB 12 33,564 21.1% ‘NR’ PRNN

xmc10150 10,150 yes 28,387 34,071 20.0% 8.8 s 31,124 9.6% 1.1 m 1.3 MiB 8 34,147 20.3% ‘NR’ PRNN

xvb13584 13,584 yes 37,083 44,129 19.0% 15.8 s 40,591 9.5% 2.6 m 1.5 MiB 11 45,835 23.6% ‘NR’ PRNN

xrb14233 14,233 no 45,462 54,786 20.5% 17.1 s 49,593 9.1% 3.2 m 1.4 MiB 12 57,034 25.5% 3.6 s NN

xia16928 16,928 no 52,850 62,195 17.7% 24.0 s 57,220 8.3% 3.4 m 1.6 MiB 9 66,398 25.6% 5.3 s NN

pjh17845 17,845 no 48,092 56,892 18.3% 27.5 s 51,934 8.0% 5.3 m 1.7 MiB 13 60,797 26.4% 5.4 s NN

frh19289 19,289 no 55,798 67,243 20.5% 32.3 s 61,007 9.3% 5.3 m 1.9 MiB 11 68,360 22.5% ‘NR’ PRNN

fnc19402 19,402 no 59,287 69,912 17.9% 32.0 s 64,170 8.2% 5.3 m 1.8 MiB 11 74,447 25.6% 6.5 s NN

ido21215 21,215 no 63,517 75,879 19.5% 38.4 s 69,205 9.0% 8.0 m 1.9 MiB 14 79,469 25.1% 7.6 s NN
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Table A6. Cont.

Instance CII Heuristic (Phase 2) CII Heuristic (Phase 3) Other Heuristics
V Opt? C(BKS) C(T) ErrorCII Time C(T) ErrorCII Time RAM # Cmin(TH) ErrorH Time Heuristic Id

fma21553 21,553 no 66,527 77,951 17.2% 41.0 s 71,929 8.1% 6.6 m 2.0 MiB 11 83,449 25.4% 8.3 s NN

lsb22777 22,777 no 60,977 71,997 18.1% 44.6 s 66,298 8.7% 7.3 m 2.0 MiB 11 76,551 25.5% 8.8 s NN

xrh24104 24,104 no 69,294 83,300 20.2% 49.1 s 75,766 9.3% 6.8 m 2.1 MiB 9 87,747 25.2% 10.2 s NN

bbz25234 25,234 no 69,335 82,214 18.6% 55.6 s 75,492 8.9% 10.5 m 2.2 MiB 13 87,345 26.0% 11.1 s NN

irx28268 28,268 no 72,607 85,130 17.2% 1.2 m 78,250 7.8% 15.2 m 2.4 MiB 15 90,936 25.2% 13.3 s NN

fyg28534 28,534 no 78,562 95,525 21.6% 1.2 m 85,843 9.3% 13.4 m 2.4 MiB 13 97,260 23.8% 14.0 s NN

icx28698 28,698 no 78,087 93,828 20.2% 1.2 m 85,562 9.6% 11.8 m 2.4 MiB 11 96,987 24.2% 13.6 s NN

boa28924 28,924 no 79,622 95,729 20.2% 1.2 m 86,834 9.1% 13.9 m 2.5 MiB 13 99,881 25.4% 14.4 s NN

ird29514 29,514 no 80,353 96,206 19.7% 1.4 m 87,565 9.0% 14.6 m 2.5 MiB 13 100,617 25.2% 15.4 s NN

pbh30440 30,440 no 88,313 104,985 18.9% 1.3 m 95,949 8.6% 13.5 m 2.6 MiB 11 110,335 24.9% 16.6 s NN

xib32892 32,892 no 96,757 113,361 17.2% 1.6 m 104,523 8.0% 15.4 m 2.7 MiB 11 120,736 24.8% 19.2 s NN

fry33203 33,203 no 97,240 116,014 19.3% 1.6 m 105,745 8.7% 20.8 m 2.8 MiB 15 120,664 24.1% 19.4 s NN

bby34656 34,656 no 99,159 118,792 19.8% 1.7 m 108,423 9.3% 17.0 m 2.9 MiB 11 124,834 25.9% 22.3 s NN

pba38478 38,478 no 108,318 128,315 18.5% 2.1 m 117,712 8.7% 24.4 m 3.1 MiB 13 134,770 24.4% 25.4 s NN

ics39603 39,603 no 106,819 130,049 21.7% 2.2 m 117,804 10.3% 26.2 m 3.2 MiB 13 133,660 25.1% 26.9 s NN

rbz43748 43,748 no 125,183 152,817 22.1% 2.6 m 138,235 10.4% 29.4 m 3.5 MiB 11 157,173 25.6% 33.2 s NN

fht47608 47,608 no 125,104 148,051 18.3% 3.2 m 135,216 8.1% 39.4 m 3.7 MiB 13 155,972 24.7% 39.2 s NN

fna52057 52,057 no 147,789 174,317 18.0% 3.8 m 160,231 8.4% 46.9 m 4.1 MiB 13 187,336 26.8% 51.6 s NN

bna56769 56,769 no 158,078 189,521 19.9% 4.6 m 173,074 9.5% 1.0 h 4.4 MiB 14 200,198 26.6% 56.8 s NN

dan59296 59,296 no 165,371 199,175 20.4% 5.0 m 180,850 9.4% 1.2 h 4.5 MiB 15 206,775 25.0% 1.0 m NN

sra104815 104,815 no 251,761 326,561 29.7% 15.6 m 295,092 17.2% 3.7 h 7.7 MiB 14 329,120 30.7% 3.2 m NN

ara238025 238,025 no 578,761 747,619 29.2% 1.4 h 674,559 16.6% 1.5 d. 16.8 MiB 22 759,882 31.3% 16.5 m NN

lra498378 498,378 no 2,168,039 2,710,116 25.0% 5.8 h 2,438,410 12.5% 15.0 d. 34.7 MiB 49 2,688,804 24.0% 1.2 h NN

lrb744710 744,710 no 1,611,232 2,076,966 28.9% 13.7 h 1,867,273 15.9% 15.0 d. 51.6 MiB 18 2,104,585 30.6% 2.7 h NN
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