Article

Simple Constructive, Insertion, and Improvement Heuristics Based on the Girding Polygon for the Euclidean Traveling Salesman Problem

Víctor Pacheco-Valencia ${ }^{1}$, José Alberto Hernández ${ }^{2}$, José María Sigarreta ${ }^{3}$ © and Nodari Vakhania ${ }^{1, *}$ (1)
1 Centro de Investigación en Ciencias UAEMor, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; vhpacval@gmail.com
2 Facultad de Contaduría, Administración e Informática UAEMor, Cuernavaca 62209, Mexico; jose_hernandez@uaem.mx
3 Facultad de Matemáticas UAGro, Universidad Autónoma de Guerrero, Acapulco 39650, Mexico; josemariasigarretaalmira@hotmail.com
* Correspondence: nodari@uaem.mx

Received: 15 November 2019; Accepted: 17 December 2019; Published: 21 December 2019

Abstract

The Traveling Salesman Problem (TSP) aims at finding the shortest trip for a salesman, who has to visit each of the locations from a given set exactly once, starting and ending at the same location. Here, we consider the Euclidean version of the problem, in which the locations are points in the two-dimensional Euclidean space and the distances are correspondingly Euclidean distances. We propose simple, fast, and easily implementable heuristics that work well, in practice, for large real-life problem instances. The algorithm works on three phases, the constructive, the insertion, and the improvement phases. The first two phases run in time $O\left(n^{2}\right)$ and the number of repetitions in the improvement phase, in practice, is bounded by a small constant. We have tested the practical behavior of our heuristics on the available benchmark problem instances. The approximation provided by our algorithm for the tested benchmark problem instances did not beat best known results. At the same time, comparing the CPU time used by our algorithm with that of the earlier known ones, in about 92% of the cases our algorithm has required less computational time. Our algorithm is also memory efficient: for the largest tested problem instance with 744,710 cities, it has used about 50 MiB , whereas the average memory usage for the remained 217 instances was 1.6 MiB .

Keywords: heuristic algorithm; traveling salesman problem; computational experiment; time complexity

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most studied strongly NP-hard combinatorial optimization problems. Given an $n \times n$ matrix of distances between n objects, call them cities, one looks for a shortest possible feasible tour which can be seen as a permutation of the given n objects: a feasible tour visits each of the n cities exactly once except the first visited city with which the tour ends. The cost of a tour is the sum of the distances between each pair of the neighboring cities in that tour. This problem can also be described in graph terms. We have an undirected weighted complete graph $G=(V, E)$, where V is the set of $n=|V|$ vertices (cities) and E is the set of the $n^{2}-n$ edges $(i, j)=(j, i), i \neq j$. A non-negative weight of an edge $(i, j), w(i, j)$ is the distance between vertices i and j. There are two basic sets of restrictions that define feasible solution (a tour that has to start and complete at the same vertex and has to contain all the vertices from set V exactly once). A feasible tour T can be represented as:

$$
\begin{equation*}
T=\left(i_{1}, i_{2}, \cdots, i_{n-1}, i_{n}, i_{1}\right) ; i_{k} \in V \tag{1}
\end{equation*}
$$

and its cost is

$$
\begin{equation*}
C(T)=\sum_{k=1}^{n-1} w\left(i_{k}, i_{k+1}\right)+w\left(i_{n}, i_{1}\right) \tag{2}
\end{equation*}
$$

The objective is to find an optimal tour, a feasible one with the minimum cost $\min _{T} C(T)$.
Some special cases of the problem have been commonly considered. For instance, in the symmetric version, the distance matrix is symmetric (i.e., for each edge $(i, j), w(i, j)=w(j, i))$; in another setting, the distances between the cities are Euclidean distances (i.e., set V can be represented as points in the two-dimensional Euclidean space). Clearly, the Euclidean TSP is also a symmetric TSP but not vice versa. The Euclidean TSP has a straightforward immediate application in the real-life scenario when a salesman wishes to visit the cities using the shortest possible tour. Because in the Euclidean version the cities are points in plane, for each pair of points, the triangle inequality holds, which makes the problem a bit more accessible in the sense that simple geometric rules can be used for calculating the cost of a tour or the cost of the inclusion of a new point in a partial tour, unlike the general setting. Nevertheless, the Euclidean TSP remains strongly NP-hard; see Papadimitriou [1] and Garey et al. [2].

The exact solution methods for TSP can only solve problem instances with a moderate number of cities; hence, approximation algorithms are of a primary interest. There exist a vast amount of approximation heuristic algorithms for TSP. The literature on TSP is very wide-ranging, and it is not our goal to overview all the important relevant work here (we refer the reader, e.g., to a book by Lawler et al. [3] and an overview chapter by Jünger [4]).

The literature distinguishes two basic types of approximation algorithms for TSP: tour construction and loop improvement algorithms. The construction heuristics create a feasible tour in one pass so that the taken decisions are not reconsidered later. A feasible solution delivered by a construction heuristic can be used in a loop improvement heuristic as an initial feasible solution (though such initial solution can be constructed randomly). Given the current feasible tour, iteratively, an improvement algorithm, based on some local optimality criteria, makes some changes in that tour resulting in a new feasible solution with less cost. Well-known examples of tour improvement algorithms are 2-Opt Croes 2-Opt, its generalizations 3-Opt and k-Opt, and the algorithm by Lin and Kernighan [5], to mention a few.

The most successful algorithms we have found in the literature for large-scale TSP instances are Ant Colony Optimization (ACO) meta heuristics, with which we compare our results. On one hand, these algorithms give a good approximation. On the other hand, the traditional ACO-based algorithms tend to require a considerable computer memory, which is necessary to keep an $n \times n$ pheromone matrix. Typically, the time complexity of the selection of each next move using ACO is also costly. These drawbacks are addressed in some recent ACO-based algorithms in which, at each iteration of the calculation of the pheromone levels, the intermediate data are reduced storing only a limited number of the most promising tours in computer memory. With Partial ACO (PACO), only some part of a known good tour is altered. A PACO-based heuristic was proposed in Chitty [6] and the experimental results for four problem instances from library Art Gallery were reported. Effective Strategies + ACO (ESACO) uses pheromone values directly in the 2-opt local search for the solution improvement and reduces the pheromone matrix, yielding linear space complexity (see, for example, Ismkman [7]). Parallel Cooperative Hybrid Algorithm ACO (PACO-3Opt) uses a multi-colony of ants to prevent a possible stagnation (see, for example, Gülcü et al. [8]). In a very recent Restricted Pheromone Matrix Method (RPMM) [9], the pheromone matrix is reduced with a linear memory complexity, resulting in an essentially lower memory consumption. Another recent successful ACO-based Dynamic Flying ACO (DFACO) heuristic was proposed by Dahan et al. [10]. Besides these ACO-based heuristics, we have compared our heuristics with other two meta-heuristics. One of them is a parallel algorithm based on the nearest neighborhood search suggested by Al-Adwan et al. [11], and the other one, proposed
by Zhong et al. [12], is a Discrete Pigeon-Inspired Optimization (DPIO) metaheuristic. We have also implemented directly the Nearest Neighborhood (NN) algorithm for the comparison purposes (see Section 4 and Appendix A).

In Table A1 in Appendix A, we give a summary of the above heuristics including the information on the type and the number of the instances for which these algorithms were tested and the number of the runs of each of these algorithms. Unlike these heuristics, the heuristic that we propose here is deterministic, in the sense that, for any input, it delivers the same solution each time it is invoked; hence, there is no need in the repeated runs of our algorithm. We have tested the performance of our algorithm on 218 benchmark problem instances (the number of the reported instances for the algorithms from Table A1 vary from 6 to 36). The relative error of our algorithm for the tested instances did not beat the earlier known best results; however, for some instances, our error was better than that of the above-mentioned algorithms (see Table 9 at the end of Section 3). The error percentage provided by our algorithm has varied from 0% to 17%, with an average relative error of 7.16%. The standard error deviation over all the tested instances was 0.03 .

In terms of the CPU time, our algorithm was faster than ones from Table A1 except for six instances from Art Gallery RPMM [9] and Partial-ACO [6], and for two instances from TSPLIB DPIO [12] were faster (see Table 10). Among all the comparisons we made, in about 92% of the cases, our algorithm has required less computational time. We have halted the execution of our algorithm for the two of the above-mentioned largest problem instances in 15 days, and for the next largest instance ara 238025 with 238,025 cities our algorithm has halted in about 36 h . The average CPU time for the remained instances were 19.2 min . The standard CPU time deviation for these instances was 89.3 min (for all the instances, including the above-mentioned three largest ones, it was 2068.4 min).

Our algorithm consumes very little computer memory. For the largest problem instance with 744,710 cities, it has used only about 50 MiB (mebibytes). The average memory usage for the remained 217 instances was 1.6 MiB (the average for all the instances including the above largest one was 1.88 MiB). The standard deviation of the usage of the memory is 4.6 MiB . Equation (3) below (see also Figure 15 in Section 3) shows the dependence of the memory required by our algorithm on the total number of cities n. As we can observe, this dependence is linear:

$$
\begin{equation*}
R A M=0.0000685 n+0.563 M i B \tag{3}
\end{equation*}
$$

Our algorithm consists of the constructive, the insertion and the improvement phases, we call it the Constructive, Insertion, and Improvement algorithm, the CII-algorithm, for short. The constructive heuristics of Phase 1 deliver a partial tour that includes solely the points of the girding polygon. The insertion heuristic of Phase 2 completes the partial tour of Phase 1 to a complete feasible tour using the cheapest insertion strategy: iteratively, the current partial tour is augmented with a new point, one yielding the minimal increase in the cost in an auxiliary, specially formed tour. We use simple geometry in the decision-making process at Phases 2 and 3. The tour improvement heuristic of Phase 3 improves iteratively the tour of Phase 2 based on the local optimality conditions: it uses two heuristic algorithms which carry out some local rearrangement of the current tour. At Phase 1, the girding polygon for the points of set V and an initial, yet infeasible (partial) tour including the vertices of that polygon is constructed in time $O\left(n^{2}\right)$. The initial tour of Phase 1 is iteratively extended with the new points from the internal area of the polygon at Phase 2. Phase 2 also runs in time $O\left(n^{2}\right)$ and basically uses the triangle inequality for the selection of each newly added point. Phase 3 uses two heuristic algorithms. The first one, called 2-Opt, is a local search algorithm proposed by Croes [13]. The second one is based on the procedure of Phase 2 . The two heuristics are repeatedly applied in the iterative improvement cycle until a special approximation condition is satisfied. The number of repetitions in the improvement cycle, in practice, is bounded by a small constant. In particular, the average number of the repetitions for all the tested instances was about 9 (the maximum of 49 repetitions was attained for one of the moderate sized instances lra498378, and for the largest instance lrb744710 with 744,710 points, Phase 3 was repeated 18 times).

The rest of the paper is organized as follows. In Section 2, we describe the CII-algorithm and show its time complexity. In Section 3, we give the implementation details and the results of our computational experiments, and, in Section 4, we give some concluding remarks and possible directions for the future work. The tables presented in Appendix A contain the complete data of our computational results.

2. Methods

We start this section with a brief aggregated description of our algorithm and in the following subsections we describe its three phases (Figure 1).

Figure 1. Block diagram of the CII-algorithm: (a) Phase 1 delivers a partial (yet infeasible) solution, (b) Phase 2 extends the partial solution of Phase 1 to a complete feasible solution, and, (c) at Phase 3, the latter solution is further improved.

2.1. Phase 1

2.1.1. Procedure to Locate the Extreme Points

At Phase 1, we construct the girding polygon for the points of set V and construct an initial yet infeasible (partial) tour that includes the points of that polygon. The construction of this polygon employs four extreme points v^{1}, v^{2}, v^{3} and v^{4}; the uppermost, leftmost, lowermost, and rightmost, respectively [14], with ones from set V defined as follows. First, we define the sets of points $T^{\prime}, L^{\prime}, B^{\prime}$ and R^{\prime} with $T^{\prime}=\left\{i \mid y_{i}\right.$ is maximum, $\left.i \in V\right\}, L^{\prime}=\left\{i \mid x_{i}\right.$ is minimum, $\left.i \in V\right\}$, $B^{\prime}=\left\{i \mid y_{i}\right.$ is minimum, $\left.i \in V\right\}$, and $R^{\prime}=\left\{i \mid x_{i}\right.$ is maximum, $\left.i \in V\right\}$. Then,

$$
\begin{align*}
& v^{1}=j \mid x_{j} \text { is maximum; } j \in T^{\prime}, \tag{4}\\
& v^{2}=j \mid y_{j} \text { is maximum; } j \in L^{\prime}, \tag{5}\\
& v^{3}=j \mid x_{j} \text { is minimum; } j \in B^{\prime}, \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
v^{4}=j \mid y_{j} \text { is minimum; } j \in R^{\prime} \tag{7}
\end{equation*}
$$

See the next procedure for the extreme points in Table 1.

Table 1. Procedure extreme_points.

```
PROCEDURE extreme_points \(\left(V=\left\{i_{1}, i_{2}, \cdots, i_{n}\right\}\right)\)
    \(y_{\text {max }}:=y_{i_{1}} \quad\) //Initializing variables
    \(x_{\text {min }}:=x_{i_{1}}\)
    \(y_{\text {min }}:=x_{i_{1}}\)
    \(x_{\text {max }}:=y_{i_{1}}\)
    FOR \(j:=2\) TO \(n\) DO
        IF \(y_{i_{j}}>y_{\text {max }}\) THEN \(y_{\text {max }}:=y_{i_{j}}\)
        IF \(x_{i_{j}}<x_{\text {min }}\) THEN \(x_{\text {min }}:=x_{i_{j}}\)
        IF \(y_{i_{j}}<y_{\text {min }}\) THEN \(y_{\text {min }}:=y_{i_{j}}\)
        IF \(x_{i_{j}}>x_{\max }\) THEN \(x_{\max }:=x_{i_{j}}\)
    \(T^{\prime}=L^{\prime}=B^{\prime}=R^{\prime}:=\varnothing\)
    FOR \(j:=1\) TO \(n\) DO
        IF \(y_{i_{j}}=y_{\max }\) THEN \(T^{\prime}:=T^{\prime} \cup\left\{i_{j}\right\}\)
        IF \(x_{i_{j}}=x_{\text {min }}\) THEN \(L^{\prime}:=L^{\prime} \cup\left\{i_{j}\right\}\)
        IF \(y_{i_{j}}=y_{\text {min }}\) THEN \(B^{\prime}:=B^{\prime} \cup\left\{i_{j}\right\}\)
        IF \(x_{i_{j}}=x_{\text {max }}\) THEN \(R^{\prime}:=R^{\prime} \cup\left\{i_{j}\right\}\)
    \(v^{1}:=t_{1}^{\prime} \quad / / T^{\prime}=\left\{t_{1}^{\prime}, t_{2}^{\prime}, \cdots, t_{\left|T^{\prime}\right|}^{\prime}\right\},\left|T^{\prime}\right| \leq n\)
    \(v^{2}:=l_{1}^{\prime} \quad / / L^{\prime}=\left\{l_{1}^{\prime}, l_{2}^{\prime}, \cdots, l_{\left|L^{\prime}\right|}^{\prime}\right\},\left|L^{\prime}\right| \leq n\)
    \(v^{3}:=b_{1}^{\prime} \quad / / B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \cdots, b_{\left|B^{\prime}\right|}^{\prime}\right\},\left|B^{\prime}\right| \leq n\)
    \(v^{4}:=r_{1}^{\prime} \quad / / R^{\prime}=\left\{r_{1}^{\prime}, r_{2}^{\prime}, \cdots, r_{\left|R^{\prime}\right|}^{\prime}\right\},\left|R^{\prime}\right| \leq n\)
    FOR \(j:=2\) TO \(\left|T^{\prime}\right|\) DO
        IF \(x_{t_{j}^{\prime}}>x_{v^{1}}\) THEN \(v^{1}:=t_{j}^{\prime}\)
    FOR \(j:=2\) TO \(\left|L^{\prime}\right|\) DO
    IF \(x_{l_{j}^{\prime}}>x_{v^{2}}\) THEN \(v^{2}:=l_{j}^{\prime}\)
    FOR \(j:=2\) TO \(\left|B^{\prime}\right|\) DO
        IF \(x_{b_{j}^{\prime}}>x_{v^{3}}\) THEN \(v^{3}:=b_{j}^{\prime}\)
    FOR \(j:=2\) TO \(\left|R^{\prime}\right|\) DO
        IF \(x_{r_{j}^{\prime}}>x_{v^{4}}\) THEN \(v^{4}:=r_{j}^{\prime}\)
    RETURN \(v^{1}, v^{2}, v^{3}, v^{4}\)
```

Lemma 1. The time complexity of Procedure extreme_points is $O(n)$.
Proof of Lemma 1. In this and in the following proofs, we only consider those lines in the formal descriptions in which the number of elementary operations, denote it by $f(n)$, depends on n (ignoring the lines yielding a constant number of operations). In lines $5-9$, there is a loop with $n-1$ cycles, hence $\{f(n)=n-1\}$. In lines 11-15, there is a loop with n cycles, hence $\{f(n)=n\}$ In lines 20-21, 22-23, $24-25$ and 26-27; there are four loops, each one with at most has n cycles, so $\{f(n)=4 n\}$. Hence, the total cost is $O(n)$.

2.1.2. Procedure for the Construction of the Girding Polygon

Before we describe the procedure, let us define function $\theta(i, j)$, returning the angle formed between the edge (i, j) and the positive direction of the x-axis (Equation (8) and Figure 2):

$$
\theta(i, j)=\left\{\begin{align*}
\arccos \frac{x_{j}-x_{i}}{w(i, j)} & \text { if } \arcsin \frac{y_{j}-y_{i}}{w(i, j)} \geq 0 \tag{8}\\
-\arccos \frac{x_{j}-x_{i}}{w(i, j)} & \text { if } \arcsin \frac{y_{j}-y_{i}}{w(i, j)}<0
\end{align*}\right.
$$

Figure 2. Angle $\theta(i, j)$.
The girding Polygon $P=P(V)$ is a convex geometric figure in a two-dimensional plane, such that any point in V either belongs to that polygon or to the area of that polygon Vakhania et al. [14].

The input of our procedure for the construction of polygon P (see Table 2), consists of (i) the set of vertices V and (ii) the distinguished extreme points v^{1}, v^{2}, v^{3} and v^{4}. Abusing slightly the notation, in the description below, we use: (i) P, for the array of the points that form the girding polygon, and (ii) k for the last vertex included so far into the array P. Initially, $P:=\left(v^{1}\right)$ and $k:=v^{1}$.

Table 2. Procedure polygon.

```
PROCEDURE polygon \(\left(V, v^{1}, v^{2}, v^{3}, v^{4}\right)\)
    \(P:=\left(v^{1}\right) \quad\) //Initializing variables
    \(k:=v^{1}\)
    WHILE \(k \neq v^{2}\) DO \(\quad / /\) Step 1
            form a subset of vertices \(V^{*}:=\left\{i \mid x_{i}<x_{k} \wedge y_{i} \geq y_{v^{2}} ; i \in V\right\}\)
            form a subset of edges \(E^{*}:=\left\{(k, j) ; j \in V^{*}\right\}\)
            form a set of angles \(\Theta^{*}:=\left\{\theta(k, j) ;(k, j) \in E^{*}\right\}\)
            get the minimum angle \(\theta(k, l)\) from \(\Theta^{*}\)
            append the vertex \(l\) to \(P\) and update \(k\) equal to \(l\).
    WHILE \(k \neq v^{3}\) DO //Step 2
            form a subset of vertices \(V^{*}:=\left\{i \mid x_{i} \leq x_{v^{3}} \wedge y_{i}<y_{k} ; i \in V\right\}\)
            form a subset of edges \(E^{*}:=\left\{(k, j) ; j \in V^{*}\right\}\)
            form a set of angles \(\Theta^{*}:=\left\{\theta(k, j) ;(k, j) \in E^{*}\right\}\)
            get the minimum angle \(\theta(k, l)\) from \(\Theta^{*}\)
            append the vertex \(l\) to \(P\) and update \(k\) equal to \(l\).
    WHILE \(k \neq v^{4}\) DO
                                    //Step 3
            form a subset of vertices \(V^{*}:=\left\{i \mid x_{i}>x_{k} \wedge y_{i} \leq y_{v^{4}} ; i \in V\right\}\)
            form a subset of edges \(E^{*}:=\left\{(k, j) ; j \in V^{*}\right\}\)
            form a set of angles \(\Theta^{*}:=\left\{\theta(k, j) ;(k, j) \in E^{*}\right\}\)
            get the minimum angle \(\theta(k, l)\) from \(\Theta^{*}\)
            append the vertex \(l\) to \(P\) and update \(k\) equal to \(l\).
    WHILE \(k \neq v^{1}\) DO //Step 4
            form a subset of vertices \(V^{*}:=\left\{i \mid x_{i} \geq x_{v^{1}} \wedge y_{i}>y_{k} ; i \in V\right\}\)
            form a subset of edges \(E^{*}:=\left\{(k, j) ; j \in V^{*}\right\}\)
            form a set of angles \(\Theta^{*}:=\left\{\theta(k, j) ;(k, j) \in E^{*}\right\}\)
            get the minimum angle \(\theta(k, l)\) from \(\Theta^{*}\)
            append the vertex \(l\) to \(P\) and update \(k\) equal to \(l\).
```

Lemma 2. The time complexity of Procedure polygon is $O\left(n^{2}\right)$.
Proof of Lemma 2. There are four independent while statements with similar structure, each of which can be repeated at most n times. In the first line of each of these while statements, in lines $4,11,18$, and 25 , the set of points V^{*} is formed that yields $\{f(n)=2 n\}$ operations. In lines $5,12,19$, and 26 , the
set of $n-1$ edges E^{*} is formed in time $\{f(n)=n-1\}$. In lines $6,13,20$, and 27 , the set of angles Θ^{*} consisting of at most $n-1$ elements is formed in time $\{f(n)=n-1\}$. In lines $7,14,21$, and 28 to find the minimum angle in set Θ^{*} at most $n-1$ comparisons are needed and the lemma follows.

In Figure 3, we illustrate an example with $V=\{1,2, \cdots, 6\}$ with coordinates $X=\left\{x_{1}, x_{2}, \cdots, x_{6}\right\}$ and $Y=\left\{y_{1}, y_{2}, \cdots, y_{6}\right\}$. The extreme points are: $v^{1}=4, v^{2}=2, v^{3}=5$ and $v^{4}=5$ and $P=(4,2,5,4)$. Initially, $P=(4)$. Then, vertex 2 is added to polygon in Step 1, vertex 5 is added in Step 2; Step 3 is not carried out because $v^{3}=v^{4}$; vertex 4 is added at Step 4 .

Figure 3. Example that shows the extreme vertices and girding polygon.
Using polygon $P(V)$ constructed by the Procedure Polygon, we obtain our initial, yet infeasible (partial) tour $T_{0}=\left(t_{1}, t_{2}, \cdots, t_{m}, t_{1}\right)$ that is merely formed by all the points $t_{1}, t_{2}, \cdots, t_{m}$ of that polygon, where $t_{1}=v^{1}$ and m is the number of the points.

In the example of Figure 3, P is the initial infeasible tour $T_{0}=(4,2,5,4) . V \backslash T_{0}=\{1,3,6\}$ is the set of points that will be inserted into the final tour.

2.2. Phase 2

The initial tour of Phase 1 is iteratively extended with new points from the internal area of polygon $P(V)$ using the cheapest insertion strategy at Phase 2 [15].

Let $l \notin T_{h-1}$ be a candidate point to be included in tour T_{h-1}, resulting in an extended tour T_{h} of iteration $h>0$, and let $t_{i} \in T_{h-1}$. Due to the triangle inequality, $w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right) \geq w\left(t_{i}, t_{i+1}\right)$; i.e., the insertion of point l between points t_{i} and t_{i+1}, will increase the current total $\operatorname{cost} C\left(T_{h-1}\right)$ by $w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right) \geq 0$ (see Figure 4). Once point l is included between points t_{i} and t_{i+1}, for the convenience of the presentation, we let $t_{m}:=t_{m-1}, t_{m-1}:=t_{m-2}, \cdots, t_{i+3}:=t_{i+2}, t_{i+2}:=t_{i+1}$ and $t_{i+1}:=l$ (due to the way in which we represent our tours, this re-indexing yields no extra cost in our algorithm).

Figure 4. The triangle inequality.

In Table 3, we give a formal description of our procedure that inserts point l between points t_{i} and t_{i+1} in tour T.

Table 3. Procedure insert_point_in_tour.

```
PROCEDURE insert_point_in_tour \((T, l, i)\)
    \(p:=|T|\)
    IF \(i<p\) THEN
        \(j:=p+1\)
        WHILE \(j>i+1\) DO
            \(t_{j}:=t_{j-1}\)
            \(j:=j-1\)
        \(t_{i+1}:=l\)
        RETURN \(T\)
```

Procedure construc_tour
At each iteration h, the current tour T_{h-1} is extended by point $l^{h} \in V \backslash T_{h-1}$ yielding the minimum $\operatorname{cost} c_{l}^{h}$ (defined below), which represents the increase in the the current total cost $C\left(T_{h-1}\right)$ if that point is included into the current tour T_{h-1}. The cost for point $l \in V \backslash T_{h-1}$ is defined as follows:

$$
\begin{equation*}
c_{l}^{h}=\min _{t_{i} \in T_{h-1}}\left\{w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right)\right\} \tag{9}
\end{equation*}
$$

For further references, we denote by $i(l)$ the index of point t_{i} for which the above minimum for point l is reached, i.e., $w\left(t_{i(l)}, l\right)+w\left(l, t_{i(l)+1}\right)-w\left(t_{i(l)}, t_{i(l)+1}\right)=\min _{t_{i} \in T_{h-1}}\left\{w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right)-\right.$ $\left.w\left(t_{i}, t_{i+1}\right)\right\}$.

Thus, l^{h} is a point that attains the minimum

$$
\begin{equation*}
\min \left\{c_{l}^{h} \mid l \in V \backslash T_{h-1}\right\} \tag{10}
\end{equation*}
$$

whereas the ties can be broken arbitrarily.
To speed up the procedure, we initially calculate the minimum cost for each point $l \in V \backslash T_{h-1}$. After the insertion of point l^{h}, the minimum $\operatorname{cost} c_{l}^{h}$ is updated as follows:

$$
\begin{equation*}
c_{l}^{h}:=\min \left\{c_{l}^{h-1}, w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right), w\left(t_{i+1}, l\right)+w\left(l, t_{i+2}\right)-w\left(t_{i+1}, t_{i+2}\right)\right\} . \tag{11}
\end{equation*}
$$

We can describe now Procedure construct_tour as shown in Table 4.
Table 4. Procedure construct_tour.

```
PROCEDURE construct_tour \(\left(V, T_{0}\right)\)
    \(h:=1\)
    FOR each point \(l \in V \backslash T_{h-1}\) DO
        \(c_{l}^{h}:=\min _{t_{i} \in T_{h-1}}\left\{w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right)\right\}\)
    WHILE exists a vertex \(l \in V \backslash T_{h-1}\) DO
        get \(l^{h}\)
        insert_point_in_tour \(\left(T_{h-1}, l^{h}, i\left(l^{h}\right)\right)\)
        FOR each point \(l \in V \backslash T_{h}\) DO
            \(c_{l}^{h+1}:=\min \left\{c_{l}^{h}, w\left(t_{i}, l\right)+w\left(l, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right), w\left(t_{i+1}, l\right)+w\left(l, t_{i+2}\right)-w\left(t_{i+1}, t_{i+2}\right)\right\}\)
        \(h:=h+1\)
```

Lemma 3. The time complexity of the Procedure construct_tour is $O\left(n^{2}\right)$.

Proof of Lemma 3. In lines $2-3$, there is a for statement with $n-(m+h-1)$ repetitions. To calculate c_{l}^{h} in line 3, the same number of repetitions is needed and the total cost of the for statement is $[n-(m+h-1)][n-(m+h-1)]=\left[n^{2}-2(m+h-1) n+(m+h-1)^{2}\right]$. The while statement in lines $4-9$ is repeated at most $n-(m+h-1)$ times. In line 5, to calculate $c_{l^{h}}^{h}$ (Equation (10)) $n-(m+h-1)$ comparisons are required. In lines $7-8$, there is a for statement nested in the above while statement with $n-(m+h)$ repetitions. Hence, the total cost is $\left[n^{2}-2(m+h-1) n+(m+h-1)^{2}\right]+[n-(m+h-$ 1) $]\{[n-(m+h-1)]+[n-(m+h)]\}=\left[n^{2}-2(m+h-1) n+\left(m^{2}-2 m-2 h+h^{2}+1\right)\right]+[n-(m+$ $h-1)][2 n-(2 m+2 h-1)]=\left[n^{2}-(2 m+2 h-2) n+\left(m^{2}-2 m-2 h+h^{2}+1\right)\right]+\left[2 n^{2}-(4 m+4 h-\right.$ 3) $\left.n+\left(2 m^{2}+4 m h-3 m-3 h+2 h^{2}+1\right)\right]=3 n^{2}-(6 m+6 h-5) n+\left(3 m^{2}+4 m h-5 m-5 h+3 h^{2}+2\right)=$ $O\left(n^{2}\right)$.

In the example of Figure $5, T_{0}=(4,2,5)$. The costs $c_{l}^{1}, l \in V \backslash T_{0}$, are calculated as follows:
$c_{1}^{1}=\min \{w(4,1)+w(1,2)-w(4,2), w(2,1)+w(1,5)-w(2,5), w(5,1)+w(1,4)-w(5,4)\}$ $=w(5,1)+w(1,4)-w(5,4)$,
$c_{3}^{1}=\min \{w(4,3)+w(3,2)-w(4,2), w(2,3)+w(3,5)-w(2,5), w(5,3)+w(3,4)-w(5,4)\}$ $=w(4,3)+w(3,2)-w(4,2)$,
$c_{6}^{1}=\min \{w(4,6)+w(6,2)-w(4,2), w(2,6)+w(6,5)-w(2,5), w(5,6)+w(6,4)-w(5,4)\}$ $=w(4,6)+w(6,2)-w(4,2)$.

Figure 5. Points 1,3, and 6 that can be inserted between point 4 and 2, 2 and 5, or 5 and 4 from partial tour T_{0} are depicted in Figures (a), (b), and (c), respectively.

Hence, $\min \left\{c_{1}^{1}, c_{3}^{1}, c_{6}^{1}\right\}=c_{6}^{1}=w(4,6)+w(6,2)-w(4,2) ; l^{1}=6$ and $i(6)=4$. Therefore, point 6 will be included in tour T_{1} between points 4 and 2 (Figure 6).

Figure 6. Point 6 was inserted in the tour T_{0} between points 4 and 2 .
Now, $T_{1}=(4,6,2,5,4)$ and the minimum costs c_{l}^{2} for each point $l \in V \backslash T_{1}$ are:

$$
\begin{aligned}
c_{1}^{2} & =\left\{c_{1}^{1}, w(4,1)+w(1,6)-w(4,6), w(6,1)+w(1,2)-w(6,2)\right\} \\
& =w(4,1)+w(1,6)-w(4,6)
\end{aligned}
$$

$$
\begin{aligned}
c_{3}^{2} & =\left\{c_{3}^{1}, w(4,3)+w(3,6)-w(4,6), w(6,3)+w(3,2)-w(6,2)\right\} \\
& =w(6,3)+w(3,2)-w(6,2) .
\end{aligned}
$$

Hence, $\min \left\{c_{1}^{2}, c_{3}^{2}\right\}=c_{3}^{2}=w(6,3)+w(3,2)-w(6,2) ; l^{2}=3$ and $i(3)=6$. Therefore, point 3 will be included in tour T_{2} between points 6 and 2 (Figure 7).

Figure 7. Point 3 was inserted in the tour T_{1} between points 6 and 2 .
Now, $T_{2}=(4,6,3,2,5,4)$ and the minimum costs $c_{l}^{3}, l \in V \backslash T_{2}$ are
$c_{1}^{3}=\left\{c_{1}^{2}, w(6,1)+w(1,3)-w(6,3), w(3,1)+w(1,2)-w(3,2)=c_{1}^{2}\right.$.
Hence, $\min \left\{c_{1}^{3}\right\}=c_{1}^{2}=w(4,1)+w(1,6)-w(4,6) ; l^{3}=1$ and $=i(1)=4$. Therefore, point 1 will be included in tour T_{3} between points 4 and 6 (Figure 8).

Figure 8. Point 1 be inserted in the tour T_{2} between points 4 and 6 .
The resultant tour $T=T_{3}=(4,1,6,3,2,5,4)$ includes all points from set V and Procedure construct_tour halts.

2.3. Phase 3

At Phase 3, we iteratively improve the feasible tour T delivered by Phase 2. We use two heuristic algorithms. The first one is called 2-Opt, which is a local search algorithm proposed by Croes [13]. The second one is based on our construct_tour procedure, named improve_tour. The current solution (initially, it is the tour delivered by Phase 2) is repeatedly improved first by 2-Opt-heuristics and then by Procedure improve_tour, until there is an improvement. Phase 3 halts if either the output of one of the heuristics has the same objective value as the input (by the construction, the output cannot be worse than the input) or the following condition is satisfied:

$$
\begin{equation*}
C\left(T_{\text {in }}\right)-C\left(T_{\text {out }}\right) \leq d i f_{\text {min }}, \tag{12}
\end{equation*}
$$

where $d i f_{\min }$ is a constant (for instance, we let $d i f_{\min }=0.0001$). Thus, initially, 2-Opt-heuristics runs with input T. Repeatedly, Condition (12) is verified for the the output of every call of each of the
heuristics. If it is satisfied, Phase 3 halts; otherwise, for the output of the last called heuristics, the other one is invoked and the whole procedure is repeated; see Figure 9.

Figure 9. Block diagram of Phase 3.

2.3.1. Procedure 2-Opt

Procedure 2-Opt is a local search algorithm improving feasible solution $T=\left(t_{1}, t_{2}, \cdots, t_{n}, t_{1}\right)$ $(n=|V|)$. It is well-known that the time complexity of this procedure is $O\left(n^{2}\right)$. For the completeness of our presentation, we give a formal description of this procedure in Table 5.

Table 5. Procedure 2-Opt.

```
PROCEDURE 2-Opt \((V, T)\)
    \(i:=1\)
    \(n:=|V|\)
    WHILE \(i<n-2\) DO
        \(j:=i+1\);
        WHILE \(j<n-1\) DO
            IF \(w\left(t_{i}, t_{j}\right)+w\left(t_{i+1}, t_{j+1}\right)<w\left(t_{i}, t_{i+1}\right)+w\left(t_{j}, t_{j+1}\right)\) THEN
            \(x:=i+1\)
            \(y:=j\)
            WHILE \(x<y\) DO
                \(t_{\text {aux }}:=t_{x}\)
                    \(t_{x}:=t_{y}\)
                    \(t_{y}:=t_{\text {aux }}\)
                    \(x:=x+1\)
                    \(y:=y-1\)
                \(j:=j+1\)
            \(i:=i+1\)
    RETURN \(T\)
```

The result of a local replacement carried out by the procedure is represented schematically in the Figure 10).

Figure 10. (a) a fragment of a solution before applying the algorithm 2-Opt; (b) the corresponding fragment after applying algorithm 2-Opt.

2.3.2. Procedure improve_tour

We also use our algorithm construct_tour to improve a feasible solution $T=\left(t_{1}, t_{2}, \cdots, t_{n}, t_{1}\right)$, $n=|V|$. Iteratively, point $t_{i+1}, 1 \leq i<n$, is removed from the tour T and is reinserted by a call of procedure construct_tour $\left(V, T \backslash\left\{t_{i+1}\right\}\right)$. If a removed point gets reinserted in the same position, then $i:=i+1$ and the procedure continues until $i \leq n$ (see Table 6).

Table 6. Procedure improve_tour.

```
PROCEDURE improve_tour \((V, T)\)
    \(i:=1\)
    WHILE \(i<n\) DO
        \(t_{j}:=t_{i+1}\)
        remove \(t_{i+1}\) from the tour \(T \quad / /\) now \(T\) is infeasible
        construct_tour \(\left(V, T \backslash\left\{t_{i+1}\right\}\right) \quad / / T\) is feasible again
        IF \(t_{i+1}=t_{j}\) THEN
            \(i:=i+1\)
    RETURN \(T\)
```

Figure 11 illustrates the iterative improvement in the cost of the solutions obtained at Phase 3 for a sample problem instance usa115475. The initial solution T_{0} of Phase 2 is iteratively improved as shown in the diagram.

Figure 11. The improvement rate at Phase 3 for instance usa115475.

Lemma 4. The time complexity of the Procedure improve_tour is $O\left(n^{2}\right)$.
Proof of Lemma 4. In lines $2-7$, there is a while statement with $n-1$ repetitions. The call of Procedure construct_tour in line 5 yields the cost $O(n)$ since with $m=n-1, h=1$; see the proof of Lemma 3 (m is the number of points in the current partial tour). The lemma follows.

3. Implementation and Results

CII-algorithm was coded in $\mathrm{C}++$ and compiled in $\mathrm{g}++$ on a server with processor $2 x$ Intel Xeon E5-2650 0 @ 2.8 GHz (Cuernavaca, Mor., Mexico), 32 GB in RAM and Ubuntu 18.04 (bionic) operating system (we have used only one CPU in our experiments). We did not keep the cost matrix in computer memory, but we have rather calculated the costs using the coordinates of the points. This does not increase the computation time too much and saves considerably the required computer memory.

We have tested the performance of CII-algorithm for 85 benchmark instances from TSPLIB [16] library and for 135 benchmark instances from TSP Test Data [17] library. The detailed results are presented in the Appendix. In our tables, parameter "Error" specifies the approximation factor of algorithm H compared to cost of the best known solution (C(BKS)):

$$
\begin{equation*}
\text { Error }_{H}=\left|\frac{C(B K S)-C\left(T_{H}\right)}{C(B K S)}\right| 100 \% \tag{13}
\end{equation*}
$$

In Table 7 below, we give the data on the average performance of our heuristics. The average error percentage of our heuristics is calculated using Formula (13). It shows, for each group of instances, the average error of the solutions delivered by Phase 2 and, at Phase 3, the number of cycles at Phase 3 and the average decrease in the cost of the solution decreased at Phase 3 compared to that Phase 3.

Table 7. Statistics about the solutions delivered by CII.

Description	TSPLIB	NATIONAL	ART GALLERY	VLSI	All
Number of instances	83	27	6	102	218
Average error percentage of the solutions at Phase 2	11.8%	17.7%	6.7%	18.4%	15.4%
Average number of cycles performed at Phase 3	11	11	10	9	
Average decrease in error at Phase 3	6.5%	9.6%	3.1%	9.8%	8.3%
Final average error percentage Average memory usage	5.3%	8.2%	3.6%	8.6%	7.2%

In the diagrams below (on the left hand-side), we illustrate the dependence of the approximation given by our algorithm on the size of the tested instances, and the dependence of the execution time of our algorithm on the size of the instances (right hand-side diagrams). We classify the tested instance into three groups: the small ones (from 1 to 199 points in Figure 12), the middle-sized ones (from 200 to 9999 points in Figure 13), and large instances (from 10,000 to 250,000 in Figure 14). We do not include the data for the largest two problem instances lra498378 and lrb744710 because of the visualization being technically complicated. The error for these instances is 12.5% and 15.9%, respectively, and the CPU time was limited to two weeks for both instances. As we can see, at Phase 3, there is an improvement in the quality of the solutions delivered by Phase 2.

Figure 12. (a) error vs. number of points, and (b) processing time vs. number of points, where $1 \leq|V|<200$.

Figure 13. (a) error vs. number of points, and (b) processing time vs. number of points, where $200 \leq|V|<10,000$.

Figure 14. (a) error vs. number of points, and (b) processing time vs. number of points, where $10,000 \leq|V|<250,000$.

Table 8 shows the summary of the comparison statistics of the solutions delivered by our algorithm CII with the solutions obtained by the heuristics that we have mentioned in the introduction (namely, DFACO [10], ACO-3Opt [10], ESACO [7], PACO-3Opt [8], DPIO [12], ACO-RPMM [9], Partial ACO [6], and PRNN [11]). We may observe in Table 9 that algorithm CII has attained an improved approximation for 17 instances. At the same time, in terms of the execution time, our heuristic dominates the other heuristics.

Table 8. Statistics between CII and other heuristics.

Description	TSPLIB	NATIONAL	ART GALLERY	VLSI	All
Number of instances Number of the known results from other heuristics	142	27	6	102	218
Number of time CII gave a better	2	0	10	12	164
error than other heuristicsNumber of times CII has improved the earlier known best execution time	140	0	4	12	18

In the Table 9, we specify the problem instances for which our algorithm provided a better relative error than some of the earlier cited algorithms.

Table 9. Comparative relative errors for some problem instances.

Description	Error $_{\text {CII }}$	Error $_{H}$
TSPLIB/rat783	7.4\%	19.1\% and 19.5\% (DFACO [10] and ACO-3Opt [10])
ART/Mona-lisa100K	3.4\%	5.5\% (Partial ACO [6])
ART/Vangogh120K	3.5\%	5.8\% (Partial ACO [6])
ART/Venus140K	3.4\%	5.8\% (Partial ACO [6])
ART/Earring200K	3.9\%	7.2\% (Partial ACO [6])
VLSI/dca1376	7.6\%	19.6\% (PRNN [11])
VLSI/djb2036	10.0\%	23.4\% (PRNN [11])
VLSI/xqc2175	9.1\%	21.4\% (PRNN [11])
VLSI/xqe3891	9.7\%	21.7\% (PRNN [11])
VLSI/bgb4355	8.4\%	22.8\% (PRNN [11])
VLSI/xsc6880	10.1\%	21.9\% (PRNN [11])
VLSI/bnd7168	9.2\%	21.7\% (PRNN [11])
VLSI/ida8197	7.2\%	23.2\% (PRNN [11])
VLSI/dga9698	9.6\%	21.1\% (PRNN [11])
VLSI/xmc10150	9.6\%	20.3\% (PRNN [11])
VLSI/xvb13584	9.5\%	23.6\% (PRNN [11])
VLSI/frh19289	9.3\%	22.5\% (PRNN [11])

In terms of the CPU time comparison, see Table 10.
Table 10. Comparative CPU time for the problem instances for which the other heuristics were faster.

Description	Time $_{\text {CII }}$	Time $_{H}$
TSPLIB/pla33810	25.7 m	21.0 m (DPIO [12])
TSPLIB/pla85900	4.1 h	1.4 h (DPIO [12])
Art Gallery / mona-lisa100K	2.3 h	1.4 h and 1.1 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/vangogh120K	4.6 h	1.9 h and 1.5 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/venus140K	4.8 h	2.6 h and 2.1 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/pareja160K	7.7 h	3.5 h (ACO-RPMM [9])
Art Gallery/coubert180K	10.1 h	4.5 h (ACO-RPMM [9])
Art Gallery/ earring200K	15.1 h	6.0 h and 5.1 h (ACO-RPMM [9] and Partial ACO [6])

In the diagram below (Figure 15), we illustrate the dependence of the memory used by our algorithm of all tested instances.

Figure 15. RAM vs. number of points for all the tested instances.

4. Conclusions and Future Work

We have presented a simple, easily implementable and fast heuristic algorithm for the Euclidean traveling salesman problem that solves both small and large scale instances with an acceptable approximation and consumes a little computer memory. Since the algorithm uses simple geometric calculations, it is easily implementable. The algorithm is fast, the first two phases run in time $O\left(n^{2}\right)$, whereas the number of the improvement repetitions in the third phase, in practice, is not large. The first two phases might be used independently from the third phase, for instance, for the generation of an initial tour in more complex loop improvement heuristics. The quality of the solution delivered already by Phase 2 is acceptable and is expected to greatly outperform that of a random solution used normally to initiate meta-heuristic algorithms. We have implemented NN (Nearest Neighborhood) heuristics and run the code for the benchmark instances (the initial vertex for NN heuristic was selected randomly). Phase 2 gave essentially better results. In average, for the tested 135 instances (6 large, 32 Medium and 97 small ones), the difference between the approximation factor obtained by the procedure of Phase 2 and that of Nearest Neighbor heuristic was 9.65% (the average error of Phase 2 was 16.89% and that of NN was 26.55%, whereas the standard deviations were similar, 0.05% and 0.04%, respectively). As for the overall algorithm, it uses a negligible computer memory. Although for most of the tested benchmark instances it did not improve the best known results, the execution time of our heuristic, on average, was better than the earlier reported best known times. For future work, we intend to create a more powerful, yet more complex, CII-algorithm by augmenting each of the three phases of our algorithm with alternative ways for the creation of the initial tour and alternative insertion and improvement procedures.

Author Contributions: Conceptualization, N.V. and J.M.S.; Methodology, V.P.-V.; Validation, N.V.; Formal Analysis, N.V. and J.M.S.; Investigation, V.P.-V.; Resources, UAEMor administrated by J.A.H.; Writing-original draft preparation, V.P.-V.; Writing-review and editing, N.V.; Visualization, V.P.-V. and N.V.; Supervision, N.V.; Project administration, N.V.; All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the table below (Table A1), we give some details on the earlier mentioned heuristics with which we compare our results (the entries in the column "Runs" specify the number of the reported runs of the corresponding heuristic).

Table A1. Heuristics used to compare the CII-algorithm.

Heuristic Id	Heuristic Name	Number of Reported Instances	Runs
ACO-RPMM [9]	ACO - Restricted Pheromone Matrix Method	6 Large	10
Partial ACO [6]	Partial ACO	4 Large and 5 Small	100
DFACO [10]	Dynamic Flying ACO	30 Small	100
ACO-3Opt [10]	ACO-3Opt	30 Small	100
DPIO [12]	Discrete Pigeon-inspired optimization with Metropolis acceptance	1 Large, 6 Medium and 28 Small	25
PACO-3Opt [8]	Parallel Cooperative Hybrid Algorithm ACO	21 Small	20
ESACO [7]	Effective Strategies + ACO	5 Medium and 17 Small	20
PRNN [11]	Parallel Repetitive Nearest Neighbor	3 Medium and 9 Small	$n=$
NN	Nearest Neighbor Algorithm	4 Large, 25 Medium and 61	
Small	1		

The next table (Table A2) discloses the headings of our tables.

Table A2. Description of the headings of Tables A3-A6.

Header	Header Description
$\|V\|$	the number of vertices in the instance
Opt?	"yes" if Best Known Solution (BKS) is optimal, "no" otherwise
$C(B K S)$	the cost of BKS
$C(T)$	Cost of the solution constructed by CII heuristic
RAM	RAM used by CII heuristics
$\#$	the number of cycles at Phase 3 of CII heuristic
Error	as defined in Formula (13)
$C_{a v g}\left(T_{H}\right)$	the average cost of the solution obtained by heuristic H
Heuristic Id	nomenclature used in Table A1
Time	the processing time of a heuristic
ms, s, m, h, d	time units for milliseconds, seconds, minutes, hours and days respectively.

In the tables below, each line corresponds to a particular benchmark instance. For each of these instances, we indicate the performance of Phase 2 and Phase 3, separately, and that of the other heuristics reporting the results for that instance. In addition, 85 benchmark instances were taken from TSPLIB [16] and 135 instances are from TSP Test Data [17] libraries. Tables A3, A4, and A6 include the earlier known results.

In some lines of our tables (e.g., line 1, Table A5), a slight difference in the approximation errors of our algorithm and those of the algorithms from the "Results for National TSP Benchmarks" table can be seen due to the way the distances in the obtained solutions are represented in our algorithm (we do not round the distances represented as decimal numbers, whereas the distances in the best known solutions are rounded).

Table A3. Results for TSPLIB benchmarks.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
eil51	51	yes	426	454	6.6\%	0.4 ms	454	6.6\%	1.0 ms	0.5 MiB	1	426	0.0\%	1.0 s	DFACO
												426	0.0\%	1.0 s	ACO-30pt
												426	0.0\%	1.1 s	ESACO
berlin52	52	yes	7542	8058	6.8\%	1.1 ms	8058	6.8\%	4.5 ms	0.6 MiB	3	7542	0.0\%	1.0 s	DFACO
												7542	0.0\%	1.0 s	ACO-30pt
st70	70	yes	675	710	5.2\%	0.6 ms	701	3.8\%	11.1 ms	0.6 MiB	3	826	22.3\%	0.4 ms	NN
eil76	76	yes	538	576	7.0\%	0.7 ms	556	3.4\%	2.2 ms	0.6 MiB	3	538	0.0\%	3.0 s	DFACO
												538	0.0\%	3.0 s	ACO-30pt
												538	0.0\%	1.4 s	ESACO
pr76	76	yes	108,159	114,808	6.1\%	0.7 ms	112,911	4.4\%	3.0 ms	0.6 MiB	4	148,348	37.2\%	0.5 ms	NN
rat99	99	yes	1211	1294	6.9\%	1.0 ms	1230	1.5\%	9.4 ms	0.6 MiB	3	1442	19.1\%	0.8 ms	NN
kroA100	100	yes	21,282	23,050	8.3\%	1.1 ms	21,443	0.8\%	3.5 ms	0.6 MiB	3	21,282	0.0\%	2.0 s	DFACO
												21,282	0.0\%	2.0 s	ACO-30pt
												21,282	0.0\%	2.6 s	ESACO
kroB100	100	yes	22,141	23,247	5.0\%	1.1 ms	22,716	2.6\%	3.3 ms	0.6 MiB	3	22,141	0.0\%	2.0 s	DFACO
												22,141	0.0\%	2.0 s	ACO-30pt
kroC100	100	yes	20,749	21,632	4.3\%	1.1 ms	20,922	0.8\%	3.8 ms	0.6 MiB	3	20,749	0.0\%	2.0 s	DFACO
												20,749	0.0\%	2.0 s	ACO-30pt
kroD100	100	yes	21,294	21,712	2.0\%	1.1 ms	21,582	1.4\%	3.4 ms	0.6 MiB	3	21,294		3.0 s	
												$21,294$	0.0%	3.0 s	ACO-3Opt
kroE100	100	yes	22,068	22,870	3.6\%	1.0 ms	22,528	2.1\%	8.3 ms	0.6 MiB	3	22,068	0.0\%	2.0 s	DFACO
												22,068	0.0\%	2.0 s	ACO-30pt
rd100	100	yes	7910	8465	7.0\%	1.2 ms	8245	4.2\%	3.8 ms	0.6 MiB	3	7910	0.0\%	2.0 s	DFACO
												7910	0.0\%	2.0 s	ACO-3Opt
eil101	101	yes	629	679	7.9\%	1.1 ms	666	5.9\%	19.5 ms	0.6 MiB	3	629	0.0\%	12.0 s	DFACO
												629	0.0\%	10.0 s	ACO-3Opt

Table A3. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
lin105	105	yes	14,379	14,913	3.7\%	1.2 ms	14,440	0.4\%	3.8 ms	0.6 MiB	3	14,379	0.0\%	2.0 s	DFACO
												14,379	0.0\%	2.0 s	ACO-30pt
												14,379	0.0\%	2.0 s	ESACO
pr107	107	yes	44,303	45,730	3.2\%	1.1 ms	45,262	2.2\%	18.1 ms	0.6 MiB	5	54,121	22.2\%	0.9 ms	NN
pr124	124	yes	59,030	62,193	5.4\%	1.4 ms	60,055	1.7\%	5.3 ms	0.6 MiB	3	73,008	23.7\%	1.3 ms	NN
bier127	127	yes	118,282	121,544	2.8\%	5.4 ms	121,544	2.8\%	5.6 ms	0.6 MiB	3	118,282	0.0\%	47.0 s	DFACO
												118,282	0.0\%	56.0 s	ACO-30pt
ch130	130	yes	6110	6676	9.3\%	1.7 ms	6190	1.3\%	27.9 ms	0.6 MiB	9	6110	0.0\%	13.0 s	DFACO
												6110	0.0\%	16.0 s	ACO-30pt
pr136	136	yes	96,772	102,934	6.4\%	1.7 ms	98,711	2.0\%	9.9 ms	0.6 MiB	5	125,458	29.6\%	1.2 ms	NN
pr144	144	yes	58,537	60,625	3.6\%	2.1 ms	59,902	2.3\%	6.8 ms	0.6 MiB	3	64,886	10.8\%	1.4 ms	NN
ch150	150	yes	6528	7038	7.8\%	2.1 ms	6746	3.3\%	11.5 ms	0.6 MiB	3	6,528	0.0\%	24.0 s	DFACO
												6528	0.0\%	17.0 s	ACO-30pt
kroA150	150	yes	26,524	28,814	8.6\%	2.2 ms	27,230	2.7\%	10.2 ms	0.6 MiB	5	26,524	0.0\%	57.0 s	DFACO
												26,524	0.0\%	1.4 m	ACO-30pt
kroB150	150	yes	26,130	27,476	5.2\%	2.2 ms	26,399	1.0\%	26.4 ms	0.6 MiB	5	26,130	0.0\%	7.0 s	DFACO
												26,130	0.0\%	9.0 s	ACO-30pt
pr152	152	yes	73,682	76,952	4.4\%	2.3 ms	74,605	1.3\%	19.0 ms	0.6 MiB	5	86,906	17.9\%	1.4 ms .	
u159	159	yes	42,080	47,591	13.1\%	2.6 ms	46,875	11.4\%	15.7 ms	0.6 MiB	3	53,918	28.1\%	1.6 ms	NN
rat195	195	yes	2323	2569	10.6\%	3.7 ms	2485	7.0\%	16.2 ms	0.6 MiB	4	2826	21.7\%	2.0 ms	NN
d198	198	yes	15,780	16,862	6.9\%	3.9 ms	16,119	2.1\%	32.6 ms	0.6 MiB	4	15,780	0.0\%	6.5 s	ESACO
kroA200	200	yes	29,368	31,792	8.3\%	3.9 ms	30,767	4.8\%	17.5 ms	0.6 MiB	5	29,368	0.0\%	2.8 m	DFACO
												29,379	0.04\%	3.5 m	ACO-30pt
												29,368	0.0\%	4.7 s	ESACO

Table A3. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
kroB200	200	yes	29,437	32,123	9.1\%	3.7 ms	30,631	4.1\%	11.8 ms	0.6 MiB	3	29,442	0.02\%	3.1 m	DFACO
												29,443	0.02\%	2.3 m	ACO-3Opt
ts225	225	yes	126,643	157,163	24.1\%	4.5 ms	132,803	4.9\%	30.6 ms	0.6 MiB	7	151,685	19.8\%	2.5 ms	NN
tsp225	225	yes	3916	4442	13.4\%	4.9 ms	4183	6.8\%	22.9 ms	0.6 MiB	5	4733	20.9\%	2.7 ms	NN
pr226	226	yes	80,369	83,637	4.1\%	4.8 ms	82,151	2.2\%	18.2 ms	0.6 MiB	3	94,258	17.3\%	2.5 ms	
gil262	262	yes	2378	2681	12.8\%	6.5 ms	2539	6.8\%	45.4 ms	0.6 MiB	6	3102	30.5\%	3.4 ms	NN
pr264	264	yes	49,135	53,416	8.7\%	6.4 ms	50,402	2.6\%	41.4 ms	0.6 MiB	5	58,615	19.3\%	3.6 ms	NN
a280	280	yes	2579	2686	4.1\%	33.6	ms 2686	4.1\%	52.9 ms	0.6 MiB	5	2579	0.0\%	4.5 s	ESACO
pr299	299	yes	48,191	52,912	9.8\%	8.1 ms	50,225	4.2\%	43.6 ms	0.6 MiB	5	63,254	31.3\%	4.3 ms	NN
lin318	318	yes	42,029	46,904	11.6\%	9.4 ms	45,063	7.2\%	38.8 ms	0.6 MiB	4	42,228	0.5\%	6.4 m	DFACO
												42,244	0.5\%	5.8 m	ACO-3Opt
												42,054	0.06\%	10.2 s	ESACO
linhp318	318	yes	41,345	46,904	13.4\%	9.4 ms	45,063	9.0\%	37.3 ms	0.6 MiB	4	50,299	21.7\%	5.1 ms	NN
rd400	400	yes	15,281	17,146	12.2\%	14.7 ms	16,158	5.7\%	92.8 ms	0.6 MiB	6	15,384	0.7\%	2.2 m	PACO-3Opt
												15,614	2.2\%	24.9 m	DFACO
fl 417	417	yes	11,861	12,680	6.9\%	14.6 ms	12,295	3.7\%	119 ms	0.6 MiB	8	11,88011,987	0.2\%	1.6 m	PACO-30pt
													1.1\%	34.1 m	DFACO
pr439	439	yes	107,217	120,679	12.6\%	17.8 ms	112,531	5.0\%	66.7 ms	0.6 MiB	3	107,516	0.3\%	2.4 m	PACO-30pt
												$108,702$	1.4%	$35.5 \mathrm{~m}$	DFACO
pcb442	442	yes	50,778	58,746	15.7\%	17.7 ms	53,275	4.9\%	126 ms	0.7 MiB	7	51,047	0.5\%	2.2 m	PACO-30pt
												52,202	2.8\%	34.8 m	DFACO
												50,804	0.05\%	11.5 s	ESACO
d493	493	yes	35,002	39,050	11.6\%	21.8 ms	37,045	5.8\%	129 ms	0.6 MiB	5	35,266	0.8\%	2.3 m	PACO-30pt
												35,841	2.4\%	52.9 m	DFACO
u574	574	yes	36,905	42,435	15.0\%	29.7 ms	39,355	6.6\%	247 ms	0.6 MiB	9	37,367	1.3\%	1.9 m	PACO-30pt
												38,031	3.0\%	1.5 h	DFACO

Table A3. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	C (BKS)	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
rat575	575	yes	6773	7692	13.6\%	29.4 ms	7215	6.5\%	231 ms	0.7 MiB	8	7012	3.5\%	1.4 h	PACO-3Opt
p654	654	yes	34,643	37,542	8.4\%	37.6 ms	36,441	5.2\%	179 ms	0.6 MiB	5	$\begin{aligned} & 34,741 \\ & 35,075 \end{aligned}$	$\begin{aligned} & 0.3 \% \\ & 1.2 \% \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~m} \\ & 2.5 \mathrm{~h} \end{aligned}$	$\begin{gathered} \text { DFACO } \\ \text { PACO-3Opt } \end{gathered}$
d657	657	yes	48,912	56,268	15.0\%	36.7 ms	51,553	5.4\%	265 ms	0.6 MiB	7	$\begin{aligned} & 49,463 \\ & 50,277 \end{aligned}$	$\begin{aligned} & 1.1 \% \\ & 2.8 \% \end{aligned}$	$\begin{aligned} & 2.3 \mathrm{~m} \\ & 2.4 \mathrm{~h} \end{aligned}$	$\begin{gathered} \text { DFACO } \\ \text { PACO-3Opt } \end{gathered}$
u724	724	yes	41,910	48,198	15.0\%	60.9 ms	44,748	6.8\%	264 ms	0.7 MiB	6	$\begin{aligned} & 42,438 \\ & 43,122 \end{aligned}$	$\begin{aligned} & 1.3 \% \\ & 2.9 \% \end{aligned}$	$\begin{aligned} & 2.3 \mathrm{~m} \\ & 3.2 \mathrm{~h} \end{aligned}$	$\begin{gathered} \text { DFACO } \\ \text { PACO-3Opt } \end{gathered}$
rat783	783	yes	8806	10,218	16.0\%	54.1 ms	9454	7.4\%	332 ms	0.7 MiB	6	$\begin{gathered} 10,492 \\ 10,525 \\ 9127 \\ 8810 \end{gathered}$	$\begin{gathered} 19.1 \% \\ 19.5 \% \\ 3.6 \% \\ 0.04 \% \end{gathered}$	$\begin{gathered} \hline 2.5 \mathrm{~m} \\ 15.4 \mathrm{~m} \\ 4.0 \mathrm{~h} \\ 22.6 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { DFACO } \\ \text { ACO-3Opt } \\ \text { PACO-3Opt } \\ \text { ESACO } \end{gathered}$
dsj1000	1000	yes	18,659,688	21,836,514	17.0\%	83.6 ms	20,225,584	8.4\%	460 ms	0.7 MiB	5	18,732,088	0.4\%	16.6 s	DPIO
dsj1000ceil	1000	yes	18,660,188	21,836,514	17.0\%	83.5 ms	20,225,584	8.4\%	452 ms	0.6 MiB	5	23,813,050	27.6\%	39 ms	NN
pr1002	1002	yes	259,045	295,879	14.2\%	87.7 ms	276,122	6.6\%	744 ms	0.7 MiB	5	$\begin{aligned} & 260,426 \\ & 259,509 \\ & 260,366 \end{aligned}$	$\begin{aligned} & \hline 0.5 \% \\ & 0.2 \% \\ & 0.5 \% \end{aligned}$	$\begin{aligned} & 14.3 \mathrm{~s} \\ & 35.8 \mathrm{~s} \\ & 14.1 \mathrm{~s} \end{aligned}$	DPIO ESACO DPIO
u1060	1060	yes	224,094	261,093	16.5\%	99.5 ms	239,705	7.0\%	1.0 s	0.7 MiB	11	224,932	0.4\%	15.3 s	DPIO
vm1084	1084	yes	239,297	275,989	15.3\%	104 ms	257,399	7.6\%	901 ms	0.6 MiB	9	240,079	0.3\%	17.4 s	DPIO
pcb1173	1173	yes	56,892	67,497	18.6\%	124 ms	60,792	6.9\%	775 ms	0.7 MiB	7	57,243	0.6\%	17.8 s	DPIO
d1291	1291	yes	50,801	58,230	14.6\%	136 ms	54,285	6.9\%	927 ms	0.7 MiB	7	51,459	1.3\%	19.4 s	DPIO
rl1304	1304	yes	252,948	302,661	19.7\%	148 ms	277,193	9.6\%	1.2 s	0.7 MiB	9	253,740	0.3\%	21.5 s	DPIO
rl1323	1323	yes	270,199	322,964	19.5\%	157 ms	288,501	6.8\%	1.3 s	0.7 MiB	9	$\begin{aligned} & 273,368 \\ & 273,970 \\ & 271,245 \\ & 271,301 \end{aligned}$	$\begin{aligned} & \hline 1.2 \% \\ & 1.4 \% \\ & 0.4 \% \\ & 0.4 \% \end{aligned}$	$\begin{gathered} 38.1 \mathrm{~m} \\ 37.8 \mathrm{~m} \\ 22.2 \mathrm{~s} \\ 22.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { DFACO } \\ \text { ACO-3Opt } \\ \text { ACO-3Opt } \\ \text { DPIO } \end{gathered}$
nrw1379	1379	yes	56,638	64,925	14.6\%	168 ms	59,905	5.8\%	1.2 s	0.7 MiB	8	56,932	0.5\%	23.2 s	DPIO

Table A3. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	C (BKS)	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error ${ }_{\text {H }}$	Time	Heuristic Id
fl1400	1400	yes	20,127	21,800	8.3\%	162 ms	21,071	4.7\%	1.8 s	0.7 MiB	10	20,301	0.9\%	40.9 m	DFACO
												20,292	0.8\%	41.2 m	ACO-3Opt
												20,342	1.1\%	24.6 s	ACO-3Opt
												20,211	0.4\%	24.5 s	DPIO
u1432	1432	yes	152,970	171,179	11.9\%	181 ms	160,260	4.8\%	1.1 s	0.7 MiB	7	153,564	0.4\%	23.9 s	DPIO
fl1577	1577	yes	22,249	25,513	14.7\%	210 ms	24,518	10.2\%	1.4 s	0.7 MiB	7	22,289	0.2\%	25.3 s	DPIO
												22,293	0.2\%	46.4 s	ESACO
d1655	1655	yes	62,128	70,779	13.9\%	225 ms	65,520	5.5\%	1.5 s	0.7 MiB	7	63,708	2.5\%	25.4 m	DFACO
												63,722	2.6\%	29.2 m	ACO-3Opt
												62,769	1.0\%	27.5 s	ACO-3Opt
												62,357	0.4\%	27.2 s	DPIO
vm1748	1748	yes	336,556	394,389	17.2\%	267 ms	365,608	8.6\%	2.0 s	0.7 MiB	7	338,118	0.5\%	34.3 s	DPIO
u1817	1817	yes	57,201	65,783	15.0\%	395 ms	61,453	7.4\%	1.8 s	0.7 MiB	7	57,522	0.6\%	30.3 s	DPIO
r11889	1889	yes	316,536	376,715	19.0\%	319 ms	344,514	8.8\%	2.1 s	0.8 MiB	7	318,714	0.7\%	36.6 s	DPIO
d2103	2103	yes	80,450	86,286	7.3\%	373 ms	82,856	3.0\%	2.5 s	0.7 MiB	7	80,567	0.1\%	23.8 s	DPIO
u2152	2152	yes	64,253	75,216	17.1\%	516 ms	68,766	7.0\%	2.7 s	0.7 MiB	7	64,791	0.8\%	25.9 s	DPIO
u2319	2319	yes	234,256	254,420	8.6\%	501 ms	238,785	1.9\%	3.1 s	0.7 MiB	7	236,158	0.8\%	34.2 s	DPIO
pr2392	2392	yes	378,032	443,372	17.3\%	495 ms	408,237	8.0\%	3.0 s	0.7 MiB	6	380,346	0.6\%	29.7 s	DPIO
pcb3038	3038	yes	137,694	160,909	16.9\%	807 ms	146,378	6.3\%	6.2 s	0.8 MiB	9	138,684	0.7\%	43.5 s	DPIO
fl3795	3795	yes	28,772	33,002	14.7\%	1.2 s	29,882	3.9\%	35.6 s	0.9 MiB	34	29,209	1.5\%	1.1 m	DPIO
												28,883	0.4\%	2.0 m	ESACO
fnl4461	4461	yes	182,566	211,064	15.6\%	1.9 s	195,786	7.2\%	11.1 s	0.9 MiB	7	184,560	1.1\%	44.2 s	DPIO
												183,446	0.5\%	3.2 m	ESACO
r15915	5915	yes	565,530	664,788	17.6\%	3.1 s	605,687	7.1\%	31.2 s	1.0 MiB	11	571,214	1.0\%	1.1 m	DPIO
												568,935	0.6\%	3.6 m	ESACO
r15934	5934	yes	556,045	666,295	19.8\%	3.2 s	599,066	7.7\%	25.8 s	1.0 MiB	9	561,878	1.0\%	48.7 s	DPIO

Table A3. Cont.

	Instance		C (BKS)	CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?		$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
pla7397	7397	yes	23,260,728	27,709,175	19.1\%	4.4 s	25,075,678	7.8\%	45.3 s	1.1 MiB	11	23,605,219	1.5\%	1.8 m	DPIO
												23,389,341	0.6\%	3.6 m	ESACO
rl11849	11,849	yes	923,288	1,103,854	19.6\%	12.4 s	994,606	7.7\%	2.3 m	1.4 MiB	11	933,093	1.1\%	5.0 m	DPIO
												930,338	0.8\%	9.6 m	ESACO
usa13509	13,509	yes	19,982,859	24,125,443	20.7\%	16.2 s	21,907,190	9.6\%	2.8 m	1.5 MiB	10	20,217,458	1.2\%	4.5 m	DPIO
												20,195,089	1.1\%	15.2 m	ESACO
brd14051	14,051	yes	469,385	552,658	17.7\%	15.9 s	506,668	7.9\%	3.1 m	1.5 MiB	11	474,788	1.1\%	5.1 m	DPIO
												474,087	1.0\%	11.4 m	ESACO
d15112	15,112	yes	1,573,084	1,847,377	17.4\%	19.2 s	1,705,664	8.4\%	3.6 m	1.6 MiB	11	1,588,563	1.0\%	8.7 m	DPIO
												1,589,288	1.0\%	12.9 m	ESACO
d18512	18,512	yes	645,238	756,668	17.3\%	28.1 s	696,542	8.0\%	5.8 m	1.9 MiB	12	652,613	1.1\%	8.3 m	DPIO
												653,154	1.2\%	11.4 m	ESACO
pla33810	33,810	yes	66,048,945	76,625,752	16.0\%	1.6 m	69,626,380	5.4\%	25.7 m	2.9 MiB	17	67,185,647	1.7\%	21.0 m	DPIO
pla85900	85,900	yes	142,382,641	167,355,049	17.5\%	10.5 m	149,546,776	5.0\%	4.1 h	6.5 MiB	27	144,334,707	1.4\%	1.4 h	DPIO

Table A4. Results for Art TSP benchmarks.

Instance				CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
mona-lisa	100,000	no	5,757,191	6,123,262	6.4\%	14.4 m	5,951,462	3.4\%	2.3 h	7.5 MiB	9	5,855,063	1.7\%	1.4 h	ACO-RPMM
100K												6,070,958	5.5\%	1.1 h	Partial ACO
vangogh	120,000	no	6,543,610	6,971,470	6.5\%	20.8 m	6,773,421	3.5\%	4.6 h	8.8 MiB	12	6,661,395	1.8\%	1.9 h	ACO-RPMM
120K												6,924,448	5.8\%	1.5 h	Partial ACO
venus	140,000	no	6,810,665	7,245,012	6.4\%	28.0 m	7,043,702	3.4\%	4.8 h	10.2 MiB	9	6,933,257	1.8\%	2.6 h	ACO-RPMM
140K												7,206,365	5.8\%	2.1 h	Partial ACO
pareja 160K	160,000	no	7,619,953	8,113,501	6.5\%	37.3 m	7,888,641	3.5\%	7.7 h	11.6 MiB	11	7,760,922	1.9\%	3.5 h	ACO-RPMM
courbet 180K	180,000	no	7,888,733	8,439,701	7.0\%	48.2 m	8,179,440	3.7\%	10.1 h	13.0 MiB	11	8,038,619	1.9\%	4.5 h	ACO-RPMM
earring	200,000	no	8,171,677	8,781,766	7.5\%	58.7 m	8,493,724	3.9\%	15.1 h	14.3 MiB	12	8,335,111	2.0\%	6.0 h	ACO-RPMM
200K												8,760,038	7.2\%	5.1 h	Partial ACO

Table A5. Results for National TSP benchmarks.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
wi29	29	yes	27,603	27,739	0.5\%	0.3 ms	27,601	0.0\%	28.0 ms	0.6 MiB	3	35,474	28.5\%	0.2 ms	NN
dj38	38	yes	6656	6863	3.1\%	0.3 ms	6659	0.1\%	11.2 ms	0.6 MiB	5	8165	22.7\%	0.3 ms	NN
qa194	194	yes	9352	10,505	12.3\%	3.8 ms	9886	5.7\%	37.1 ms	0.6 MiB	7	12,481	33.5\%	2.6 ms	NN
zi929	929	yes	95,345	110,187	15.6\%	73.5 ms	100,842	5.8\%	630 ms	0.7 MiB	8	119,685	25.5\%	36.7 ms	NN
lu980	980	yes	11,340	12,834	13.2\%	86.4 ms	12,077	6.5\%	404 ms	0.6 MiB	5	14,284	26.0\%	29.4 ms	NN
rw1621	1621	yes	26,051	30,315	16.4\%	233 ms	28,771	10.4\%	1.6 s	0.7 MiB	8	33,493	28.6\%	71.5 ms	NN
mu1979	1979	yes	86,891	99,356	14.3\%	350 ms	91,684	5.5\%	3.8 s	0.8 MiB	10	113,362	30.5\%	112 ms	NN
nu3496	3496	yes	96,132	111,981	16.5\%	1.1 s	103,717	7.9\%	9.2 s	0.8 MiB	10	121,713	26.6\%	327 ms	NN
ca4663	4663	yes	1290319	1,557,923	20.7\%	1.9 s	1,407,891	9.1\%	18.2 s	0.9 MiB	10	1,637,468	26.9\%	564 ms	NN
tz6117	6117	no	394,718	477,869	21.1\%	3.5 s	433,784	9.9\%	40.0 s	1 MiB	14	494,624	25.3\%	843 ms	NN
eg7146	7146	no	172,386	198,566	15.2\%	4.5 s	182,979	6.1\%	57.9 s	1.1 MiB	14	219,365	27.3\%	1.1 s	NN
ym7663	7663	yes	238,314	285,881	20.0\%	5.0 s	259,780	9.0\%	1.4 m	1.1 MiB	18	308,219	29.3\%	1.1 s	NN
pm8079	8079	no	114,855	137,182	19.4\%	5.7 s	126,746	10.4\%	55.6 s	1.2 MiB	10	148,936	29.7\%	1.2 s	NN
ei8246	8246	yes	206,171	248,695	20.6\%	6.0 s	225,178	9.2\%	1.0 m	1.1 MiB	11	254,553	23.5\%	1.2 s	NN
ar9152	9152	no	837,479	1,014,041	21.1\%	8.4 s	927,348	10.7\%	1.2 m	1.2 MiB	10	1,063,376	27.0\%	1.5 s	NN
ja9847	9847	yes	491,924	611,959	24.4\%	8.7 s	544,411	10.7\%	2.0 m	1.2 MiB	16	630,169	28.1\%	1.9 s	NN
gr9882	9882	yes	300,899	356,753	18.6\%	8.5 s	325,599	8.2\%	1.8 m	1.3 MiB	14	395,267	31.4\%	2.3 s	NN
kz9976	9976	no	1,061,881	1,298,405	22.3\%	8.9 s	1,168,843	10.1\%	1.6 m	1.3 MiB	12	1,344,845	26.6\%	1.8 s	NN
fi10639	10639	yes	520,527	633,623	21.7\%	9.8 s	574,001	10.3\%	2.1 m	1.3 MiB	14	659,800	26.8\%	2.0 s	NN

Table A5. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
mo14185	14185	no	427,377	516,028	20.7\%	17.3 s	465,202	8.9\%	3.8 m	1.6 MiB	14	529,396	23.9\%	4.6 s	NN
ho14473	14473	no	177,092	207,322	17.1\%	18.5 s	193,672	9.4\%	3.0 m	1.6 MiB	10	216,776	22.4\%	4.0 s	NN
it16862	16862	yes	557315	670,706	20.3\%	24.8 s	613,132	10.0\%	4.8 m	1.7 MiB	12	706,420	26.8\%	6.2 s	NN
vm22775	22775	yes	569,288	688,981	21.0\%	44.3 s	617,703	8.5\%	11.0 m	2.1 MiB	16	720,288	26.5\%	9.9 s	NN
sw24978	24978	yes	855,597	1,042,499	21.8\%	53.5 s	944,536	10.4\%	10.2 m	2.3 MiB	12	1,073,993	25.5\%	12.2 s	NN
bm33708	33708	no	959,289	1,151,420	20.0\%	1.6 m	1,046,776	9.1\%	22.1 m	2.9 MiB	14	1,209,682	26.1\%	21.5 s	NN
ch71009	71009	no	4,566,506	5,475,575	19.9\%	7.4 m	4,986,973	9.2\%	1.7 h	5.5 MiB	14	5,629,331	23.3\%	1.6 m	NN
usa115475	115475	no	6,204,999	7,492,272	20.7\%	19.0 m	6,779,417	9.3\%	4.3 h	8.5 MiB	13	7,691,402	24.0\%	4.1 m	NN

Table A6. Results for the VLSI TSP benchmark.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	C (BKS)	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
xqf131	131	yes	564	624	10.6\%	1.8 ms	600	6.3\%	16.4 ms	0.6 MiB	3	712	26.3\%	1.0 ms	NN
xqg237	237	yes	1019	1166	14.4\%	5.0 ms	1064	4.4\%	31.9 ms	0.6 MiB	7	1325	30.0\%	3.0 ms	NN
pma343	343	yes	1368	1490	8.9\%	10.0 ms	1425	4.2\%	58.9 ms	0.6 MiB	5	1846	35.5\%	7.4 ms	NN
pka379	379	yes	1332	1422	6.8\%	12.1 ms	1391	4.4\%	66.4 ms	0.6 MiB	4	1606	20.6\%	7.5 ms	NN
bcl380	380	yes	1621	1894	16.9\%	12.4 ms	1781	9.9\%	97.0 ms	0.6 MiB	6	2055	26.8\%	6.6 ms	NN
pbl395	395	yes	1281	1432	11.8\%	13.6 ms	1349	5.3\%	95.9 ms	0.6 MiB	7	1581	23.5\%	7.9 ms	NN
pbk411	411	yes	1343	1505	12.1\%	14.4 ms	1431	6.6\%	111 ms	0.6 MiB	7	1789	33.2\%	7.7 ms	NN
pbn423	423	yes	1365	1573	15.2\%	15.1 ms	1460	7.0\%	77.1 ms	0.6 MiB	5	1811	32.6\%	9.2 ms	NN
pbm436	436	yes	1443	1638	13.5\%	16.4 ms	1565	8.4\%	93.5 ms	0.6 MiB	5	1783	23.6\%	9.0 ms	NN

Table A6. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
xq1662	662	yes	2513	2995	19.2\%	36.4 ms	2742	9.1\%	269 ms	0.6 MiB	8	3147	25.2\%	19 ms	NN
rbx711	711	yes	3115	3612	16.0\%	42.8 ms	3348	7.5\%	312 ms	0.6 MiB	8	3748	20.3\%	22 ms	NN
rbu737	737	yes	3314	3899	17.6\%	45.0 ms	3557	7.3\%	230 ms	0.6 MiB	5	4090	23.4\%	24 ms	NN
dkg813	813	yes	3199	3763	17.6\%	53.7 ms	3470	8.5\%	369 ms	0.6 MiB	5	4126	29.0\%	26 ms	NN
lim963	963	yes	2789	3199	14.7\%	78.8 ms	2974	6.6\%	929 ms	0.6 MiB	10	3583	28.5\%	37 ms	NN
pbd984	984	yes	2797	3189	14.0\%	80.8 ms	2950	5.5\%	641 ms	0.6 MiB	9	3521	25.9\%	36 ms	NN
xit1083	1083	yes	3558	4082	14.7\%	98.8 ms	3800	6.8\%	763 ms	0.7 MiB	8	4781	34.4\%	42 ms	NN
dka1376	1376	yes	4666	5546	18.8\%	167 ms	5082	8.9\%	1.0 s	0.7 MiB	7	5924	27.0\%	65 ms	NN
dca1389	1389	yes	5085	6045	18.9\%	156 ms	5471	7.6\%	1.0 s	0.7 MiB	7	6080	19.6\%	' NR^{\prime}	PRNN
dja1436	1436	yes	5257	6236	18.6\%	168 ms	5628	7.1\%	1.3 s	0.7 MiB	8	6656	26.6\%	72 ms	NN
icw1483	1483	yes	4416	5124	16.0\%	180 ms	4761	7.8\%	1.1 s	0.7 MiB	5	5572	26.2\%	75 ms	NN
fra1488	1488	yes	4264	4728	10.9\%	179 ms	4479	5.1\%	1.6 s	0.6 MiB	8	5578	30.8\%	76 ms	NN
rbv1583	1583	yes	5387	6207	15.2\%	205 ms	5777	7.2\%	2.2 s	0.7 MiB	11	6876	27.6\%	80 ms	NN
rby1599	1599	yes	5533	6345	14.7\%	215 ms	5999	8.4\%	1.9 s	0.7 MiB	10	6809	23.1\%	83 ms	NN
fnb1615	1615	yes	4956	5675	14.5\%	213 ms	5259	6.1\%	1.6 s	0.7 MiB	8	6377	28.7\%	83 ms	NN
djc1785	1785	yes	6115	7225	18.2\%	261 ms	6656	8.9\%	2.1 s	0.7 MiB	9	7719	26.2\%	103 ms	NN
dcc1911	1911	yes	6396	7484	17.0\%	296 ms	6872	7.4\%	2.0 s	0.7 MiB	7	8045	25.8\%	116 ms	NN
dkd1973	1973	yes	6421	7280	13.4\%	302 ms	6892	7.3\%	2.1 s	0.7 MiB	7	8502	32.4\%	119 ms	NN
djb2036	2036	yes	6197	7495	20.9\%	337 ms	6819	10.0\%	2.2 s	0.7 MiB	7	7645	23.4\%	' NR^{\prime}	PRNN
dcb2086	2086	yes	6600	8066	22.2\%	354 ms	7307	10.7\%	2.9 s	0.7 MiB	9	8335	26.3\%	124 ms	NN
bva2144	2144	yes	6304	7494	18.9\%	362 ms	6870	9.0\%	2.6 s	0.7 MiB	7	8264	31.1\%	129 ms	NN
xqc2175	2175	yes	6830	8167	19.6\%	386 ms	7453	9.1\%	5.2 s	0.7 MiB	13	8291	21.4\%	' NR^{\prime}	PRNN
bck2217	2217	yes	6764	8153	20.5\%	398 ms	7408	9.5\%	3.3 s	0.7 MiB	9	8515	25.9\%	141 ms	NN

Table A6. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
xpr2308	2308	yes	7219	8663	20.0\%	434 ms	7837	8.6\%	3.3 s	0.7 MiB	8	9130	26.5\%	155 ms	NN
ley2323	2323	yes	8352	10,146	21.5\%	439 ms	9014	7.9\%	4.9 s	0.7 MiB	11	10,330	23.7\%	148 ms	NN
dea2382	2382	yes	8017	9782	22.0\%	455 ms	8726	8.8\%	4.4 s	0.7 MiB	9	9962	24.3\%	157 ms	NN
rbw2481	2481	yes	7724	9548	23.6\%	495 ms	8511	10.2\%	4.1 s	0.7 MiB	9	9867	27.7\%	169 ms	NN
pds2566	2566	yes	7643	9100	19.1\%	523 ms	8310	8.7\%	4.2 s	0.8 MiB	8	9867	29.1\%	190 ms	NN
mlt2597	2597	yes	8071	9850	22.0\%	547 ms	8889	10.1\%	5.0 s	0.8 MiB	10	10,295	27.6\%	183 ms	NN
bch2762	2762	yes	8234	10,020	21.7\%	614 ms	8934	8.5\%	5.0 s	0.7 MiB	9	10,394	26.2\%	205 ms	NN
irw2802	2802	yes	8423	10,044	19.2\%	625 ms	9131	8.4\%	5.9 s	0.7 MiB	9	11,087	31.6\%	210 ms	NN
1 sm 2854	2854	yes	8014	9445	17.9\%	658 ms	8753	9.2\%	5.6 s	0.7 MiB	9	10,105	26.1\%	218 ms	NN
dbj2924	2924	yes	10,128	12,069	19.2\%	676 ms	10,922	7.8\%	4.6 s	0.7 MiB	7	12,935	27.7\%	229 ms	NN
xva2993	2993	yes	8492	9936	17.0\%	719 ms	9226	8.6\%	5.9 s	0.8 MiB	9	10,821	27.4\%	237 ms	NN
pia3056	3056	yes	8258	9749	18.1\%	757 ms	8918	8.0\%	8.2 s	0.8 MiB	11	10,585	28.2\%	245 ms	NN
dke3097	3097	yes	10,539	12,767	21.1\%	766 ms	11,481	8.9\%	5.1 s	0.8 MiB	7	3249	25.7\%	247 ms	NN
1 sn 3119	3119	yes	9114	10,784	18.3\%	803 ms	9895	8.6\%	8.0 s	0.8 MiB	11	11,467	25.8\%	260 ms	NN
lta3140	3140	yes	9517	11,160	17.3\%	805 ms	10,330	8.5\%	7.5 s	0.8 MiB	10	12,455	30.9\%	260 ms	NN
fdp3256	3256	yes	10,008	11,661	16.5\%	908 ms	10,749	7.4\%	7.1 s	0.8 MiB	8	12,677	26.7\%	276 ms	NN
beg3293	3293	yes	9772	11,693	19.7\%	877 ms	10,598	8.5\%	10.2 s	0.7 MiB	13	12,636	29.3\%	283 ms	NN
dhb3386	3386	yes	11,137	13,349	19.9\%	932 ms	12,082	8.5\%	8.0 s	0.7 MiB	9	13,894	24.8\%	302 ms	NN
fjs3649	3649	yes	9272	10,345	11.6\%	1.1 s	9812	5.8\%	7.3 s	0.7 MiB	7	12,786	37.9\%	326 ms	NN
fjr3672	3672	yes	9601	10,854	13.1\%	1.1 s	10,181	6.0\%	8.7 s	0.7 MiB	8	12,840	33.7\%	331 ms	NN
dlb3694	3694	yes	10,959	12,818	17.0\%	1.2 s	11,763	7.3\%	10.4 s	0.7 MiB	10	13,986	27.6\%	344 ms	NN
ltb3729	3729	yes	11,821	13,874	17.4\%	1.1 s	12,948	9.5\%	10.3 s	0.7 MiB	9	15,259	29.1\%	361 ms	NN
xqe3891	3891	yes	11,995	14,672	22.3\%	1.3 s	13,153	9.7\%	10.0 s	0.8 MiB	9	14,592	21.7\%	' NR^{\prime}	PRNN

Table A6. Cont.

	Instance			CII Heuristic (Phase 2)				CII Heuristic (Phase 3)				Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
xua3937	3937	yes	11,239	13,412	19.3\%	1.2 s	12,285	9.3\%	13.3 s	0.8 MiB	11	14,520	29.2\%	373 ms	NN
dkc3938	3938	yes	12,503	14,817	18.5\%	1.3 s	13,619	8.9\%	10.5 s	0.7 MiB	9	15,932	27.4\%	396 ms	NN
dkf3954	3954	yes	12,538	14,939	19.1\%	1.3 s	13,728	9.5\%	11.6 s	0.8 MiB	10	15,679	25.1\%	412 ms	NN
bgb4355	4355	yes	12,723	14,948	17.5\%	1.5 s	13,789	8.4\%	14.0 s	0.9 MiB	10	15,623	22.8\%	' NR^{\prime}	PRNN
bgd4396	4396	yes	13,009	16,239	24.8\%	1.6 s	14,385	10.6\%	15.7 s	0.8 MiB	11	16,726	28.6\%	472 ms	NN
frv4410	4410	yes	10,711	12,440	16.1\%	1.5 s	11,587	8.2\%	10.3 s	0.8 MiB	7	13,756	28.4\%	518 ms	NN
bgf4475	4475	yes	13,221	15,989	20.9\%	1.6 s	14,562	10.1\%	22.6 s	0.8 MiB	15	16,439	24.3\%	487 ms	NN
xqd4966	4966	yes	15,316	17,630	15.1\%	2.0 s	16,545	8.0\%	19.8 s	0.8 MiB	10	19,807	29.3\%	571 ms	NN
fqm5087	5087	yes	13,029	14,877	14.2\%	2.1 s	14,041	7.8\%	18.1 s	0.8 MiB	9	17,554	34.7\%	586 ms	NN
fea5557	5557	yes	15,445	18,171	17.6\%	2.4 s	16,629	7.7\%	30.4 s	0.9 MiB	13	19,738	27.8\%	688 ms	NN
xsc6880	6880	yes	21,535	26,404	22.6\%	3.9 s	23,704	10.1\%	36.0 s	1.1 MiB	10	26,243	21.9\%	' NR^{\prime}	PRNN
bnd7168	7168	yes	21,834	25,963	18.9\%	4.1 s	23,848	9.2\%	50.3 s	1.1 MiB	13	26,574	21.7\%	'NR'	PRNN
lap7454	7454	yes	19,535	23,107	18.3\%	4.5 s	21,345	9.3\%	50.7 s	1 MiB	12	24,184	23.8\%	1.1 s	NN
ida8197	8197	yes	22,338	26,152	17.1\%	5.4 s	23,954	7.2\%	1.1 m	1.2 MiB	13	27,513	23.2\%	' NR^{\prime}	PRNN
dga9698	9698	yes	27,724	33,533	21.0\%	7.9 s	30,374	9.6\%	1.4 m	1.3 MiB	12	33,564	21.1\%	' NR^{\prime}	PRNN
xmc10150	10,150	yes	28,387	34,071	20.0\%	8.8 s	31,124	9.6\%	1.1 m	1.3 MiB	8	34,147	20.3\%	'NR'	PRNN
xvb13584	13,584	yes	37,083	44,129	19.0\%	15.8 s	40,591	9.5\%	2.6 m	1.5 MiB	11	45,835	23.6\%	'NR'	PRNN
xrb14233	14,233	no	45,462	54,786	20.5\%	17.1 s	49,593	9.1\%	3.2 m	1.4 MiB	12	57,034	25.5\%	3.6 s	NN
xia16928	16,928	no	52,850	62,195	17.7\%	24.0 s	57,220	8.3\%	3.4 m	1.6 MiB	9	66,398	25.6\%	5.3 s	NN
pjh17845	17,845	no	48,092	56,892	18.3\%	27.5 s	51,934	8.0\%	5.3 m	1.7 MiB	13	60,797	26.4\%	5.4 s	NN
frh19289	19,289	no	55,798	67,243	20.5\%	32.3 s	61,007	9.3\%	5.3 m	1.9 MiB	11	68,360	22.5\%	' NR^{\prime}	PRNN
fnc19402	19,402	no	59,287	69,912	17.9\%	32.0 s	64,170	8.2\%	5.3 m	1.8 MiB	11	74,447	25.6\%	6.5 s	NN
ido21215	21,215	no	63,517	75,879	19.5\%	38.4 s	69,205	9.0\%	8.0 m	1.9 MiB	14	79,469	25.1\%	7.6 s	NN

Table A6. Cont.

	Instance			CII Heuristic (Phase 2)			CII Heuristic (Phase 3)					Other Heuristics			
	V	Opt?	$C(B K S)$	$C(T)$	Error $_{\text {CII }}$	Time	$C(T)$	Error $_{\text {CII }}$	Time	RAM	\#	$C_{\text {min }}\left(T_{H}\right)$	Error $_{H}$	Time	Heuristic Id
fma21553	21,553	no	66,527	77,951	17.2\%	41.0 s	71,929	8.1\%	6.6 m	2.0 MiB	11	83,449	25.4\%	8.3 s	NN
lsb22777	22,777	no	60,977	71,997	18.1\%	44.6 s	66,298	8.7\%	7.3 m	2.0 MiB	11	76,551	25.5\%	8.8 s	NN
xrh24104	24,104	no	69,294	83,300	20.2\%	49.1 s	75,766	9.3\%	6.8 m	2.1 MiB	9	87,747	25.2\%	10.2 s	NN
bbz25234	25,234	no	69,335	82,214	18.6\%	55.6 s	75,492	8.9\%	10.5 m	2.2 MiB	13	87,345	26.0\%	11.1 s	NN
irx28268	28,268	no	72,607	85,130	17.2\%	1.2 m	78,250	7.8\%	15.2 m	2.4 MiB	15	90,936	25.2\%	13.3 s	NN
fyg28534	28,534	no	78,562	95,525	21.6\%	1.2 m	85,843	9.3\%	13.4 m	2.4 MiB	13	97,260	23.8\%	14.0 s	NN
icx28698	28,698	no	78,087	93,828	20.2\%	1.2 m	85,562	9.6\%	11.8 m	2.4 MiB	11	96,987	24.2\%	13.6 s	NN
boa28924	28,924	no	79,622	95,729	20.2\%	1.2 m	86,834	9.1\%	13.9 m	2.5 MiB	13	99,881	25.4\%	14.4 s	NN
ird29514	29,514	no	80,353	96,206	19.7\%	1.4 m	87,565	9.0\%	14.6 m	2.5 MiB	13	100,617	25.2\%	15.4 s	NN
pbh30440	30,440	no	88,313	104,985	18.9\%	1.3 m	95,949	8.6\%	13.5 m	2.6 MiB	11	110,335	24.9\%	16.6 s	NN
xib32892	32,892	no	96,757	113,361	17.2\%	1.6 m	104,523	8.0\%	15.4 m	2.7 MiB	11	120,736	24.8\%	19.2 s	NN
fry33203	33,203	no	97,240	116,014	19.3\%	1.6 m	105,745	8.7\%	20.8 m	2.8 MiB	15	120,664	24.1\%	19.4 s	NN
bby34656	34,656	no	99,159	118,792	19.8\%	1.7 m	108,423	9.3\%	17.0 m	2.9 MiB	11	124,834	25.9\%	22.3 s	NN
pba38478	38,478	no	108,318	128,315	18.5\%	2.1 m	117,712	8.7\%	24.4 m	3.1 MiB	13	134,770	24.4\%	25.4 s	NN
ics39603	39,603	no	106,819	130,049	21.7\%	2.2 m	117,804	10.3\%	26.2 m	3.2 MiB	13	133,660	25.1\%	26.9 s	NN
rbz43748	43,748	no	125,183	152,817	22.1\%	2.6 m	138,235	10.4\%	29.4 m	3.5 MiB	11	157,173	25.6\%	33.2 s	NN
fht47608	47,608	no	125,104	148,051	18.3\%	3.2 m	135,216	8.1\%	39.4 m	3.7 MiB	13	155,972	24.7\%	39.2 s	NN
fna52057	52,057	no	147,789	174,317	18.0\%	3.8 m	160,231	8.4\%	46.9 m	4.1 MiB	13	187,336	26.8\%	51.6 s	NN
bna56769	56,769	no	158,078	189,521	19.9\%	4.6 m	173,074	9.5\%	1.0 h	4.4 MiB	14	200,198	26.6\%	56.8 s	NN
dan59296	59,296	no	165,371	199,175	20.4\%	5.0 m	180,850	9.4\%	1.2 h	4.5 MiB	15	206,775	25.0\%	1.0 m	NN
sra104815	104,815	no	251,761	326,561	29.7\%	15.6 m	295,092	17.2\%	3.7 h	7.7 MiB	14	329,120	30.7\%	3.2 m	NN
ara238025	238,025	no	578,761	747,619	29.2\%	1.4 h	674,559	16.6\%	1.5 d .	16.8 MiB	22	759,882	31.3\%	16.5 m	NN
lra498378	498,378	no	2,168,039	2,710,116	25.0\%	5.8 h	2,438,410	12.5\%	15.0 d.	34.7 MiB	49	2,688,804	24.0\%	1.2 h	NN
$\operatorname{lrb744710}$	744,710	no	1,611,232	2,076,966	28.9\%	13.7 h	1,867,273	15.9\%	15.0 d.	51.6 MiB	18	2,104,585	30.6\%	2.7 h	NN

References

1. Papadimitriou, C.H. The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 1977, 4, 237-244. [CrossRef]
2. Garey, M.R.; Graham, R.L.; Jhonson, D.S. Some NP-Complete geometric problems. In Proceedings of the Eight Annual ACM Symposium on Theory of Computing, Hershey, PA, USA, 3-5 May 1976; ACM: New York, NY, USA, 1976; pp. 10-22.
3. Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.; Shmoys, D.B. (Eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization; Wiley: Chichester, UK, 1985.
4. Jünger, M.; Reinelt, G.; Rinaldi, G. The traveling salesman problem. In Handbooks in Operations Research and Management Science; Elsevier Science B.V.: Amsterdam, The Netherlands, 1995; Volume 7, pp. 225-330.
5. Lin, S.; Kernighan, B.W. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 1973, 21, 498-516. [CrossRef]
6. Chitty, D.M. Applying ACO to large scale TSP instances. In UK Workshop on Computational Intelligence; Springer: Cham, Switzerland, 2017; pp. 104-118.
7. Ismkhan, H. Effective heuristics for ant colony optimization to handle large-scale problems. Swarm Evol. Comput. 2017, 32, 140-149. [CrossRef]
8. Gülcü, Ş.; Mahi, M.; Baykan, Ö.K.; Kodaz, H. A parallel cooperative hybrid method based on ant colony optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Comput. 2018, 22, 1669-1685.
9. Peake, J.; Amos, M.; Yiapanis, P.; Lloyd, H. Scaling Techniques for Parallel Ant Colony Optimization on Large Problem Instances. In Proceedings of the Gecco'19-The Genetic and Evolutionary Computation Conference 2019, Prague, Czech Republic, 13-17 July 2019.
10. Dahan, F.; El Hindi, K.; Mathkour, H.; AlSalman, H. Dynamic Flying Ant Colony Optimization (DFACO) for Solving the Traveling Salesman Problem. Sensors 2019, 19, 1837. [CrossRef] [PubMed]
11. Al-Adwan, A.; Mahafzah, B.A.; Sharieh, A. Solving traveling salesman problem using parallel repetitive nearest neighbor algorithm on OTIS-Hypercube and OTIS-Mesh optoelectronic architectures. J. Supercomput. 2008, 74, 1-36. [CrossRef]
12. Zhong, Y.; Wang, L.; Lin, M.; Zhang, H. Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for large-scale traveling salesman problem. Swarm Evol. Comput. 2019, 48, 134-144. [CrossRef]
13. Croes, G.A. A method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791-812. [CrossRef]
14. Vakhania, N.; Hernandez, J.A.; Alonso-Pecina, F.; Zavala, C. A Simple Heuristic for Basic Vehicle Routing Problem. J. Comput. Sci. 2016, 3, 39. [CrossRef]
15. Sahni, S.; Horowitz, E. Fundamentals of Computer Algorithms; Computer Science Press, Inc.: Rockville, MD, USA, 1978; pp. 174-179.
16. Universität Heidelberg, Institut für Informatik; Reinelt, G. Symmetric Traveling Salesman Problem (TSP). Available online: https:/ / www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ (accessed on 8 June 2019).
17. Natural Sciences and Engineering Research Council of Canada (NSERC) and Department of Combinatorics and Optimization at the University of Waterloo. TSP Test Data. Available online: http:/ /www.math. uwaterloo.ca/tsp/data/index.html (accessed on 8 June 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
