
algorithms

Article

Dynamic Virtual Network Slicing and Orchestration
for Selective MEC Services over Wide-Area SDN

Dongkyun Kim * and Yong-Hwan Kim

Advanced Research Networking Center, Korea Institute of Science and Technology Information,
Daejeon 34141, Korea; yh.kim086@kisti.re.kr
* Correspondence: mirr@kisti.re.kr; Tel.: +82-42-869-0516

Received: 14 August 2020; Accepted: 23 September 2020; Published: 27 September 2020
����������
�������

Abstract: Multi-access edge computing (MEC) has become an essential technology for
collecting, analyzing, and processing data generated by widely distributed user equipment (UE),
wireless end-hosts, Internet of things (IoT) sensors, etc., providing real-time and high-quality
networking services with ultralow end-to-end latency guaranteed between various user devices and
edge cloud computing nodes. However, the cloud resources at the MEC on-site (access point) and
edge site are restricted and insufficient mainly because of the operation and management constraints
(e.g., limited space and capacity), particularly in the case of on-demand and dynamic service resource
deployment. In this regard, we propose a selective MEC resource allocation scheme adopting a
multitier architecture over a wide-area software-defined network (SDN) on the basis of our recent
research work on virtual network slicing and resource orchestration. The proposed scheme provides
an optimized MEC selection model considering end-to-end latency and efficient service resource
utilization on the basis of the hierarchical MEC service architecture.

Keywords: virtual network; orchestration; multi-access edge computing (MEC); wide-area SDN

1. Introduction

Recently, data traffic is increasing explosively as a variety of user equipment (UE) and intelligent
devices such as smartphones, tablets, smart cars, and smart home devices go hand in hand with the
evolution of cloud computing and network softwarization technologies. With the increase in the
network diversity and complexity to manage multiple devices and to optimize the distribution and
delivery of increasing amounts of data traffic, the efficient operation and management of network
service resources becomes complicated. In order to overcome this problem, as a way of applying
automation and intelligence to network infrastructure, the software-defined network (SDN) is evolving
for dynamic and virtualized networking services, efficient network management, and cost-saving
benefits in network deployment and operations [1,2].

The SDN can manage and control network resources using a logically centralized controller that
is separated from the data transmission layer called the data plane. For example, OpenFlow is an
SDN technology to abstract and control the flow table in OpenFlow-enabled switches, adjusting data
delivery paths on the basis of flow information [3]. An SDN controller acts like a network operating
system (NOS). It monitors and collects network status and configuration data in real time to evaluate
the global network topology while making network devices dynamically programmable. In this
procedure, network automation and intelligence can be provided with an SDN, and one of the latest
technological trends of SDNs is to pursue network resource virtualization and dynamic network
slicing for automated and intelligent network management integrated with machine learning and deep
learning technologies [4,5]. By applying network automation and intelligence to network infrastructure,
the collected network big data (e.g., logs, flows, events, and status) are analyzed by machine learning

Algorithms 2020, 13, 245; doi:10.3390/a13100245 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-3323-0323
http://www.mdpi.com/1999-4893/13/10/245?type=check_update&version=1
http://dx.doi.org/10.3390/a13100245
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 245 2 of 16

and deep learning models, and exploited for configuration, management, control, and orchestration of
physical and virtual network resources.

As a use case in the network virtualization and orchestration, KREONET-S (Korea Research
Environment Open Network Softwarization) was developed to operate as a wide-area SDN
infrastructure spanning five regions in South Korea, two regions in the United States, and one region
in China, adopting OpenFlow as its southbound interface [6,7]. Virtual dedicated network (VDN)
and VDN orchestrator (VDNO) applications are being developed and deployed over KREONET-S to
provide end-to-end virtual network slicing and automated orchestration capability for UE, end-hosts,
and cloud resources, gaining high quality of data transmission and secure end-to-end communication
services enabled by dynamic and dedicated resource (e.g., network bandwidth) provisioning.

In addition, considering cloud computing as another evolutionary information and
communications technology (ICT) shift, multi-access edge computing (MEC) has become an essential
technology for collecting, analyzing, and processing data generated by widely distributed user
equipment (UE), wireless end-hosts, Internet of things (IoT) sensors, etc., providing real-time and
high-quality networking services with ultralow end-to-end latency guaranteed between various user
devices and edge cloud computing nodes. The European Telecommunication Standard Institute (ETSI)
MEC ISG [8–10] is primarily involved in the standardization efforts of MEC which is considered a
key component of future fifth- and sixth-generation (5G and 6G) systems to meet the requirements
of telecommunication operators in terms of flexibility and reconfigurability for the increasing traffic
demand [11,12]. MEC brings processing and storage capabilities to the edge of the network to inspire
the development of new IoT applications and services through intelligent and big data analytics [13],
and to offload the applications demanding huge processing resources from mobile devices to the
edge computing cloud [14]. MEC can improve latency and bandwidth utilization while making users,
developers, and content providers access network services more easily on the basis of its realization
technologies including SDN and network slicing [15–17].

However, there is an arising issue that the cloud resources at the MEC on-site (access point)
and edge site are restricted and insufficient primarily because of the operation and management
constraints (e.g., limited space and capacity) in the case of on-demand dynamic computing and
storage resource deployment in cloud-assisted mobile and multi-access edge computing by end-user
requests in particular [18–20]. Resource provisioning in the MEC environment generally embraces
hypervisor-based and container-based virtualization technologies. Furthermore, as the edge or
distributed cloud is increasingly prevailing, it is desired that lightweight and container-based service
resources are converged with an automated and intelligent networking environment. Therefore, a
resource integration and orchestration technology is required to select and allocate computing, storage,
and network resources efficiently over the SDNized and containerized edge cloud infrastructure in
order for dynamic resource management; thus, MEC services can be enhanced with the improved
quality of experience and service in a more intelligent and secure way.

In this paper, we propose a dynamic and flexible network virtualization and orchestration
scheme for automated and selective MEC services over a wide-area SDN (KREONET-S). Section 2
introduces how KREONET-S operates as a wide-area SDN infrastructure that meets the MEC-specific
dynamic resource provisioning requirements. Section 3 describes the development of VDN and
VDNO applications that can be utilized for selective MEC services by using a location- and load-aware
approach. Consequently, as a use case of network automation based on dynamic virtual network
slicing over KREONET-S, an experiment using Globus Online [21] is explained in association with the
virtual networking (VDN) and orchestration (VDNO) technologies in Section 4. Finally, we conclude
this article in Section 6 after considering a multitier service architecture and selective MEC model for
the scheme proposed in Section 5.

Algorithms 2020, 13, 245 3 of 16

2. KREONET-S: Wide-Area SDN Infrastructure Development and Deployment

SDN has attracted much attention as a new network paradigm. Open Network Foundation
(ONF) [22] is a founder of SDN and leads the technology development, interface and data
model standardization, and SDN commercialization in a joint effort and partnership with major
telecommunications and service providers in the world. According to ONF, SDN is defined as follows:
“the data plane and control plane are separated in SDN architecture, and network intelligence and
network status information are logically centralized in the control plane. Network infrastructure is
abstracted from the perspective of applications.” The SDN architecture is composed of a data plane,
a control plane, and an application plane, which are associated with the southbound interface (SBI) and
northbound interface (NBI) on the basis of the aforementioned definition by ONF. Figure 1 shows that
the SBI interconnects the data plane and the control plane, and the NBI provides abstracted network
information by interconnecting the control plane and the application plane. Moreover, multiple SDN
controller instances in the control plane can be clustered as a logically centralized controller by
exchanging the network topology view and the state information via eastbound and westbound
interfaces (EWBIs). The logically centralized controller is capable of high availability and scalability in
regard to reliable SDN operations and management, resulting in efficient handling of massive network
traffic generated from large-scale and wide-area SDN environments.

Algorithms 2020, 13, x FOR PEER REVIEW 3 of 15

telecommunications and service providers in the world. According to ONF, SDN is defined as
follows: “the data plane and control plane are separated in SDN architecture, and network
intelligence and network status information are logically centralized in the control plane. Network
infrastructure is abstracted from the perspective of applications.” The SDN architecture is composed
of a data plane, a control plane, and an application plane, which are associated with the southbound
interface (SBI) and northbound interface (NBI) on the basis of the aforementioned definition by ONF.
Figure 1 shows that the SBI interconnects the data plane and the control plane, and the NBI provides
abstracted network information by interconnecting the control plane and the application plane.
Moreover, multiple SDN controller instances in the control plane can be clustered as a logically
centralized controller by exchanging the network topology view and the state information via
eastbound and westbound interfaces (EWBIs). The logically centralized controller is capable of high
availability and scalability in regard to reliable SDN operations and management, resulting in
efficient handling of massive network traffic generated from large-scale and wide-area SDN
environments.

Figure 1. Fundamental software-defined network (SDN) architecture: data, control, and application planes and
interfaces [23].

According to the fundamental SDN architecture defined by ONF, as shown in Figure 1, four
principal layers are designed and developed for the KREONET-S initiative, namely, the
infrastructure layer corresponding to the data plane, the control layer corresponding to the control
plane, the virtualization layer corresponding to the application plane, and an additional orchestration
layer (for network automation and intelligence) also corresponding to the application plane.
KREONET-S has several unique features, as compared with other SDN platforms. First of all,
KREONET-S provides a native and tunnel-free wide-area SDN infrastructure, adopting the standard
OpenFlow protocol as its southbound interface and APIs. Other SD-WAN technologies developed
by the commercial vendors generally use overlay and tunneling mechanisms with the proprietary
interfaces and APIs applied, which may cause vendor lock-in issues, thereby hindering
heterogeneous and multi-vendor network deployment and further technology development.
Furthermore, KREONET-S is differentiated from other platforms and applications that use ONOS as
their SDN controller, mainly considering the VDN (and VDNO) capabilities. The VDN system is a
district ONOS-oriented application providing logically isolated and dedicated networks over WAN
with high performance and strict end-to-end network security guaranteed, particularly using

Figure 1. Fundamental software-defined network (SDN) architecture: data, control, and application
planes and interfaces [23].

According to the fundamental SDN architecture defined by ONF, as shown in Figure 1, four principal
layers are designed and developed for the KREONET-S initiative, namely, the infrastructure layer
corresponding to the data plane, the control layer corresponding to the control plane, the virtualization
layer corresponding to the application plane, and an additional orchestration layer (for network automation
and intelligence) also corresponding to the application plane. KREONET-S has several unique features,
as compared with other SDN platforms. First of all, KREONET-S provides a native and tunnel-free
wide-area SDN infrastructure, adopting the standard OpenFlow protocol as its southbound interface and
APIs. Other SD-WAN technologies developed by the commercial vendors generally use overlay and
tunneling mechanisms with the proprietary interfaces and APIs applied, which may cause vendor lock-in

Algorithms 2020, 13, 245 4 of 16

issues, thereby hindering heterogeneous and multi-vendor network deployment and further technology
development. Furthermore, KREONET-S is differentiated from other platforms and applications that
use ONOS as their SDN controller, mainly considering the VDN (and VDNO) capabilities. The VDN
system is a district ONOS-oriented application providing logically isolated and dedicated networks
over WAN with high performance and strict end-to-end network security guaranteed, particularly using
dynamic flow control and automated end-host/UE awareness. On the other hand, other well-known ONOS
virtual network applications are rather focused on the datacenter (overlay) network virtualization or LAN
virtualization, for example, SONA (Simplified Overlay Networking Architecture) and VPLS (Virtual Private
LAN Service). In addition, the VDNO system coordinates the VDN system and Kubernetes to integrate
virtual networking, computing, and storage resources in an automated manner, which is described in detail
in Section 3.

The layered architecture of KREONET-S is indicated in Figure 2. The infrastructure layer of
KREONET-S facilitates OpenFlow-capable core and edge network devices to build a wide-area SDN as
a data plane network in five regions in Korea (Daejeon, Seoul, Busan, Gwangju, and Changwon) two
regions in the US (Chicago and Seattle), and one region in China (Hong Kong). As a control plane for
KREONET-S, an open-source SDN control platform, Open Network Operating System (ONOS) [24]
developed by ONF is deployed on top of the infrastructure layer with several key application modules
newly developed (e.g., reactive forwarding module, topology synchronization module, configuration
and recovery module) in order to improve the overall operational stability in the control layer of
KREONET-S. The core architecture of ONOS enables individual controller instances to be clustered as
one logically centralized controller using eventual and strong consistency in distributed datastores,
providing high availability, scalability, and centralized management. The distributed datastores
synchronize the states of each controller instance on the basis of appropriate state distribution
and consensus mechanisms such as the Atomix framework, Raft algorithm, and gossip protocol.
By adopting the ONOS distributed core architecture, KREONET-S operates a three-node ONOS cluster
utilizing OpenFlow as the SBI to collect network status and topology information from the widely
dispersed network devices in eight locations, and accordingly creates a global network topology as
indicated in Figure 3. The network topology, status, and event information is abstracted by ONOS and
delivered to the virtualization layer (also known as the VDN) of KREONET-S through the NBI so that
the VDN can provide and manage virtual network slices on the basis of the abstracted global network
topology and state information.

VDN basically allocates dedicated network slices so that UEs and intelligent wireless/wired
devices can access MEC nodes with optimized latency and bandwidth on the basis of its dynamic
and on-demand network resource provisioning capability. Isolating the network slices using SDN
in this paper is achieved by the flow isolation mechanism on the basis of the OpenFlow protocol,
which is combined with the technologies of data delivery path calculation, VDN reactive forwarding
(vFwd), virtual dynamic host configuration protocol (vDHCP), virtual network access control (vNAC),
and VDN federation (vFED), as shown in Figure 2. Each generated slice is labeled with a specific VDN
identifier, and then strictly isolated and separated from the other slices on the basis of a segregated
flow-rule installation to the corresponding network devices so that end-hosts and UEs in the same
slice can only communicate with each other. The VDN mechanism is described in detail in Section 3.
Moreover, when computing and storage resources become insufficient by rapidly increasing the number
of user devices (e.g., smartphones and smart cars), VDN can provide (location-aware) proximity
services for the latency-sensitive and computation-intensive user devices by calculating the shortest
path that secures the required bandwidth from user devices to a selective MEC site in the nearest
on-site access point or edge network. For example, considering a real-time adaptive video streaming
service, a number of dynamically increasing user devices need to receive the stream seamlessly from
the first-zone MEC site (on-site access point) or the nearest next-zone MEC site on the basis of the
selective MEC service model. For this type of service scenario, we consider the hierarchical and

Algorithms 2020, 13, 245 5 of 16

multiple-zone MEC service architecture depicted in Figure 3, and the architecture is integrated with
the underlying KREONET-S global network topology, as shown in Figure 4.

Algorithms 2020, 13, x FOR PEER REVIEW 4 of 15

dynamic flow control and automated end-host/UE awareness. On the other hand, other well-known
ONOS virtual network applications are rather focused on the datacenter (overlay) network
virtualization or LAN virtualization, for example, SONA (Simplified Overlay Networking
Architecture) and VPLS (Virtual Private LAN Service). In addition, the VDNO system coordinates
the VDN system and Kubernetes to integrate virtual networking, computing, and storage resources
in an automated manner, which is described in detail in Section 3.

The layered architecture of KREONET-S is indicated in Figure 2. The infrastructure layer of
KREONET-S facilitates OpenFlow-capable core and edge network devices to build a wide-area SDN
as a data plane network in five regions in Korea (Daejeon, Seoul, Busan, Gwangju, and Changwon)
two regions in the US (Chicago and Seattle), and one region in China (Hong Kong). As a control plane
for KREONET-S, an open-source SDN control platform, Open Network Operating System (ONOS)
[24] developed by ONF is deployed on top of the infrastructure layer with several key application
modules newly developed (e.g., reactive forwarding module, topology synchronization module,
configuration and recovery module) in order to improve the overall operational stability in the
control layer of KREONET-S. The core architecture of ONOS enables individual controller instances
to be clustered as one logically centralized controller using eventual and strong consistency in
distributed datastores, providing high availability, scalability, and centralized management. The
distributed datastores synchronize the states of each controller instance on the basis of appropriate
state distribution and consensus mechanisms such as the Atomix framework, Raft algorithm, and
gossip protocol. By adopting the ONOS distributed core architecture, KREONET-S operates a three-
node ONOS cluster utilizing OpenFlow as the SBI to collect network status and topology information
from the widely dispersed network devices in eight locations, and accordingly creates a global
network topology as indicated in Figure 3. The network topology, status, and event information is
abstracted by ONOS and delivered to the virtualization layer (also known as the VDN) of KREONET-
S through the NBI so that the VDN can provide and manage virtual network slices on the basis of the
abstracted global network topology and state information.

Figure 2. Layered architecture and development status of KREONET-S.

VDN basically allocates dedicated network slices so that UEs and intelligent wireless/wired
devices can access MEC nodes with optimized latency and bandwidth on the basis of its dynamic
and on-demand network resource provisioning capability. Isolating the network slices using SDN in
this paper is achieved by the flow isolation mechanism on the basis of the OpenFlow protocol, which

Figure 2. Layered architecture and development status of KREONET-S.

Algorithms 2020, 13, x FOR PEER REVIEW 5 of 15

is combined with the technologies of data delivery path calculation, VDN reactive forwarding (vFwd),
virtual dynamic host configuration protocol (vDHCP), virtual network access control (vNAC), and
VDN federation (vFED), as shown in Figure 2. Each generated slice is labeled with a specific VDN
identifier, and then strictly isolated and separated from the other slices on the basis of a segregated
flow-rule installation to the corresponding network devices so that end-hosts and UEs in the same
slice can only communicate with each other. The VDN mechanism is described in detail in Section 3.
Moreover, when computing and storage resources become insufficient by rapidly increasing the
number of user devices (e.g., smartphones and smart cars), VDN can provide (location-aware)
proximity services for the latency-sensitive and computation-intensive user devices by calculating
the shortest path that secures the required bandwidth from user devices to a selective MEC site in the
nearest on-site access point or edge network. For example, considering a real-time adaptive video
streaming service, a number of dynamically increasing user devices need to receive the stream
seamlessly from the first-zone MEC site (on-site access point) or the nearest next-zone MEC site on
the basis of the selective MEC service model. For this type of service scenario, we consider the
hierarchical and multiple-zone MEC service architecture depicted in Figure 3, and the architecture is
integrated with the underlying KREONET-S global network topology, as shown in Figure 4.

Figure 3. The hierarchical multi-access edge computing (MEC) service model based on virtual
dedicated network (VDN) and VDN orchestrator (VDNO).

Figure 3. The hierarchical multi-access edge computing (MEC) service model based on virtual dedicated
network (VDN) and VDN orchestrator (VDNO).

The hierarchical MEC architecture was introduced in several studies such as radio-aware video
optimization in a fully virtualized network (RAVEN) experiment activity [25] and hierarchical MEC
server deployment research [26], where RAVEN embraces an SD-RAN (Software Defined Radio Access
Network) controller to facilitate communication between the controller and the agent residing on
network devices, and the latter proposes an integer nonlinear programming model to minimize the
resource deployment cost and average latency. Similarly, the MEC service architecture of KREONET-S
incorporates a hierarchical model. However, the proposed architecture distinctly applies VDN and
VDNO in its own mechanism for network resource utilization and end-to-end latency optimization.

Algorithms 2020, 13, 245 6 of 16

The detailed framework and procedure of VDN is described in Section 3. Likewise, the location- and
load-aware VDN orchestration architecture is introduced in the same section to indicate automated
and intelligent orchestration, allowing the coordination of virtual network slices and computing and
storage resources on demand in an integrated manner.

Algorithms 2020, 13, x FOR PEER REVIEW 6 of 15

Figure 4. MEC service model integrated with the KREONET-S global network topology.

The hierarchical MEC architecture was introduced in several studies such as radio-aware video
optimization in a fully virtualized network (RAVEN) experiment activity [25] and hierarchical MEC
server deployment research [26], where RAVEN embraces an SD-RAN (Software Defined Radio
Access Network) controller to facilitate communication between the controller and the agent residing
on network devices, and the latter proposes an integer nonlinear programming model to minimize
the resource deployment cost and average latency. Similarly, the MEC service architecture of
KREONET-S incorporates a hierarchical model. However, the proposed architecture distinctly
applies VDN and VDNO in its own mechanism for network resource utilization and end-to-end
latency optimization. The detailed framework and procedure of VDN is described in Section 3.
Likewise, the location- and load-aware VDN orchestration architecture is introduced in the same
section to indicate automated and intelligent orchestration, allowing the coordination of virtual
network slices and computing and storage resources on demand in an integrated manner.

3. Dynamic and Automated Resource Allocation Based on VDN and VDNO

3.1. Dyanmic Virtual Dedicated Networking (VDN) Framework and Procedure

The main purpose of the VDN system is to generate and manage virtual network slices on
demand on the basis of the requirement of end users and devices who need secure and dedicated
quality of network services. Here, “dedicated” denotes that the VDN-provisioned virtual network
slice strictly guarantees end-to-end network performance such as minimal latency and zero or very
low packet loss and jitter. In order to assure the dedicated network performance, VDN generates and
installs specific OpenFlow-based flow rules on the network devices as a method of flow isolation to
allocate the required network bandwidth to a network slice connected to UEs, end-hosts, and various
user devices. Flow isolation enables the data transmission in each slice to be exclusively undertaken
without any data traffic intervention to other slices and vice versa, which ensures the availability of
the following virtual networking services:

• Dynamic and fast virtual network provisioning and management for user applications and
services with the specific network quality requirements;

• Secure and private network slicing with (optional) SDN–IP interconnectivity;
• Automated end-host and UE awareness for accurate network access control;
• Logically isolated and dedicated networking for high-performance network services;

Figure 4. MEC service model integrated with the KREONET-S global network topology.

3. Dynamic and Automated Resource Allocation Based on VDN and VDNO

3.1. Dyanmic Virtual Dedicated Networking (VDN) Framework and Procedure

The main purpose of the VDN system is to generate and manage virtual network slices on demand
on the basis of the requirement of end users and devices who need secure and dedicated quality of
network services. Here, “dedicated” denotes that the VDN-provisioned virtual network slice strictly
guarantees end-to-end network performance such as minimal latency and zero or very low packet
loss and jitter. In order to assure the dedicated network performance, VDN generates and installs
specific OpenFlow-based flow rules on the network devices as a method of flow isolation to allocate the
required network bandwidth to a network slice connected to UEs, end-hosts, and various user devices.
Flow isolation enables the data transmission in each slice to be exclusively undertaken without any
data traffic intervention to other slices and vice versa, which ensures the availability of the following
virtual networking services:

• Dynamic and fast virtual network provisioning and management for user applications and services
with the specific network quality requirements;

• Secure and private network slicing with (optional) SDN–IP interconnectivity;
• Automated end-host and UE awareness for accurate network access control;
• Logically isolated and dedicated networking for high-performance network services;
• Easy and efficient management environment based on intuitive user interfaces such as graphical

user interface (GUI), REST API, and command line interface (CLI);
• Add-on virtual network applications including virtual network federation (vFED) and dynamic

host configuration protocol (vDHCP) for each network slice.

In Figure 5, the framework of the VDN system is depicted showing the main processes and
functionalities. Fundamentally, a VDN system consists of two core engines and five subsystems

Algorithms 2020, 13, 245 7 of 16

associated with user interfaces, a datastore, and external systems. As one of the core engines, the VDN
path computation engine (PCE) in Figure 5 produces an optimal shortest path on the basis of the
global network topology view provided by ONOS, resulting in proper selection of SDN devices in
the calculated path. A set of selected SDN devices are referenced by the VDN reactive forwarding
engine for further flow-rule installation. The VDN reactive forwarding engine is responsible for
flow-rule management for each virtual network slice. It analyzes OpenFlow PACKET-IN messages
received through the NBI of an ONOS instance when a source end-host sends the first packet to a
destination end-host. After the reactive forwarding engine compares the VDN IDs of the source
and destination end-hosts in the PACKET-IN message, if the VDN IDs are equivalent, the reactive
forwarding engine creates and installs proper flow rules into SDN devices in the path, and permits the
remaining packets to be delivered correctly. Otherwise, the engine does not generate flow rules so that
no further communication may proceed.

Algorithms 2020, 13, x FOR PEER REVIEW 7 of 15

• Easy and efficient management environment based on intuitive user interfaces such as graphical
user interface (GUI), REST API, and command line interface (CLI);

• Add-on virtual network applications including virtual network federation (vFED) and dynamic
host configuration protocol (vDHCP) for each network slice.

In Figure 5, the framework of the VDN system is depicted showing the main processes and
functionalities. Fundamentally, a VDN system consists of two core engines and five subsystems
associated with user interfaces, a datastore, and external systems. As one of the core engines, the
VDN path computation engine (PCE) in Figure 5 produces an optimal shortest path on the basis of
the global network topology view provided by ONOS, resulting in proper selection of SDN devices
in the calculated path. A set of selected SDN devices are referenced by the VDN reactive forwarding
engine for further flow-rule installation. The VDN reactive forwarding engine is responsible for flow-
rule management for each virtual network slice. It analyzes OpenFlow PACKET-IN messages
received through the NBI of an ONOS instance when a source end-host sends the first packet to a
destination end-host. After the reactive forwarding engine compares the VDN IDs of the source and
destination end-hosts in the PACKET-IN message, if the VDN IDs are equivalent, the reactive
forwarding engine creates and installs proper flow rules into SDN devices in the path, and permits
the remaining packets to be delivered correctly. Otherwise, the engine does not generate flow rules
so that no further communication may proceed.

While VDN core engines are considered to work for most crucial jobs such as shortest-path
computation and virtual network slice management, VDN subsystems play supplementary but also
important roles in the slice recovery, virtual network access control (vNAC), dynamic host
configuration protocol (vDHCP), OpenFlow’s meter-based network slicing, and virtual network
federation (vFED). Users (operators and administrators) can directly maneuver the subsystem
functionalities via user interfaces (GUI, REST API, and CLI), while VDN core engines operate in the
background. The datastore in Figure 5 mainly interacts with the slice recovery subsystem to save
virtual network slice information (e.g., bandwidth, end-host/UE, network device, and link) and user
information (e.g., authentication and authorization data) for subsequent restoration process in any
case of slice failure. It is also interoperable with several external systems, such as the ID federation
system for authentication and authorization management and Grafana/CACTI systems for network
status monitoring and traffic measurement.

Figure 5. VDN framework: core engines, subsystems, datastore, and external systems. Figure 5. VDN framework: core engines, subsystems, datastore, and external systems.

While VDN core engines are considered to work for most crucial jobs such as shortest-path
computation and virtual network slice management, VDN subsystems play supplementary but also
important roles in the slice recovery, virtual network access control (vNAC), dynamic host configuration
protocol (vDHCP), OpenFlow’s meter-based network slicing, and virtual network federation (vFED).
Users (operators and administrators) can directly maneuver the subsystem functionalities via user
interfaces (GUI, REST API, and CLI), while VDN core engines operate in the background. The datastore
in Figure 5 mainly interacts with the slice recovery subsystem to save virtual network slice information
(e.g., bandwidth, end-host/UE, network device, and link) and user information (e.g., authentication and
authorization data) for subsequent restoration process in any case of slice failure. It is also interoperable
with several external systems, such as the ID federation system for authentication and authorization
management and Grafana/CACTI systems for network status monitoring and traffic measurement.

3.2. Automated Resource Allocation and Mangement by VDNO

VDNO provides a location- and load-aware end-to-end orchestration mechanism to manage and
utilize service resources efficiently, including computing, storage, and networking resources in the
distributed edge cloud environment. In VDNO, orchestration is performed on demand by user requests
to allocate physical and virtual resources dynamically. Figure 6 and Table 1 represent the overall

Algorithms 2020, 13, 245 8 of 16

system architecture, principal components, and basic process of VDNO, which interacts with both
Kubernetes [27] and VDN systems to assign the required resources to the KREONET-S infrastructure.
Here, Kubernetes works as a container manager, the VDN system works as a virtual network manager,
and KREONET-S works as a wide-area SDN infrastructure, assuming that multiple (containerized)
cloud computing nodes are located at the distributed MEC sites.

Algorithms 2020, 13, x FOR PEER REVIEW 8 of 15

3.2. Automated Resource Allocation and Mangement by VDNO

VDNO provides a location- and load-aware end-to-end orchestration mechanism to manage and
utilize service resources efficiently, including computing, storage, and networking resources in the
distributed edge cloud environment. In VDNO, orchestration is performed on demand by user
requests to allocate physical and virtual resources dynamically. Figure 6 and Table 1 represent the
overall system architecture, principal components, and basic process of VDNO, which interacts with
both Kubernetes [27] and VDN systems to assign the required resources to the KREONET-S
infrastructure. Here, Kubernetes works as a container manager, the VDN system works as a virtual
network manager, and KREONET-S works as a wide-area SDN infrastructure, assuming that
multiple (containerized) cloud computing nodes are located at the distributed MEC sites.

Figure 6. Integrated VDN orchestrator architecture and process.

Table 1. VDNO components and roles. ONOS, Open Network Operating System.

Component Roles

Orchestrator (VDNO)
Dynamic creation and allocation of containerized cloud resources
with on-demand virtual network slices generated and connected

Container Manager
Dynamic provisioning of containerized service resources at the
specific MEC site selected by VDNO on the basis of optimal location
and service resource availability

Virtual Network Manger
(VDN)

Processing the requests from VDNO to provision virtual network
slices by interworking with ONOS for granular flow control and
management

SDN Controller (ONOS) Management of abstracted network resources and flow control
requested by the VDN system

KREONET-S network
devices and MEC nodes

Wide-area SDN infrastructure and MEC servers

Figure 6. Integrated VDN orchestrator architecture and process.

Table 1. VDNO components and roles. ONOS, Open Network Operating System.

Component Roles

Orchestrator (VDNO)
Dynamic creation and allocation of containerized
cloud resources with on-demand virtual network
slices generated and connected

Container Manager

Dynamic provisioning of containerized service
resources at the specific MEC site selected by VDNO
on the basis of optimal location and service resource
availability

Virtual Network Manger (VDN)
Processing the requests from VDNO to provision
virtual network slices by interworking with ONOS
for granular flow control and management

SDN Controller (ONOS) Management of abstracted network resources and
flow control requested by the VDN system

KREONET-S network devices and MEC nodes Wide-area SDN infrastructure and MEC servers

According to the abovementioned orchestration components and basic process, when a user
(or device) requests for the creation of a virtual network slice integrated with computing and storage
service resources, a specific MEC site is selected and (containerized) service nodes are allocated among
multiple distributed MEC sites. The container manager, Kubernetes, manages the allocation of the
containerized MEC nodes (also known as PODs), which are recognized by ONOS as soon as they
are allocated and connected to an OpenFlow network device. Next, the MEC nodes are included

Algorithms 2020, 13, 245 9 of 16

and abstracted in the global network topology view as the controllable end-hosts. After this process,
the VDN system provisions a virtual network slice including the connected and ONOS-aware MEC
nodes with the required and guaranteed dedicated network performance.

4. An Automated Virtual Network Slicing Experiment Using Globus Online

This section describes a network automation use case that can be applied to dynamic MEC
resource allocation services in terms of cognitive virtual network slice creation and management.
The use case in this section takes advantage of Globus Online, which is a grid-oriented, end-to-end,
and disk-to-disk large file transfer system, and the VDNO system that coordinates VDN and Kubernetes
for containerized resource allocation combined with a dedicated virtual network slice. In order to utilize
Globus Online, data transfer nodes (DTNs) are allocated by VDNO in the first place. Globus Online
manages each end-system resource to be registered as a DTN endpoint to store a large volume of data
and transfer the massive file to another DTN endpoint.

VDNO can generate and manage DTNs dynamically as containerized resources connected to the
KREONET-S infrastructure, which enables the DTNs to be included in the specific virtual network slices
on demand. If a containerized DTN is registered at Globus Online, it becomes a DTN endpoint which
transfers large-scale data to another endpoint using a high-performance file transmission application
such as GridFTP on the basis of its simplified user interface. Globus Online basically offers Open APIs
for authorization (Auth) and file transfer (Transfer). The Auth API manages the permission and access
control of the Globus Online system and the Transfer API is responsible for endpoint registration,
listing, and removal, as well as data transfer.

Originally, VDNO interacts with the VDN and Kubernetes systems, and the interoperability
of VDNO expands to work with Globus Online for the automated virtual network slicing.
First, VDNO acquires endpoint information (i.e., containerized DTN information) by calling the Auth
APIs and then converts the acquired endpoint information to the JSON (JavaScript Object Notation)
data model that can be recognized by ONOS. Once VDN identifies real-time communication between
the DTN endpoints on the basis of the JSON dataset delivered by the ONOS NBI, it automatically
provisions an end-to-end VDN slice including the DTN endpoints to guarantee high performance
of data transfer up to 100 Gbps over KREONET-S. For the real-time detection of data transfer, it is
necessary to identify data communications between the DTN endpoints registered at Globus Online by
constantly monitoring OpenFlow PACKET-IN messages using the PacketProcessor API provided by
ONOS. Additionally we implemented a VdnFwdManager module in the VDN system, which makes
a request to the VdnManager module to create each virtual network slice automatically when a
PACKET-IN event is detected.

On the basis of the created virtual network slice, the disk-to-disk data transfer performance is
measured by Globus Online, as shown in Figure 7. The source and destination DTN endpoints are
generated as containerized resources (Kubernetes PODs) by VDNO in two locations in Seoul and
Busan in Korea, where the endpoint residing in Seoul (k8s-s1-dtn.kreonet-s.net) transmits a 10 GB file
to another one (k8s-bs-dtn.kreonet-s.net) in Busan. The two endpoints participate in a dynamically
created 1 Gbps virtual network slice, consequently gaining a measured throughput of 98.34 MB/s
(around 790 Mbps), which indicates a similar network performance to that evaluated by a disk-to-disk
data transfer experiment between two fine-tuned physical servers connected with a back-to-back
dedicated 1 Gbps physical network link.

Algorithms 2020, 13, 245 10 of 16

Algorithms 2020, 13, x FOR PEER REVIEW 10 of 15

Figure 7. Large file transfer experiments based on virtual network slice and Globus Online (Korean

characters in this figure indicates the name of the experimenter).

5. A Selective MEC Service Model Based on a Multitier Architecture

In order to deploy on-demand MEC services in the KREONET-S environment, MEC resource
selection and allocation mechanisms play a significant role in the performance of the MEC service. In
this section, we present a multitier MEC selection model considering end-to-end service latency
between users and MEC nodes, and efficient service resource utilization using the hierarchical MEC
service architecture mentioned in Section 2.

We assume that we know the locations and resource capabilities of multitier MEC service entities.
In addition, the wide-area SDN infrastructure (KREONET-S) with wireless access networking and
MEC capability is set up in advance. For the flexible availability of MEC resources, in the proposed
multitier MEC selection model, dynamic MEC resource allocation and management are supported in
the MEC application environment where virtual network functions on VMs and/or containers within
the selected MEC nodes are independently instantiated and terminated on demand. The notations
associated with the multitier MEC selection model are listed in Table 2.

Table 2. Summary of notations. UE, user equipment; CPU, central processing unit.

Notation Description 𝐿୉ଶ୉ End-to-end latency between a UE and a MEC node 𝐿୛୐ Wireless transmission latency between a UE and its access point 𝐿ே௡ Network latency between an access point and a MEC node 𝐿஼௡,௜ Computing latency in MEC node n for a service request i 𝑟ୱ Access point associated with a service request 𝑔ୣ Network edge gateway of 𝑟௦ 𝑔ୡ Network core gateway of 𝑔ୣ 𝑛୰ Access MEC node in zone−1 of 𝑟௦ collocated with 𝑟௦ 𝑛ୣ Edge MEC node in zone−2 of 𝑟௦ collocated with 𝑔ୣ 𝑛ୡ Core MEC node in zone−3 of 𝑟௦ collocated with 𝑔ୡ 𝑁௓,௞ Set of MEC nodes in the zone-k of 𝑟௦ 𝑁஼௜ Set of candidate MEC nodes for a service request i, 𝑁஼௜ = 𝑁௓,ଵ ∪ 𝑁௓,ଶ ∪ 𝑁௓,ଷ 𝑑(𝑖, 𝑗) Distance between node i and node j 𝑠(𝑖, 𝑗) Propagation speed in a link medium between node i and node j 𝑙(𝑖, 𝑗) Fiber link between node i and node j 𝑃(𝑠, 𝑑) A set of links on the shortest path between node s and node d 𝑈(𝑠, 𝑑) Normalized network utilization beween node s and node d, 0 ≤ 𝑈(𝑠, 𝑑) ≤ 1 𝑦௡౨ᇱ Binary variable, represeting whether a request is not handled by MEC node 𝑛୰ 𝑦௓,௞௡ Binary variable, represeting whether a request is handled by MEC node n in zone-k 𝑃௡ Total processing capacity of MEC node n 𝜇௡ Average number of service requests to be handled by MEC node n at a time

Figure 7. Large file transfer experiments based on virtual network slice and Globus Online (Korean
characters in this figure indicates the name of the experimenter).

5. A Selective MEC Service Model Based on a Multitier Architecture

In order to deploy on-demand MEC services in the KREONET-S environment, MEC resource
selection and allocation mechanisms play a significant role in the performance of the MEC service.
In this section, we present a multitier MEC selection model considering end-to-end service latency
between users and MEC nodes, and efficient service resource utilization using the hierarchical MEC
service architecture mentioned in Section 2.

We assume that we know the locations and resource capabilities of multitier MEC service entities.
In addition, the wide-area SDN infrastructure (KREONET-S) with wireless access networking and
MEC capability is set up in advance. For the flexible availability of MEC resources, in the proposed
multitier MEC selection model, dynamic MEC resource allocation and management are supported in
the MEC application environment where virtual network functions on VMs and/or containers within
the selected MEC nodes are independently instantiated and terminated on demand. The notations
associated with the multitier MEC selection model are listed in Table 2.

5.1. End-to-End Letency Model

The end-to-end latency between UE and an MEC node is a crucial requirement for comfortably
supporting MEC services. The latency can be modeled by the summation of the wireless transmission
latency between a UE and an access point (AP), the network latency between an AP and a MEC
node, and the computing latency at the MEC node for processing a service request. Consequently, the
end-to-end latency is expressed as

LE2E = LWL + Ln
N + Ln, i

C . (1)

There are several studies about wireless transmission latency models considering the radio types
and properties [28,29]. We adopted the previous research model for LWL. The Ln

N is newly defined
according to the hierarchical MEC service architecture. We also define Ln, i

C by considering the average
processing latency in MEC nodes according to the type of service request.

LN consists of processing, queuing, transmission, and propagation delays. Many factors affect the
network latency [30]. The main factor is the distance between an AP and a MEC node because the
propagation delay occurs for data (generally, in the form of packets) to traverse through transmission
media. The second factor is network congestion. However, it is difficult to estimate the fluctuation of
network congestion. Therefore, we reflect the factor of network congestion by considering network
utilization between an AP and a MEC node in the procedure of MEC selection instead of LN modeling.
Finally, the transmission delay is determined by the packet length and link bandwidth. The packet
(data) length for a specific MEC service does not change depending on the selected MEC server
(regardless of the access/edge/core sites). Furthermore, the conditions of the link bandwidth on the

Algorithms 2020, 13, 245 11 of 16

MEC infrastructure are mostly invariable. Therefore, the proposed end-to-end latency model does not
consider the transmission delay.

Table 2. Summary of notations. UE, user equipment; CPU, central processing unit.

Notation Description

LE2E End-to-end latency between a UE and a MEC node
LWL Wireless transmission latency between a UE and its access point
Ln

N Network latency between an access point and a MEC node
Ln, i

C Computing latency in MEC node n for a service request i
rs Access point associated with a service request
ge Network edge gateway of rs
gc Network core gateway of ge
nr Access MEC node in zone−1 of rs collocated with rs
ne Edge MEC node in zone−2 of rs collocated with ge
nc Core MEC node in zone−3 of rs collocated with gc

NZ,k Set of MEC nodes in the zone-k of rs
Ni

C Set of candidate MEC nodes for a service request i, Ni
C = NZ,1 ∪ NZ,2 ∪ NZ,3

d(i, j) Distance between node i and node j
s(i, j) Propagation speed in a link medium between node i and node j
l(i, j) Fiber link between node i and node j

P(s, d) A set of links on the shortest path between node s and node d
U(s, d) Normalized network utilization beween node s and node d, 0 ≤ U(s, d) ≤ 1.

y′nr
Binary variable, represeting whether a request is not handled by MEC node nr

yn
Z, k Binary variable, represeting whether a request is handled by MEC node n in zone-k
Pn Total processing capacity of MEC node n
µn Average number of service requests to be handled by MEC node n at a time
λi

n Average processing bits for service type i in MEC node n
ηi

n Required processing cycles per bit for service type i in MEC node n
rc

n Available CPU resources in MEC node n,
rm

n Available memory resources in MEC node n
rs

n Available storage resources in MEC node n
dl

i Latency demand for service request i
dc

i Initial CPU resource demand for service request i
dm

i Initial memory resource demand for service request i
ds

i Initial storage resource demand for service request i
Rn

A Normalized resource availability in MEC node n, 0 ≤ Rn
A ≤ 1.

N
(
Ln,i

E2E

)
Normalized E2E (End-to-End) latency of MEC node n for service request i, 0 ≤ N

(
Ln,i

E2E

)
≤ 1

ψn
U Normalized number of UEs in the coverage area associated with MEC node n
ψn Number of UEs in the coverage area associated with MEC node n
ωZ,k Weight factor for ψn in zone-k, 0 ≤ ωZ,k ≤ 1
cn, i

U Normalized centrality value of MEC node n for service request i, 0 ≤ ci ≤ 1
vi

n Average data volume related with the requested service i in MEC node n

In the proposed hierarchical MEC service architecture, multitier MEC service zones are considered:
AP site (zone−1), network edge site (zone−2), network core site (zone−3), and regional network
core sites (zone−4). Almost all the MEC services should be handled in a single regional MEC site
(from zone−1 to zone−3) because of the latency requirement and resource utilization for MEC services.
Therefore, MEC nodes in zone−4 are not considered as service candidates at the beginning. Only if the
service is not provided by one of the zone−1 to zone−3 MEC sites can the service request be handled

Algorithms 2020, 13, 245 12 of 16

by a zone−4 (regional network core) MEC site. Thus, the network latency between a connected AP of a
UE and a selected MEC node n is expressed as

Ln
N = y′nr ·

d(rs, ne)

s(rs, ne)
+

∑
nk∈NZ,1−{nr}

ynk
Z, 1·

d(ge, nk)

s(ge, nk)
+

∑
nk∈nZ,2

ynk
Z, 2·

∑
l(i, j)∈P(ge, nk)

d(i, j)
s(i, j)

+
∑

nk∈nZ,3

ynk
Z, 3·

 d(ge, gc)

s(ge, gc)
+

∑
l(i, j)∈P(gc, nk)

d(i, j)
s(i, j)

.

(2)

There are four items in Equation (2). If nr is selected for a service request, we denote Ln
N as zero.

Otherwise, the network latency between an AP and ne should be considered for all other cases. The first
and second items denote the network latency of a service request for the access MEC node in zone−1.
If nr is selected by the service MEC node, Ln,i

E2E is equal to the first item. In case of selecting the access
MEC node in zone−1, except for nr for the service request, Ln,i

E2E is the summation of the first and second
items because the traffic between different APs is transferred via ge. The third and fourth items are
related to the network latency for a service request for the edge MEC node in zone−2 and the core
MEC node in zone−3, respectively. In other words, if an edge MEC node in zone−2 is selected by the
service MEC node, Ln,i

E2E is calculated by the first and third items according to the path between the
rs and the selected MEC node. In case of selecting a core MEC node in zone−3, in the same manner,
Ln,i

E2E is calculated by the first and fourth items.
A MEC node can consist of a finite set of physical and virtual machines. However, we assume

that each MEC node is one entity including the resources of all physical and virtual machines. When a
service request is generated, a suitable MEC node is selected and then the computing resource of the
MEC node is assigned to process the service request. Because each service has various requirements
according to the corresponding service characteristics, we define the average processing bits and the
required processing cycles per bit in a MEC node per service type separately. Furthermore, if there
are previous service requests that need to be processed, the current service request should wait for
them to be completed. In this regard, the computing latency in MEC node n for a service request i is
expressed as

Ln, i
C =

µn·λi
nλ

i
n·η

i
n

Pn
. (3)

5.2. MEC Information Policies for MEC Selection

Regarding the selection of a MEC node for a service request using the hierarchical MEC service
architecture, each AP has MEC node candidates to support selective MEC services. The MEC candidates
consist of MEC nodes in one of the zone−1 to zone−3 MEC sites mentioned in the subsection above.
For the MEC selection, the information corresponding to the each MEC candidate should be maintained,
including Ln

N, rc
n, rm

n , rs
n, U(nr, n), and Rn

A.
Each Ln

N can be derived from Equation (2). As mentioned above, it is assumed that the resource
capabilities and resource usages of multitier MEC service entities are known by monitoring each MEC
node to obtain the measured dataset of available central processing unit (CPU), memory, and storage
resources (rc

n, rm
n , rs

n).
In order to reflect the status of network congestion, we consider network utilization between

an AP and an MEC node. The data transmission at a shorter distance leads to an overall decrease in
network traffic congestion by minimizing the use of network resources in the entire infrastructure.
Moreover, there should be no traffic bottleneck and link congestion in a specific connection to improve
network utilization. In this regard, the network utilization U(rs, n) can be calculated by the product of
the utilization of links on the shortest path between rs and MEC node n. If nr is selected by the service
MEC node, the additional bandwidth is not consumed. Thus, in this case, we assume that the network

Algorithms 2020, 13, 245 13 of 16

utilization is 1. Consequently, U(rs, n) is formally defined as follows by normalizing the network
utilization values:

U(rs, n) =


n = nr, 1

n , nr,
∏

l(i, j)∈P(nr, n)

available bandwidth o f l(i, j)
bandwidth capacity o f l(i, j) . (4)

For the relative comparison in terms of resource availability, each resource availability is normalized
on the basis of the maximum value. Each weight of the resource availability can be determined on
the basis of service type and requirement. Thus, the normalized resource availability including CPU,
memory, and storage capacity in an MEC node n is expressed as

Rn
A = α·

rc
n

Maxnk∈Ni
C

(
rc

nk

) + β·
rm

n

Maxnk∈Ni
C

(
rm

nk

) + γ·
rs

n

Maxnk∈Ni
C

(
rs

nk

) , (5)

where each weight of the resource availability is a real positive value, and the summation of all weight
values is 1 (α+ β+ γ = 1).

5.3. MEC Selection Scheme

Because the MEC nodes deployed at each AP (zone−1) site are in close proximity with the
corresponding UEs, the nearest MEC node is usually selected for the service efficiency and network
performance, e.g., low end-to-end latency. However, the service availability of the MEC nodes at each
AP site is limited and the operational cost is high. Furthermore, the closer the MEC nodes are located
to the network edge and core site, the more computing and storage capacity is available, as compared
with the MEC nodes at the AP site. Accordingly, the MEC nodes deployed at the network edge and
core site can be a better economical option than the MEC nodes at the AP site, especially for less
latency-sensitive services and/or resource-intensive services. That is, different services demand diverse
requirements depending on the service type and properties. Therefore, we use a multiple-objective
function for selective MEC services. The consideration factors are as follows: N

(
Ln,i

E2E

)
, Rn

A, U(na, n),

ψn
U, and cn,i

U .

N
(
Ln,i

E2E

)
, Rn

A, and U(na, n) can be acquired by using the latency model and MEC information

mentioned in the subsections above. When MEC service request i is generated, Ln,i
E2E is calculated for

each MEC candidate using the proposed latency model; then, the calculated values are normalized as
follows:

N
(
Ln,i

E2E

)
=

Maxnk∈Ni
C

(
LWL + Lnk

N + Lnk, i
C

)
−

(
LWL + Ln

N + Ln, i
C

)
Maxnk∈Ni

C

(
LWL + Lnk

N + Lnk, i
C

) . (6)

U(rs, n) indicates network congestion in the current network state. On the other hand, ψn
U can be

used as an index to predict possible future network congestion. The increasing number of UEs in
the coverage area associated with a MEC site can typically cause many potential service requests.
Here, ψn

U can be calculated separately for the MEC nodes in each zone because the number of UEs in
the coverage area associated with each MEC site (zone−1 to zone−3) can be different according to the
close proximity to the UEs. Thus, ψn

U as the estimation of the network congestion possibility can be
expressed as

ψn
U = ωZ,k·

Maxni∈NZ,k

(
ψni

)
−ψn

Maxni∈NZ,k

(
ψni

) , (7)

where ωZ,k is a real positive value.
Indicators of centrality are suggested to rank the importance of supporting services in the proposed

hierarchical MEC service architecture. The importance has a wide number of meanings that lead to

Algorithms 2020, 13, 245 14 of 16

many different definitions of centrality. In this paper, we suggest a centrality measure on the basis
of the average data volume generated in each MEC service type. It can vary in user experiences and
properties. For example, in order to support over-the-top (OTT) services in the MEC environment,
the OTT service contents can be distributed to the MEC nodes for the demands of users. Under these
circumstances, if MEC node A has substantial OTT content and another node B has little, it is expected
that node A is more important than node B in terms of the proposed centrality. Accordingly, a high
value of centrality indicates that the UE can easily access the required data at the MEC node without
exchanging the data and related signals between the MEC nodes. The normalized centrality value of a
MEC node n for a service request i can be expressed as

cn,i
U =

vi
n∑

nk∈Ni
C

vi
nk

. (8)

On the basis of the parameters above, the multiple objective function is as follows:

Maxnk∈Ni
C

(
a1·N

(
Ln,i

E2E

)
+ a2·Rn

A + a3·U(rs, n) + a4·ψ
n
U + a5·c

n,i
U

)
. (9)

Constraint 1: if dl
i > Ln

E2E, MEC node n is excluded from Ni
C;

Constraint 2: if dc
i
〈
rc

n

∣∣∣∣∣∣dm
i < rm

n

∣∣∣∣∣∣ds
i < rs

n , MEC node n is excluded from Ni
C;

Constraint 3: a1 + a2 + a3 + a4 + a5 = 1 (an ≥ 0).
In Equation (9), constraints 1 and 2 guarantee that the end-to-end latency and service resource

requirements are met, respectively. Constraint 3 is the objective function coefficient, which maps the
consideration factors.

6. Conclusions

In this paper, we proposed an on-demand virtual network slicing and orchestration environment
for selective MEC services associated with a multitier architecture over a wide-area SDN infrastructure.
MEC can improve latency and bandwidth utilization by enabling technologies such as SDN and virtual
network slicing. Furthermore, SDN-based resource orchestration can automatically and intelligently
allocate computing and storage resources integrated with virtual network slices for the dynamic service
demand of various UEs, end-hosts, and user devices. Using VDN and VDNO as virtual network
slicing and orchestration technologies, a selective MEC service model was proposed in this paper to
solve an arising issue of restricted and insufficient resource availability at the MEC on-site and edge
site, particularly in the case of on-demand and dynamic needs of computing and storage resource
deployment. Our future work includes the design and implementation of the proposed selective MEC
service architecture which combines an automated and intelligent virtual network environment as a
new network service over KREONET-S.

Author Contributions: Supervision, D.K.; Writing–original draft, D.K. and Y.-H.K.; Writing–review & editing,
D.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from the Korean government.

Acknowledgments: This research was supported by the Korea Institute of Science and Technology Information
(KISTI).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Manzalini, A.; Saracco, R.; Buyukkoc, C.; Chemouil, P. Software-Defined Networks for Future Networks and
Services. In White Paper Based on the IEEE Workshop SDN4FNS; IEEE: Trento, Italy, 2014; pp. 5–14.

2. Jain, R.; Paul, S. Network Virtualization and Software Defined Networking for Cloud Computing: A Survey.
IEEE Commun. Mag. 2013, 51, 24–31. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2013.6658648

Algorithms 2020, 13, 245 15 of 16

3. McKeown, N.; Anderson, T.; Balakrishnan, H. OpenFlow: Enabling Innovation in Campus Networks.
ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

4. Xu, L.; Assem, H.; Yahia, I.G.B.; Buda, T.S. CogNet: A Network Management Architecture Featuring
Cognitive Capabilities. In Proceedings of the 2016 European Conference on Networks and Communications,
Athens, Greece, 27–30 June 2016; pp. 325–329.

5. Neves, P.; Calé, R.; Costa, M.R.; Parada, C. The SELFNET Approach for Autonomic Management in an
NFV/SDN Networking Paradigm. Int. J. Distrib. Sens. Netw. 2016, 12, 2897479. [CrossRef]

6. KREONET-S Website. Available online: http://www.kreonet-s.net (accessed on 14 August 2020).
7. Kim, D.; Kim, Y.H.; Gil, J.M. Cloud-Centric and Logically Isolated Virtual Network Environment Based on

Software-Defined Wide Area Network. Sustainability 2017, 9, 2382. [CrossRef]
8. ETSI GS MEC 002 V1.1.1 (2016-03): Mobile Edge Computing (MEC). In Technical Requirements; ETSI: Valbonne,

France, 2016.
9. ETSI GS MEC 003 V1.1.1 (2016-03): Mobile Edge Computing (MEC). In Framework and Reference Architecture;

ETSI: Valbonne, France, 2016.
10. Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. ETSI White Paper: Mobile Edge Computing: A Key

Technology towards 5G; ETSI: Valbonne, France, 2015.
11. Bennis, M.; Debbah, M.; Poor, Y.H. Ultrareliable and low-latency wireless communication: Tail, risk, and scale.

Proc. IEEE 2018, 106, 1834–1853. [CrossRef]
12. Bultitude, R.; Kyösti, P.; Meinilä, J.; Hentilä, L.; Zhao, X.; Jämsä, T.; Schneider, C.; Narandzić, M.; Milojević, M.;

Hong, A.; et al. WINNER II Channel Models. IST, Tech. Rep. IST-4-027756 WINNER II D1. 1.2 V1.
2007. Available online: http://signserv.signal.uu.se/Publications/WINNER/WIN2D112.pdf (accessed on
14 August 2020).

13. Porambage, P.; Okwuibe, J.; Liyanage, M. Survey on Multi-Access Edge Computing for Internet of Things
Realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [CrossRef]

14. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading.
IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

15. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H. On multi-access edge computing: A survey of the emerging
5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681.
[CrossRef]

16. Baktir, A.C.; Ozgovde, A.; Ersoy, C. How can edge computing benefit from software-defined networking:
A survey, use cases, and future directions. IEEE Commun. Surv. Tutor. 2019, 19, 2359–2391. [CrossRef]

17. Afolabi, T.; Taleb, T.; Samdanis, K. Network slicing & softwarization: A survey on principles,
enabling technologies & solutions. IEEE Commun. Surv. Tutor. 2018, 20, 2429–2453. [CrossRef]

18. Ma, X.; Wang, S.; Zhang, S.; Yang, P.; Lin, C. Cost-Efficient Resource Provisioning for Dynamic Requests in
Cloud Assisted Mobile Edge Computing. IEEE Trans. Cloud Comput. 2019. [CrossRef]

19. Santos, J.; Wauters, T.; Volckaert, B. Resource provisioning for IoT application services in smart cities.
In Proceedings of the 2017 13th International Conference on Network and Service Management (CNSM),
Tokyo, Japan, 26–30 November 2017; pp. 1–9. [CrossRef]

20. Xu, X.; Cao, H.; Geng, H.; Liu, X.; Dai, F.; Wang, C. Dynamic resource provisioning for workflow scheduling
under uncertainty in edge computing environment. Pract. Exp. 2020. [CrossRef]

21. Globus Online Website. Available online: https://www.globus.org (accessed on 14 August 2020).
22. Open Networking Foundation (ONF) Website. Available online: https://www.opennetworking.org

(accessed on 14 August 2020).
23. Open Network Operation System (ONOS) Website. Available online: https://onosproject.org (accessed on

14 August 2020).
24. Xie1, T.; Xie, R.; Liu, J. A Survey of Machine Leaning Techniques Applied to Software Defined Networking

(SDN): Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 393–430. [CrossRef]
25. Sabellla, D.; Nikaein, N.; Huang, A.; Xhembulla, J.; Malnati, G.; Scarpina, S. A Hierarchical MEC Architecture:

Experimenting the RAVEN Use-Case. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference
(VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [CrossRef]

26. Liu, Z.; Zhang, J.; Li, Y.; Ji, Y. Hierarchical MEC Servers Deployment and User-MEC Server Association in
C-RANs over WDM Ring Networks. Sensors 2020, 20, 1282. [CrossRef] [PubMed]

27. Kubernetes Website. Available online: https://kubernetes.io/ko/ (accessed on 14 August 2020).

http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1155/2016/2897479
http://www.kreonet-s.net
http://dx.doi.org/10.3390/su9122382
http://dx.doi.org/10.1109/JPROC.2018.2867029
http://signserv.signal.uu.se/Publications/WINNER/WIN2D112.pdf
http://dx.doi.org/10.1109/COMST.2018.2849509
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1109/COMST.2018.2815638
http://dx.doi.org/10.1109/TCC.2019.2903240
http://dx.doi.org/10.23919/CNSM.2017.8255974
http://dx.doi.org/10.1002/cpe.5674
https://www.globus.org
https://www.opennetworking.org
https://onosproject.org
http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.1109/VTCSpring.2018.8417826
http://dx.doi.org/10.3390/s20051282
http://www.ncbi.nlm.nih.gov/pubmed/32120874
https://kubernetes.io/ko/

Algorithms 2020, 13, 245 16 of 16

28. Goonatilake, R.; Bachnak, A.R. Modeling latency in a network distribution. Netw. Commun. Technol. 2012, 1, 1.
[CrossRef]

29. 3GPP TS 23.501 V0.4.0 (2017-04). In System Architecture for the 5G System; Springer: Berlin, Germany, 2017.
30. 5G Infrastructure Association: Vision White Paper. February 2015. Available online: http://5g-ppp.eu/wp-

content/uploads/2015/02/5G-Vision-Brochure-v1.pdf (accessed on 14 August 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5539/nct.v1n2p1
http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	KREONET-S: Wide-Area SDN Infrastructure Development and Deployment
	Dynamic and Automated Resource Allocation Based on VDN and VDNO
	Dyanmic Virtual Dedicated Networking (VDN) Framework and Procedure
	Automated Resource Allocation and Mangement by VDNO

	An Automated Virtual Network Slicing Experiment Using Globus Online
	A Selective MEC Service Model Based on a Multitier Architecture
	End-to-End Letency Model
	MEC Information Policies for MEC Selection
	MEC Selection Scheme

	Conclusions
	References

