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Abstract: Cotton constitutes a significant commercial crop and a widely traded commodity around
the world. The accurate prediction of its yield quantity could lead to high economic benefits for
farmers as well as for the rural national economy. In this research, we propose a multiple-input
neural network model for the prediction of cotton’s production. The proposed model utilizes as
inputs three different kinds of data (soil data, cultivation management data, and yield management
data) which are treated and handled independently. The significant advantages of the selected
architecture are that it is able to efficiently exploit mixed data, which usually requires being processed
separately, reduces overfitting, and provides more flexibility and adaptivity for low computational
cost compared to a classical fully-connected neural network. An empirical study was performed
utilizing data from three consecutive years from cotton farms in Central Greece (Thessaly) in which
the prediction performance of the proposed model was evaluated against that of traditional neural
network-based and state-of-the-art models. The numerical experiments revealed the superiority of
the proposed approach.
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1. Introduction

Cotton is a significant commercial crop and a widely traded commodity around the world,
which constitutes a critical link in the chain of agricultural activities. It is also commonly known as
“white gold” due to its high influence in the rural national economy. The cotton crop is a perennial
plant and it is grown primarily for seed and fiber, while it is grown commercially as an annual with a
biological cycle between 140–210 days [1].

In general, the key objective in precision farming and agriculture is the improvement of crop yield
quality and production as well as the reduction in environmental pollution and operating costs [2].
Nevertheless, farm mechanization and the application of new technologies lead to the transformation
of crop management from a rather qualitative science, which was mainly based on observations of
a more quantitative science, which is now based on measurements. In this new data-driven area,
a variety of different production features including soil and climate conditions, irrigation management,
and nutrient availability significantly influence the potential cotton yield and growth [1–5]. Therefore,
the prediction of cotton’s yield, as well as the factors which mostly affect it, could lead to production
optimization through the early modification of harvest settings and adjustments.
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The traditional way to forecast cotton production is mainly based on the empirical knowledge
of the farmer or mostly by the agricultural expert [6–8]. Cultivation and weather information
are processed by agriculturists who attempt to perform accurate predictions about future yield
production. Nevertheless, the quantity of cotton production possesses, by nature, nonlinear behavior
since it is affected by several soil and climate factors and it is characterized by by spatio-temporal
variability [9,10]. As a result, the problem of conducting accurate predictions is considered a
considerably hard problem. Moreover, the fact that yield monitors revealed that the cotton’s
production was different even in different parts of the same field [11] makes this prediction problem
even more challenging. Therefore, the use and the development of sophisticated decision support
tools is considered essential for potentially assisting agricultural investors and farmers gaining
significant profits.

During the last decade, the application of artificial intelligence techniques and methodologies
sparked the interest of the scientific community, since they constitute the appropriate tools to deal
with the noisy and sometimes chaotic nature of cotton’s yield production and lead to more accurate
predictions. Along this line, research focused on the development of expert systems for the prediction
of agriculture production for assisting growth operations [2]. These intelligent systems exploit the
high predictive ability of machine learning algorithms, focusing on increasing crop’s efficiency and
economic benefits, while simultaneously reducing risks and losses [11–15].

In this work, we propose a new neural network model for predicting cotton production, which is
based on a multiple-input architecture and constitutes the main contribution. The proposed model
utilizes as input three different kinds of data, namely soil data, cultivation management data, and yield
management data. To the best of our knowledge, this is the first approach which utilizes three different
types of features. The selected neural network architecture provides that each kind of input data are
processed and handled in a different and independent way. The motivation behind our approach is to
develop a learning system which is capable of efficiently exploiting information from different kinds
of data, since these kinds of data usually require separate treatment. A series of experiments was
conducted for evaluating the prediction performance of the proposed model by comparing it against
traditional neural network-based and other state-of-the-art models. For our experiments, we utilized
data from three consecutive years from cotton farms in Central Greece (Thessaly). The presented
results demonstrate the prediction accuracy of the proposed model, providing empirical evidence that
the proposed approach is able to develop an accurate and reliable model.

The remainder of this paper is organized as follows: Section 2 presents a brief survey of
rewarding studies, regarding the application of machine learning methodologies for cotton prediction.
Section 3 presents a detailed description of the utilized data as well as the data preparation process.
Section 4 presents the proposed prediction multiple-input neural network model focusing on its
advantages and benefits. Section 5 presents state-of-the-art prediction models. Section 6 presents our
numerical experiments. Finally, Section 7 discusses our methodology and the findings of this research,
and presents our conclusions.

2. Related Work

During the last decade, the significant advances in digital technology and machine learning have
renewed the interest of the scientific community for the development of efficient expert systems for
assisting agriculture precision and production. Chlingaryana et al. [2] conducted an excellent review
and presented in detail the recent developments performed within the last two decades, focusing on
the application of machine learning methods for accurate crop prediction as well as the estimation of
nitrogen status. The main findings of this research were that machine learning techniques provide
complete and cost-effective solutions for efficiently estimating crop and environment state as well
as significant assistance in decision-making. Additionally, the authors attempted to gain significant
insights on crop prediction by identifying the factors which affect it, and possible directions to support
and improve precision agriculture through artificial intelligence. To the best of our knowledge,
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the application of machine learning methods for predicting cotton crop has been limited compared to
other types of crops. In the sequel, we briefly discuss some rewarding studies regarding cotton yield
prediction using machine learning models.

Papageorgiou et al. [12] proposed an intelligent knowledge-based model for modeling the
behavior of crop cotton yield in precision farming. The proposed model was based on using a
soft computing methodology based on Fuzzy Cognitive Maps (FCMs) and on the unsupervised
learning algorithm for FCMs for assessing measurement data and updating initial knowledge.
The performance of the proposed model was extensively evaluated for 360 cases in a 5 hectare
experimental farm for predicting the cotton yield using a two-level classification (“Low” and “High”).
Moreover, their used data were collected from central Greece, during the years 2001, 2003, and
2006. Based on the brief experimental analysis, the authors stated that the proposed FCMs model
is able to assist agriculture managers with better understanding cotton yield requirements. Along
this line, in [11], the authors extended their previous work, including more elegant conditions to
increase the efficiency of their intelligent model. Their numerical experiments reported that the
updated model outperformed traditional prediction models such as artificial neural networks (ANNs),
decision trees, and Naive–Bayes. Finally, the authors highlighted that the proposed updated model
consists a convenient decision support tool for cotton production due to its sufficient simplicity
and interpretability.

Jamuna et al. [13] studied the problem of classifying the quality of cotton’s seed utilizing several
growth stages of the crop. Their dataset consists of 900 records and 24 features from a set of different
cotton categories. The authors conducted a performance evaluation of state-of-art prediction models,
including decision trees, Naive–Bayes and ANNs for identifying the quality of cotton’s seed (“Good”,
“Average” and “Bad”). Their experiments showed that ANNs and decision trees provided almost
identical performance, reporting 98.58% classification accuracy. However, the decision trees reported
significantly lower training time and computational cost.

Haghverdi et al. [14] attempted to determine cotton lint yield in irrigated fields using
remote sensing technology. More specifically, they utilized ANNs for extracting information from
remotely-sensed crop indices in order to predict and map the cotton lint yield of a field in two
successive cropping seasons. The data in their research were obtained after conducting an on-farm
irrigation experiment on a property of 73 hectares in west Tennessee during the years 2013 and 2014.
Their numerical experiments presented some interesting results, revealing that neural networks can
efficiently exploit crop indices phenology for predicting crop yield. Additionally, based on their
detailed experiments, the authors stated that the use of remote sensing-based ANN models has a great
potential to provide reliable and accurate predictions of cotton yield maps.

Nguyen et al. [15] proposed a spatial-temporal multi-task learning model for predicting
within-field crop yield. The proposed model was based on a deep dense neural network enforced with
dropout layers and a new weighted regularization technique to improve the prediction performance.
It exploits different spatial-temporal features by integrating multiple heterogeneous data from
difference sources. The data used in their study were collected from a cotton field in west Texas
from 2001 to 2003 and include soil properties, weather data, normalized difference vegetation index
data, and spectral data. Their proposed model was evaluated against state-of-the-art models such
as linear regression, decision tree regression, support vector regression as well as ensemble models,
such as random forest and XGBoost. Their experimental analysis provided empirical evidence about
the superiority of the proposed model against traditional models; hence, the authors stated that it
could effectively assist the field of crop prediction.

In this research, we propose a different approach for the development of an accurate model for
the prediction of cotton’s yield production. More specifically, we propose a new multiple-input neural
network model, which exploits mixed features as inputs from three different kinds of data: soil data,
cultivation management data, and yield management data. The contribution of our approach is that
the proposed neural network architecture processes and handles each type of input in an independent
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way, which benefits the prediction performance more, since mixed features of data usually require
separate treatment. To the best of our knowledge, none of the mentioned approaches considered
exploiting information from three different kinds of cotton data and developing a prediction model by
handling them separately. An advantage provided by the proposed architecture is the considerable
flexibility and adaptivity for low computational effort, compared to that of a fully connected neural
network with two or more hidden layers.

3. Data

In our research, the data concern the cotton yield in kilograms per 0.1 hectare from 350 sampling
sites of the Thessaly plain, during the years 2008–2010. For each sampling site, a number of features
were obtained from three main categories: soil features, cultivation management features, and yield
management features. The data were divided into a training set (273 instances) which consists of the
yield production during 2008 and 2009, which ensures a substantial amount of data for training and
testing set (119 instances) containing yield production during 2010, which ensures that it will be
performed with a considerable amount of unseen data. It is also worth mentioning that the maximum
cotton production in Greece indicated no significant year-to-year fluctuations and has remained rather
stable during the last twenty years. This implies that the current productions are not considerably
different from the potential. Finally, the used data contained no missing values, while the outlier prices
were not removed for not destroying the dynamics of data.

Tables 1–3 present the set of features concerning soil, cultivation management and yield
management features, respectively, as well as a brief description for each feature.

Table 1. List of soil features.

Feature Description Type Values

Order Pedogenic soil order Nominal {Alfisol, Inceptisol, Vertisol}
Drainage Soil drainage Ordinal {Very poorly, Poorly, Somewhat poorly, Moderately, Well, Very well}
CaCO3 Calcium carbonates Ordinal {None, Slight, Some, Strong}
Texture1 Soil texture in depth: 0–25 cm Numerical (Real) [5, 60]
Texture2 Soil texture in depth: 25–75 cm Numerical (Real) [9, 60]
Texture3 Soil texture in depth: 75–150 cm Numerical (Real) [9, 18.5]
Slope Percentage of slope Ordinal {Little, Moderate, High}
Erosion Soil erosion Ordinal {No erosion, Slightly, Moderately, Very, Severely}

Table 2. List of cultivation management features.

Feature Description Type Values

Re-sowing Re-sowing was or not performed Nominal (Binary) {True, False}
Variety Variety of seed Nominal {Acala (Zeta-0/Zeta-5), 4S}
Seed Kilograms of seed per 0.1 hectare Numerical (Real) [2, 7]
Germination Percentage of germination Numerical (Percentage) [0, 100]
spacingOut Spacing out Categorical (Binary) {True, False}
XN Kilograms of nitrogen N-NO3 per 0.1 hectare in oxide form Numerical (Real) [0, 24]
XP Kilograms of phosphorus P-PO4 per 0.1 hectare in oxide form Numerical (Real) [0, 24]
Weeding Weed control before sowing Nominal (Binary) {True, False}
SPRAY1 Weed control after emergence Nominal (Binary) {True, False}
SPRAY2 Control for Helicoverpa armigera Numerical (Integer) [0, 6]
SPRAY3 Insect control for aphids sp. Numerical (Integer) [1, 7]
Irrger Irrigation before germination Numerical (Real) [0, 4]
Irrigat Irrigation after emergence Numerical (Real) [2, 14]

Table 3. List of yield management features.

Feature Description Type Values

Defolation If defoliation was performed. Nominal (Binary) {True, False}
prodLoss Loss of production due to extreme climatic conditions Numerical (Percentage) [0, 100]

prevUse Previous use of the farm Nominal
{One year cereals, Two years
cereals, One year cotton, Two years
cotton, Three or four years cotton}

typeHarv Type of harvesting Nominal {By hand, Mechanized}.
Days Number of days between sowing and harvesting Numerical (Integer) [141, 257]
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Finally, it is worth noticing that, for maximizing the performance of all prediction models,
we applied a variety of feature selection techniques such as univariate feature selection, recursive
feature elimination, and selection based on feature importance [16–18] as well as attempting to reduce
the number of features by analyzing the correlation [19] between them. Nevertheless, any attempt of
selecting a subset of the presented features resulted in slightly decreasing the overall performance of
all prediction models; thus, all features presented in Tables 1–3 were utilized, even the least significant.

4. Proposed Multiple-Input Neural Network Prediction Model

The main contribution of this research is the development of a prediction model for efficiently
predicting cotton yield production, which is based on a multiple-input single-output structure.
The motivation behind our approach is to develop a learning system that is capable of efficiently
exploiting useful information from mixed features of data, since these kinds of data usually require
separate treatment. To this end, each input kind of data is processed and handled in a different and
independent way.

The architecture of the proposed Multiple-input Neural Network (MNN) model is depicted in
Figure 1. It consists of three separate input layers (Input Layer -1-, Input Layer -2-, and Input Layer
-3-), each one has as inputs the soil (Table 1), the cultivation management (Table 2), and the yield
management features (Table 3), respectively. Each input layer is followed by a hidden layer (Hidden
Layer -1-, Hidden Layer -2-, Hidden Layer -3-), which independently processes the input data. It is
worth noticing that each hidden layer could be constituted by a classical dense layer or by a more
sophisticated recurrent layer such as Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU). Next, the outputs of the three hidden layers are imported and merged by a concatenate layer.
This layer is followed by a dense layer and a final output layer of one neuron.

Input Layer -1- Input Layer -2- Input Layer -3-

Hidden Layer -1- Hidden Layer -2- Hidden Layer -3-

Concatenate Layer

Dense Layer

Figure 1. Proposed architecture of a Multiple-input Neural Network (MNN).

An advantage of the proposed architecture is that, although stacking many hidden layers allows a
traditional neural network model to analyze and encode a very complex function from the input to the
output, it is usually difficult to train such a model due to the vanishing gradient problem, which implies
that the convergence of the training process may be degradated. Additionally, each category of mixed
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features of data are handled independently and subsequently the processed data are merged and
further processed. As a result, the proposed architecture offers more flexibility and adaptivity for a
low development cost compared to that of a fully connected neural network with two or more hidden
layers, which implies that computational effort of the training process is reduced.

In the sequel, we present a brief description of the Dense, LSTM, and GRU layers which constitute
the main elements of the proposed MNN model.

• Dense layer: Dense layers [20] constitute the traditional and the most popular choice for
composing a hidden layer in a multilayer neural network. A dense layer is composed of neurons
which are connected with all neurons in the previous layer. The operations performed by each
neuron can be summarized by

oi = f (Wix + bi),

where oi is the output of the i-neuron of the layer, Wi is the vector of weights, x is the input vector,
bi is the bias vector, and f is the activation function.

• LSTM layer: Long Short-Term Memory (LSTM) layers [21] constitute a special type of Recurrent
Neural Networks layers which are characterized by their ability to learn long-term dependencies.

Each LSTM unit in the layer is composed of a memory cell and three gates: input, output, and
forget. At time t, the input gate it and a second gate c∗t modulate the amount of information that
are stored into the memory state ct. The forget gate ft modulates the past information which
must be vanished or must be kept on the memory cell at the previous time t− 1. Finally, the
hidden state ht constitutes the output of the memory cell and it is calculated using memory state
ct and the output gate ot which modulates the information used for the output of the memory cell.
In summary, the following equations describe the operations performed by an LSTM unit:

it = σ(Uixt + Wiht−1 + bi),

ft = σ(Ugxt + Wght−1 + bg),

c∗t = tanh(Ucxt + Wcht−1 + bc),

ct = gt � ct−1 + it � c∗t ,

ot = σ(Uoxt + Woht−1 + bo),

ht = ot � tanh(ct),

where xt denotes the input of each unit, W∗ and U∗ are matrices of weights, and b∗ are the
bias vectors with i ∈ {i, g, c}, the operator � denotes the Hadamard product (component-wise
multiplication), σ is the sigmoid function, and ht is the output of the memory cell which denotes
the hidden state.

• GRU layer: Gated Recurrent Units (GRU) were originally proposed by Cho et al. [22] and
were inspired by the LSTM units, but with simpler implementation and calculations. Its main
difference is that a GRU unit only has two gates (update and reset) which modulate the flow of
information, without the utilization of memory gates, since it exposes the full hidden content
without any control.

The update gate zt controls the level the unit updates its content, by taking into consideration a
linear sum between the previous state ht−1 and the input xt. The reset gate rt is computed in a
similar manner with the update gate zt. Finally, the activation ht of a GRU unit constitutes the
linear combination between the previous ht−1 and the candidate activation ĥz, which is computed
similarly to the traditional recurrent unit. The operations performed by an GRU unit are briefly
described by
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zt = σ(Wzxt + Uzht−1 + bz),

rt = σ(Wrxt + Urht−1 + br),

ĥt = tanh(Whxt + Uh(rt � ht−1 + bh)),

ht = (1− zt)� ht−1 + zt � ĥt,

where xt denotes the input vector and W∗ and U∗ are matrices of weights with i ∈ {z, r, h} and b∗
are the bias vectors.

In our numerical experiments, the performance of the proposed MNN model was evaluated using
three different architectures (Figure 2), namely:

• MNN1 utilizes three dense layers of 16, 24, and 10 neurons in Hidden Layer -1-, Hidden Layer -2-,
and Hidden Layer -3-, respectively, and a dense layer of 10 neurons after the concatenate layer.

• MNN2 utilizes three LSTM layers of 30, 50, and 20 units in Hidden Layer -1-, Hidden Layer -2-,
and Hidden Layer -3-, respectively, and a dense layer of 12 neurons after the concatenate layer.

• MNN3 utilizes three GRU layers of 16, 24, and 10 units in Hidden Layer -1-, Hidden Layer -2-,
and Hidden Layer -3-, respectively, and a dense layer of 12 neurons after the concatenate layer.

All neurons in the hidden layers used a Rectifier Linear Unit (ReLU) activation function while the
neuron in the output layer used sigmoid activation. The kernel and bias initializer in all layers were
set as the default as well as the recurrent initializer in the recurrent layers.

Input Layer
8 inputs

Input Layer
12 inputs

Input Layer
5 inputs

Dense Layer
16 neurons

Dense Layer
24 neurons

Dense Layer
10 neurons

Concatenate Layer

Dense Layer
10 inputs

Model: MNN1

Input Layer
8 inputs

Input Layer
12 inputs

Input Layer
5 inputs

LSTM Layer
30 units

LSTM Layer
50 units

LSTM Layer
20 units

Concatenate Layer

Dense Layer
12 inputs

Model: MNN2

Figure 2. Cont.
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Input Layer
8 inputs

Input Layer
12 inputs

Input Layer
5 inputs

GRU Layer
16 units

GRU Layer
24 units

GRU Layer
10 units

Concatenate Layer

Dense Layer
12 inputs

Model: MNN3

Figure 2. Architecture of the proposed MNN1, MNN2, and MNN3 models.

5. State-of-the-Art Machine Learning Models

In this section, we briefly present the state-of-the-art machine learning models which have been
established in the literature to address prediction benchmarks. These models will be utilized to base
models in order to explore and highlight the performance of the proposed model.

More specifically, the models are: Decision Tree Regressor (DTR) [23], Gaussian Processes
(GP) [24], k-Nearest Neighbor Regression (kNN) [25], Least Absolute Shrinkage and Selection Operator
(LASSO) [26], Linear Regression (LR) [27], and Support Vector Regression (SVR) [28], which are
described below:

• DTR is a decision tree dedicated for regression problems, which constructs a model tree based
on splitting criteria. More analytically, this algorithm develops a tree with decision nodes
and leaf nodes, in which the leaves predict the output continuous value utilizing the linear
regression algorithm.

• GP constitutes a collection of random variables depending on time or space, in which every
collection of those variables has a multivariate normal distribution. The prediction value of this
machine learning algorithm is a one-dimensional Gaussian distribution, and it is calculated by
the similarity between the training instances and the unseen instances.

• kNN is a popular machine learning algorithm, which utilizes various distance mathematic
formulas to compute feature similarity between each new instance and a predefined number k of
instances in the training data. For regression problems, the output value is defined by the average
value of its k nearest neighbors.

• LASSO is a linear model trained with L1 prior as a regularizer. This algorithm performs both
regularization and variable selection in order to enhance the prediction accuracy. Due to its
simplicity and efficiency, it has been successfully extended and applied to a wide variety of
statistical models.

• LR probably constitutes the most commonly used algorithm for developing an efficient
regression model. This prediction algorithm aims to determine the relationship between one
or more explanatory (independent) variables and the dependent variable based on the linear
mathematical model.
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• SVR is a classical machine learning algorithm which is utilized for predicting continuous values.
Its main objective is to fit the error within a specified threshold, in contrast to traditional regression
algorithms like LR, which focuses on minimizing the error.

Additionally, the performance of the proposed MNN model was also compared against that
of three widely utilized neural network-based models i.e., a fully connected Feed-Forward Neural
Network (FFNN), a GRU-based network (GRU), and a Long Short-Term Memory (LSTM) network.
Notice in our numerical experiments the hyper-parameters of all regression models were optimized
under exhaustive experimentation and are briefly presented in Table 4.

Table 4. Hyper-parameter specification of all prediction models.

Model Description

DTR Splitting criterion: MSE,
Max depth = 4,
Min. number of samples = 10.

GP Level of Gaussian noise = 1,
Kernel type = RBF.

FFNN Architecture: 2 hidden layers with 50 and 10 neurons and an output layer of
1 neuron,
Activation functions = ReLu,
Optimizer = Adam.

GRU Architecture: 1 GRU layer with 40 units, 1 dense layer with 10 neurons and an
output layer of 1 neuron,
Activation functions = ReLu,
Optimizer = Adam.

LSTM Architecture: 1 LSTM layer with 70 units, 1 dense layer with 20 neurons and an
output layer of 1 neuron,
Activation functions = ReLu,
Optimizer = Adam.

kNN Number of neighbors = 3,
Euclidean distance.

LASSO α = 1.0,
Tolerance = 10−4.

LR No parameters specified.

SVR Kernel = RBF,
C = 1.0,
Tolerance = 10−3,
epsilon = 0.1,
gamma = ’scale’.

6. Numerical Experiments

In this section, we evaluate the performance of the proposed MNN model and compare it against
that of three widely utilized neural network-based models i.e., Feed-Forward Neural Network (FFNN),
a GRU-based network (GRU) and a Long Short-Term Memory (LSTM) network. Additionally, it was
also compared against the state-of-the art models: Decision Tree Regressor (DTR), Gaussian Processes
(GP), k-Nearest Neighbor Regression (kNN), Least Absolute Shrinkage and Selection Operator (LASSO),
Linear Regression (LR) and Support Vector Regression (SVR).
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In order to avoid overfitting and maximize the efficiency of the proposed models as well as
the neural network-based models, 15% of training data were used for validation and early stopping
technique based on ’validation loss’ was used. Furthermore, any attempt to use regularizers or dropout
decreased the overall performance of all these models.

The performance of all prediction models was measured utilizing the metrics: Mean Absolute
Error (MAE), Root-Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE),
and symmetric Mean Absolute Percentage Error (sMAPE), which are respectively defined by

MAE =
1
N

N

∑
t=1
|yt − ŷt|, RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)2, MAPE =
1
N

N

∑
t=1

|yt − ŷt|
|yt|

, sMAPE =
100%

N

N

∑
t=1

2(|yt − ŷt|)
|yt|+ |ŷt|

where N is the number of forecasts, yt is the actual value, and ŷt is the predicted value. In addition,
the implementation code was written in Python 3.7 on a laptop (Intel(R) Core(TM) i7-6700HQ CPU
2.6 GHz, 16 GB RAM) using libraries Tensorflow [29] sand Scikit-learn [30].

Table 5 presents the performance of all compared models, regarding the performance metrics
RMSE, MAE, MAPE, and sMAPE. Additionally, a more representative visualization of all performance
metrics is presented in Figure 3. Clearly, the proposed models MNN1, MNN2, and MNN3 exhibited the
best performance, considerably outperforming all neural network-based and state-of-the-art prediction
models. More specifically, all versions of the proposed MNN model presented the lowest MAE and
RMSE scores. MNN3 reported the best performance, closely followed by MNN2, relative to MAE and
RMSE scores. Regarding MAPE and sMAPE performance metrics, MNN3 reported the lowest (best)
scores, followed by MNN2, which exhibited slightly worse performance. MNN2 reported 11.8–41.36%
and 8.24–48.98% lower MAPE and sMAPE scores, respectively, compared to the performance of the
state-of-the-art models. Additionally, MNN2 exhibited 10.5–22.6% and 13.6–23.4% lower MAPE and
sMAPE scores, respectively compared to the performance of the neural network-based models. LSTM,
GP, kNN, and LR presented competitive performance to MNN1; however, they were considerably
outperformed by the versions of the proposed model which utilized recurrent hidden layers, i.e.,
MNN2 and MNN3. This implies that the utilization of hidden layers with recurrent units favored
the performance of the proposed MNN model. Additionally, LASSO and SVR reported the worst
performance, regarding all metrics.

Table 5. Performance of the proposed MNN model and the state-of-the-art prediction models.

Model Type MAE RMSE MAPE sMAPE

FFNN Neural network-based
regressors

46.784 57.776 16.464 16.030
LSTM 43.303 55.378 14.203 14.598
GRU 44.826 56.103 15.124 15.243

DTR State-of-the-art
regressors

45.942 57.920 17.081 15.407
GP 41.475 54.634 15.697 13.964
kNN 45.441 54.963 16.030 15.236
LASSO 57.647 72.792 18.199 19.480
LR 41.480 54.641 15.699 13.965
SVR 65.517 79.045 20.024 22.881

MNN1
Proposed model

40.479 52.741 14.272 13.632
MNN2 39.612 49.439 13.164 12.840
MNN3 38.707 48.213 12.713 12.608
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In summary, the interpretation of Table 5 reveals that the three different architectures of the
proposed MNN model exhibited the best overall performance, regarding all metrics. Furthermore,
the utilization of the recurrent layers (LSTM and GRU), instead of the traditional dense layers, benefited
its performance considerably. It is also worth mentioning that the proposed model exhibited slightly
better performance utilizing GRU layers, instead of LSTM layers. This may be due to the fact that
each LSTM unit has more gates for the gradients to flow through, causing steady progress to be more
difficult to maintain [22,31]. Nevertheless, this is surprising since GRU frequently suffers from the
vanishing gradient problem [32]. By taking these into consideration, we are able to conclude that the
vanishing gradient problem rarely or did not occur in our experiments. A possible explanation for
this could be the utilization of ReLU activation function, the less complex architecture of the proposed
model compared to that of a fully connected network, as well as the complexity and size of the used
dataset. This is certainly worth being investigated in the near future.
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Figure 3. Box-plot for the performance of the proposed MNN model and the state-of-the-art prediction
models based on (a) MAE; (b) RMSE; (c) MAPE; (d) sMAPE.

7. Discussion and Conclusions

In this work, we proposed a multiple-input neural network model, called MNN, for the prediction
of cotton’s yield. The proposed model uses as inputs three different kinds of data (soil, cultivation
management, and yield management) which are treated and handled independently. A significant
advantage of the selected architecture is that it is able to efficiently exploit information in mixed
data, since these kinds of data usually require being processed separately. Additionally, the proposed
architecture is superior to the traditionally fully connected neural network architecture in terms of
flexibility and adaptivity for low computational cost.

An empirical study was performed utilizing data from three consecutive years from cotton farms
in Central Greece, in which the prediction performance of the proposed model was evaluated against
that of traditional neural network-based and other state-of-the-art models. Our numerical experiments
revealed the superiority of the proposed approach, providing empirical evidence that agricultural
datasets, which consists of different types of data, should be treated utilizing the proposed approach.

Additionally, the performance of the proposed model was evaluated utilizing three different types
of hidden layers, i.e., dense, LSTM, and GRU. It is worth noticing that the utilization of the recurrent
layers benefitted the performance of MNN considerably, compared with the utilization of traditionally
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dense layers. Furthermore, the proposed MNN model exhibited slightly better performance utilizing
GRU layers instead of LSTM layers. A possible explanation for this is that each LSTM unit has more
gates for the gradients to flow through, causing steady progress to be more difficult to maintain [22,31].
In addition, by comparing the performance of MNN2 and MNN3, we can conclude that the vanishing
gradient problem was rarely or not occurring in our experiments. This is probably due to the utilization
of the ReLU activation function and to the “sparse” architecture of the proposed multi-input neural
network model. More analytically, the utilization of ReLU activation function is able to frequently
prevent the vanishing gradient problem from occurring, since it only saturates in one direction, while
the “sparse” architecture of the proposed model makes it considerably less complicated compared
to a fully connected neural network. Another possible reason could be the complexity of the utilized
dataset as well its relative small number of training instances. To this end, more experiments utilizing
more cotton and other crop datasets are needed, which is definitely included in our future research.

Furthermore, it is worth mentioning that the features used in this research do not constitute a
conclusive list. An extension could introduce new features and other criteria, which may potentially
influence the prediction performance. Clearly, it is still under consideration which feature has a greater
impact for predicting cotton production or which of them should be used by an intelligent model.
These questions constitute an interesting aspect for future research. Nevertheless, it is likely that the
research to answer these questions could reveal additional information about the cotton yield behavior.

A limitation of this work is that the utilized dataset contained only 349 samples. Based on the
preliminary experimental results, it seems that the proposed approach is able to develop a reliable
and accurate model. However, we intend to enlarge our database with data from more sample sites
and more years in order to perform a exhaustive performance evaluation of the compared models on
various datasets as well as a comprehensive statistical analysis (use of a nonparametric test and/or a
post-hoc tests).

Since the presented numerical experiments are quite encouraging, an interesting next step could
be to evaluate the proposed model for the prediction of yield of other crop species such as wheat,
trees, maize, and vineyards. In our future research, we intend to incorporate ensemble learning
strategies (see [33–37] and the references therein) and also incorporate sophisticated preprocessing
methodologies [11,12] in our framework for improving the prediction performance. Finally, it is worth
noticing that our main expectation is that the proposed approach could be utilized as a reference for
decision-making in agricultural production.
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