
algorithms

Article

Translating Workflow Nets to Process Trees:
An Algorithmic Approach

Sebastiaan J. van Zelst 1,2,* and Sander J. J. Leemans 3

1 Institute for Applied Information Technology (FIT), Fraunhofer Gesellschaft,
53754 Sankt Augustin, Germany

2 Chair of Process and Data Science, RWTH Aachen University, 52074 Aachen, Germany
3 School of Information Systems, Queensland University of Technology, Brisbane City QLD 4000, Australia;

s.leemans@qut.edu.au
* Correspondence: sebastiaan.van.zelst@fit.fraunhofer.de

Received: 29 September 2020; Accepted: 29 October 2020; Published: 2 November 2020
����������
�������

Abstract: Since their introduction, process trees have been frequently used as a process modeling
formalism in many process mining algorithms. A process tree is a (mathematical) tree-based
model of a process, in which internal vertices represent behavioral control-flow relations and
leaves represent process activities. Translation of a process tree into a sound workflow net is
trivial. However, the reverse is not the case. Simultaneously, an algorithm that translates a WF-net
into a process tree is of great interest, e.g., the explicit knowledge of the control-flow hierarchy
in a WF-net allows one to reason on its behavior more easily. Hence, in this paper, we present
such an algorithm, i.e., it detects whether a WF-net corresponds to a process tree, and, if so,
constructs it. We prove that, if the algorithm finds a process tree, the language of the process
tree is equal to the language of the original WF-net. The experiments conducted show that the
algorithm’s corresponding implementation has a quadratic time complexity in the size of the WF-net.
Furthermore, the experiments show strong evidence of process tree rediscoverability.

Keywords: process trees; Petri nets; workflow nets; process mining

1. Introduction

Process mining [1] is concerned with distilling knowledge of the execution of processes by analyzing
the event data generated during the execution of these processes, i.e., stored in modern-day information
systems. In the field, different (semi-)automated techniques have been developed that allow one to
distill knowledge of a process from event data, ranging from automated process discovery algorithms to
conformance checking algorithms. In automated process discovery, the main aim is to translate observed
process behavior, i.e., as stored in the information system, into a process model that accurately describes
the behavior of the process. In this context, the discovered process model should strike an adequate
balance between accounting for unobserved, yet likely, process behavior (i.e., avoiding overfitting) and
being precise (i.e., avoiding underfitting) at the same time. Conformance checking techniques allow us
to compute to what degree the observed behavior is in line with a given reference process model (either
designed by hand or discovered using an automated process discovery technique). Since processes
are the cornerstone of process mining, so are the models that allow us to represent them (and reason
about their behavior and quality). As such, various process modeling formalisms exist, e.g., BPMN [2],
EPCs [3], etc., some of which are heavily used in practice.

Recently, process trees were introduced [4]. A process tree is a hierarchical representation of a
process corresponding to the mathematical notion of a rooted tree, i.e., a connected undirected acyclic
graph with a designated root vertex. The internal vertices of a process tree represent how their children

Algorithms 2020, 13, 279; doi:10.3390/a13110279 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-0415-1036
https://orcid.org/0000-0002-5201-7125
http://dx.doi.org/10.3390/a13110279
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/11/279?type=check_update&version=2

Algorithms 2020, 13, 279 2 of 27

relate to each other regarding their control-flow behavior (i.e., their sequential scheduling). The leaves
of the tree represent the activities of the process. Consider Figure 1, in which we depict an example
process tree.

→
v0

a
v1.1

	

v1.2

→
v2.1

∧
v3.1

×
v4.1

b

v5.1

c
v5.2

d

v4.2

e
v3.2

f
v2.2

×
v1.3

g
v2.3

h

v2.4

Figure 1. A simple example process tree [1], describing all basic control-flow constructs.

Its root vertex has label →, specifying that first its leftmost child, i.e., activity a, needs to be
executed, secondly its middle child, and, finally, its rightmost child. Its middle child has a 	 label,
specifying cyclic behavior, i.e., its leftmost child is always executed, whereas the execution of its
rightmost child stipulates that we need to repeat its leftmost child. The ×-label in a process tree
represents an exclusive choice, e.g., vertex v1.3 specifies that we either executed activity g or h, yet not
both. Finally, the ∧-label refers to concurrency, i.e, the children of a vertex with such a label are allowed
to be executed simultaneously, i.e., at the same time. Furthermore, consider the two models depicted
in Figure 2 (page 3), i.e., a Workflow net (WF-net) and a process tree (note that the activity labels within
the model are not depicted in a readable fashion, i.e., the main aim of the figure is to illustrate the
structural differences between WF-nets and process trees). The models represent the same behavior,
based on a real-life event log. Clearly, the hierarchy of the process tree allows one to more easily
understand the main control-flow of the process.

The previous examples show the relative simplicity at which one can reason on the behavior
of a process tree. Furthermore, it is straightforward to translate process trees into other process
modeling formalisms, e.g., WF-nets, BPMN models, etc. By definition, a process tree corresponds
to a sound WF-net, i.e., a WF-net with desirable behavioral properties, e.g., the absence of
deadlocks. The reverse, i.e., translating a given WF-net into a process tree (if possible), is less
trivial. At the same time, obtaining such a translation is of great interest, e.g., it allows us to
discover control-flow-aware hierarchical structures within a WF-net. Such structures can, for example,
be used to hide certain parts of the model, i.e., leading to a more understandable view of the process
model. Furthermore, any algorithm optimized for process trees, e.g., by exploiting the hierarchical
structure, can also be applied to WF-nets of such a type. For example, in [5], it is shown that the
computation time of alignments [6], i.e., explanations of observed behavior in terms of a reference
model, can be significantly reduced by applying Petri net decomposition on the basis of model
hierarchies. Hence, computing a process tree representation of the WF-net can be exploited to reduce
the computational complexity of the calculations mentioned. Furthermore, recently, an alignment
approximation technique was proposed that explicitly exploits the tree structure of a process tree [7].
Additionally, computing the underlying canonical process tree structure of two different process
models allows us to decide whether or not the two models are behaviorally equivalent, e.g., as studied

Algorithms 2020, 13, 279 3 of 27

in [8,9]. In a similar fashion, the process tree representation of a workflow net can be exploited to
translate it to a different process modeling formalism, i.e., known as process model transformation [10].

In this paper, we present an algorithm that determines whether a given WF-net corresponds to a
process tree, and, if so, constructs it. We prove that, if the algorithm finds a process tree, the original
WF-net is sound, and the obtained process tree’s language is equal to the language of the original
WF-net. A corresponding implementation, extending the process mining framework PM4Py [11],
is publicly available. Using the implementation, we conducted several experiments that show a
quadratic time complexity in terms of the WF-net size. Furthermore, our experiments indicate that
the algorithm can rediscover process trees, i.e., the process models used to generate the input for the
experiments are rediscovered by the algorithm.

The remainder of this paper is structured as follows. In Section 2, we present preliminary
concepts and notation. In Section 3, we present the proposed algorithm, including the proofs with
respect to soundness preservation and language preservation. In Section 4, we evaluate our approach.
In Section 5, we discuss related work. In Section 6, we discuss various aspects of our approach,
e.g., extensibility, in more detail. Section 7 concludes the paper.

2. Preliminaries

In this section, we present basic preliminary notions that ease the readability of this paper.
In Section 2.1, we present the basic notation used in this paper. In Section 2.2, we introduce Workflow
nets. Finally, in Section 2.3, we present the notion of process trees and their relation to Workflow nets.

2.1. Basic Notation

Given set X, P(X)= {X′ ⊆ X} denotes its powerset. Given a function f : X→Y and X′⊆X,
we extend function application to sets, i.e., f (X′)={y|∃x∈X′(f (x)=y)}. Furthermore, f |X′ : X′→Y
restricts f to X′. A multiset over set X, i.e., m : X→N∪{0}, contains multiple instances of an element.
We write a multiset as m=[xi

1, xj
2, ..., xk

n], where m(x1)=i, m(x2)=j, ..., m(xn)=k, for i, j, ..., k>1 (in case,
m(xi)=1, we omit its superscript; in case m(xi)=0, we omit xi). The set of all multisets over X is written
asM(X). Given m∈M(X), we write x∈+m if m(x)>0, and, x/∈+m if m(x)=0, and, m={x|x∈+m}.
For example, the multiset [x2, y] consists of two instances of x, one instance of y, and zero instances
of z. The sum of two multisets m1, m2 is written as m1]m2, e.g., [x2, y]][x3, y, z]=[x5, y2, z], and their
difference is written as m1−m2, e.g., [x2, y]−[x, y, z]=[x]. A set is considered a multiset in which
each element appears only once. Hence, we also apply the operations defined for multisets on sets,
and, on combinations of sets and multisets, e.g., {x, y, z}][x2]=[x3, y, z].

A sequence is an ordered collection of elements, e.g., a sequence σ of length n over
base set X is a function σ : {1, ..., n}→X. We write |σ| to denote the length of σ, e.g., |σ|=n.
We write σ=〈σ(1), σ(2), ..., σ(|σ|)〉, where σ(i) denotes the element at position i, (1≤i≤|σ|).
ε denotes the empty sequence, i.e., |ε|=0. We extend the notion of element inclusion to
sequences, e.g., x∈〈x, y, z〉. X∗ denotes the set of all sequences over members of set X.
Concatenation of sequences σ, σ′∈X∗ is written as σ·σ′. We let σ�σ′ denote the set of all
possible order-preserving merges, i.e., the shuffle operator, of σ and σ′, e.g., given σ1=〈b, p〉,
σ2=〈m〉, then σ1�σ2= {〈b, p, m〉, 〈b, m, p〉, 〈m, b, p〉}. It is easy to see that σ�σ′=σ′�σ (the
operator is commutative). We extend the shuffle operator to sets (and overload notation), i.e.,
given S, S′∈X∗, S�S′={σ∈σ1�σ2 | σ1∈S1∧σ2∈S2}. Note that (σ�σ′)�{σ′′} = {σ}�(σ′�σ′′)

(associative); hence, we write the application of the shuffle operation on n sequences as
σ1�σ2�· · ·�σn. Similarly, we write S1�S2�· · ·�Sn for sets of sequences S1, S2, ...Sn∈X∗.
Given a function f : X→Y and a sequence σ∈X∗, we overload notation for function application,
i.e., f (σ)=〈 f (σ(1), f (σ(2)), ..., f (σ|σ|)〉. We extend the notion of sequence application to sets
of sequences, i.e., given f : X → Y and X′⊆X∗, f (X′)={σ∈Y∗ | ∃σ′∈X′ (f (σ′)=σ)}.
Furthermore, given X′⊆X and a sequence σ∈X∗, we define σ↓X′

, where (recursively) ε↓X′
=ε,

(〈x〉·σ)↓X′
=x · σ↓X′

if x∈X′ and (〈x〉·σ)↓X′
=σ↓X′

if x/∈X′.

Algorithms 2020, 13, 279 4 of 27

(a)

(b)

Figure 2. The same process model, obtained by applying the Inductive Miner [12] implementation
of ProM [13] on a real event dataset [14], in different process modeling formalisms. Because of its
hierarchical nature, the process tree formalism easily allows us to spot the main control-flow behavior.
(a) The process, represented as a WF-net; (b) The process, represented as a process tree.

Algorithms 2020, 13, 279 5 of 27

2.2. Workflow Nets

Workflow nets (WF-nets) [15] extend the more general notion of Petri nets [16]. A Petri net is
a directed bipartite graph containing two types of vertices, i.e., places and transitions. We visualize
places as circles, whereas we visualize transitions as boxes. Places only connect to transitions and
vice versa. Consider Figure 3, depicting an example Petri net (which is also a WF-net). We let
N=(P, T, F, `) denote a labeled Petri net, where, P denotes a set of places, T denotes a set of transitions
and F⊆(P×T) ∪ (T×P) represents the arcs. Furthermore, given a set of labels Σ and the symbol
τ/∈Σ, ` : T→Σ∪{τ} is the net’s labelling function, e.g., in Figure 3, `(t1)=a, `(t2)= b, etc. Given an
element x∈P∪T, •x = {y | (y, x)∈F} denotes the pre-set of x, whereas x•= {y|(x, y)∈F} denotes
its post-set, e.g., in Figure 3, •t1= {pi} and p1•= {t2, t3}. We lift the •-notation to the level of sets,
i.e., given X⊆P∪T, •X= {y | ∃x∈X (y∈•x)} and X•= {y | ∃x∈X (y∈x•)}. Let N=(P, T, F, `) be a
Petri net and let P′⊆P, T′⊆T and F′ = F∩((P′×T′) ∪ (T′×P′)). The Petri net N′= (P′, T′, F′, `|T′)
is a subnet of N, written N′vN. In the context of this paper, we refer to a subnet N′vN
as a fragment if it is weakly connected. Furthermore, a fragment N′vN is place-bordered iff the
only vertices of N′ (i.e., members of P′∪T′) that are connected to vertices that do not belong
to N′ (i.e., members of P∪T\(P′∪T′)) are places, i.e., {x∈P′∪T′ | (x, y)∈F\F′∨(y, x)∈F\F′}⊆P′.
Furthermore, we refer to P′i ={x∈P′|(y, x)∈F\F′} and P′o={x∈P′|(x, y)∈F\F′} to the input and output
places of the place-bordered fragment. For example, in Figure 3, the subnet formed by places p1, p2,
p3, p4, p5, transitions t2, t3, t4, t5 and the arcs (p1, t2), (p1, t3), . . . , (t5, p5) is a place-bordered fragment.
Observe that, if we remove place p5 (and the corresponding arc (t5, p5)), the subnet is still a fragment,
yet, no longer place-bordered. If we also remove t5 and the arcs (p3, t5) and (p4, t5), the subnet is not a
fragment as it is no longer weakly connected. We let N denote the universe of Petri nets.

pi t1

a

p1

t3

c

p2

t4

d

p3

p4

t5

e

t2

b

p5

t6

f

t7

g

t8

h
po

Figure 3. WF-net W1 [1] with initial marking [pi] and final marking [po].

The state of a Petri net is expressed by means of a marking, i.e., a multiset of places. A marking
is visualized by drawing the corresponding number of dots in the place(s) of the marking,
e.g., the marking in Figure 3 is [pi] (one black dot is drawn inside place pi). Given a Petri net
N = (P, T, F, `) and marking M∈M(P), (N, M) denotes a marked net. Given a marked net (N, M),
a transition t∈T is enabled, written (N, M)[t〉, if ∀p∈•t (M(p)>0). If a transition is not enabled
in marking M, we write (N, M)[�t〉. An enabled transition can fire, leading to a new marking

M′= (M−•t)]t•, written (N, M)
t−→(N, M′). A sequence of transition firings σ=〈t1, t2, ..., tn〉 is a firing

sequence of (N, M), yielding marking M′, written (N, M)
σ−→→(N, M′), iff ∃M1, M2, ..., Mn−1∈M(P)

s.t. (N, M)
t1−→(N, M1)

t2−→(N, M2)· · ·(N, Mn−1)
tn−→(N, M′). We write (N, M)

σ−→→◦, in case σ is a firing
sequence in (N, M), yet, we are not interested in the marking it leads to. In some cases, we simply write
(N, M) (N, M′), if ∃σ∈T∗

(
(N, M)

σ−→→(N, M′)
)

. LN (N, M, M′) =
{

σ∈T∗ | (N, M)
σ−→→(N, M′)

}

Algorithms 2020, 13, 279 6 of 27

denotes all firing sequences starting from marking M, leading to marking M′. The labeled-language
of N, conditional to markings M and M′, is defined as Lν

N (N, M, M′)=`(LN (N, M, M′))↓Σ .

Finally,R(N, M) =
{

M′∈M(P) | ∃σ∈T∗
(
(N, M)

σ−→→ (N, M′)
)}

denotes the reachable markings.
Given a Petri net N= (P, T, F, `), and a designated initial and final marking Mi, M f∈M(P),

the triple SN=(N, Mi, M f) denotes a system net. As system net SN=(N, Mi, M f) is formed by N,
we write SN as a replacement for N, e.g., (SN, M) denotes a marked system net. Clearly,R(SN, M),
LN (SN, M, M′), etc., are readily defined for arbitrary markings M, M′∈M(P). The language of SN is
referred to as LN (SN, Mi, M f), for which we simply write LN (SN) (respectively, Lν

N (SN),R(SN),
etc.), i.e., we drop Mi and M f from the notation as they are clear from context. SN denotes the
universe of system nets.

A WF-net is a special type of Petri net, i.e., it has one unique start and one unique end place.
Furthermore, every place/transition in the net is on a path from the start to the end place. We formally
define a WF-net as follows.

Definition 1 (Labeled Workflow net (WF-net)). Let Σ denote the universe of (activity) labels, let τ/∈Σ and
let ` : T→Σ∪{τ}. Let N = (P, T, F, `)∈N and let pi 6=po∈P. Tuple W=(P, T, F, pi, po, `) is a Workflow net
(WF-net), iff:

1. •pi=∅ ∧ @p∈P\{pi} (•p=∅); pi is the unique source place.
2. po•=∅ ∧ @p∈P\{po} (p•=∅); po is the unique sink place.
3. Each element x∈P∪T is on a path from pi to po.

We letW denote the universe of WF-nets.

Observe that a WF-net is a system net with Mi=[pi] and M f=[po]. Hence, since a WF-net is
formed by an underlying Petri net, and, has a well-defined initial and final marking, i.e., [pi] and [po],
we write LN (W) (respectively, Lν

N (W),R(W), etc.) as a shorthand notation for LN (W, [pi], [po]).
Of particular interest are sound WF-nets, i.e., WF-nets that are guaranteed to be free of deadlocks,

livelocks and dead transitions. We formalize the notion of soundness as follows.

Definition 2 (Soundness). Let W=(P, T, F, pi, po, `)∈W . W is sound iff:

1. (W, [pi]) is safe, i.e., ∀M∈R(W, [pi]) (∀p∈P (M(p)≤1)),
2. [po] can always be reached, i.e., ∀M∈R(W, [pi]) ((W, M) (W, [po])).
3. Each t∈T is enabled, at some point, i.e., ∀t∈T (∃M∈R(W, [pi]) (M[t〉)).

Observe that the Petri net depicted in Figure 3 is a sound WF-net, i.e., it adheres to all three
requirements of Definition 2.

2.3. Process Trees

Process trees allow us to model processes that comprise a control-flow hierarchy. A process
tree is a mathematical tree, where the internal vertices are operators, and leaves are (non-observable)
activities. Operators specify how their children, i.e., sub-trees, need to be combined from a control-flow
perspective. Several operators can be defined; however, in this work, we focus on four basic
operators, i.e., the→, ×, ∧ and 	-operator. The sequence operator (→) specifies sequential behavior.
First, its left-most child is executed, then its second left-most child, and so on until finally its right-most
child. For example, the root operator in Figure 4 specifies that first activity a is executed, then its
second sub-tree () and finally its third sub-tree (×). The exclusive choice operator (×), specifies an
exclusive choice, i.e., one (and exactly one) of its sub-trees is executed. Concurrent/parallel behavior is
represented by the concurrency operator (∧), i.e., all children are executed simultaneously/in any order.
Finally, we represent repeated behavior by the loop operator 	. Whereas the→-, ×-, and ∧-operators
have an arbitrary number of children, the 	-operator has two children. Its left child (the “do-child”)

Algorithms 2020, 13, 279 7 of 27

is always executed. Secondly, executing its right child (the “re-do-child”) is optional. After executing
the re-do-child, we again execute the do-child. We are allowed to repeat this, yet we always finish
with the do-child. Note that, various definitions of the loop operator exist, i.e., with three/an arbitrary
number of children (e.g., [1] Definition 3.13). All of these definitions can be rewritten into the binary
loop operator, i.e., as considered in this paper.

Note that, the process tree in Figure 4, describes the same language as the WF-net in Figure 3.

→
v0

a
v1.1

	

v1.2

→
v2.1

∧
v3.1

×
v4.1

b

v5.1

c
v5.2

d

v4.2

e
v3.2

f
v2.2

×
v1.3

g
v2.3

h

v2.4

Figure 4. Process tree [1], describing the same language as the WF-net in Figure 3 (reprint of Figure 1).

The root of the tree, i.e., v0, is a sequence operator, specifying that first, its left-most child (v1.1) is
executed. Its middle child, i.e., v1.2, represents a loop operator. The left sub-tree of the loop operator
(i.e., having vertex v2.1 as its root) is always executed. Vertex v2.2 represents the “redo” part of the loop
operator. The last part of the tree is represented by v1.3, i.e., specifying a choice construct between
executing activity g or h.

Definition 3 (Process Tree). Let Σ denote the universe of (activity) labels and let τ/∈Σ. Let
⊕

denote the
universe of process tree operators. A process tree Q, is defined (recursively) as any of:

1. x∈Σ∪{τ}; an (non-observable) activity,
2. ⊕(Q1, ..., Qn), for ⊕∈⊕, n≥1, where Q1, ..., Qn are process trees;

We let Q denote the universe of process trees.

Given a process tree Q∈Q, its language is of the form LQ(Q)⊆Σ∗, which is recursively defined in
terms of of the languages of the children of a process tree. For example, the language of the→-operator,
is formed by concatenating any element of the language of its first child, with any element of its second
child, etc. We formally define the language of a process tree as follows.

Definition 4 (Process Tree Language). Let Q∈Q be a process tree. The language of Q, i.e., LQ(Q)⊆Σ∗,
is defined recursively as:

Algorithms 2020, 13, 279 8 of 27

LQ(Q)={ε}, if Q=τ

LQ(Q)={〈a〉} if Q=a∈Σ

LQ(Q)={σ=σ1·σ2· · ·σn | σ1∈LQ(Q1), σ2∈LQ(Q2), ..., σn∈LQ(Qn)} if Q =→ (Q1, Q2, ..., Qn)

LQ(Q)=
n⋃

i=1

LQ(Qn) if Q=× (Q1, Q2, ..., Qn)

LQ(Q)=LQ(Q1)�LQ(Q2) · · ·�LQ(Qn) if Q=∧ (Q1, Q2, ..., Qn)

LQ(Q)={σ1·σ′1·σ2·σ′2 · · · σn|n≥ 1∧∀1≤i≤n (σi∈LQ(Q1)) ∧ ∀1≤i<n
(
σ′i∈LQ(Q2)

)
} if Q=	 (Q1, Q2)

The process tree operators that we consider in this paper (→, ×, ∧ and) are easily translated to
sound WF-nets (cf. Figure 5). Hence, we define a generic process tree to WF-net translation function,
s.t., the language of the two is the same.

Figure 5. Instantiations of λ (5). The λ-functions for operators are defined recursively, using the
λ̂-values of their children, i.e., a place “entering”/“exiting” a λ̂(Qi) fragment, connects to pi•/•po

(respectively) of λ(Qi).

Definition 5 (Process Tree Transformation Function). Let Q∈Q be a process tree. A process
tree transformation function λ, is a function λ : Q→W , s.t., Lν

N (λ(Q))=LQ(Q). We let
λ̂ : Q→N , where, given λ(Q)=W=(P, T, F, pi, po, `), λ̂(Q)=(P′, T, F′, `), with, P′=p\{pi, po} and
F′=F\ ({(pi, t)∈F}∪{(t, po)∈F}).

Given an arbitrary process tree Q∈Q, there are several ways to translate it to a sound WF-net W,
s.t., Lν

N (W)=LQ(Q), i.e., instantiating λ and λ̂. As an example, consider the translation functions,
depicted in Figure 5.

Note that each transformation function in Figure 5 is sound by construction.
Interestingly, recursively inserting the λ̂-generated fragments of the sub-trees of a given process tree,
corresponds to the sequential application of WF-net composition, as described in [17], [Section 7].
Hence, we deduce that their recursive composition also results in a sound WF-net [17], [Theorem 3.3].
Note that, in the remainder of this paper, we explicitly assume the use of λ, as presented in Figure 5,
i.e., certain proofs presented later build upon the recursive nature of the translations ad presented in
Figure 5.

3. Translating Workflow Nets to Process Trees

In this section, we describe our approach. In Section 3.1, we sketch the main idea of the approach,
using a small example. In Section 3.2, we present PTree-nets, i.e., Petri nets with rng(`)=Q, which we
exploit in our approach. In Section 3.3, we present Petri net fragments, used to identify process tree

Algorithms 2020, 13, 279 9 of 27

operators within the net, together with a generic reduction function. Finally, in Section 3.4, we provide
an algorithmic description that allows us to find process trees, including correctness proofs.

3.1. Overview

The core idea of the approach concerns searching for fragments in the given WF-net that represent
behavior that is expressible as a process tree. The patterns we look for bear significant similarity with
the translation patterns defined in Figure 5, i.e., they can be considered as a strongly generalized reverse
of those patterns. When we find a pattern, we replace it with a smaller net fragment representing the
process tree that was identified. We continue to search for patterns in the reduced net until we are not
able to find any more patterns. As we prove in Section 3.4, in the case the final WF-net contains just
one transition, its label carries a process tree with the same labeled-language as the original WF-net.

Consider Figure 6, in which we sketch the basic idea of the algorithm, applied on the example
WF-net W1 (Figure 3). First, the algorithm detects two choice constructs, i.e., one between the transitions
labeled b and c and one between the transitions labeled g and h. The algorithm replaces the
fragments by means of two new transitions, carrying labels×(b, c) and×(g, h), respectively (Figure 6a).
Subsequently, a concurrent construct is detected, i.e., between the transitions labeled ×(b, c) and d.
Again, the pattern is replaced (Figure 6b). A sequential pattern is detected and replaced (Figure 6c),
after which a loop construct is detected (Figure 6d). The resulting process tree, i.e., carried by the
remaining transition in Figure 6e,→ (a,	 (→ (∧(×(b, c), d), e), f),×(g, h)), is equal to Figure 4.

pi t1

a
p1 t′2

×(b, c)

p2

t4

d

p3

p4

t5

e
p5

t6

f
t′1

×(g, h)
po

(a)

pi t1

a
p1

p2

t′3

∧(×(b, c), d)
p3

p4

t5

e
p5

t6

f
t′1

×(g, h)
po

(b)

pi t1

a
p1

p2

t′4

→ (∧(×(b, c), d), e)
p5

t6

f
t′1

×(g, h)
po

(c)

pi t1

a
p1

p2

t′5

	 (→ (∧(×(b, c), d), e), f)
p5 t′1

×(g, h)
po

(d)

pi t′6

→ (a,	 (→ (∧(×(b, c), d), e), f),×(g, h))
po

(e)
Figure 6. Application of the algorithm on the running example, i.e., W1. The label of t′6,
i.e., κ(t′6), depicted in Figure 6e, is the resulting process tree. The resulting process tree, i.e., →
(a,	 (→ (∧(×(b, c), d), e), f),×(g, h)), is equal to Figure 4. (a) Result of the first two rounds of the
algorithm. The first two patterns that can be found are choice constructs, between b and c and between
g and h, respectively. (b) Result of the third round of the algorithm on the running example. We find
a concurrent construct between transition t′2 and t4. (c) Result of the fourth round of the algorithm.
We find a sequential construct. (d) Result of the fifth round of the algorithm. We find a loop construct.
(e) Result of the final round of the algorithm. We find a sequence construct.

Algorithms 2020, 13, 279 10 of 27

3.2. PTree-Nets and Their Unfolding

As indicated, we aim to find Petri net fragments in the WF-net representing behavior equivalent
to a process tree. As illustrated in Section 3.1, the patterns found in the WF-net are replaced by
transitions with a label carrying a corresponding process tree. In the upcoming section, we present
four different fragment characterizations, corresponding to the basic process tree operators considered.
However, in this section, we first briefly present PTree-nets, i.e., a trivial extension of Petri nets,
in which labels are process trees.

Definition 6 (Process Tree-labeled Petri-net (PTree-net)). Let Q denote the universe of process trees. Let P
denote a set of places, let T denote a set of transitions, let F⊆(P×T)∪(T×P) denote the arc relation and let
κ : T→Q. Tuple N=(P, T, F, κ) is a Process Tree-labeled Petri net (PTree-net). NQ denotes the universe of
PTree-nets.

Given N∈NQ, for any marking M, M′, we have κ (LN (N, M, M′))∈Q∗
and LQ (κ (LN (N, M, M′)))∈Σ∗, i.e., the definition of LQ ignores τ/∈Σ (observe:
Lν
N (N, M, M′) =κ (LN (N, M, M′))↓Σ

=LQ (κ (LN (N, M, M′)))). Clearly, since PTree-nets extend
the labelling function to Q, PTree-System-nets, and PTree-WF-nets are readily defined. We let SNQ
andWQ represent their respective universes. Note that we use a different symbol to indicate whether
a labeling function maps to Q or Σ∪{τ}, i.e., κ : T→Q, whereas ` : T→Σ∪{τ}.

Since a PTree-net contains process trees as its labels, which can be translated into a Petri
net fragment, we define a PTree-net unfolding, cf. Definition 7, which maps a PTree-net onto a
corresponding conventional Petri net.

Definition 7 (PTree-net Unfolding). A PTree-net unfolding Λ : NQ→N is a function where,
given N=(P, T, F, κ)∈NQ, Λ(N)=(P′, T′, F′, `), with:

Let λ(κ(t))=(Pt, Tt, Ft, pit , pot , `t) and λ̂(κ(t))=(P̂t, T̂t, F̂t, ˆ̀t), ∀t∈T,
1. P′=P∪ ⋃

t∈T
P̂t,

2. T′=
⋃

t∈T
T̂t,

3. F′=
⋃

t∈T
F̂t∪

⋃
t∈T
{(p, t) | p∈•t∧t∈pit•}∪

⋃
t∈T
{(t, p) | p∈t•∧t∈•pot},

4. `=
⋃

t∈T
ˆ̀t. (Since functions are binary Cartesian products, we write set operations here).

Observe that, under the assumption that we use the instantiation of λ as shown in Figure 5,
indeed, each transition in the unfolding of a PTree-net has a corresponding label in Σ∪{τ}.
Furthermore, note that unfolding the WF-net in Figure 6a yields the original model in Figure 3.
The unfolding of the other WF-nets in Figure 6 yields a different WF-net. However, the language of all
unfolded WF-nets remains equal to the language of the WF-net in Figure 3.

3.3. Pattern Reduction

In this section, we describe four patterns used to identify and replace process tree behavior.
Furthermore, we propose a corresponding overarching reduction function, which shows how to
reduce a PTree-WF-net containing any of these patterns. However, first, we present the general notion
of a feasible pattern. Such a feasible pattern is a system net, formed by a place-bordered fragment of a
given PTree-net. Furthermore, the language of the unfolding of the system net needs to be equal to the
language of the process tree it represents. We formalize the notion of a feasible pattern as follows.

Definition 8 (Feasible Pattern). Let
⊕

denote the universe of process tree operators. Let N=(P, T, F, κ)∈NQ,
let N′=(P′, T′= {t1, ..., tn} , F′, κ|T′)vN be a place-bordered fragment of N (N′vN) with corresponding

Algorithms 2020, 13, 279 11 of 27

input places P′i and output places P′o. Let Mi=Pi and M f=Po. Given ⊕∈⊕, SN=(N′, Mi, M f)∈SNQ is a
feasible ⊕-pattern, written θ⊕(N, SN), iff:

LQ (⊕ (κ (t1) , ..., κ (tn))) =Lν
N

(
Λ
(

N′
)

, Mi, M f

)
(1)

Observe that any place-bordered fragment of a WF-net that describes the same local language as its
corresponding process tree representation is a feasible pattern. As such, any feasible pattern is locally
language-preserving. Transforming such a detected pattern within the given WF-net is straightforward,
i.e., we add a new transition t′ to the WF-net with label ⊕ (κ (t1) , ..., κ (tn)) and pre-set Pi and post-set
Po. For example, consider the reduction of the choice construct between transitions t2 and t3 of Figure 3,
i.e., depicted in Figure 6a, in which places p1 and p3 serve as the pre- and post-set of the newly added
transition t′2 with label ×(b, c). We formally define the notion of feasible pattern reduction as follows.

Definition 9 (Pattern Reduction). Let ⊕∈{→,×,∧,	}, let N=(P, T, F, κ)∈NQ,
let N′=(P′, T′= {t1, ..., tn} , F′, κ|T′)vN be a place-bordered fragment of N with corresponding input
places Pi and output places Po. Let Mi=Pi, M f=Po and let SN=

(
N′, Mi, M f

)
s.t. θ⊕(N, SN). We let

Θ⊕(N, SN)=N′′=(P′′, T′′, F′′, κ′) denote the θ⊕(N, SN)-reduced PTree-net, with, for t′/∈T:

P′′=(P\P′)∪Pi∪Po

T′′=
(
T\T′

)
∪{t′}

F′′=(F\F′)∪{(p, t′)|p∈Pi}∪{(t′, p)|p∈Po}
κ′=κ|T\T′∪{(t′,⊕(κ(t1), ..., κ(tn)))}

A feasible pattern θ⊕(N, SN) is globally language preserving iff
∀M, M′∈M(P′′)

(
Lν
N (Λ(N), M, M′)=Lν

N (Λ(N′′), M, M′)
)

It is important to note that the notion of globally language-preserving is defined on the unfolding
of a net and its corresponding reduced net. For example, consider Figure 7. In the WF-net in
Figure 7a, we observe concurrent behavior between a sequential construct between a and c, and, activity
b. The fragment formed by p1, p3, p5, t2, and t4, is a feasible sequence pattern. In Figure 7b,
we depict the reduced counterpart of the net in Figure 7a, in which transitions t2 and t4, and the place
connecting them, i.e., p3, are replaced by transition t′2 with label→(a, c). Observe that the language
of the original net (Figure 7a) is {〈t1, t2, t3, t4, t5〉, 〈t1, t3, t2, t4, t5〉, 〈t1, t2, t4, t3, t5〉}, whereas the
language of the corresponding reduced net (Figure 7b) is {〈t1, t′2, t3, t5〉, 〈t1, t3, t′2, t5〉}. Consequently,
the corresponding labeled languages are {〈a, b, c〉, 〈b, a, c〉, 〈a, c, b〉} and {〈→(a, c), b〉, 〈b,→(a, c)〉},
respectively. The labeled language of the reduced net, after evaluating the process tree fragments inside,
yields {〈a, c, b〉, 〈b, a, c〉}, i.e., the trace 〈a, b, c〉 is not in the corresponding language. However, if we
first unfold the label of t′2 in Figure 7b, i.e., yielding the model in Figure 7a (modulo renaming
of transitions), the labeled languages of the two nets are indeed equal, i.e., they both describe
{〈a, b, c〉, 〈b, a, c〉, 〈a, c, b〉}.

Furthermore, observe that there exist feasible patterns that are locally language-preserving,
yet, not globally language-preserving. For example, consider the WF-net in Figure 8.
The place-bordered fragment formed by the subnet consisting of places p1 and p2 and transitions t2

and t3 (with the arcs connecting them), form a feasible pattern corresponding to 	(a, b) (with Mi=[p1]

and M f=[p2]). However, note that, after reduction, i.e., by inserting t′2, we obtain a WF-net that no
longer has the same language as the original model. This is because, before reduction, executing
transition t5 allows us to enable transition t3. After reduction, however, this is no longer possible.
Hence, whereas the observed feasible pattern is locally language preserving, i.e., when considering the
elements it is composed of, it is not globally language-preserving.

Algorithms 2020, 13, 279 12 of 27

In the upcoming paragraphs, we characterize an instantiation of a global language preserving
feasible pattern for each process tree operator considered in this paper. For each proposed pattern,
we prove that it is both locally and globally language preserving.

pi t1

p1

p2

t2

a

t3

b

p3

p4

t4

c
p5

t5 po

Place-bordered fragment describing→(a, c)

(a)

pi t1

p1

p2

t′2

→(a, c)

t3

b

p3

p4

t5 po

(b)
Figure 7. Example WF-net (and a corresponding reduction) in which we are able to
detect the feasible pattern →(a, c). The language of the original net (Figure 7a) is
{〈t1, t2, t3, t4, t5〉, 〈t1, t3, t2, t4, t5〉, 〈t1, t2, t4, t3, t5〉}. The language of the reduced net (Figure 7b) is
{〈t1, t′2, t3, t5〉, 〈t1, t3, t′2, t5〉}. Applying the label functions on the firing sequences yields different
labeled languages. (a) A WF-net describing concurrent behavior between a sequential construct
between a and c and activity b. Observe that the fragment formed by p1, p3, p5, t2, and t4 is a feasible
sequence pattern. (b) The (PTree)WF-net after reduction of the sequential pattern between t2 and t4.

pi t1 p1 t2

a
p2

t3

b

t4

c
p3

t5

d

t6 po

Place-bordered fragment, locally describing 	(a, b)

(a)

pi t1 p1 t′2

	 (a, b)
p2 t4

c
p3

t5

d

t6 po

(b)
Figure 8. Example WF-net (and a corresponding reduction) in which we are able to detect feasible
patterns ((a, b) and 	 (c, d)) that are not globally language preserving. In the exemplary reduced net
(Figure 8b), once we have executed t′2, we are only able to execute the loop construct between t4 and t5.
(a) The WF-net containing two local language equivalent feasible patterns. (b) The (PTree)WF-net after
reduction of the loop pattern between t2 and t3.

Algorithms 2020, 13, 279 13 of 27

3.3.1. Sequential Pattern

The →-operator, i.e., → (Q1, ..., Qn), describes sequential behavior, hence, any subnet
describing strictly sequential behavior, describes the same language. If a transition t1 always,
uniquely, enables transition t2, which in turn enables transition t3, ..., tn, and, whenever t1 has fired,
the only way to consume all tokens from t1• is by means of firing t2, and, similarly, the only way to
consume all tokens from t2• is by means of firing t3, etc.; then, t1, ..., tn are in a sequential relation.
We visualize the→-pattern in the left-hand side of Figure 9. Note that, in the visualization, we omit Pi
and Po, respectively, i.e., •t1 and tn•.

Figure 9. Schematic visualization of the→-pattern reduction (dashed arcs are allowed to be part of the
pattern, solid arcs are required). The post-set of each transition ti acts as the pre-set of ti+1 (1≤i<n).
The transition t′ replacing the identified pattern inherits •t1 and tn• (these corresponding places are
not explicitly visualized in this figure). The label of t′ is formed by the sequence operator defined on
top of the labels of t1, ..., tn, respectively.

We formally define the notion of a sequential pattern as follows

Proposition 1 (→-Pattern). Let N=(P, T, F, κ)∈NQ and let T′= {t1, ..., tn}⊆T (n≥2). If and only if:

1. ∀1≤i<n (|ti•|≥1∧ti•=•ti+1), transition ti enables ti+1; and
2. ∀1≤i<n (∀p∈ti• (•p={ti}∧p•={ti+1})), enabling is unique,

then, system net SN=(N′=(P′, T′, F′, κ|T′), •t1, tn•) (Pi=•t1 and Po=tn•), with P′=•t1∪•t2∪· · ·•tn∪tn•,
F′={(x, y)∈F | y∈T′∨x=tn}, is a feasible→-pattern.

Proof. Observe that t1 is the only enabled transition in marking Mi=Pi. By definition of the proposed
pattern, after firing ti (1≤i<n), the only enabled transition is ti+1. After firing tn, we reach the
final marking M f , which is a deadlock marking (the only deadlock marking) of the place-bordered

subnet. Hence, any firing sequence of Λ(N′) can be written as σ1·σ2· · ·σn, s.t., (Λ(N′), Mi)
σ1−→→

(Λ(N′), t1•)
σ2−→→ · · · σn−→→ (Λ(N′), M f). Observe that each element of σ1 is a transition in λ(κ(t1)),

each element of σ2 is a transition in λ(κ(t2)), etc. Furthermore, by definition of λ, σ1 is a firing
sequence describing (when projected on its visible labels) a memmber of LQ(κ(t1)), σ2 describes as
sequence in LQ(κ(t1)), etc. Hence, the set of all firing sequences projected on their visible labels equals
LQ(→(κ(t1), κ(t2), . . . , κ(tn))).

Lemma 1 (→-Pattern (Proposition 1) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ
and let SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, tn•) s.t. θ→(N, SN) according to Proposition 1.
The feasible pattern θ→(N, SN) is globally language-preserving.

Proof. Let N′′ denote the net obtained after reduction (cf. Definition 9) and let P′′=(P\P′)∪Pi∪Po.
We need to prove that ∀M, M′∈M(P′′)

(
Lν
N (Λ(N), M, M′)=Lν

N (Λ(N′′), M, M′)
)
.

Observe that Λ(N) and Λ(N′′) are identical, except for Λ(N′) in N and λ̂(t′)
(the transition-bordered unfolding of the newly added transition t′) in N′′, respectively. The only
connections between N′ in N and t′ in N′′ with the identical parts of the two nets are through Pi and Po.
Hence, if there exists a visible firing sequence in Lν

N (Λ(N), M, M′) that is not in Lν
N (Λ(N′′), M, M′),

this can only be due to different behavior described by Λ(N′) and λ(t′). However, this directly
contradicts feasibility of the pattern.

Algorithms 2020, 13, 279 14 of 27

3.3.2. Exclusive Choice Pattern

The ×-operator, i.e., ×(Q1, ..., Qn), describes “execute one of Q1, ..., Qn”. In terms of a Petri net
fragment, transitions t1, ..., tn are in an exclusive choice pattern if their pre- and post-sets are equal
(yet non-overlapping). Consider Figure 10, in which we schematically depict the ×-pattern.

Figure 10. Visualization of the ×-pattern reduction (dashed arcs are allowed to be part of the
pattern, while solid arcs are required). All transitions in the pattern share the same pre- and post-set.
The replacing transition inherits the aforesaid pre- and post-set.

We formalize the ×-pattern as follows.

Proposition 2 (×-Pattern). Let N=(P, T, F, κ)∈NQ and let T′= {t1, ..., tn}⊆T (n≥2). If and only if:

1. •t1=•t2=· · ·=•tn, all pre-sets are shared among the members of the pattern;
2. t1•=t2•=· · ·=tn•, all post-sets are shared among the members of the pattern; and
3. ∀1≤i≤n (•ti 6=ti•), self-loops are not allowed,

then, system net SN= (N′= (P′, T′, F′, κ|T′) , •t1, t1•) (Pi=•t1 and Po=t1•), with P′=•t1∪t1•,
F′={(x, y)∈F | x∈T′∨y∈T′}, is a feasible ×-pattern.

Proof. Observe that t1, t2, ..., tn are the only enabled transitions in N′ in marking Mi=Pi. When we fire
any one of these transitions, we immediately mark Po, which is the final marking of the system net.
Hence, the set of firing sequences of the system net is the union of the set of sequences (Λ(N′), Mi)

σ−→→
(Λ(N′), Mi), where σ either corresponds to a labelled language of LQ(κ(t1), or LQ(κ(t2), ..., or
LQ(κ(tn). Observe that, indeed, this set corresponds to LQ(×(κ(t1), κ(t2), . . . , κ(tn))).

Lemma 2 (×-Pattern (Proposition 2) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ
and let SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, t1•) s.t. θ×(N, SN) according to Proposition 2.
The feasible pattern θ×(N, SN) is globally language-preserving.

Proof. Let N′′ denote the net obtained after reduction (cf. Definition 9) and let P′′=(P\P′)∪Pi∪Po.
Observe that, similar to the sequential pattern, Λ(N) and Λ(N′′) are identical, except for Λ(N′) and
λ̂(t′), respectively. Again, the only connections between N′ and t′ with the identical parts of the two
nets are through Pi (“entering”) and Po(“exiting”). Hence, if there exists a visible firing sequence
in Lν

N (Λ(N), M, M′) that is not in Lν
N (Λ(N′′), M, M′), this can only be due to different behavior

described by Λ(N′) and λ(t′), again contradicting the feasibility of the pattern.

3.3.3. Concurrent Pattern

The concurrent pattern is the most complicated pattern that we consider in this paper.
In the concurrent pattern, interference between its transitions is possible. The interference is
achieved by requiring that the pre-sets and post-sets of the transitions do not have any overlap.
Furthermore, the pre-set of the transition’s pre-set places needs to be shared by all of these places,
and, symmetrically, the post-set of the transition’s post-set places needs to be shared by all of these
places. That is, the enabling of the transitions in the pattern needs to be the same, and their post-set
should jointly block any further action (i.e., within its local scope) until all places in their joint post-set

Algorithms 2020, 13, 279 15 of 27

are marked. Consider the left-hand side of Figure 11, in which we schematically depict the concurrent
pattern, which we formalize in Proposition 3.

Figure 11. Visualization of the ∧-pattern reduction. Transitions t1, ..., tn have disjunct pre-sets,
yet, their pre-sets have the exact same pre-sets. The same holds for the post-sets of transitions t1, .., tn.
The replacing transition inherits all pre- and post-sets of t1, .., tn.

Proposition 3 (∧-Pattern). Let N=(P, T, F, κ)∈NQ and let T′= {t1, ..., tn}⊆T (n≥2). If and only if:

1. ∀1≤i<j≤n
(
•ti∩•tj=∅

)
, no interaction between the member’s pre-sets;

2. ∀1≤i<j≤n
(
ti•∩tj•=∅

)
, no interaction between the member’s post-sets;

3. ∀1≤i≤n (∀p∈•ti (p•= {ti})), pre-set places uniquely connect to a member;
4. ∀1≤i≤n (∀p∈ti• (•p= {ti})), post-set places uniquely connect to a member;
5. ∀p∈•T (•p∩{t1, ..., tn}=∅), members do not influence other members;
6. ∀p, p′∈•T (•p=•p′), member’s pre-sets share their pre-set;
7. ∀p∈T• (p•∩{t1, ..., tn}=∅), member firing does not affect other members;
8. ∀p, p′∈T• (p•=p′•), member’s post-sets share their post-set;
9. ∀t, t′∈ • (•T) (•t=•t′), pre-sets of enablers are equal;

10. ∀t, t′∈ (T•) • (t•=t′•), post-sets of enablers are equal,

then, system net SN= (N′= (P′, T′, F′, κ|T′) , •T′, T′•) (Pi=•T′, Po=T′•), with P′=•T∪T•,
F′={(x, y)∈F|(x∈P′∧y∈T′)∨(x∈T′∧y∈P′)} is a feasible ∧-pattern.

Proof. Observe that t1, t2, ..., tn are the only enabled transitions in N′ in marking Mi=Pi.
Furthermore, since none of the transitions share any of their presets, the transitions can be fired in any
order. Note that, by definition of the pattern, after all transitions have fired, we reach final marking M f
(which is a deadlock in the place-bordered system net). Hence, the labeled language described by the
pattern equals LQ(κ(t1))� LQ(κ(t2)) · · ·�LQ(κ(tn)), which equals ∧ (κ(t1), κ(t2), ..., κ(tn)).

Lemma 3 (∧-Pattern (Proposition 3) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ and let
SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, t1•) s.t. θ∧(N, SN) according to Proposition 3. The feasible
pattern θ∧(N, SN) is globally language-preserving.

Proof. Observe that Λ(N) and Λ(N′′) are identical, except for Λ(N′) and λ̂(t′),
respectively. Again, the only connections between N′ and t′ with the identical parts of the
two nets are through Pi (“entering”) and Po(“exiting”). Hence, if there exists a visible firing sequence
in Lν

N (Λ(N), M, M′) that is not in Lν
N (Λ(N′′), M, M′), this can only be due to different behavior

described by Λ(N′) and λ(t′), again contradicting the feasibility of the pattern.

3.3.4. Loop Pattern

The final operator we consider is the 	-operator, i.e., the only operator with just two children.
Hence, the fragments representing a loop pattern in the Ptree-net consist of two transitions.
Consider the left-hand side of Figure 12, in which we schematically depict the loop pattern fragment.
Conceptually, the loop operator requires us first to execute its leftmost child (the “do-part”).
Secondly, its rightmost child is optionally executed (the “redo-part”). However, we always finish with

Algorithms 2020, 13, 279 16 of 27

the leftmost child. As such, the post-set of a transition corresponding to the do-part needs to be the
pre-set of the transition that represents the redo-part. Furthermore, there should be no other way to
enable the redo-part. Hence, the do-part needs to be the only transition that marks the pre-set of the
redo-part. Similarly, to guarantee global language preservation, the do-part should be the only element
in the post-set of its pre-set, i.e., no other transition may be enabled by the pre-set of the do-part.
Reconsider Figure 8. Observe that p2 contains multiple incoming and outgoing arcs; hence, it describes
neither a loop-pattern for transitions t2 and t3 nor for transitions t4 and t5.

Figure 12. Visualization of the 	-pattern reduction. The pre-set of transition t1 equals the post-set of t2

and vice versa. The replacing transition inherits the pre- and post-set of transition t1.

Proposition 4 (-Pattern). Let N=(P, T, F, κ)∈NQ and let t1 6=t2∈T. Iff:

1. •t1=t2•, pre-set of t1 is the post-set of t2;
2. t1•=•t2, pre-set of t2 is the post-set of t1;
3. ∀p∈•t1 (p•={t1}), t1 is the only transition in the post-set of its pre-set;
4. ∀p∈t1• (•p={t1}); t1, is the only transition in the pre-set of its post-set,

then, system net SN=
(

N′=
(

P′, T′, F′, κ|{t1,t2}

)
, •t1, t1•

)
(Pi=•t1, Po=to•), with P′=•t1∪t1•,

T′={t1, t2}, F′={(x, y)∈F | x∈{t1, t2}∨y∈{t1, t2}} is a feasible 	-pattern.

Proof. Observe that t1 is the only enabled transition in N′ in marking Mi=Pi. When we fire it,
we immediately mark Po, which is the final marking of the place-bordered system net. In the aforesaid
marking, t2 is the only enabled transition. Firing t2 yields us with marking Mi again. We can repeat
this infinitely. Hence, the labeled language described by the pattern is {σ1·σ′1·σ2·σ′2 · · · σn | n ≥
1∧ ∀1≤i≤n (σi∈LQ(κ(t1))) ∧ ∀1≤i<n

(
σ′i∈LQ(κ(t2))

)
}, which equals 	 (LQ(κ(t1)),LQ(κ(t2)))

Lemma 4 (-Pattern (Proposition 4) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ and let
SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, t1•) s.t. θ	(N, SN) according to Proposition 4. The feasible
pattern θ	(N, SN) is globally language-preserving.

Proof. Let N′′ denote the net obtained after reduction (cf. Definition 9) and let P′′=(P\P′)∪Pi∪Po.
Observe that Λ(N) and Λ(N′′) are identical, except for Λ(N′) and λ̂(t′), respectively. Again, the only
connections between N′ and t′ with the identical parts of the two nets are through Pi (“entering”)
and Po(“exiting”). In particular, when Pi is marked, the only way to mark Po is by firing t1, followed
by an arbitrary number of 〈t2, t1〉 repetitions. Hence, if there exists a visible firing sequence in
Lν
N (Λ(N), M, M′) that is not in Lν

N (Λ(N′′), M, M′), this can only be due to different behavior
described by Λ(N′) and λ(t′), contradicting the feasibility of the pattern.

3.4. Algorithm

In this section, we present an algorithm that iteratively applies the reductions defined in
Section 3.3. By doing so, the algorithm is able to translate a WF-net into a process tree. We prove
that, if the algorithm terminates correctly, i.e., it finds a process tree, the input WF-net is sound.
Moreover, we show that the language of the input WF-net equals the language of the process tree found.

Algorithms 2020, 13, 279 17 of 27

Consider Algorithm 1, in which we present an algorithmic description of the reduction algorithm,
on the basis of the proposed patterns in Section 3.3.

Algorithm 1: WF-net reduction
input :W= (P, T, F, pi, po, `)∈W
output :W ′=(P′, T′, F′, pi, po, κ)∈WQ

1 P′, T′, F′, κ←P, T, F, `;
2 while ∃ SN∈SNQ s.t. θ⊕(N, SN) for ⊕∈{→,×,∧,	} do
3 P′, T′, F′, κ ← Θ⊕(N, SN);

4 return (P′, T′, F′, pi, po, κ);

As an input, the algorithm needs any WF-net W, which, by definition, is also a PTWF-net.
Initially, the elements of W, excluding the initial and final place, are copied into variables P′, T′, F′, κ.
In case any pattern of the form θ⊕(N, SN) is found in N, the corresponding reduction Θ⊕(N, SN) is
applied (line 3). If no more pattern is found, the algorithm returns (N, pi, po, κ). The algorithm returns
the most recent reduction, if no more pattern is found. Observe that, intentionally, the order and size
of the patterns to be reduced is not specified, i.e., it is of no relevance to any of the lemmas and the
theorems regarding the algorithms properties and correctness.

In the case the obtained PTree-WF-net consists of just one transition, i.e., connected to place pi
(incoming) and place po (outgoing) (cf. Figure 6e), the label of the transition represents a process tree,
describing the same language as the original WF-net. Furthermore, we can conclude that the original
WF-net is, in fact, a sound WF-net. We prove these observations in Theorem 1. However, before
this, we first present two useful lemmas. In Lemma 5, we prove that the proposed reduction rules
are bidirectionally soundness preserving, i.e., if a PTree-WF-net is sound, the reduced PTree-WF-net
is sound (and vice versa). In Lemma 6, we prove that, if we are able, from the initial marking [pi],
to enable the observed fragment (enabling differs per fragment), then the language of the original net
and the reduced net is equal (and vice versa). Observe that, trivially, the reduction rules applied on a
PTree-WF-net yield a PTree-WF-net, i.e., none of the requirements of Definition 1 are violated on the
resulting net.

Lemma 5 (Pattern Reduction is Soundness Preserving). Let ⊕∈{→,×,∧,	
}, let W=(P, T, F, pi, po, κ)∈WQ, let SN∈SNQ, s.t., θ⊕(W, SN), and let
W ′=(P′, T′, F′, pi, po, κ′)=Θ⊕(W, SN)∈WQ. W ′ is sound iff W is sound.

Proof. (⇒) Let t′∈T′\T. Assume that W is sound, yet W ′ is not sound. By definition of any reduction
Θ⊕(W, SN), if W ′ is not safe, then W is not safe. For any t∈T∩T′, if @M∈R(W ′, [pi]) ((W ′, M)[t〉),
then also @M∈R(W, [pi]) ((W, M)[t〉). Similarly, if @M∈R(W ′, [pi]) ((W ′, M)[t′〉), then this is also
holds for the transitions in SN. In the case ∃M∈R(W ′, [pi]) s.t. @σ∈T′∗

(
(W ′, M)

σ−→→ (W ′, [po])
)

,

again, by definition of the reductions, also M∈R(W ′, [pi]) and @σ∈T′∗
(
(W, M)

σ−→→ (W, [po])
)

,
contradicting soundness of W.

(⇐) Assume that W ′ is sound, yet W is not sound. Given that W ′ and W only differ on t′ and SN,
respectively, the “non-sound” part of W needs to be part of SN. However, it is easy to see that none
of the patterns defined in Section 3.3 do not describe any non-sound construct. Hence, replacing SN,
implies that W ′ needs to be unsound, which contradicts the assumption.

Lemma 6 (Pattern Reduction is Language Preserving in Λ). Let ⊕∈{→
,×,∧,	}, let W=(P, T, F, pi, po, κ)∈WQ, let SN∈SNQ, s.t., θ⊕(W, SN), and,
let W ′=(P′, T′, F′, pi, po, κ′)=Θ⊕(W, SN)∈WQ. Lν

N (Λ(W))=Lν
N (Λ(W ′)).

Proof. It rrivially follows from Lemmas 1–4.

Algorithms 2020, 13, 279 18 of 27

Theorem 1 (Algorithm 1 is able to find Language-Equal Process Trees). Let W= (P, T, F, pi, po, `)∈W
and let W ′=(P′, T′, F′, p′ i, p′o, κ)∈WQ be the resulting WF-net of Algorithm 1 on W. If P′={Pi, Po}, T′={t},
and F= {(pi, t) , (t, po)}, then LQ(κ(t))=Lν

N (W).

Proof. Observe that W is sound. Lemma 5 implies that if we (continuously) revert the reductions
applied by Algorithm 1, i.e., corresponding to all intermediate assignments of W in Algorithm 1,
all reverted nets are sound. As a corollary of this fact, it follows that W is sound. Observe that Lemma 6
proves that the language of the unfoldings of all the intermediate WF-nets found is the same as well.
Since the labels of the initial WF-net are all members of Σ∪{τ}, their unfolding remains the same.
Hence, we deduce LQ(κ(t))=Lν

N (W).

It is important to note that neither the algorithm nor the supporting lemmas and proofs
specify any condition on order and the size of the pattern(s) to be reduced. In fact, the size of
the pattern reduced is not of influence with respect to any of the correctness proofs. Note that,
indeed,→ (Q1,→ (Q2,→ (Q3, τ))) corresponds to→ (Q1, Q2, Q3), and, hence, whether we iteratively
find the first pattern or apply some form of pattern maximization strategy to instantly find the latter
pattern is not at all of influence with respect to correctness of the proposed algorithm.

4. Evaluation

In this section, we evaluate the proposed algorithm. We briefly present the implementation,
after which we discuss the experimental setup and the results.

4.1. Implementation

An implementation of Algorithm 1 is available (https://github.com/s-j-v-zelst/pm4py-source/
blob/pn_to_pt/scripts/pn_to_pt.py), i.e., built on top of the process mining framework PM4Py [11].
As indicated, the size of the patterns identified has no influence on the correctness of the algorithm.
Hence, the implementation searches for binary patterns, yielding binary trees. Such a tree can be further
reduced, e.g.,→ (Q1,→ (Q2,→ (Q3, τ))) corresponds to→ (Q1, Q2, Q3).

4.2. Experimental Setup

Here, we briefly discuss the experimental setup of our experiments. Consider Figure 13, in which
we present a graphical overview. Using an implementation of PTandLogGenerator [18,19], we generate
process trees, using two triangular distributions for the number of activities, i.e., {10, 20, 30}
and {40, 50, 60}. The process trees are translated to WF-nets, using two different translations.
One translation creates invisible start and end transitions for each operator; the other translation
only does so when required (similar to Figure 5). The first translation generates larger nets in
terms of transitions/places/arcs. In general, the sizes of the respective WF-nets generated differs
significantly.For each triangular distribution/translation combination, we generate 50.000 process trees
(yielding 200.000 experiments). Finally, we compare the generated process tree in canonical form [20]
[Section 5.1], to the resulting process tree in canonical form.

Figure 13. Overview of the experimental setup of the conducted experiments.

4.3. Results

Here, we briefly discuss the results of the conducted experiments. Consider Figure 14, in which
we present the average time performance of the implementation on the data as generated according to
the described experimental setup. We plot the time performance, conditional to the size of the input

https://github.com/s-j-v-zelst/pm4py-source/blob/pn_to_pt/scripts/pn_to_pt.py
https://github.com/s-j-v-zelst/pm4py-source/blob/pn_to_pt/scripts/pn_to_pt.py

Algorithms 2020, 13, 279 19 of 27

WF-net. Additionally, we plot a polynomial trend-line, computed using polynomial least squares.
As is clearly observable in Figure 14, the time performance is quadratic in the size of the net (|P|+ |T|).
This is confirmed by the R2-score of the trend-line, i.e., ∼0.988. Note that, the fluctuations in the
right-hand-side of the chart are explained by a relative smaller amount of experiments conducted with
models of the corresponding sizes. In all experiments, the canonical form of the generated process tree
equals the canonical form of the (re)discovered process tree.

Figure 14. Average time performance of the implementation. A quadratic relation, in computation
time measured in micro-seconds (µ-seconds), with respect to the size of the WF-net, is observable.

5. Related Work

Process trees are often used in the domain of process mining. However, a complete overview of
the field is outside of scope, i.e., we refer to [1] for a gentle introduction. Similarly, we refer to [21] for
an in-depth overview of process discovery algorithms, and, we refer to [22] for an overview of the
sub-field of conformance checking.

The conceptual idea of transforming a given process model in a certain formalism F into an
alternative process modeling formalism F′ is well-studied. Transformations of graph-oriented modeling
formalisms, e.g., Petri nets, and block-oriented modeling formalisms, e.g., Process Trees, are often studied.
In [10], the authors generalize work that transforms (both ways) graph-based process modeling
formalisms into Business Process Execution Language for Webservices (BPEL) (an XML-based format).
The authors characterize several strategies for such translations. In this context, the work presented in
this paper belongs to the structure-identification category.

Of particular interest is the work of van der Aalst and Lassen [23,24], i.e., on translating of
WF-nets to BPEL. In the work, XML fragments of BPEL are generated on the basis of a given WF-net.
Since XML, by definition, is a tree-like data representation, BPEL and process trees are conceptually
close. The algorithm replaces components, i.e., connected, complete subnets with a unique start and
end element, i.e., such a start/end element can be either a place or a transition. The authors prove that
“folding” a WF-net based on an identified component, under certain conditions, yields a sound WF-net.
The folding operator for components as defined in [23] can be regarded as being very similar to the
reduction (cf. Definition 9) presented in this paper. However, note that the proofs in [23] only hold for
components, i.e., subnets with a single entry and exit. The algorithm described in [23] is similar to
the algorithm presented in this paper, i.e., searching and replacing patterns until either a WF-net with
a single transition is found, or no more pattern is found. However, within the algorithm, a specific
ordering for the patterns and a maximization of the pattern-size is applied. Observe that, whereas the
work in [23,24] is conceptually close to the work presented here, there are several differences as well.

Algorithms 2020, 13, 279 20 of 27

For example, in this work, we use system nets to represent patterns, i.e., lifting the single source/sink
requirement for pattern recognition. As such, the algorithm presented in this paper is able to detect
process tree fragments in WF-nets, in which the algorithm reported on in [23,24] would not find any
fragments. Similarly, the algorithm presented in this paper does not impose any order on the reduction
of the patterns identified, nor on their size. However, there is no clear motivation provided in [23] on
the underlying reasons for imposing an order and maximization with respect to pattern detection.

In [25,26], the notion of the Refined Process Structure Tree (RPST) and its computation is introduced.
The RPST is a hierarchical grouping of the edges present in a process model (defined as a workflow
graph). As such, the given process model can be decomposed, i.e., on the basis of the hierarchy
described by the RPST. Similar to the work in [23,24], the identified model-fragments need a single
source and a single sink element. The works in [25,26] exemplify computing the RPST of a given BPMN
model (which complies with the definition of the workflow graphs mentioned earlier), yet indicate
that the concepts can be generalized to WF-nets. However, as we show in Section 6.2, the fact that
the RPST, by definition, ignores the semantics of the model provided as an input leads the algorithm
to find tree structures in unsound Workflow nets. The RPST decomposition has been exploited in
various noteworthy other studies. In [27,28], the authors used the RPST to “structure acyclic process
models”. The core idea is to compute an RPST decomposition of a given acyclic model, which is
possibly unstructured. An unstructured part of the model is recognized as a rigid component in the RPST
decomposition. Subsequently, the behavioral ordering relations of the rigid component are computed,
and a corresponding structured process model is synthesized. Since there exist process models that do
not have an equivalent well-structured representation, the aforementioned work is further extended
in [29], in which the authors exploited the RPST decomposition to compute a maximally structured
version of the input process model. In [30], the authors extended the notion of RPSTs for sound
free-choice Wf-nets, i.e., referred to as a WF-tree. Within a WF-Tree, certain internal vertices can be
labeled as being either place-bordered, transition-bordered, or as a loop construct. As such, the authors
partially annotated the RPST with behavioral information. Whereas the RPST is computed on the basis
of a tree of triconnected components, other similar tree-based abstractions of process models have been
considered as well. In [31], the authors proposed to exploit the tree of biconnected components to check
whether a given workflow net is sound on the basis of its structure. In particular, the authors show
that it is sufficient to show that one biconnected subnet of the workflow net is not safe and sound,
to conclude that the WF-net as a whole is not sound.

The reductions presented in this paper, alternatively to the different works on translating process
modeling formalisms into each other, bear similarity to various reduction rules established on general
Petri nets. The general idea of Petri net reduction (or the opposite, expansion) is a substitution of
elements of a Petri net, i.e., either by a smaller or larger newly added subnet, while preserving the
behavioral properties of the net. For example, in [32], the authors proposed step-wise refinements
of both transitions and places in Petri nets, while preserving liveness and boundedness properties
of the Petri net. Similarly, in [33], the author proposed a set of reduction rules for Colored WF-nets,
i.e., WF-nets with additional data flow semantics. In [34], the authors presented a set of reduction rules
for free-choice probabilistic WF-nets, i.e., WF-nets in which transitions have an associated probability
and reward. In particular, the reduction rules are proposed in order to preserve the expected reward of
the workflow.

Clearly, the work presented in this paper bears similarity with the different works mentioned.
However, the works in the area of process model transformation are typically not defined for WF-nets,
e.g., the RPST decomposition, or are more restrictive on the patterns to be replaced, e.g., the maximized
unique source/sink patterns of [23]. Similarly, whereas the reduction patterns defined here do preserve
the soundness of the WF-net, i.e., if the given WF-net is sound, the core of the related work in the field
focuses more on the preservation of various behavioral properties.

Algorithms 2020, 13, 279 21 of 27

6. Discussion

In this section, we discuss various aspects of the algorithm proposed in this paper.
Firstly, in Section 6.1, we discuss the degree of extensibility of the framework, e.g., we discuss the
detection of self-loops. Secondly, in Section 6.2, we provide an in-depth discussion of the relation of
the proposed algorithm with respect to computation of the RPST decomposition. Finally, in Section 6.3,
we discuss the reducibility of arbitrary WF-nets in the context of our proposed algorithm, i.e., we show
an example of simple sound WF-nets for which the algorithm cannot find a corresponding process tree.

6.1. Extensibility

Since correctness of the proposed algorithm (cf. Theorem 1) holds for any feasible pattern
(cf. Definition 8) that is globally language preserving, the algorithm presented in this paper is easily
extended with additional reduction rules. Hence, any system net that describes a language that is equal
to the language of a process tree can be reduced (conditional to the aforementioned global language
preservation). For example, consider the self-loop reduction visualized in Figure 15.

Figure 15. Schematic visualization of the 	s-pattern reduction. The pre- and post-set of transitions
t1, t2, ..., tn are the same. In the reduction, the places are “split” into two groups, one copying all
dashed incoming arcs, one copying all dashed outgoing arcs. The newly added transition t′ is placed
in between with label 	 (τ,×(κ(t1), ..., κ(tn))).

Opposed to the other patterns presented and defined earlier, observe that, directly applying the
reduction as defined in Definition 9, again yields a self-loop. Hence, in the reduction, we split-up
the places, i.e., one group of places, forming the preset of the newly generated transition t′ copies all
incoming arcs of the places of the pattern (excluding the connections to t1, ..., t2). The other “freshly”
added place copies all outgoing arcs of the places of the pattern (again excluding the connections to
t1, ..., t2).

Consider Figure 16, in which we depict a simple example of the application of the self-loop
reduction as described. The transitions t2 and t3 in the WF-net depicted in Figure 16a are self-loops on
place p1. In Figure 16b, the reduction is applied only on t2. Note that, in this model, a loop reduction can
be applied yielding 	 ((τ, b), c). Note that first reducing t3 is symmetrical, i.e., eventually yielding
	 ((τ, c), b). Note that both process trees, indeed, describe the language (b∗c∗)∗ (i.e., when described
as a regular expression). In Figure 16c, we show the application of the self-loop reduction when it
is applied directly using T={t2, t3}. In this case, the reduction yields a new transition t′2 with label
	 (τ,×(b, c)). Again, the language described by the process tree discovered can be described by
(b∗c∗)∗. Finally, let X denote any of the three process tree fragments discoverable in the example
describing (b∗c∗)∗. Observe that the reduction algorithm discovers→(a, X, d) (or any binary form
thereof), which corresponds to the regular expression a(b∗c∗)d, which is indeed the language of the
WF-net depicted in Figure 16a.

Observe that the self-loop pattern shows that the algorithm proposed is extensible.
However, in this case, the reduction step needs to be altered to avoid iteratively adding self-loop
places (i.e., indefinitely). Any pattern can be reduced, as long as it is a feasible pattern that is globally
language-preserving. For example, in some cases, the inclusive or operator is considered in the context
of process trees, i.e., ∨(Q1, ..., Qn). An inclusive or structure dictates that at least one of its children
Q1, ..., Qn is executed, yet, possibly, all are executed. The order in which the children are executed is

Algorithms 2020, 13, 279 22 of 27

irrelevant. Similarly, the interleaved operator is sometimes considered, i.e.,↔(Q1, ..., Qn). This operator
requires that all its children are executed in any order, however, the behavior of the respective children
cannot be shuffled, i.e., this is allowed by ∧(Q1, ..., Qn). Since both operators have a translation to a
Petri net structure, these patterns can serve as a basis for reduction (potentially in a generalized form).
However, note that these patterns are more involved with respect to the four basic patterns (and the
self-loop pattern) presented in this paper.

pi t1

a
p1

t2

b

t3

c

t4

d
po

(a)

pi t1

a

p′1 t′2

	 (τ, b)

p′′1

t3

c

t4

d
po

(b)

pi t1

a

p′1 t′2

	 (τ,×(b, c))

p′′1 t4

d
po

(c)
Figure 16. Example application of the self-loop pattern reduction. (a) Simple WF-net, having self loop
transitions t2 and t3. (b) Self-loop reduction where T′={t2}. (c) Self-loop reduction where T′={t2, t3}.

6.2. Relation to Refined Process Structure Tree

One of the works that is conceptually very close to the work presented in this paper, is the work
on the Refined Process Structure Tree (RPST) [25,26]. An RPST describes a hierarchy of sub-workflows
of a workflow graph, such that each sub-workflow represents a connected subgraph with a single entry
and single exit of control. In this context, a workflow graph is simply a two-terminal graph (TTG),
i.e., a directed graph without self-loops with a unique source (s) and sink node (t 6=s), s.t. each node
in the TTG is on a path from s to t. Note that a WF-net, i.e., from a graph-theoretical perspective,
is a workflow graph. However, various other process modeling formalisms, e.g., BPMN, are also
considered a workflow graph. Hence, an RPST can be computed on a much wider variety of process
modeling formalisms, i.e., compared to the approach presented in this paper.

Formally, given a workflow graph GW=(V, E, w) (a multi-graph in which w assigns each
edge in E to an ordered pair of nodes) an RPST is a hierarchy of fragments. A fragment is a
subset E′⊆E of arcs, s.t., the subgraph formed by E′ (including their incident vertices) is connected.
Furthermore, the fragment should only contain one unique entry vertex and one unique exit vertex.
A vertex is an entry vertex iff none of its incoming arcs are part of E′ or all of its outgoing arcs
are part of E′. A vertex is an exit vertex iff none of its outgoing arcs are part of E′ or all of its
incoming arcs are part of E′. The RPST of a workflow graph is the set of canonical fragments,
i.e., those fragments that completely contain other fragments or are completely contained by other
fragments, i.e., any overlap between fragments is not allowed. In [26], the authors showed that
computation of an RPST is equivalent to computing the tree of triconnected components on a normalized
variant of GW (normalization is performed by splitting vertices with multiple different incoming and
outgoing edges into two nodes).

Clearly, each individual edge of a workflow graph is a fragment. Similarly, the complete set of
arcs E defines a fragment. As an example, consider Figure 17, in which we present a simple example
WF-net (Figure 17a) and its corresponding RPST decomposition (Figure 17b,c).

Algorithms 2020, 13, 279 23 of 27

pi t1

a
p1

t2

b

t3

c
po

(a)

pi t1

e1

p1

e2
t2

e3

t3

e4

po

e5

e6

F2

F3

F1

F0

(b)

F0

e1 e2 F1

F2

e3 e5

F3

e4 e6

(c)
Figure 17. Example of an RPST decomposition (Figure 17c) based on the workflow graph (Figure 17b)
of a simple sound WF-net W2 (Figure 17a). (a) Simple WF-net W2. (b) The workflow graph of W2,
including its canonical fragments. (c) The RPST of W2..

The edges (pi, t1) and (t1, p1), visualized as e1 and e2 are part of the root fragment, i.e., F0, which is
the complete edge set of the WF-net/workflow graph. The choice construct, i.e., connecting place p1

and po to transitions t2 and t3, respectively, comprises fragment F1, which is further subdivided into
fragments F2 and F3. Note that the process tree corresponding to W2 is→ (a,×(b, c)), i.e., consisting
of 5 vertices. Hence, to translate the RPST to the corresponding process tree, we need to “collapse”
F2 and F3 into b and c, respectively. Similarly, F1 needs to be transformed to × and, F0 needs to be
transformed to→. Finally, e1 and e2 need to be merged into a.

The previous example illustrates that there is no general direct correspondence between the RPST
of a WF-net and a corresponding process tree that describes the same language. Furthermore, it shows
that translation of the RPST to a process tree is a non-trivial operation. As the RPST decomposition
ignores the semantics of a WF-net, i.e., contributing to its more general applicability with respect to the
algorithm presented in this paper (only applicable to process models that can be transformed into a
WF-net), it also exists for WF-nets that are unsound.

Due to the generic nature of the RPST, i.e., it defines a graph-theoretical property of a workflow
graph, it (largely) ignores the semantics and graph-theoretical properties of Petri nets. In particular,
as an activity in a BPMN model only consists of a single entry and exit arc, within the underlying
workflow graphs these activities are simply presented as a single edge. Since transitions in Petri nets
represent process activities, and transitions are able to have multiple incoming and outgoing arcs,
transitions in a WF-net cannot be represented as a single arc in the corresponding WF graph.

For example, consider Figure 18, in which we show the RPST of a WF-net that is not well-handled,
i.e., t1 generates concurrent behavior, place p3 merges both branches of concurrent behavior. Since the
RPST decomposition is not aware of the conceptual difference between places and transitions, the RPST
subdivides the graph into several fragments. However, this is rather inconvenient, since the WF-net is
not sound at all. Hence, from the RPST decomposition itself, one cannot judge whether a corresponding
process tree exists.

pi t1

a
p1

p2

t2

b

t3

c
p3 t4

d
po

(a)

pi t1

e1

p1e2

p2
e3

t2

e4

t3e5

p3

e6

e7

t4

e8

po

e9

F2

F3

F1

F0

(b)

F0

e1 F1

F2

e2 e4 e6

F3

e3 e5 e7

e8 e9

(c)
Figure 18. Example of an RPST decomposition (Figure 18c) based on the workflow graph (Figure 18b)
of a simple sound WF-net W2 (Figure 18a). (a) Simple unsound (not well-handled) WF-net W3. (b) The
workflow graph of W3, including its canonical fragments. (c) The RPST of W3.

Algorithms 2020, 13, 279 24 of 27

The reverse is also possible, i.e., given a WF-net with a corresponding process tree representation,
finding an RPST can be challenging. For example, when computing the RPST of the running example
used in this paper, i.e., Figure 3, the behavior formed by the loop transition t6 cannot be decomposed
into smaller chunks (in terms of the RPST, the loop structure is generating a rigid fragment). Observe that
the algorithm proposed in this paper is able to find the loop behavior due to the simplification of the
reduction steps executed prior to the loop detection in Figure 6c.

Note that the aforementioned examples are not intended to disqualify the application of the RPST
decomposition for the purpose of transforming WF-nets into process trees. However, they merely
indicate that using the RPST decomposition as a basis for such translation is not a trivial adoption.

6.3. Reducibility of WF-Nets

Thus far, we have considered various system net based patterns that we reduce into a
corresponding process tree notation. We have shown that, if the algorithm returns a WF-net with a
specific structure, its label captures a process tree describing the same language as the original WF-net.
However, it remains an open question what class of WF-nets are guaranteed to result in a process tree.

Since the basic operators considered in this paper all correspond to free-choice WF-nets, i.e., WF-nets
s.t., ∀p∈P (|p•|=1∨•(p•)={p}) (a place either has one outgoing arc, or it is the sole incoming arc of
all transitions it connects to). Hence, intuitively, we suspect that the class of free choice nets always
yields a corresponding process tree.

However, consider Figure 19, in which we depict a free-choice WF-net, which the proposed
algorithm is not able to reduce.

pi t1

a
p1

p2

t2

b

t3

c

p3 t4

d

p4 t5

e

p5

p6

p7 t6

f
po

Figure 19. A Free-Choice WF-net for which the algorithm cannot find a corresponding process tree.

Observe that the model consists of two concurrent branches, i.e., enabled by transition t1.
However, execution of transition t5 is conditional to execution of t2, i.e., firing both t3 and t2 enables
transition t5. One can look at this type of condition, i.e., induced by place p7, as a non-local behavioral
relation. There is interaction between members of the “upper part” and the “lower part” of the
concurrent construct. Such a type of interaction cannot be modeled using a tree-based process
modeling formalism.

Based on the previous example, we conclude that any class extending free-choice Petri nets
might represent various WF-nets that cannot be reduced by the algorithm proposed. The notion of
block-structured WF-nets seems to be an adequate subclass of free-choice WF-nets that can always be
reduced by the model, i.e., they are often used interchangeable with process trees. However, an exact
structural definition of the aforesaid class of WF-nets does not exist in the literature (yet). For example,
in [20], an informal description of block-structured WF-nets is proposed: “A workflow net is block
structured if for every place or transitions with multiple outgoing arcs, there is a corresponding place or
transition with multiple incoming arcs. The parts of the net between the outgoing and incoming arcs form
regions, and no arcs can exist between regions, i.e., the regions have a single entry and a single exit.”
However, transforming this description into a formal, graph-theoretical property is not trivial for
cyclic models.

Algorithms 2020, 13, 279 25 of 27

7. Conclusions

In this paper, we present an algorithm to construct a process tree on the basis of a Workflow net
(WF-net). The proposed algorithm replaces fragments of the WF-net that correspond to a process tree
operator, i.e., by means of reduction rules. If the algorithm reduces the WF-net into a net, containing
just one transition, there exists a corresponding process tree for the given WF-net, with the same
language. The reduction rules proposed are bidirectionally soundness preserving. Hence, in the case
a process tree is found, the original WF-net is sound. The contribution enables a wide variety of
applications, e.g., improved computation performance of commonly used process mining artifacts,
process model comparison and process model transformation. We conducted experiments using
a prototypical implementation, indicating quadratic time complexity in the net and process tree
rediscoverability.

Future Work We aim to extend the work presented in this paper in the following directions.
We aim to provide diagnostics with respect to the reason a given WF-net cannot be reduced
further, e.g., by assessing if removal of certain elements of the WF-net allows for further reduction.
Alternatively, it is interesting to “wrap” certain fragments of the net into an encapsulating transition,
after which the search to process tree fragments is continued. Another interesting direction, as briefly
discussed in Section 6, is the search for structural properties of WF-nets that directly indicate whether
a given WF-net corresponds to a process tree.

Author Contributions: Conceptualization, S.J.v.Z.; methodology, S.J.v.Z. and S.J.J.L.; software, S.J.v.Z.;
validation, S.J.v.Z. and S.J.J.L.; formal analysis, S.J.v.Z. and S.J.J.L.; writing—original draft preparation, S.J.v.Z.;
writing—review and editing, S.J.J.L.; visualization, S.J.v.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. van der Aalst, W.M.P. Process Mining—Data Science in Action, 2nd ed.; Springer: New York, NY, USA, 2016.
2. Dijkman, R.M.; Dumas, M.; Ouyang, C. Semantics and analysis of business process models in BPMN.

Inf. Softw. Technol. 2008, 50, 1281–1294. [CrossRef]
3. van der Aalst, W.M.P. Formalization and verification of event-driven process chains. Inf. Softw. Technol.

1999, 41, 639–650. [CrossRef]
4. van der Aalst, W.M.P.; Buijs, J.C.A.M.; van Dongen, B.F. Towards Improving the Representational Bias of

Process Mining. In Proceedings of the SIMPDA, Campione d’Italia, Italy, 29 June–1 July 2011; pp. 39–54.
5. Lee, W.L.J.; Verbeek, H.M.W.; Munoz-Gama, J.; van der Aalst, W.M.P.; Sepúlveda, M. Recomposing conformance:

Closing the circle on decomposed alignment-based conformance checking in process mining. Inf. Sci. 2018,
466, 55–91. [CrossRef]

6. van Zelst, S.J.; Bolt, A.; van Dongen, B.F. Computing Alignments of Event Data and Process Models. ToPNoC
2018, 13, 1–26.

7. Schuster, D.; van Zelst, S.J.; van der Aalst, W.M.P. Alignment Approximation for Process Trees (forthcoming).
In Proceedings of the 5th International Workshop on Process Querying, Manipulation, and Intelligence
(PQMI 2020), Padua, Italy, 18 August 2020.

8. van der Aalst, W.M.P.; de Medeiros, A.K.A.; Weijters, A.J.M.M. Process Equivalence: Comparing Two Process
Models Based on Observed Behavior. In Proceedings of the Business Process Management, 4th International
Conference, BPM 2006, Vienna, Austria, 5–7 September 2006; pp. 129–144.

9. van Dongen, B.F.; Dijkman, R.M.; Mendling, J. Measuring Similarity between Business Process Models.
In Seminal Contributions to Information Systems Engineering, 25 Years of CAiSE; Krogstie, J., Pastor, O., Pernici, B.,
Rolland, C., Sølvberg, A., Eds.; Springer: New York, NY, USA, 2013; pp. 405–419.

10. Mendling, J.; Lassen, K.B.; Zdun, U. On the transformation of control flow between block-oriented and
graph-oriented process modelling languages. IJBPIM 2008, 3, 96–108. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.1016/S0950-5849(99)00016-6
http://dx.doi.org/10.1016/j.ins.2018.07.026
http://dx.doi.org/10.1504/IJBPIM.2008.020973

Algorithms 2020, 13, 279 26 of 27

11. Berti, A.; van Zelst, S.J.; van der Aalst, W.M.P. Process Mining for Python (PM4Py): Bridging the Gap
Between Process-and Data Science. In Proceedings of the ICPM Demo Track 2019, Aachen, Germany,
24–26 June 2019; pp. 13–16.

12. Leemans, S.J.J.; Fahland, D.; van der Aalst, W.M.P. Discovering Block-Structured Process Models from
Event Logs—A Constructive Approach. In Proceedings of the Application and Theory of Petri Nets and
Concurrency—34th International Conference, Milan, Italy, 24–28 June 2013; pp. 311–329.

13. Verbeek, E.; Buijs, J.C.A.M.; van Dongen, B.F.; van der Aalst, W.M.P. ProM 6: The Process Mining Toolkit.
In Proceedings of the Business Process Management 2010 Demonstration Track, Hoboken, NJ, USA, 14–16
September 2010.

14. van Dongen, B.F. BPI Challenge 2012; Eindhoven University of Technology: Eindhoven, The Netherlands,
2012. [CrossRef]

15. van der Aalst, W.M.P. The Application of Petri Nets to Workflow Management. J. Circuits Syst. Comput.
1998, 8, 21–66. [CrossRef]

16. Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
17. van der Aalst, W.M.P. Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques.

In Proceedings of the Business Process Management, Models, Techniques, and Empirical Studies, Berlin,
Germany, 19 April 2000; pp. 161–183.

18. Jouck, T.; Depaire, B. PTandLogGenerator: A Generator for Artificial Event Data. In Proceedings of the BPM
Demo Track 2016, Rio de Janeiro, Brazil, 21 September 2016; pp. 23–27.

19. Jouck, T.; Depaire, B. Generating Artificial Data for Empirical Analysis of Control-flow Discovery
Algorithms—A Process Tree and Log Generator. Bus. Inf. Syst. Eng. 2019, 61, 695–712. [CrossRef]

20. Leemans, S. Robust Process Mining with Guarantees. Ph.D. Thesis, Department of Mathematics and
Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands 2017.

21. Augusto, A.; Conforti, R.; Dumas, M.; Rosa, M.L.; Maggi, F.M.; Marrella, A.; Mecella, M.; Soo, A. Automated
Discovery of Process Models from Event Logs: Review and Benchmark. IEEE Trans. Knowl. Data Eng. 2019,
31, 686–705. [CrossRef]

22. Carmona, J.; van Dongen, B.F.; Solti, A.; Weidlich, M. Conformance Checking—Relating Processes and Models;
Springer: New York, NY, USA, 2018.

23. van der Aalst, W.M.P.; Lassen, K.B. Translating unstructured workflow processes to readable BPEL:
Theory and implementation. Inf. Softw. Technol. 2008, 50, 131–159. [CrossRef]

24. Lassen, K.B.; van der Aalst, W.M.P. WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow
Processes to Readable BPEL. In Proceedings of the CoopIS, DOA, GADA, and ODBASE, OTM Confederated
International Conferences, Montpellier, France, 29 October–3 November 2006; pp. 127–144.

25. Vanhatalo, J.; Völzer, H.; Koehler, J. The refined process structure tree. Data Knowl. Eng. 2009, 68, 793–818.
[CrossRef]

26. Polyvyanyy, A.; Vanhatalo, J.; Völzer, H. Simplified Computation and Generalization of the Refined Process
Structure Tree. In Proceedings of the WS-FM 2010, Hoboken, NJ, USA, 16–17 September 2010; pp. 25–41.

27. Polyvyanyy, A.; García-Bañuelos, L.; Dumas, M. Structuring Acyclic Process Models. In Proceedings of the
Business Process Management—8th International Conference, Hoboken, NJ, USA, 13–16 September 2010;
pp. 276–293.

28. Polyvyanyy, A.; García-Bañuelos, L.; Dumas, M. Structuring acyclic process models. Inf. Syst. 2012,
37, 518–538. [CrossRef]

29. Polyvyanyy, A.; García-Bañuelos, L.; Fahland, D.; Weske, M. Maximal Structuring of Acyclic Process Models.
Comput. J. 2014, 57, 12–35. [CrossRef]

30. Weidlich, M.; Polyvyanyy, A.; Mendling, J.; Weske, M. Causal Behavioural Profiles—Efficient Computation,
Applications, and Evaluation. Fundam. Inform. 2011, 113, 399–435. [CrossRef]

31. Polyvyanyy, A.; Weidlich, M.; Weske, M. The Biconnected Verification of Workflow Nets. In Proceedings
of the On the Move to Meaningful Internet Systems: OTM 2010—Confederated International Conferences:
CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, 25–29 October 2010; pp. 410–418.

32. Suzuki, I.; Murata, T. A Method for Stepwise Refinement and Abstraction of Petri Nets. J. Comput. Syst. Sci.
1983, 27, 51–76. [CrossRef]

http://dx.doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/s12599-018-0541-5
http://dx.doi.org/10.1109/TKDE.2018.2841877
http://dx.doi.org/10.1016/j.infsof.2006.11.004
http://dx.doi.org/10.1016/j.datak.2009.02.015
http://dx.doi.org/10.1016/j.is.2011.10.005
http://dx.doi.org/10.1093/comjnl/bxs126
http://dx.doi.org/10.3233/FI-2011-614
http://dx.doi.org/10.1016/0022-0000(83)90029-6

Algorithms 2020, 13, 279 27 of 27

33. Esparza, J.; Hoffmann, P. Reduction Rules for Colored Workflow Nets. In Proceedings of the Fundamental
Approaches to Software Engineering—19th International Conference, FASE 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, Eindhoven, The Netherlands, 2–8 April
2016; pp. 342–358.

34. Esparza, J.; Hoffmann, P.; Saha, R. Polynomial analysis algorithms for free choice Probabilistic Workflow
Nets. Perform. Evaluation 2017, 117, 104–129. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.peva.2017.09.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Basic Notation
	Workflow Nets
	Process Trees

	Translating Workflow Nets to Process Trees
	Overview
	PTree-Nets and Their Unfolding
	Pattern Reduction
	Sequential Pattern
	Exclusive Choice Pattern
	Concurrent Pattern
	Loop Pattern

	Algorithm

	Evaluation
	Implementation
	Experimental Setup
	Results

	Related Work
	Discussion
	Extensibility
	Relation to Refined Process Structure Tree
	Reducibility of WF-Nets

	Conclusions
	References

