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Abstract: The study considers the usage of a probabilistic optimization method called Cross-Entropy
(CE). This is the version of the Monte Carlo method created by Reuven Rubinstein (1997). It was
developed in the context of determining rare events. Here we will present the way in which the CE
method can be used for problems of optimization of epidemiological models, and more specifically
the optimization of the Susceptible–Infectious–Recovered–Cross-immune (SIRC) model based on the
functions supervising the care of specific groups in the model. With the help of weighted sampling,
an attempt was made to find the fastest and most accurate version of the algorithm.
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1. Introduction

In this study our aim is to develop the possibilities of numerically solving variational problems
that appear in epidemic dynamics models. The algorithm that we will use for this purpose will
be a modified Monte Carlo method. In a few sentences, we recall those stages of the Monte Carlo
method development and its improvement, which constitute the essence of the applied approach
(cf. Section 1.1 of Martino et al. [1]).

Before constructing the computer, the numerical analysis of deterministic models used
approximations that aimed, among other things, at reducing and simplifying the calculations.
The ability to perform a significantly larger number of operations in a short time led Ulam
(cf. Metropolis [2]) to the idea of transforming a deterministic task to an appropriate stochastic task
and applying the numerical analysis using the simulation of random quantities of the equivalent model
(cf. Metropolis and Ulam [3]). The problem Ulam was working on was part of a project headed by von
Neumann, who accepted the idea, and Metropolis gave it the name of the Monte Carlo Method [1]
(in Section 1.1).

The resulting idea allowed one to free oneself from difficult calculations, replacing them with a
large number of easier calculations. The problem was the errors that could not be solved by increasing
the number of iterations. Work on improving the method consisted of reducing the variance of
simulated samples, which led to the development of the Importance Sampling (IS) method in 1956
(cf. Marshall [4]).

Computational algorithms in this direction are a rapidly growing field. Currently, the computing
power of computers is already large enough to provide an opportunity to solve problems that cannot
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be solved analytically. However, some problems and methods still require a lot of power. A lot of
research is devoted to finding or improving such methods. The development of this field is currently
very important. There are many models describing current problems. Not all offer the possibility of an
analytical solution. That is why various studies are appearing to find the best methods for accurate
results. the cross-entropy method helps to realize IS and it may, among other things, be an alternative
to current methods in problems in epidemiological models.

1.1. Sequential Monte Carlo Methods

The CE method was proposed as an algorithm for the estimation of probabilities of rare events.
Modifications of cross-entropy to minimize variance were used for this by Rubinstein [5] in his seminal
paper [5] in 1997. This is done by translating the “deterministic” optimization problem in the related
“stochastic” optimization and then simulating a rare event. However, to determine this low probability
well, the system would need a large sample and a long time to simulate.

1.2. Importance Sampling

Therefore, it was decided to apply the importance sampling (IS), which is a technique used for
reducing the variance. The system is simulated using other parameter sets (more precisely, a different
probability distribution) that helps increase the likelihood of this occurrence. Optimal parameters,
however, are very often difficult to obtain. This is where the important advantage of the CE method
comes in handy, which is a simple procedure for estimating these optimal parameters using an
advanced simulation theory. Sani and Kroese [6] have used the cross-entropy method as the support
of the importance sampling to solve the problem of the optimal epidemic intervention of HIV spread.
The idea of his paper will be adopted to treat the Susceptible–Infectious–Recovered–Cross-immune
(SIRC) models, which has a wide application to modeling the division of population to four groups of
society members based on the resistance to infections (v. modeling of bacterial Meningitis transmission
dynamics analyzed by Asamoah et al. [7], Vereen [8]). The result will be compared with an analytical
solution of Casagrandi et al. [9].

1.3. Cross-Entropy Method

This part will contain information on the methods used in the paper. The cross-entropy method
developed in [5] is one of the versions of the Monte Carlo method developed for problems requiring
the estimation of events with low probabilities. It is an alternative approach to combinatorial and
continuous, multi-step, optimization tasks. In the field of rare event simulation, this method is used in
conjunction with weighted sampling, a known technique of variance reduction, in which the system is
simulated as part of another set of parameters, called reference parameters, to increase the likelihood
of a rare event. The advantage of the relative entropy method is that it provides a simple and fast
procedure for estimating optimal reference parameters in IS.

Cross-entropy is the term from the information theory (v. [10,11] (Chapter 2)). It is a consequence
of measuring the distance of the random variables based on the information provided by their
observation. The relative entropy, a close idea to the cross-entropy, was first defined by Kullback and
Leibler [12] as a measure of the distance Dpp||qq “ Ep log ppXq

qpXq (v. [11] ((1.6) on p. 9; Definition on
Section 2.3 p. 19), [13]) for two distributions p, q and is known also as Kullback–Leibler distance.
This idea was studied in detail by Csiszár [14] and Amari [15]. The application of this distance measure
in the Monte Carlo refinements is related to a realization of the importance sampling technique.

The CE algorithm can be seen as a self-learning code covering the following two iterative phases:

1. Generating random data samples (trajectories, vectors, etc.) according to a specific
random mechanism.

2. Updating parameters of the random mechanism based on data to obtain a “better” sample in the
next iteration.
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Now the main general algorithm behind the cross-entropy method will be presented on
the examples.

1.4. Application to Optimization Problems

This section is intended to show how extensive the CE method is. The examples will show the
transformation of the optimization problems to the Monte Carlo task of estimation for some expected
values. The equivalent MC task uses the CE method. Other very good examples can be found in [16].

The first variational problem presented in this context is the specific multiple stopping model.
Consider the so-called secretary problem (v. Ferguson [17] or the second author’s paper [18]) for
multiple choice, i.e., the issue of selecting the best proposals from a finite set with at most k attempts.
There is a set with N objects numbered from 1 to N. By convention, the object with the number 1 is
classified as the best and the object with the number N as the worst. Objects arrive one at a time in
random order. We can accept this object or reject it. However, if we reject an object, we cannot return.
The task is to find such an optimal stopping rule that the sum of the ranks of all selected objects is the
lowest (their value is then the highest). So we strive for a designation

inf
τ

EXτ “ EXτ˚ .

Let ai be the rank of the selected object. The goal is to find a routine for which the value of
Epaτ1 ` ¨ ¨ ¨ ` aτkq for k ě 2, is the smallest. More details are moved to Appendix A.1.

Next, the problem was transformed into the minimization of the mean of the sum of ranks. The details
are presented in Appendix A.2. This problem and its solution by CE was described by Polushina [19].
Its correctness was checked and programmed in a different environment by Stachowiak [20].

The second example is presented in detail in Appendix A.3. It is a formulation of the vehicle
routing problem (v. [21,22]). This is an example of stochastic optimization where the cross-entropy
is used.

1.5. Goal and Organization of This Paper

In the following parts of the paper, we will focus on models of the dynamics of the spread
of infection over time when the population consists of individuals susceptible to infection, sick,
immune to vaccination or past infection, and partially susceptible i.e., the population is assigned to
four compartments of individuals. Actions taken and their impact on the dynamics of the population
are important. It is precisely the analysis of the impact of the preventive diagnosis and treatment that is
particularly interesting in the model. How the mathematical model covers such actions is presented in
Section 2.1. The model created in this way is then adapted for Monte Carlo analysis in Section 2.2 and
the results obtained on this basis are found in Section 2.3. The analysis of computational experiments
concludes this discussion in Section 3.

2. Optimization of Control for SIRC Model

Let us focus the attention on the introduction of SIRC model and presentation of the logic behind
using the CE method to determine functions that optimize the spread of epidemics. The ideology
behind the creation of the SIRC model and its interpretation will be presented in order to match the
right parameters for calculating the cost functions.

The CE method here is used to solve the variational deterministic problem. Solving such problems
has long been undertaken with the help of numerical methods with a positive result. In the position [23]
proposals of the route for variational problems for optimization problems in time are presented.
The main focus was on the non-convex problems, which often occur with optimal control problems.
In the book by Glowinski [24] a review of the methods for solving variational problems was made.
Then [25] presented a complicated method of approximating functions for the problem optimization.
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2.1. SIRC Model

The subject of the work is to solve the problem of optimizing the spread of the disease, which
can be modeled with the SIRC model. This model was proposed by Casagrandi et al. [9]. Its creation
was intended to create a better model that would describe the course of influenza type A. Contrary to
appearances, this is an important topic because the disease, although it is widely regarded as weak,
is a huge problem for healthcare. In the US alone, the cost associated with the influenza epidemic in
the season is estimated to exceed USD 10 billion (v. [26]) and the number of deaths is over 21,000 per
season (v. [27]).

Various articles have previously proposed many different mathematical models to describe a
pandemic of influenza type A. An overview of such models was made by Earn [28]. In general, it came
down to combining SIR models with the use of cross-resistance parameters (cf. details in the papers by
Andreasen et al. [29] and Lin et al. [30]). The authors of the article write that the main disadvantage of
this approach is the difficulty of the analysis and calculations with a large number of strains. The results
of their research showed that the classic SIR model cannot be used to model and study influenza
epidemics. Instead, they proposed the extension of the SIR model to a new class C that will simulate a
state between a susceptible state and a fully protected state. This extension aims to cover situations
where vulnerable carriers are exposed to similar stresses as they had before. As a result, their immune
system is stronger when fighting this disease.

The SIRC model divides the community into four groups:

� S—persons susceptible to infection, who have not previously had contact with this disease and
have no immune defense against this strain

� I—people infected with the current disease
� R—people who have had this disease and are completely immune to this strain
� C—people partially resistant to the current strain (e.g., vaccinated or those who have had a

different strain)

Figure 1 contains a general scheme of this model. The four rhombi represent the four
compartments of individuals, the movement between the compartments is indicated by the continuous
arrows. The main advantage of this model over other SIR users is the fact that after recovering from a
given strain, in addition to being completely resistant to this strain, they are also partly immune to a
new virus that will appear later. This allows you to model the resistance and response of people in the
group to different types of diseases.

Parameters α, δ i γ can be interpreted as the reciprocal of the average time spent by a person in
order of ranges I, R, C. Parameters µ with indices S, I, R, C represent the natural mortality in each
group, respectively. In some versions of the model, additional mortality rates are considered for the
group of infected people. Here we assume that this factor is not affected by the disease and we will
denote it as µ in later formulas (µS “ µI “ µR “ µC “ µ). The next one σ is the likelihood of reinfection
of a person who has cross-resistance while the parameter β describes the contact indicator.

The SIRC model is represented as a set of four ordinary differential equations. Let Sptq, Iptq be the
number of people in adequate compartments. We have (v. [9])

dS
dt
“ µp1´ Sptqq ´ βSptqIptq ` γCptq,

dI
dt
“ βSptqIptq ` σβCptqIptq ´ pµ` αqIptq,

dR
dt
“ p1´ σqβCptqIptq ` αIptq ´ pµ` δqRptq,

dC
dt
“ δRptq ´ βCptqIptq ´ pµ` γqCptq,

(1)
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with initial conditions

Sp0q “ S0, Ip0q “ I0, Rp0q “ R0, Cp0q “ C0. (2)

Figure 1. Schematic representation of the Susceptible–Infectious–Recovered–Cross-immune
(SIRC) model.

2.2. Derivation of Optimization Functions

An approach to optimize this model was proposed by Iacoviello and Stasio [31]. In this article
one can find the suggestion concerning performing the calculations as outlined by Zaman et al. [32].
Two functions were proposed in the approach as the parameter or controls. One relates to the
susceptible people and the other describes the number of sick people. The method described by
Kamien and Schwartz [33] was used to determine the optimal solution. In order to apply it, the set of
Equation (1) should be updated accordingly. After these modifications, it has the following form:

dS
dt
“ µp1´ Sq ´ βSI ` γC´ gpSptq, uptqq,

dI
dt
“ βSptqIptq ` σβCptqIptq ´ pµ` αqIptq ´ hpIptq, vptqq,

dR
dt
“ p1´ σqβCptqIptq ` αIptq ´ pµ` δqRptq ` gpSptq, uptqq ` hpIptq, vptqq,

dC
dt
“ δRptq ´ βCptqIptq ´ pµ` γqCptq,

(3)

where
gpSptq, uptqq “ ρ1Sptquptq,

hpIptq, vptqq “ ρ2 Iptqvptq,
(4)

where uptq represent the percentage of those susceptible who have been taken care of thanks to
using control on population and vptq represent the percentage of infected people with the same
description, respectively. ρ1 and ρ2 are weights that optimize the proportion of given control options.
Both functions gpSptq, uptqq hpIptq, vptqq and in order they can be interpreted as actions performed on
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people susceptible to the disease and infected. In addition, two new conditions related to optimization
functions are added to the initial conditions.

umin ď uptq ď umax, vmin ď vptq ď vmax. (5)

They describe the limits on what part of the population care can be given to. The smallest values
umin and vmin is zero. The existence of the solution is shown by Iacoviello et al. [31] and they are
functions that minimize the following cost index:

Jpu, vq “
ż t2

t1

ϕpSptq, Iptq, uptq, vptqqdt “
ż t2

t1

„

α1Sptq ` α2 Iptq `
1
2

τ1u2ptq `
1
2

τ2v2ptq


dt, (6)

α1, α2 are used to maintain the balance in the susceptible and infected group. τ1, τ2 is interpreted as
weighting in the cost index. t1, t2 determine the time interval. The square next to the functions uptq
and vptq indicates increasing intensity of functions [32]. Thus the function Jpu, vq reflects the human
value of susceptible and infected persons, taking into account the growing value of funds used over a
specified period of time.

The objective function can be changed as long as there is a minimum. The CE method does
not impose any restrictions here. However, to compare the results with [31], the function proposed
by them is used also here. There, the objective function must be square in order for the quadratic
programming techniques to be used. Usually, the quadratic function is good in mathematics, but not
in practice. Changing the objective function and impact of it can be considered further.

2.3. Optimization of the Epistemological Model by the CE Method

Sani and Kroese [6] present the way in which the cross-entropy method can be used to solve the
optimization of the epistemological model consisting of ordinary differential equations. The main
task was to minimize the objective function Jpuq depending on one optimization function uptq over a
certain set U consisting of continuous functions u. The minimum can be saved as:

γ˚ “ Jpu˚q “ min
uPU

Jpuq (7)

Parameterizing the minimum problem looks as follows:

min
cPC

Jpucq, (8)

where uc is a function from U, which is parameterized by a certain control vector c P Rm. Collection C
is a set of vectors c. It should be noted that the selected set C should be big enough to get the enough
precise solution. Then in such a set there are such c˚—which will be the optimal control vector and
γ˚—optimal value, respectively.

One way to parameterize a problem is to divide the time interval rt1, t2s at small intervals and
using these intervals together with control vector points c to define a function uc. This function can
be created by interpolating between points. Such interpolation can be done using e.g., the finite
element method, finite difference method, finite volume method or cubic B-Spline. Fang et al. [34] and
Caglar et al. [35] show that all of this methods can be used to the two-point boundary value problems.
Here the FEM method was used (v. [36]). The results for the other methods have not been checked.
The choice of the approximation method is a difficult and interesting issue, but this is not what is
consider here. With this function uc, it takes form

ucptq “
n
ÿ

t“0

cikiptq (9)
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where

kiptq “

$

’

’

&

’

’

%

t´ti´1
ti´ti´1

for t P rti´1, tis
ti`1´t
ti`1´ti

for t P rti, ti`1s

0 otherwise.

(10)

Now when uc is represented as a parameterized function, the value can be countedJpucq by
solving the system of ordinary differential Equation (3) e.g., by the Runge–Kutta method. The idea
of using the CE method in this problem is to use a multi-level algorithm with generated checkpoints
ci, here, from a normal distribution. The CE method does not impose the distribution. Usually it
is chosen from the family of density which is expected. Here, it is expected that there will be one
high peak at the peak of the epidemic. Hence the normal distribution. Then, update the distribution
parameters using the CE procedure using the target indicator as a condition for selecting the best
samples. The calculations are carried out until the empirical variance of optimal control function is
smaller than the given ε. This means that the function values are close to the optimal expected value
The idea of applying the CE method to the SIRC model is similar. The only difficulty is the fact that
when optimizing the SIRC model there are two functions instead of one as in the case of the algorithm
described here. In the form of an Algorithm 1, it looks as follows:

Algorithm 1: (Modification of the Sani and Kroese’s algorthm (v. [6]) to two optimal
functions case):

1. Initialize: Choose µ
puq
0 “ tµi0, i “ 0, . . . , nu, σ

puq
0 “ tσi0, i “ 0, . . . , nu,

µ
pvq
0 “ tµi0, i “ 0, . . . , nu and σ

pvq
0 “ tσi0, i “ 0, . . . , nu, set k “ 1

2. Draw: Generate a random samples C1, . . . , CN „ Npµpuqk´1, σ
puq
k´1

2
q and

D1, . . . , DN „ Npµpvqk´1, σ
pvq
k´1

2
qwith Cm “ tCmi, i “ 0, . . . , nu and Dl “ tDli, i “ 0, . . . , nu.

3. Evaluate: For each control vector Cm and Dm evaluate the objective function JpuCm , uDl q by
solving the ODE system

4. Find the p best performing samples, based on the values tJpuCm ,Dl qu. Let I be
the corresponding set of indices.

5. Update: for all i “ 0, . . . , n let

µ̂ki
puq “

1
p

ÿ

mPI

Cmi; pσ̂ki
puqq2 “

1
p

ÿ

mPI

pCmi ´ µ
puq
ki q,

µ̂ki
pvq “

1
p

ÿ

lPI

Dli; pσ̂ki
pvqq2 “

1
p

ÿ

lPI

pDli ´ µ
pvq
ki q.

6. Smooth: For a fixed smoothing parameter 0 ă α ď 1 let

µ̂k
puq “ αµ

puq
k ` p1´ αq ˆµk´1

puq; σ̂k
puq “ ασ

puq
k ` p1´ αq ˆσk´1

puq

µ̂k
pvq “ αµ

pvq
k ` p1´ αq ˆµk´1

pvq; σ̂k
pvq “ ασ

pvq
k ` p1´ αq ˆσk´1

pvq

7. Repeat 2–6 until maxiσ
puq
ki ă ε and maxiσ

pvq
ki ă ε with ε “ 10´5. Let L be the final iteration

number. Return µL as an estimate of the optimal control parameter c˚

The value of the criterion Jp¨, ¨q is calculated in steps 3 and 4. The selection of the function ϕ

allows us to fit the cost function to the modeled case. Here, the criterion given by (6) is adopted.
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3. Description of the Numerical Results

This section will present the results obtained using the cross-entropy method. For the correct
comparison the same parameters for the SIRC model were used. These values are:

µ “
1

75
ryear´1s, γ “

1
2
ryear´1s, α “

365
5
ryear´1s,

δ “ 1ryear´1s, β « 146ryear´1s, σ « 0.078.

For optimization functions uptq and vptq the following restrictions have been applied:

0 ď uptq ď 0.9, 0 ď vptq ď 0.9.

Restrictions were proposed by Lenhart and Workman [37]). Their value was explained by the fact
that the whole group cannot be controlled. In addition, the weights used for functions have values
ρ1 “ 2 and ρ2 “ 2

Now, all that’s left is to propose variable values for the objective function:

α1 “ 10´3, α2 “ 0.997, τ1 “ 10´3, τ2 “ 10´3.

The parameter values are adjusted using historical data like parameter mortality rate µ, which is
counted as average lifetime of a host or parameters α, δ, γ mean the inverted time of belonging to the
group I, R and C. A detailed description of determining parameters along with their limitations is
presented in the article by Casagrandi et al. [9].

3.1. A Remark about Adjusting the Parameters of the Control Determination Procedure

Here these parameters are given and describe the influenza A epidemics well, because of long
historical data sets. However, this may not be the case, and then these parameters are subject to
adjustment in the control determination procedure. An overview of applications and accuracy
of calibration methods, which can be used, is presented in the article by Hazelbag et al. [38],
which provides an overview of the model calibration methods. All parameters in the model are
constant and independent of time, so methods that try to optimize a goodness-of-fit (GOF) can be used
for this example. GOF is a measure that assesses consistency between model the output and goals.
As a result, it gives the best combination of parameters. Examples of such methods are grid search,
Nelder–Mead method, the iterative, descent-guided optimization algorithm, sampling from a tolerable
range. After finding the appropriate parameters, other algorithms like the profile likelihood method
or Fisher information can be used to calculate the confidence intervals for these coefficients. If the
epidemic described by the model consists of transition probabilities that cannot be estimated from
currently available data, calibrations can be performed to many end points. Then GOF is measured as
the mean percentage deviation of the values obtained at the endpoints (v. [39]).

3.2. Proposed Optimization Methods in the Model Analysis

The results will be presented for two moments in the model: at the beginning and in the middle
of the epidemic. This is initialized with other initial parameters. For the beginning of the epidemic,
they are as follows:

S0 “ 1´ I0, I0 “ 10´6, R0 “ 0, C0 “ 0.

For the widespread epidemic:

S0 “ 0.99, I0 “ 5 ˚ 10´3, R0 “ 3 ˚ 10´3, C0 “ 2 ˚ 10´3.

The values in the model have been normalized for the entire population, and they add up to 1.
The results for both beginning (v. Figure 2a) and during (v. Figure 2b) the epidemic were obtained
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using the Runge-Kutty method and shown here. The cost index in this case was in order 0.00799 and
0.00789 for the model of the beginning and the development of an epidemic.

In Sections 3.3 and 3.4 two ways of calculating optimal functions uptq and vptq for the SIRC
model will be considered. In the first version, the functions will be calculated separately. In the
following, both uptq and vptqwill be counted at the same time. All versions will be presented at two
moments of the epidemic: when it began and when it has already spread. The results will be compared
with those obtained in the article by Iacoviello et al. [31], where the problem was solved using the
sequential quadratic programming method using a tool from Matlab. Unfortunately, the article does
not specify the cost index value for solving the obtained sequential quadratic programming method.
Therefore, in the paper, there were attempts to recreate the form of the function uptq and vptq and the
cost index obtained for them (0.003308 for the first situation and 0.006489 for the second one) and the
model solution.

(a) (b)
Figure 2. Solutions for SIRC models without optimal control: (a) at the beginning of the epidemic
(b) when the epidemic is developed.

As can be seen in Figure 3 in the first situation, the control functions helped reduce peak infection,
which was previously (without control Figure 2a) occurred between 2 and 4 months. The largest peak
was around 20% occurred between 2 and 4 months. Previously, the largest peak was around 10%.
In the case of the second situation, the peak also decreased, but not very clearly (it is also visible in
the value of the cost index, which for the first situation is 0.003308, and for the other one 0.006489).
It can be seen that timely control is also very important to reducing the harmful effects of an epidemic.
For more conclusions on how to apply control properly in this model, see [31].

3.3. CE Method Version 1

In the first method, the algorithm is shown at the end of Section 2.3 has been applied twice.
Once for the calculation of the optimal function uptqwith a fixed vptq, and then vptqwith a fixed uptq.
In the next step, the results were combined and the result for the SIRC model was calculated using
these two functions. This approach is possible due to the lack of a combined restriction on uptq and
vptq. Features are not dependent on each other with resources.

The cost index was 0.003086 for the start of the epidemic and 0.006443 for a developed epidemic.
The Figure 4 show the graphs of functions uptq and vptq along with a graph of solutions for both
moments during the epidemic.

For functions uptq the results are similar, only the decrease here is more linear.
However, the solution of the SIRC model gives the same results. Function vptq is much more interesting.
The CE method showed that it should have very low values, even close to 0 throughout the entire
period in both cases. However, this does not affect the cost index (it is even smaller than in the previous
case) and the SIRC model. More on this subject will be included in the summary.
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Figure 3. Values of control functions and solutions obtained for them. Solved by the sequential
quadratic programming method.

Figure 4. Values of control functions and solutions obtained for them. Solved by the cross-entropy
method—version 1.



Algorithms 2020, 13, 281 11 of 20

3.4. CE Method Version 2

In the second case, it was necessary to change slightly the algorithm from Section 2.3 to be able
to use it for two control functions. In point 1 of the algorithm a variable is generated Cm „ Npµk, σ2

k q,
which serves to designate uCm , where µk, σk are requested by the user. Here, 2 µ will need to be

initialized µ
puq
k , µ

pvq
k and 2 σ: σ

puq
k , σ

pvq
k . Then designate Cpuq1 , . . . , CpuqN „ Npµpuqk , σ

puq2
k q and similarly

Cpvq1 , . . . , CpvqN „ Npµpvqk , σ
pvq2
k q. Now Jpu, vq can be count without problems. Further the algorithm

goes the same way, and in point 6, all four parameters µ
puq
k , µ

pvq
k , σ

puq
k , σ

pvq
k are updated. The Figure 5

presents these functions.
In this case, we have very similar results as in the previous section. This can be seen in both the

charts and the cost index values (0.003044 and 0.006451). The only problem here is the need for a large
sample to bring the results closer.

Figure 5. Values of control functions and solutions obtained for them. Solved by the cross-entropy
method—version 2.

3.5. Comparison of Results

This section gathers the results from each version and compares them with each other. At first,
the behavior of each group of the SIRC model was looked at and compared with the solution of the
uncontrolled model. This is shown in Figures 6–9. The results are presented only for the first situation,
where the epidemic begins to spread, because there you can see the results of using control much better.

The most interesting is Figure 7 comparing infected people. You can see here very well how
functions uptq and vptq help in the fight against the epidemic. Let two versions of the CE method
overlap. The functions obtained by the sequential quadratic programming method give slightly better
results. However, they have a worse cost index (the comparison is presented in Table 1). This is
probably due to the high value of the function vptq, which increases the cost index. The question
remains why there is such a discrepancy between the obtained function values vptqwith both methods.
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In this article [31] weight and impact of functions uptq and vptq were compared. The chart in the
article compares the results obtained for the application of both functions, one at a time and none.
It turned out that the main influence on the number of infected has control over susceptible persons,
i.e., the function uptq. Choosing the optimal values for vptq is not very important for the solution of the
model. Therefore, such discrepancies are possible when choosing optimal values.

Figure 6. Comparison of results obtained for group S among various methods.

Figure 7. Comparison of results obtained for group I among various methods.

Figure 8. Comparison of results obtained for group R among various methods.
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Figure 9. Comparison of results obtained for group C among various methods.

Table 1 contains a comparison of the cost index values and the duration of the algorithms for each
method. The first value is when the epidemic started, and the second is when it has already developed.
The article does not specify the algorithm time of the method used.

Table 1. Summary of cost indexes and times for all situations.

Method Cost Index Time

Results without control functions 0.00799 -
0.00789

Sequential quadratic programming method 0.003308 -
0.006489

Cross-entropy method version 1 0.003086 30 s
0.006443

Cross-entropy method version 2 0.003044 4 min 54 s
0.006451

It can be seen that for each version the cost index values came out very similar. The differences can
be seen in time. This is because in the first version of the CE method a smaller sample was simulated
because both functions were considered separately. Fortunately, the functions were not closely related
and it was possible to consider them separately.

4. Summary

The study examined the possibility of using the CE method to determine the optimal control in
the SIRC model. Similar models are being developed to model the propagation of malicious software
in computer networks (v. Taynitskiy et al. [40]). However, the number of works with this approach is
still relatively small, although its universality should encourage checking its effectiveness. There are
two control functions in the model, which, when properly selected, optimize the cost function. The CE
method was used in two versions: considering the two functions separately and together. The results
were then compared with those obtained by Iacoviello and Stasio [31] using routing of Matlab (Matlab
is a paid environment with a number of functions. Unlike other environments and programming
languages, additional features are created by developers in a closed environment and can only be
obtained through purchase.). The Cross-Entropy method had little problems when considering two
functions at the same time. Due to the large number of possibilities, it was necessary to simulate a
large sample, which significantly extended the algorithm’s time. The second way came out much
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better. However, it only worked because the functions were not dependent on each other. In the
opposite situation, there is also a possibility to get the result via CE results however, it will be necessary
to change the algorithm and the dependence of how the functions depend on each other and add
this to the algorithm when initiating optimization functions in the code. The same situation applies
to changing the objective function and the density used for approximation. Changing the objective
function gives the possibility to use other methods. If it stays quadratic and the constraints are linear,
quadratic programming techniques like the sequential quadratic programming method can still be
used. If the objective function and the constraints stay convex, we use general methods from convex
optimization. The CE method is based on well-known and simply classical rules and is therefore quite
problem-independent. There are no rigid formulas, and therefore it requires consideration for each
problem separately. So it is very possible to reconsider it in another way, which can be interesting
for further work. The CE method may also facilitate the analysis of modifications of epidemiological
models related to virus mutation or delayed expression (v. Gubar et al. [41], Kochańczyk et al. [42]).
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Abbreviations

The following abbreviations are used in this article:

CE Cross-entropy method (v. page 2)
FEM the finite element methods (v. page 6)
GOF a goodness-of-fit (v. page 8)
IS the importance sampling (v. page 2)
SIR The SIR model is one of the simplest compartmental models. The letters means the number

of Susceptible–Infected–Removed (and immune) or deceased individuals. (v. [43–46]).
SIRC The SIR model with the additional group of partially resistant to the current strain people:

Susceptible–Infectious–Recovered–Cross-immune (v. page 4).

Appendix A. Optimization by the Method of Cross-Entropy

Appendix A.1. Multiple Selection to Minimize the Sum of Ranks

Let pa1, . . . , aNq be a permutation of integers p1, 2, . . . , Nq, where all permutations are equally
probable. For every i “ 1, 2, . . . , N Yi will be the number of values a1, . . . , ai, which are ď ai. Yi “

cardt1 ď j ď i : aj ď iu is the relative rank of the i-th object. The decision-maker observe the relative
ranks and the real ranks define filtration: Fi “ σtY1, Y2, . . . , Yiu. Let S be the set of Markov time with
respect to tFiu

N
i“1. Define

v “ inf
τ

Epaτ1 ` ¨ ¨ ¨ ` aτkq, where τ “ pτ1, . . . , τkq, τi P S.

We want to find the optimal procedure τ˚ “ pτ˚1 , . . . , τ˚k q and the value of the optimization
problem v. Let Fpmqi be σ-algebra generated by pY1, . . . , Ymiq. If we accept

Zpmqk “ Epaτ1 ` ¨ ¨ ¨ ` aτk |Fpmqkq,

then

v “ inf
τ

EZτ , τ “ pτ1, . . . , τkq.
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The problem is reduced to the problem of stopping sequences multiple times Zpmqk . As shown
in [47,48] the solution to the problem is the following strategy:
If there are integer vectors

δpkq “ pδ
pkq
1 , . . . , δ

pkq
N´k`1q, 0 ď δ

pkq
1 ď ¨ ¨ ¨ ď δ

pkq
N´k ă δ

pkq
N´k`1 “ N,

δp2q “ pδ
p2q
k´1, . . . , δ

p2q
N´1q, 0 ď δ

p2q
k´1 ď ¨ ¨ ¨ ď δ

p2q
N´2 ă δ

p2q
N´1 “ N,

δp1q “ pδ
p1q
k , . . . , δ

p1q
N q, 0 ď δ

p1q
k ď ¨ ¨ ¨ ď δ

p1q
N´1 ă δ

p1q
N “ N,

δi1
j ď δi2

j , 1 ď i1 ď i2 ď k, k´ i1 ` 1 ď j ď N ´ i2 ` 1

(A1)

then

τ˚1 “ mintm1 : ym1 ď δ
pkq
m1 u,

τ˚i “ mintmi ą mi´1 : ymi ď δ
pk´i`1q
mi u,

on the set Fi´1 “ tω : τ˚1 “ m1, . . . , τ˚i´1 “ mi´1u. i “ 2, . . . , k, F0 “ Ω. For small N there is a possibility
to get accurate values by the analytical method. The CE method solves this problem by changing the
estimation problem to the optimization problem. Then by randomizing this problem using a defined
family of probability density functions. With this the CE method solves this efficiently by making
adaptive changes to this pdf and go in the direction of the theoretically optimal density.

Appendix A.2. Minimization of Mean Sum of Ranks

Let’s consider the following problem of minimizing the mean sum of ranks:

min
xPχ

ESpx, Rq, (A2)

where χ “ tx “ pxp1q, . . . , xpkqq : conditions from (A1) are preservedu is some defined set.
R “ pR1, . . . , RNq is a random permutation of numbers 1, . . . , N. Ŝ is an unbiased estimator ESpx, Rq
with the following formula:

Ŝpxq “
1

N1

N1
ÿ

n“1

pRnτ1 ` ¨ ¨ ¨ ` Rnτkq,

where pRn1, . . . , RnNq is the nth copy of a random permutation R.
Now, a cross-entropy algorithm can be applied (v. Section 1.3 and [5]). Let’s define the indicator

collections tItSpxqďγuu on χ for different levels γ P R. Let t f pp¨ ; uqu be the density family on χ

parameterized by the actual parameter value u. For a specific u we can combine (A2) with the problem
of estimation

lpγq “ PupSpXq ď γq “
ÿ

x
ItSpxqďγu f px, uq “ Eu ItSpxqďγu,

where Pu is a measure of the probability in which the random state X has a density t f pp¨ ; uqu
and γ is a known or unknown parameter. l we estimate using the Kullback–Leibler distance.
The Kullback–Leibler distance is defined as follows:

Dpg, hq “
ż

gpxq ln gpxqdx´
ż

gpxqhpxqdx.

Usually gpxq is chosen from the family of density f p¨ ; vq. So here D for g and f px; vq it comes
down to selecting such a reference parameter v for which ´

ş

gpxq ln f px; vqdx is the smallest, that is,
it comes down to maximization:

max
v

ż

gpxq f px; vqdx.
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After some transformations:

max
v

Dpvq “ max
v

1
N

N
ÿ

i“1

ItSpXiqěγuWpXi; u; wq ln f pXi; vq.

So firstly, let us generate a pair tpγt, utqu, which we then update until the stopping criterion is
met and the optimal pair is obtained tpγ˚, u˚qu. More precisely, arrange u0 and choose not too small ρ

and we proceed as follows:

(1) Updating γt Generate a sample X1, . . . , XN2 from t f pp¨ ; ut´1qu. Calculate ŜpX1q, . . . , ŜpXN2q and
sort in ascending order. For γ̂t choose

γ̂t “ Ŝpr$Nsq

(2) Updating ut ût obtain from the Kullback–Leibler distance, that is, from maximization

max
u

Dpuq “ max
u

Eut´1 I
tŜpxqďγtu

ln f pX; uq, (A3)

so

max
u

D̂puq “ max
u

1
N2

N2
ÿ

n“1

I
tŜpxqďγ̂tu

ln f pXn; uq. (A4)

As in [49], here a three-dimensional matrix of parameters u “ tuijlu is consider.

uijl “ PrtXpiqj “ lu, i “ 1, . . . , k; j “ k´ i` 1, . . . , N ´ i; l “ 0, . . . , N ´ 1.

It seems that

f pxpiqj ; uq “
N´1
ÿ

l“0

uijl Itxpiqj “lu
.

and then after some transformations

ûptqijl “

řN2
n“1 I

tŜpXnqďγ̂tu
Wpt´1q

nij ItXnij“lu
řN2

n“1 I
tŜpXnqďγ̂tu

,

Wpt´1q
nij “

ûp0qijXnij

ûpt´1q
ijXnij

,

where Xn “ tXniju, Xnij is a random variable from f pxpiqj ; ût´1q, corresponding to the
Formula (A4). Instead of updating a parameter use the following smoothed version

ût “ αût ` p1´ αqût´1.

(3) Stopping Criterion The criterion is from [16], which stop the algorithm when γ̂T (T is last step)
has reached stationarity. To identify the stopping point of T, consider the following moving
average process

BtpKq “
1
K

t
ÿ

s“t´K`1

γ̂t, t “ s, s` 1, . . . , s ě K,

where K is fixed.

CtpKq “

1
K´ 1

t
řt

s“t´K`1pγ̂t ´ BtpKqq2u

BtpKq2
.
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Then let us define
C´t pK, Rq “ min

j“1,...,R
Ct`jpKq

and
C`t pK, Rq “ max

j“1,...,R
Ct`jpKq,

where R is fixed.

Then the stopping criterion is defined as follows

T “ mintt :
C`t pK, Rq ´ C´t pK, Rq

C`t pK, Rq
ď εu, (A5)

where K and R are fixed and ε is not too small.

Appendix A.3. The Vehicle Routing Problem

The classical vehicle-routing problem (VRP) is defined on a graph G “ pV,Aq, where
V “ tv0, v1, . . . , vnu is a set of vertices and A “ tpvi, vjq : i, j P t0, . . . , nu, vi, vj P Vu is the arc set.
A matrix L “ pLi,jq can be defined on A, where the coefficient Li,j defines the distance between the
nodes vi and vj and is proportional to the cost of travelling by the corresponding arc. There can
be one or more vehicles starting off from the depot v0 with a given capacity, visiting all or a subset
of the vertices, and returning to the depot after having satisfied the demands at the vertices. The
Stochastic Vehicle Routing Problem (SVRP) arises when elements of the vehicle routing problem are
stochastic—the set of customers visited, the demands at the vertices, or the travel times.

Let us consider that a certain type of a product is distributed from a plant to N customers, using a
single vehicle, having a fixed capacity Q. The vehicle strives to visit all the customers periodically to
supply the product and replenish their inventories. On a given periodical trip through the network,
on visiting a customer, an amount equal to the demand of that customer is downloaded from the
vehicle, which then moves to the next site. The demands of a given customer during each period
are modeled as independent and identically distributed random variables with known distribution.
A reasonable assumption is that all the customers’ demands belong to a certain distribution (say normal)
with varying parameters for different customers.

The predominant approach for solving the SVRP class of problems is to use a “here-and-now”
optimization technique, where the sequence of customers to be visited is decided in advance. On the
given route, if the vehicle fails to meet the demands of a customer, there is a recourse action taken.
The recourse action could be in the form of going back to the depot to replenish and fulfill the customers’
demand continue with the remaining sequence of the customers to be visited or any other meaningful
formulation. The problem then reduces to a stochastic optimization problem where the sequence with
the minimum expected distance of travel (or equivalently, the minimum expected cost) has to be arrived
at. The alternative is to use a re-optimization strategy whereupon failure at a node, the optimum route
for the remaining nodes is recalculated. The degree of re-optimization varies. At one extreme is the
use of a dynamic approach where one can re-optimize at any point, using the newly obtained data
about customer demands, or to re-optimize after failure. Neuro Dynamic Programming has been used
to implement techniques based on re-optimization (cf. e.g., [50]).

The vehicle departs at constant capacity Q and has no knowledge of the requirements it will
encounter on the route, except for the probability distributions of individual orders. Hence, there is
a positive probability that the vehicle runs out of the product along the route, in which case the
remaining demands of that customer and the remaining customers further along the route are not
satisfied (a failure route). Such failures are discouraged with penalties, which are functions of the
recourse actions taken. Each customer in the set can have a unique penalty cost for not satisfying the
demand. The cost function for a particular route traveled by the vehicle during a period is calculated as
the sum of all the arcs visited and the penalties (if any) imposed. If the vehicle satisfies all the demands
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on that route, the cost of that route will simply be the sum of the arcs visited including the arc from the
plant to the first customer visited, and the arc from the last customer visited back to the plant.

Alternatively, if the vehicle fails to meet the demands of a particular customer, the vehicle heads
back to the plant at that point, terminating the remaining route. The cost function is then the sum of all
the arcs visited (including the arc from the customer where the failure occurred back to the plant) and
the penalty for that customer. In addition, the penalties for the remaining customers who were not
visited will also be imposed. Thus, a given route can have a range of cost function values associated
with it. The objective is to find the route for which the expected value of the cost function is minimum
compared to all other routes.

Let us adopt the “here-and-now” optimization approach. It means that the operator decides the
sequence of vertices to be visited in advance and independent of the demands encountered. Such an
approach leads to a discrete stochastic optimization problem with respect to the discrete set of finite
routes that can be taken. Let Gprq :“ ErHpr, Drqs, where Hpr, Drq is the deterministic cost function of
the route r “ pr1, . . . , rNq, R – is the discrete and finite (or countable finite) feasible set of values that r
can take, and demands Dri are a random variable that may or may not depend on the parameters ri.
The class of discrete stochastic optimization problems we are considering here are those of the form

min
rPR
tGprqu.

Thus, Hpr, Drq is a random variable whose expected value, Gprq is usually estimated by Monte
Carlo simulation. The global optimum solution set can then be denoted by

R˚ “ tr˚ P R : Gpr˚q ď Gprq,@rPRu.

The determination of R˚ can be done by CE (v. Rubinstein [5,16,51]). In this case, also the
basic idea is to connect the underlying optimization problem to a problem of estimating rare-event
probabilities (v. [52] in the context of the deterministic optimization). Here the CE method is used
in the context of the discrete stochastic optimization and the Monte Carlo techniques are needed to
estimate the objective function. In solving the problem by CE methods, some practical issues should
be solved, as to when to draw new samples and how many samples to use.
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