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Abstract: The Wyoming Department of Transportation (WYDOT) initiated a project to optimize the
heights of barriers that are not satisfying the barrier design criteria, while prioritizing them based
on an ability to achieve higher monetary benefits. The equivalent property damage only (EPDO)
was used in this study to account for both aspects of crash frequency and severity. Data of this
type are known to have overdispersion, that is having a variance greater than the mean. Thus,
a negative binomial model was implemented to address the over-dispersion issue of the dataset.
Another challenge of the dataset used in this study was the heterogeneity of the dataset. The data
heterogeneity resulted from various factors such as data being aggregated across two highway systems,
and the presence of two barrier types in the whole state. Thus, it is not practical to assign a subjective
hierarchy such as a highway system or barrier types to address the issue of severe heterogeneity
in the dataset. Under these conditions, a finite mixture model (FMM) was implemented to find a
best distribution parameter to characterize the observations. With this technique, after the optimum
number of mixtures was identified, those clusters were assigned to various observations. However,
previous studies mostly employed just the finite mixture model (FMM), with various distributions,
to account for unobserved heterogeneity. The problem with the FMM approach is that it results
in a loss of information: for instance, it would come up with N number of equations, where each
result would use only part of the whole dataset. On the other hand, some studies used a subjective
hierarchy to account for the heterogeneity in the dataset, such as the effect of seasonality or highway
system; however, those subjective hierarchies might not account for the optimum heterogeneity in the
dataset. Thus, we implement a new methodology, the Bayesian Hierarchical Finite Mixture (BHFMM)
to employ the FMM without losing information, while also accounting for the heterogeneity in
the dataset, by considering objective and unbiased hierarchies. As the Bayesian technique has the
shortcoming of labeling the observations due to label switching; the FMM parameters were estimated
by maximum likelihood technique. Results of the identified model were converted to an equation for
implementation of machine learning techniques. The heights were optimized to an optimal value and
the EPDO was predicted based on the changes. The results of the cost–benefit analysis indicated that
after spending about 4 million dollars, the WYDOT would not only recover the expenses, but could
also expect to save more than $4 million additional dollars through traffic barrier crash reduction.

Keywords: bayesian hierarchical finite mixture model; machine learning; cost-benefit analysis

1. Introduction

Although the odds of crash occurrences are rare, their occurrences could have devastating impacts
on the passengers of vehicles. Annually, more than a million people die, and about 50 million are severely
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injured, resulting in a high number of deaths and injuries worldwide [1]. Although run-off-the-road
(ROTR) crashes account for a significant proportion of the high number of fatalities, traffic barriers
could be installed to minimize the severity of those crashes. However, the severity of barriers crashes
still persists. Actually, traffic barrier crashes are the third most common cause of fixed-object fatalities,
after utility poles and trees [2].

The literature has mainly concentrated on various environmental or driver characteristics to
identify factors impacting the severity of barrier crashes. However, geometric characteristics of barriers
have not been investigated adequately even though they are one of the main factors impacting severity
of those crashes. For instance, heights of barriers above the recommended range could result in
underride crashes, while low barriers heights could result in override crashes. However, due to the
unavailability of barriers’ geometric characteristics in past studies, researchers have not considered
those geometric characteristics in their analyses. Most studies in the literature determined the impacts
of barriers’ geometric characteristics through simulations and limited field studies.

The Wyoming Department of Transportation (WYDOT) conducted a data collection project
to measure geometric parameters of more than one million linear feet of barriers. In addition,
roadside characteristics of those barriers, such as shoulder width, were documented. After conducting
the cost–benefit analysis, another analysis was conducted ranking all barriers in the state from highest
to lowest benefit due to crash reduction.

1.1. Methodological Steps

To provide a prioritization process, a monetary evaluation of barrier enhancement was conducted
with the help of the machine learning technique. The results of the technique were used to inform
policy makers about how much money they would expect to gain after optimizing the underdesigned
barriers, and which barriers would be more cost-effective to optimize first. To fulfill these points,
several steps were taken in this study, highlighted as follows:

1. Two barrier types, box beam and W-beam barriers, were aggregated in the dataset on both the
state’s highways and the interstate highways. The two barrier types namely: box beam and
W-beam, were aggregated in the dataset. It was expected that the data aggregations would result
in high heterogeneity. However, to account for the heterogeneity, a finite mixture model (FMM)
was used to allocate a cluster to each observation based on their distributions

2. After a model was trained across all barriers in the state highway and interstate system, the trained
model was implemented only on those barriers that were below/above recommended heights

3. The heights of the barriers were optimized, and the trained model was implemented again to
predict costs

4. The barriers’ optimal heights were selected based on the recommended heights from a
literature review

5. The cost of barrier enhancements were considered in the cost-benefit analysis when barriers
were enhanced

6. All the variables applying the trained model were kept constant, except for shoulder width,
barrier height, and their interaction term

7. After finding predicted EPDOs for years before and after enhancement, the predicted EPDO
values were converted to their monetary values so the barrier enhancement cost could be added
to the EPDO costs

8. The barriers were ranked based on their benefits so that WYDOT could first enhance the barriers
with higher benefits.

It should be noted that this work is an extension of previous work conducted by the authors [3].
While the previous work used the Bayesian hierarchical two component model, this method just
considers a single component negative binomial. Also, while the previous work could account for zero
observations through its first layer, this work, due to its nature, could not optimally account for zero
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observations so we just consider crash barriers. However, we used another methodology for this paper
by accounting for the unseen heterogeneity through a finite mixture, while with a simple negative
binomial, the second layer of the previous work, only used a subjective hierarchy assigned to the data.
In summary, each method has its strengths and shortcomings as each study took a different approach.

It should be noted that the maximum likelihood method was implemented for FMM instead of
the Bayesian technique, due to the shortcomings of the Bayesian technique in estimating clusters,
especially labeling the observations. Label switching is a main issue for the Bayesian technique.
The problem is due to symmetry in likelihood of the model parameter. Although the problem
might be expected to be resolved by removing symmetry by using artificial identifiable constraints,
it has been argued that the technique might not be a reliable method for FMM, especially since
we used that technique for labeling the observations. The description of the Bayesian hierarchical
finite mixture model is detailed in our previous work and the readers are referred to that study [4].
Thus, maximum likelihood was used for the purpose of the FMM method. The summary of the
methodological steps are depicted in Figure 1.
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1.2. Study Contribution

The Bayesian technique has been implemented in various fields, from intrusion to fault detection
systems [5]. On the other hand, the majority of past safety studies in the literature review either focused
on the severity [6] or the frequency of barrier crashes [7]. However, an inadequate number of studies
considered both aspects of barrier crashes: crash severity and frequency. Also, none of those past
studies considered geometric characteristics of barriers while performing the optimization. This is
partly due to a lack of available information related to traffic barrier characteristics.

Thus, besides considering geometric characteristics of barriers, this study is conducted to consider
both the aspects of crash frequency and crash severity by using equivalent property damage only (EPDO)
and by aggregating barrier crashes across various barrier IDs. In addition, although several studies
and experiments have been conducted to identify recommended dimensions of barrier geometric
characteristics, none of those studies have quantified the benefit that could be gained by bringing the
barriers to their optimal values based on machine learning techniques.

Other shortcomings of the past studies were the approaches taken to account for heterogeneity.
Some studies used FMM to come up with the data models’ distributions. However, those approaches
resulted in a loss of information as they divided data into a number of datasets based on various
distributions. Another approach is to use the hierarchical technique to account for the heterogeneity in
the dataset. However, assignment of data to the hierarchy has been mainly subjective in studies related
to traffic safety studies, where there is no clear-cut hierarchy, and the researchers assign data to the
hierarchy based on educated or engineering knowledge. Thus, this study is conducted by taking into
consideration the aforementioned shortcomings. As not much study has been conducted in the area of
optimization in traffic safety the way we did, the readers are referred to the literature review [3].
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This paper is organized as follows: the methodology section outlines the implemented methods,
while the data section details the data used in the study. The remaining sections of this study would
summarize the results and conclusions.

2. Methodology

This study implemented the Bayesian hierarchical finite mixture model (BHFMM). In this method,
after finding the distributions’ parameters of observations, the clusters are assigned to the related
observations, and then the resulting dataset is used in a hierarchical technique for analysis and
application of machine learning techniques. The following section first outlines the finite mixture
model (FMM), and then presents the hierarchical technique, and the model implementation.

2.1. Finite Mixture Model

The FMM is defined as a probabilistic model which can be used to represent the presence of
subpopulations within the overall dataset. For instance, in the current dataset, it is believed that there
are heterogeneities due to aggregating various datasets such as highway systems, barrier types and
seasonality. Although using barrier types or highway systems could account for some heterogeneity in
the dataset, just considering those aspects could not account for the full range of heterogeneity. This is
especially true as there are several unseen factors that the available predictors as hierarchies could not
account for. Not accounting for this heterogeneity issue, due to data subsets having different residuals
distribution, biased or erroneous estimates would emerge.

Traditional modeling assumes that all the data comes from the same distribution. Researchers often
account for the data heterogeneity by assigning subjective hierarchies. However, no real information is
available to determine which observations should be assigned to which distribution. Finite mixture
models could be used for those cases to describe the unknown distributions. The finite mixture model
with k components could be written as [8]:

h(y|x, Ψ) =
K∑

k=1

πk f (y|x,θk) (1)

with conditions of:

πk ≥ 0, and
K∑

k=1

πk = 1 (2)

where h is a density of y as dependent variable, x is a vector of independent variables, πk is the
probability of component k, and θk is the component-specific parameter for the density function f.

Due to the response characteristics being non-negative, discrete and posing over dispersion,
the negative binomial (NB) model is a good choice for modeling traffic barrier EPDO crashes. Here the
NB probability density for a cluster k is defined based on µi j and ψ as:

Pr(Y = yi|µi,ψ) =
Γ(yik +ψk)

Γ(ψk)Γ(yik + 1)

(
ψk

µik +ψk

)ψ( µik

µik +ψk

)yik

(3)

where the expected value of EPDO, yi, is estimated based on µi j, and ψ j. Γ(.) is the standard gamma
function, ψi is dispersion parameter. µi j is mean parameter which is written based on β j, the vector of
regression coefficients, as:

µi j = exp
(
xT

ilβ j
)

(4)

and the variance of yi is written as:

Var(yi) = µi j +
µi j

ψ j
(5)

The above equation highlights that for NB, the variance is larger than the mean.
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Then NB as a type of generalized linear model is used to explain the relationship between the

count response, y, and various model covariates of x =
[
1, x1, . . . , xP

]T
as follows [9]:

E(Y|x) = g−1
(
xTβ

)
, (6)

where g is a link function, and β = [β0, β1, . . . , βP]
T are regression coefficients. For this study, Y follows

the negative binomial model with the log link function as

Y ∼ NB
(
µi j, ψ j

)
(7)

where µi j, and ψ j were defined earlier. It is worth mentioning that the relationship below exists
between the dispersion parameter of ψ and the overdispersion parameter of α as:

α = ψ−1 (8)

From the above equation, if ψ or the dispersion moves toward zero, the model would become the
Poisson model.

2.2. The Bayesian Technique

The Bayesian hierarchical model with j levels is defined with three probabilistic levels [10]:
those include the data model corresponding to observations y j =

{
y j, . . . , y j

}
, the process model

considering the parameters θ j of the NB where θ j =
(
β j,ψ j

)
, and the parameter model setting a

probabilistic distribution on the θ j hyperparameter of γ j as π(γ j|ρ).
Here, ρ is the correlation or dependency across various hierarchies. The parameters of β j,ψ j with

normal and gamma distributions, respectively, could be written as follows:

β j ∼ N
(
m j, ν j

)
(9)

ψ j ∼ Gamma
(
k j, Θ j

)
(10)

where m j, ν j are normal distribution parameters of mean and variance, respectively, and k j, Θ j are shape
and scale parameters, respectively, of the gamma distribution. Now the discussed hyperparameter γ j
can be written based on:

γ j =
(
m j, ν j, k j, Θ j

)
(11)

As the hierarchy in this study was set up for only intercept, and the priors would be set for each
predictor coefficient. The term ψ j is set as the gamma distribution as it adjusts dispersion through
degree and scale parameters [11]. Gibbs sampling is implemented for generating γ j parameters,
coefficients and dispersion parameters. For instance, for iteration r = 1,2, . . . , there would be:

βr+1
j |

(
βr

j,ψ
r
j, mr

j, ν
r
j, kr

j, Θr
j

)
∼

n∏
i=1

NB(yi j|β
r+1
j ,ψr

j)N(βr+1
j |m

r+1
j , νr+1

j ) (12)

ψr+1
j |

(
βr

j,ψ
r
j, mr

j, ν
r
j, kr

j, Θr
j

)
∼

n∏
i=1

NB(yi j|β
r+1
j ,ψr+1

j )G(ψr+1
j |k

r+1
j , Θr+1

j ) (13)

where N and G are normal and gamma distributions, respectively. As can be seen from the above
equations, as a combination of NB and N or Gamma cannot be calculated easily, applications of
sampling methods necessitate the identification of those parameters.
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Model Syntax in JAGS

In the Bayes method, the posterior probability, P(β|Y, X) of the coefficients are conditioned and
are written as follows:

P(β|Y, X) =
p(y|β, x) ∗ P(β|x)

P(y|x)
(14)

where P(β|X) is the prior probability of the model parameters. Another characteristic of the Bayes
method compared with maximum likelihood is the Bayes method assumes that the response is drawn
from a probability distribution rather than a point estimate.

In the model syntax, the count model should be defined. The NB distribution, compared with the
Poisson distribution, requires more parameterizations to have a form making it suitable for modeling
sparse datasets. This would be implemented on observation i with the success parameter pi and the
overdispersion parameter r, which is greater than 0. The success parameter is written as follows:

pi =
r

r + λi
(15)

where λi is a conditional mean which is written as:

log λi =
∑

j

β jXi j (16)

A uniform prior was set for parameter r with an upper bound of 50, and a lower bound of zero.
A hierarchical model with only random intercepts is written as follows:

log
(
Yi j

)
=

J∑
j=1

P∑
p=1

(β0 j + βpXi j) (17)

where Yi j is a barrier EPDO count for a certain type of barrier. Subscript i refers to an individual crash,
while subscript j refers to the hierarchy, which is equal to the number of objective hierarchies (clusters)
as 4. For this study, p is the number of incorporated predictors in the count part. As only random
intercepts related to an objective hierarchy were considered, the model coefficients are similar across
various barrier types, and only the intercept varies.

A best fit model was identified by considering various predictors as a hierarchy and an objective
hierarchy, which was identified through the FMM. For instance, subjective hierarchies which make
engineering intuitive sense were considered. Those include considering barrier types or highway
systems as hierarchies. Those three models’ performances were compared with an objective hierarchical
model assigned by the FMM model.

Identifying a best fit model is important as the finalist model will be used for cost-benefit
analysis. The deviance information criterion (DIC) was used as a measure for the models’ performance
comparisons [12]. That method is a generalization of the Akaike information criterion (AIC) in the
Bayesian context. The method measures the complexity, and goodness of fit: the complexity is linked
to the number of included parameters, while the fit measure is related to the deviance as:

DIC = D(∅) + pD (18)

where pD is a number of included parameters being used to penalize the model for the number of
incorporated parameters. In summary, a best fit model would be identified based on a lower value
of DIC.

It is worth mentioning that in the analysis we considered a non-informative prior. For that we
consider a wide variance, limited precision, with a mean of zero so the model is able to search for the
posterior distribution across a wide range of values. Using a non-precise informative prior would
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result in erroneous results as the model is limited for sampling from the prior distribution to reach the
posterior distribution.

2.3. Cost-Benefit Analysis

Welfare maximization can be defined as the objective of cost-benefit analysis [13]. The cost-benefit
analysis is dependent on the Pareto criterion for checking whether a project increases welfare or not.
This idea is based on the ideal welfare scenario where a policy improvement makes some people better
off while nobody would experience a loss. However, in reality, projects make some people better off,
while others would be worse off. As a result, economists pledge to a less demanding state: a project
satisfies the criterion when those who benefit from a project, compensate those who lose from it [13].

The same concept was implemented in this study. If overall, the total benefit is to be positive,
optimizing would be cost-effective. Also, a higher priority is given to a higher total benefit based on
the analysis. The benefit over a 10-year period based on equivalent property damage only (EPDO)
could be written as:

Bene f it over 10 year based on EPDO

=
10∑

i=1
Predicted cost with barriers enhancementi

−Predicred cost with no barrier enhacnementi

(19)

And the total benefit is calculated as:

Total bene f it = Bene f it over 10 year based on EPDO× 34, 612− reset cos t (20)

The value of $34,612 is the cost of PDO in Wyoming based on the state criteria: after coming
up with EPDO, the value would be converted into costs. It should be noted that the cost of barrier
enhancements would be added just for the first year in Equation (19).

In Equation (19), costs at year i would be estimated based on the interpolated traffic in that
year. Based on the last 10-year historical traffic data, traffic in the state highway system was almost
constant. However, the interstate system traffic increased by a rate of 4% in 10 years or 4%

10 for every
year. The costs of the barriers’ resets would be executed only for the first year.

Based on WYDOT’s recommended values, EPDO is written as:

EPDO rate = Fatal crashes + suspected serious injury
+suspected minor injury + possible injury + Unknown + PDO

(21)

Now after converting every crash severity level to PDO in Equation (21), with the same sequence
of variables, it follows that [3]:

EPDO rate = 277× PDO + 13× PDO + 4× PDO + 4× PDO + 4× PDO + 1× PDO (22)

where for instance, a fatal crash is equivalent to 277 EPDO crashes, from Equations (21) and (22).
In summary, the methodological optimization steps taken in this study are summarized as follows:

1. Dataset preparation: Filter the data to include barriers experiencing crashes on state highway
and interstate systems in Wyoming

2. Barrier types: Filter data to include only box beam and W-beam barriers since other barriers only
account for a small proportion of the dataset

3. Data aggregation: Aggregate the crash data across traffic barriers and traffic datasets, based on
mileposts and roadway IDs. Also consider the relation of various demographic and environmental
factors to crashes. For instance, if barrier ID 1234 experienced 10 crashes, based on EPDO,
the average of various explanatory variables such as driver and environmental characteristics
would be aggregated over that barrier ID
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4. Hierarchy setting: Identify a best choice of variable for the model hierarchy, based on the
lowest DIC

5. Convert the best fit model in step 4 into an equation
6. Data preparation: train the model on the dataset including all barriers that experienced at least

one crash
7. Implement the trained model on a test dataset with barriers’ current heights: based on current

barriers’ geometric characteristics. Also, for each year, consider an increase in traffic for the
interstate system only

8. Implement the trained model on the test dataset with the barriers’ enhanced heights: based on
enhanced barriers’ geometric characteristics. Also, include an increase in traffic for the interstate
system only and consider the reset costs

9. Calculate benefit based on Equation (20)
10. Report the total savings
11. Sort barriers based on the highest benefits and report it

2.4. Optimum Traffic Barrier Heights

In the optimization process, the barriers would be optimized to an optimal value based on the
recommended range found in the literature review. Different values based on various experiments
were highlighted for both box beam and W-beam barriers ranging from 27 to 31 inches [14,15].
To be consistent, a cutting value of 27 inches was chosen as a value for all the barriers for the
optimization process.

3. Data

Three sources of datasets were aggregated to create a final dataset. The data sources include traffic,
crash, and barrier geometric characteristics. The Wyoming Department of Transportation (WYDOT)
provided the crash and traffic datasets between 2007 and 2017. The traffic dataset includes predictors
such as average annual daily traffic (AADT) and average annual truck traffic (ADTT).

The second dataset was the barrier geometric dataset including different roadway, and barrier
geometric characteristics such as types, length, offset, and height of barriers. This dataset also includes
various roadside geometric characteristics such as shoulder width. In addition, the data incorporated
the starting and ending mileposts of traffic barriers on the roadways, and the roadway ID along with
its direction. In addition, only crashes involving hitting a barrier as their first harmful event were
included in the dataset. The crash dataset was aggregated across various barriers based on the milepost,
direction of travel, and highway system.

Table 1 presents summary statistics of those predictors that were found to be important in the
statistical analysis. A few points are worth mentioning from Table 1. Some barriers experienced more
than a single crash. For those scenarios, the average of various drivers’ characteristics, and weather or
road conditions were used as explanatory variables across those barriers. For instance, if two drivers
with two residencies, Wyoming residence as 0 and non-Wyoming residence as 1, hit a barrier ID of
1234, the average of those crashes as 0.5 would be set for residency variable for barrier ID 1234.
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Table 1. Descriptive statistics of the trained dataset.

Variable
ID Variable Description Mean SD Min Max

n = 2432 All barriers
Response (EPDO) 9.245 1355 1 555
# Cluster I 67
# Cluster II 35
# Cluster III 1496
# Cluster IV 250

b1 Restrain condition, having some form of restraint as reference (0),
1 otherwise 0.116 0.076 0 1

b2 Gender, males as reference (0),1 otherwise 0.335 0.157 0 1
b3 Residency, Wyoming residence as reference (0), others as 1 0.467 0.188 0 1

b4 Weather condition, clear weather condition as reference (0),
1 otherwise 0.50 0.181 0 1

b5 Lighting conditions, light condition as reference (0), 1 otherwise 0.387 0.172 0 1
b6 AADT 2438 2,510,230 27 8854
b7 Length, continuous, ft 740 2,144,682 14 35,470

b8 Barrier types Box beam as 1
1.626 0.861 1 3W-beam as 3

b9 Barrier height, continuous, inch 2.458 0.057 <12
in 40

b10 Shoulder width, less than or equal 1.5 ft as 0, otherwise 1 0.925 0.070 0 1
B12 Highway system, state highway as reference (0), interstate as 1 0.548 0.248 0 1

The concrete barriers accounted for a total of 2% of all barriers and the majority of those barriers
in the dataset were higher than 42 inches. As a higher concrete barrier could not result in underride
crashes, those barriers were excluded from the optimization process. A binary category was assigned
to shoulder widths. A shoulder width less than or equal to 1.5 feet was categorized as 0 while other
values were considered as 1. It should be noted that clusters I to IV are based on the FMM model.

4. Results

This section is presented in three subsections. An identification of a best fit model across three
considered models is discussed in the first section, while the finalist model results, and its brief
discussion are presented in the second section. The mathematical optimization process includes the
implemented method being used to convert the results into an equation for use as a machine learning
technique. The last section, optimization results, presents the optimization results of the cost-benefit
analysis of the barriers with the highest benefits.

4.1. Best Fit Model

Three models were considered in this study based on various intuitive variables as hierarchies and
the objective hierarchy assigned by the FMM. Those models were compared in terms of goodness of fit
based on the DIC. The assigned objective hierarchies resulted in a lower DIC of 11,057, compared with
the state highway system as a hierarchy with DIC = 11,063, and barrier types as a hierarchy with DIC
of 11,060. Thus, due to lowest DIC value, an objective hierarchy was used for the analysis. The sum of
the predicted EPDO and real EPDO along with their variances are presented in Table 2. The results
from using subjective hierarchies are not presented in Table 2 to conserve space.

Although the range between the sum of the predicted and real EPDO is not too wide, the variance
difference of these two variables are rather wide. This is likely due to the randomness of crashes.
For instance, the maximum of the predicted EPDO is 1733. This high value is related to the fact that
this observation has the worst criteria based on the statistical results: for instance, the majority of
drivers hitting this barrier were male, occurring on the interstate system with a long barrier length.

Since the objective of this study is not just about conducting statistical analysis, but rather the
application of machine learning techniques, this study does not detail the analytical results. For instance,
the results highlight that being unrestrained, being female drivers, being a non-Wyoming resident,
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and driving in adverse weather conditions reduce the likelihood of the number of the EPDO crashes.
Although for some predictors some minor uncertainty about the significance of the predictors is
observed, the important predictors of interaction of shoulder width and barrier heights were found to
be significant. It should be noted that barrier types, shoulder width, AADT, and barrier length were
considered especially to account for exposure. Alpha [1] to alpha [4] are the clusters assigned to the
model hierarchy while B0 is an intercept. It should be noted the Sum of real EPDO is 28,945, while the
sum of predicted EPDO is 17,084. On the other hand, variance of real EPDO is 30,942, and the variance
of predicted EPDO is 1355. Again the findings’ comparison across models, more consistent results for
predictions values, are in line with the previous study [3].

Table 2. Results of a finalist model, with an objective hierarchy.

Variables Parameter
Estimates

SD
95% BCI of Estimates

2.50% 97.50%

B0 3.951 3.139 1.36 6.908
alpha [1] 3.902 1.079 1.861 5.811
alpha [2] 4.042 1.32 1.566 6.762
alpha [3] 3.999 8.071 0.727 7.757
alpha [4] 3.921 9.15 0.87 7.818

restrain condition, b1 1.827 0.136 1.568 2.097
shoulder width, b10 −2.371 0.948 −3.88 −0.58

barrier height shoulder width, b11 0.903 0.393 0.155 1.516
highway classification, b12 0.019 0.319 −0.729 0.58

gender, b2 −0.181 0.096 −0.371 0.01
residency, b3 0.204 0.088 0.028 0.375

weather condition, b4 −0.942 0.084 −1.11 −0.78
lighting condition, b5 −0.115 0.092 −0.294 0.065

AADT, b6 8.27 × 10−5 2.27 × 10−5 3.83× 10−5 1.28 × 10−4

barrier length, b7 1.99 × 10−4 2.90 × 10−5 1.44 × 10−4 2.56 × 10−4

barriers type, b8 0.171 0.039 0.092 0.247
barrier height, b9 −0.926 0.37 −1.469 −0.235

r 0.667 0.021 0.627 0.708
deviance 11,032 7.042 11,021.231 11,047.609

4.2. Mathematical Optimization Process

The BHFMM model was identified as a best fit model. Thus, the results of the modeling were
converted into an equation and used for a machine learning technique. The NB process is simple and
straightforward: it consists of multiplication of the estimated coefficients with the related variables and
then exponentiation of the sum of the above and rounding to the nearest value to calculate the expected
number of crashes. The estimation process would slightly vary by considering various hierarchy
intercept for each observation.

A function was made to increase the traffic by a value of 0.04/10 for each year if that barrier
belongs to an interstate system, while keeping the traffic the same if a barrier is on the state highway
system. Thus, traffic was calculated for every year during the 10-year period.

Another function was made to implement the interpolated traffic into an equation for barriers
with and without enhancement. Barriers’ predicted EPDOs without enhancement were calculated by
using the interpolated traffic and original heights of barriers. On the other hand, the same process was
used for barriers after enhancement, with the difference being that the barrier heights were changed to
a value of 27 inches. As the values are based on EPDOs, those were multiplied by the expected cost of
a single PDO, which is $34,612. It should be noted that after converting crashes into costs, the cost of
barrier enhancement was also incorporated in the calculations.
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4.3. Optimization Results

As discussed in the above section, the applied mathematical process resulted in the identification
of benefits that would be gained by optimizing barrier heights. Table 3 presents the barriers with the
highest benefits based on the machine learning technique. In general, lower variance is observed by
conducting the machine learning technique compared with real EPDO. That is expected as the machine
learning, algorithm, follow specific rule while crashes are random. The results are in line with the
literature review [3].

Based on the identified results in Table 3, and a discussion based on the mathematical optimization
process, when the shoulder width is less than or equal to 1.5 feet, and the category is 0, an increase in
the barrier height would result in a benefit in terms of crash savings as the shoulder width terms and
interaction terms would be zero, and would not come into play a role in estimating the benefit.

On the other hand, when the shoulder width is greater than 1.5, coded as 1, the benefit would be
obtained mainly from barriers with extremely low height. For instance, consider a scenario where the
barrier height is less than a foot. Based on the results in Table 2, the multiplication of the interaction term
by the barrier height, +0.903 × barrier height, would not surpass the multiplication of the coefficient of
barrier height with its height, −0.926 × barrier height.

Again, it should be noted that barriers from the test dataset included only those barriers outside
the recommended barriers’ heights, including above 36” and below 27”. Table 3 presents the topmost
cost-effective barriers identified based on the machine learning technique. As can be seen from Table 3,
the most cost-effective barriers are those with the lowest heights.

From Table 3, mostly the state highway barriers were highlighted as barriers that are most cost
effective. This is mostly due to very low barrier heights in the highway system. The barriers were
included in Table 3 up to the first interstate barrier. As shown at the bottom of Table 3, if all barriers
not meeting current standards are to be fixed, the total cost will be $4,632,372 while the overall benefit
will only be $3,418,717.
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Table 3. The top critical barriers sorted based on the highest benefits.

Row Barrier ID Highway ID Highway
System

Barrier
Length

Barrier
Height

Shoulder
Width Type of Barrier Saving Cost in 10 Years by

Barriers Enhancement

1 109 ML22B State highway 97 <12 4 W-beam −327,485
2 575 ML22B State highway 102 <12 4 W-beam −327,433
3 576 ML22B State highway 169 <12 2 W-beam −326,740
4 112 ML22B State highway 361 <12 3 W-beam −324,728
5 1048 ML601B State highway 64 <12 4 Box beam −316,254
6 1047 ML601B State highway 65 <12 4 Box beam −316,243
7 2745 ML1900B State highway 461 <12 3 W-beam −313,653
8 2745 ML1900B State highway 461 <12 3 W-beam −313,653
9 15 ML104B State highway 364 13.2 3 Box beam −78,985

10 5200 ML36B State highway 2087 12 3 Box beam −77,829
11 7771 ML19353B State highway 124 14.4 0 Box beam −76,948
12 5454 ML13B State highway 631 14.4 3 Box beam −73,261
13 5202 ML36B State highway 201 14.4 4 Box beam −72,974
14 5198 ML36B State highway 725 14.4 4 Box beam −67,499
15 4739 ML254B State highway 169 18 4 W-beam −65,480
16 4573 ML1002B State highway 201 15.6 0 Box beam −59,391
17 5197 ML36B State highway 913 15.6 4 Box beam −54,857
18 5462 ML13B State highway 338 16.8 2 Box beam −54,605
19 5201 ML36B State highway 201 16.8 4 Box beam −52,565
20 3614 ML319B State highway 127 16.8 1 Box beam −51,256
21 5199 ML36B State highway 537 16.8 3 Box beam −49,048
22 1205 ML5649B State highway 159 18 2 W-beam −46,065
23 5204 ML36B State highway 249 18 4 Box beam −43,183
24 3615 ML319B State highway 126 18 1 Box beam −42,726
25 5205 ML36B State highway 300 18 3 Box beam −42,657
26 852 ML85B State highway 324 18 2 W-beam −42,606
27 62 ML103B State highway 338 18 3 Box beam −41,735
28 4572 ML1002B State highway 202 18 0 Box beam −41,617
29 3678 ML2000B State highway 214 20.4 4 W-beam −40,736
30 21 ML104B State highway 299 18 1 Box beam −40,553
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Table 3. Cont.

Row Barrier ID Highway ID Highway
System

Barrier
Length

Barrier
Height

Shoulder
Width Type of Barrier Saving Cost in 10 Years by

Barriers Enhancement

31 818 ML1400B State highway 800 18 0 Box beam −36,364
32 693 ML103B State highway 102 19 1 Box beam −36,059
33 90 ML211B State highway 75 19 1 Box beam −35,019
34 5455 ML13B State highway 501 19 3 Box beam −34,862
35 825 ML1400B State highway 213 19 1 Box beam −34,597
36 64 ML103B State highway 274 19 1 Box beam −34,404
37 824 ML1400B State highway 237 19 0 Box beam −34,341
38 3847 ML2000B State highway 1834 19 3 Box beam −34,253
39 821 ML1400B State highway 326 19 1 Box beam −33,416
40 4847 ML507B State highway 315 19 0 Box beam −33,163
41 2001 ML94B State highway 299 19 3 Box beam −32,896
42 4475 ML1006B State highway 326 19 1 Box beam −32,285
43 4476 ML1006B State highway 327 19 0 Box beam −32,274
44 2096 ML202B State highway 476 19 3 Box beam −31,457
45 5453 ML13B State highway 901 19 3 Box beam −30,682
46 826 ML1400B State highway 612 19 0 Box beam −30,420
47 6894 ML25I Interstate 127 22 4 Box beam −30,000

Total enhancement cost: $4,632,372
Total Benefit: $3,418,717
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5. Conclusions

In this study, cost-benefit analysis, with the help of machine learning techniques, was utilized to
estimate the benefit of upgrading the heights of Wyoming road barriers to their standards. Due to
the randomness of crashes and the low volume of traffic in the state, a severe sparsity in the dataset
could be observed for the frequency of barriers’ crashes. The high sparsity was accompanied by severe
data heterogeneity resulting from integration of various barrier types and highway systems. It is
hypothesized that due to high heterogeneity and sparsity of the dataset, ignoring those shortcomings
would result in erroneous and biased results. Thus, to address the issue of sparsity, the negative
binomial distribution was implemented. Also, to account for the data heterogeneity, various parameters
such as state highway systems, barrier types and objective clustering through FMM were considered as
a hierarchy of the model. Not accounting for heterogeneity or sparsity of the data could result in biased
or erroneous results. The modeling methodology was conducted in the context of the Bayesian method.

With regard to objective clustering, the FMM was conducted and the optimum number of clusters
was identified. The FMM was conducted in the context of maximum likelihood due to the label
switching issue of the method in the Bayesian context. The identified clusters were assigned to each
observation. In the next step a Bayesian hierarchical model with the FMM hierarchy was compared
with subjective intuitive clustering, e.g., the state highway systems and barrier types. Models were
compared and the model with a best assigned hierarchy was chosen. Deviance information criterion
(DIC) was used for model selection.

Predicted EPDO crashes for each year were based on interpolated traffic. The barriers’ heights
were changed to their optimum values and the machine learning technique was implemented again.
The predicted cost for barriers with and without enhancement were summarized and the barrier
optimization costs were considered. The difference in crash costs before and after height adjustments
was calculated as a total benefit.

In summary, the results indicated that after investing money to bring under-design barriers to
their optimum heights, WYDOT would not only recover the invested money in 10 years but they would
also expect to save more than $4 million dollars in crash savings through the optimization process of
the barriers. Although the analysis highlights the interaction terms between both shoulder width and
barrier heights, the shoulder width was left constant, and only barrier heights were optimized. If the
constraint was set free, more benefits would have been gained by optimizing both barrier heights and
shoulder width.

This study is one of the first studies that quantifies the monetary benefit of optimizing the heights
of traffic barriers. More studies are needed to quantify other aspects of traffic enhancement through
machine learning techniques. The WYDOT could utilize the ranking list developed in this analysis
to allocate funding to upgrade all traffic barriers in the state. The upgrade might take a few years
considering the total amount of needed funding, and limited safety funds statewide.
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