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Abstract: The preservation of kidneys using normothermic machine perfusion (NMP) prior to
transplantation has the potential for predictive evaluation of organ quality. Investigations concerning
the quantitative assessment of physiological tissue parameters and their dependence on organ function
lack in this context. In this study, hyperspectral imaging (HSI) in the wavelength range of 500–995 nm
was conducted for the determination of tissue water content (TWC) in kidneys. The quantitative
relationship between spectral data and the reference TWC values was established by partial least
squares regression (PLSR). Different preprocessing methods were applied to investigate their influence
on predicting the TWC of kidneys. In the full wavelength range, the best models for absorbance
and reflectance spectra provided Rp

2 values of 0.968 and 0.963, as well as root-mean-square error of
prediction (RMSEP) values of 2.016 and 2.155, respectively. Considering an optimal wavelength range
(800–980 nm), the best model based on reflectance spectra (Rp

2 value of 0.941, RMSEP value of 3.202).
Finally, the visualization of TWC distribution in all pixels of kidneys’ HSI image was implemented.
The results show the feasibility of HSI for a non-invasively and accurate TWC prediction in kidneys,
which could be used in the future to assess the quality of kidneys during the preservation period.

Keywords: hyperspectral imaging; data preprocessing; multivariate data analysis; partial least
squares regression; kidney tissue; water content; normothermic machine perfusion

1. Introduction

Organ transplantation often remains the last therapeutic option for patients affected by organ
failure [1]. The increasing number of patients on the waiting list, the lack of donor organs, and the
considerable discard rates for available organ transplants are major problems in transplantation
medicine [2]. To address this issue, new strategies have been developed to make optimal use of the
potential organ pool. One focus is the evaluation of organ quality ex vivo to predict organ function
after implantation. Established clinical evaluation criteria, including histological features or donor
characteristics considered in the Kidney Donor Risk Index, have their limitations and could not
accurately predict organ function [3–6]. Due to the current lack of a distinct objective standard,
the decision to accept or reject organs often depends on the clinical experience of the transplant team.

A promising approach to evaluate organ quality includes the measurement of biomarkers
directly during preservation. While traditional static cold storage of the organ on ice offers only
limited potential for assessing organ parameters, normothermic machine perfusion (NMP) has
gained interest [7]. The objective underlying NMP is to maintain the organ’s metabolism, thus its
function by ensuring ex vivo oxygen and nutrient supply at physiological temperatures based on the
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perfusion with blood or a blood-based solution [8–10]. For kidneys, the analysis of hemodynamic
characteristics, perfusate, urine, and tissue biomarkers during NMP offers the opportunity to evaluate
graft injury and function [6,11,12]. Furthermore, a quality assessment score based on macroscopic
appearance, blood flow, and urine output was established for clinical applications [13–15]. In these
studies, it was demonstrated that NMP combined with an organ quality assessment tool can predict
postoperative outcome. To enable a more comprehensive and primarily objective measurement
of organ quality, additional injury and function markers should be included in the evaluation
strategy [16]. One possibility could be the monitoring of ischemia/reperfusion injury (IRI)-induced
markers, which occur due to the interruption of the oxygen supply to the organ with subsequent
restoration of blood circulation. Numerous biochemical mechanisms are involved in the IRI, including
adenosine triphosphate depletion, electrolyte imbalances, the formation of oxygen radicals, and changes
in tissue water content (TWC) [17,18]. The determination of certain selected parameters could
significantly contribute to organ quality assessment prior to transplantation.

In the medical field, hyperspectral imaging (HSI) has recently been applied to study physiological
and pathological changes in both animal and human tissues. By combining imaging and spectroscopy,
local information providing morphological features and spectral information characterizing the
chemical composition of the tissue can be detected [19]. Emerging applications were diabetic foot
analysis [20], retinal analysis in Alzheimer′s disease [21], gastroenterological examinations [22],
wound healing [23], and tumor detection [24]. Additionally, various tissue parameters were calculated
from the HSI data, such as tissue oxygen saturation [25,26], tissue hemoglobin index, near-infrared
(NIR) perfusion index, or tissue water index (TWI) [27]. It is assumed that the TWI corresponds to
the TWC. A first case study has shown that the TWC correlated with the function of NMP perfused
kidneys [12]. Therefore, it is hypothesized that IRI-related mechanisms can be detected by TWC
determination using non-invasive HSI images.

In tissues, the TWI was used for the analysis of wound healing [28–30], scleroderma [31], intestinal
perfusion deficits [32], Dupuytren′s disease of the hand [33], gastrointestinal anastomoses [34],
ischemic conditions during esophagectomy, and in bowel loops [35,36]. In these studies, the TWI
was determined based on the software TIVITA Suite, which controls the HSI camera TIVITA Tissue
(Diaspective Vision GmbH, Am Salzhaff, Germany) and enables both the acquisition and the subsequent
analysis of the HSI data. For the calculation of the TWI, the quotient of the absorbance averages
(mean (A)) of the wavelength ranges 880–900 nm and 955–980 nm, as well as scaling parameters
(S1 and S2), are considered [27]. The method and samples used to construct the TWI calculation
equation as well as the performance achieved, and the values of the scaling parameters were not
specified. A limitation of the present calculation method could be the non-consideration of tissue
specific spectral properties, which could have a different influence on the spectral shape and could
falsify the parameter’s calculation.

In contrast, investigations of the water content, e.g., in meat products, included a comprehensive
dataset of the samples to be tested to ensure accurate quantitative analysis, specifying the performance
of the prediction model using multivariate data analysis [37–40].

This study aimed to investigate the feasibility of using HSI in the wavelength range from 500
to 995 nm to predict TWC in kidneys. A quantitative relationship between the obtained spectral
information of the kidney and its reference TWC values was established by multivariate data analysis.
Finally, an image processing algorithm to visualize the TWC of the kidneys in all pixels was developed
to create TWC distribution maps. This research aims to monitor organ-specific parameters ex vivo,
which can be used in the future to assess the quality of kidneys during the preservation period.
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2. Materials and Methods

2.1. Sampling Strategy and Preparation

A suitable sampling strategy is essential to fulfill various criteria of reproducibility, value range,
and variance within the sample. To meet these requirements, we have recorded a suitable dataset
according to the American Society for Testing and Materials (ASTM) standard practice E1655-05 [41].
In the following, the mentioned criteria are described in detail. To develop a reliable calibration model,
the characteristics of the samples included in this model have to correspond to the characteristics
of samples analyzed in the future. Therefore, whole blood reperfusion of the porcine kidneys was
performed before sample collection and the subsequent determination of the TWC. Another criterion
was that the training dataset had to cover the range of TWC in kidney tissue during NMP. Here, the water
content could vary due to osmotic imbalances caused by ischemia/reperfusion damage [17,18]. To obtain
representative values of TWC in non-physiological conditions, some kidney samples were additionally
exposed to different drying times. Furthermore, the TWC may vary within the same kidney leading to
deviations from the mean water content. Therefore, sub-sampling was performed to obtain a wide
range of TWC values for the calibration model. For each kidney, samples were taken from six different
regions in order to include possible spatial divergences.

For this study, 23 kidneys from female German Landrace slaughterhouse pigs were used.
The pigs’ selection criteria were homogenous age (six months), weight (100–120 kg), and origin (local
slaughterhouse with 10–15 pigs slaughtered per week) as well as health (inspected by an official
veterinarian). Up to six kidneys per week were analyzed. A detailed description of blood and organ
removal as well as storage can be found in [25].

Each kidney was filled with temperatured autologous whole blood (TBlood = 37 ± 0.5 ◦C,
hematocrit = 32 ± 5%) and cut into six rectangular pieces with the respective dimensions of
3 cm × 1 cm × 0.5 cm (length ×width × thickness), resulting in a weight of 2 ± 0.05 g. The prepared
tissue specimens were analyzed following the Association of Official Analytical Chemists (AOAC)
standard method for moisture analysis 950.46 B, where the samples were dried at 102 ◦C for 18 h [42].
Generally, the TWC of porcine kidneys ranged from 81.5 to 89.3% (shown in Table 1). In order to
predict this TWC range as good as possible for future applications during NMP, a majority of the
samples of the training dataset was concentrated on this range. In addition, to reflect non-physiological
conditions, the TWC was artificially reduced. Thus, some kidneys were also analyzed after 10 and
20 min of drying time.

Table 1. Drying characteristics of kidney tissue using the oven drying method.

Drying Time
in Min

No. Kidneys
Tissue Water Content in %

Mean Standard Deviation Range

0 23 84.16 1.63 81.52–89.27
10 6 68.75 4.36 54.24–75.07
20 6 57.43 5.12 44.27–67.32

2.2. Measurement of the Tissue Water Content

Following the standard practice AOAC 950.46 B [42], the TWC (in %) of each kidney sample was
calculated as the percentage of weight loss using the oven drying method:

Tissue water content = 100−
w − d

w
, (1)

where w is the weight of the wet sample (in g) and d the weight of the dry sample (in g). The percentage
of water was expressed as the reference water content value of each sample for subsequent data
analysis. Table 1 shows the relevant statistics of TWC for the samples.
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2.3. Hyperspectral Imaging System

The HSI system comprised two main components: the HSI camera and the illumination unit.
This study’s hyperspectral camera was a line-scan hyperspectral camera (TIVITA Tissue Camera,
Diaspective Vision GmbH, Am Salzhaff, Germany), based on the push broom scanning method.
This camera contained a CMOS sensor (AR0130CS, On Semiconductor Corp., Phoenix, AZ, USA) with
a resolution of 1280 pixels × 960 pixels and was equipped with an AZURE Photonics 2/3” 12 mm
objective lens (AZURE Photonics U.S.A., Inc., San Ramon, CA, USA). In order to acquire a focused
image, the distance between objective and kidney sample surface was adjusted to 46 cm. The HSI
system covers the spectral range of 500–995 nm with a spectral resolution of 5 nm. The illumination
unit contained six 20 W quartz-tungsten-halogen spots (OSRAM 41,861 Decostar 51 ALU, Osram
GmbH, München, Germany) with an aluminum reflector for homogeneous illumination of the field of
view (FOV). A laptop (ThinkPad W530, Lenovo GmbH, Stuttgart, Germany) with the TIVITA Suite
software 0.6.1.4 (Diaspective Vision GmbH, Am Salzhaff, Germany) was used exclusively for image
acquisition. This software reduced the hyperspectral data cube to 640 px (x-dimension) × 480 px
(y-dimension) × 100 wavelengths (λ-dimension). Further technical information of the HSI camera
system can be found in previously published literature [24].

A custom written MATLAB code (MATLAB R2018b, The MathWorks, Inc., Natick, MA, USA) was
used to analyze the HSI data. The workflow of the main steps in the current research is illustrated in
Figure 1.

2.4. Image Acquisition and Data Correction

For each experiment, a dark current image IDARKx,y,λ and a white reference image IWHITEx,y,λ were
recorded to correct the raw intensity images IRAWx,y,λ of the sample. IDARKx,y,λ was obtained by closing
the camera shutter and switching off the light source when capturing the HSI image. IWHITEx,y,λ was
acquired with a reflectance standard (Zenith Polymer Target SG3210, SphereOptics GmbH, Germany)
placed in the FOV.

From the raw intensity image IRAWx,y,λ, both the reflectance image IREFLx,y,λ (see Equation (2)),
as well as the absorbance image IABSx,y,λ (see Equation (3)), were calculated [19]:

IREFL x,y,λ =
IRAW x,y,λ − IDARK x,y,λ

IWHITE x,y,λ − IDARK x,y,λ
, (2)

IABS x,y,λ = −lgIREFL x,y,λ. (3)

HSI data were collected from the kidneys before and during the drying process.
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2.5. Data Preprocessing

Several image preprocessing steps are necessary before the quantitative data analysis of kidney
samples’ HSI images. These aim to remove irrelevant information, noise, and physical phenomena
from the data to improve the subsequent multivariate data analysis. The data preprocessing includes
the following steps:

Step 1: ROI Segmentation

The segmentation process removes pixels of the background from the hyperspectral data cube,
which do not contain chemical information about the sample. The determination of region-of-interest
(ROI), representing the sample within the hyperspectral images, was performed by manual ROI
selection using the roipoly function of MATLAB.

Step 2: Removal of Specular Reflections

Within the ROI, specular reflections can occur and appear as bright spots in absorbance images.
These are caused by the presence of moisture on the kidney’s surface, which acts like a mirror
reflecting the light of the illumination system. Since specular reflections overlap the sample’s actual
chemical properties, they can also influence the subsequent data analysis and must, therefore,
be removed. For data preprocessing, absorbance images were used to determine the pixels affected by
specular reflections, which cause low intensities and can, therefore, be detected and segmented using
a threshold-based method. The elimination of 10% of the darkest pixels in the absorbance image was
achieved with the Thresholding Tool implemented in MATLAB [43].

Step 3: Spectral Normalization

For a reasonable comparison of spectra, it is useful to scale their values to the same range
by normalization. In order to compare the influence of normalization method on the prediction
performance of the model, three different methods (min-max, area, and vector normalization) were
applied to the spectra [44]. Min-max normalization is a common method to preprocess data. For each
spectrum, the minimum value of that spectrum was set to 0, and the maximum value to 1, while the
other values are distributed accordingly. The min-max normalized absorbance and reflectance image
were calculated as follows:

IABS x,y,λnorm =
IABS x,y,λ − Min(IABS x,y,λ)

Max(IABS x,y,λ) − Min(IABS x,y,λ)
, (4)

IREFL x,y,λnorm =
IREFL x,y,λ − Min(IREFL x,y,λ)

Max(IREFL x,y,λ) − Min(IREFL x,y,λ)
. (5)

In the second approach, the area normalization is calculated by dividing each spectrum by a constant
that corresponds to the sum of all intensities over the wavelength range (see Equations (6) and (7)):

IABS x,y,λnorm =
IABS x,y,λ∑

IABS x,y,λ
, (6)

IREFL x,y,λnorm =
IREFL x,y,λ∑

IREFL x,y,λ
. (7)

Vector normalization, in which the spectrum is considered a vector and each vector value is
divided by the square root of the sum of the squares of all vector values, is calculated as follows:

IABS x,y,λnorm =
IABS x,y,λ√∑

IABS x,y,λ
2

, (8)
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IREFL x,y,λnorm =
IREFL x,y,λ√∑

IREFL x,y,λ
2

. (9)

Step 4: Scatter Correction and Spectral Derivates

Three different methods were considered for noise correction to reduce the influence of distorted
spectra on the prediction model. Two methods—multiplicative scatter correction (MSC) and standard
normal variate (SNV)—for scatter correction, and the Savitzky–Golay method (SG) for spectral
derivation [45]. All preceding methods intend to remove distorted signal portions that would otherwise
impede the construction of a valid prediction model.

MSC is the most commonly used scatter correction method for NIR data. It estimates influences
(e.g., light scattering) for each sample relative to the entire mean spectrum. Scatter correction by MSC
was calculated as follows:

xorg = b0 + bref,1 · xref + e , (10)

xcorr =
xorg − b0

bref,1
, (11)

where xorg is one original sample spectra measured by the HSI camera, xref is a reference spectrum used
for preprocessing of the entire dataset, e is the unmodeled part of xorg, xcorr is the corrected spectra,
and b0 and bref,1 are scalar parameters, which differ for each sample [45].

The SNV method, a related method to MSC, is the second most applied method for scatter
correction of NIR data and is given in the following equation:

xcorr =
xorg − a0

a1
, (12)

where a0 is the average value of the sample spectrum to be corrected, and a1 is the standard deviation
of the sample-spectrum [45].

SG for spectral derivation, which includes a smoothing step, was applied with MATLAB’s Sgolayfilt
function. The used filter worked with a polynomial order of 3 and a frame length of 11.

2.6. Multivariate Data Analysis

2.6.1. Partial Least Squares Regression (PLSR)

In order to create quantitative models between the preprocessed spectral data and the measured
reference values of TWC, PLSR method was applied for multivariate data analysis. PLSR is a commonly
used and reliable analytical tool for spectra data processing and predictive model development [46].
The multivariate data analysis was performed with the plsregress function of MATLAB. The PLSR
model was calculated as follows:

X = TPT + E , (13)

Y = UQT + F , (14)

where the spectral data matrix X is decomposed into the score matrix T, loading matrix P, and error
matrix E. The reference values matrix Y is decomposed into the score matrix U, loading matrix Q,
and error matrix F [46].

PLSR estimates latent variables (LV) that describe the maximum covariance between the spectral
data and the measured TWC (response variables). The optimal number of LVs was determined using
the minimum predicted by the root mean square error (RMSE) method during cross-validation.

2.6.2. Data Partition

A total of 208 samples were collected to ensure an appropriate range of TWC values. The dataset
was manually divided into a training set consisting of 172 samples (83%) and a test set consisting of
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36 samples (17%). The statistical values of TWC in the training and the test set for this study are shown
in Table 2.

Table 2. Reference values of TWC in %.

Statistics Training Set
n = 172 (19 Kidneys)

Test Set
n = 36 (4 Kidneys)

Mean 76.83 77.06
Standard deviation 10.97 11.42

Maximum 89.27 88.01
Minimum 44.27 46.80

The PLSR models were built with the training data using a full cross-validation method
(leave-one-out), in which one validation set was removed at one time from the training set until all
samples have been removed once. The PLSR model was then established based on the remaining
samples of the training set. It should be noted that six tissue samples were taken from each kidney.
The samples from one kidney were selected together as one validation set from the training set, as these
samples are not independent of each other. The number of LVs and the accuracy of PLSR models
in training were estimated by the root-mean-square error resulted from cross-validation (RMSECV).
Finally, this established model was used to predict the TWC in the independent test set and evaluate
the performance of the algorithm. A good PLSR prediction model is characterized by a high coefficient
of determination in prediction (RP

2) and a low root-mean-square error of prediction (RMSEP).

2.7. Optimal Wavelengths Selection Strategy

The kidney’s spectra data were first analyzed in the full spectra range of 500–995 nm containing
100 wavelengths.

In hyperspectral image analysis, selecting the most influential spectral wavelength instead of
using the whole spectrum showed better predictive results in some cases [47,48]. The cause could be
explained by bands containing noise or irrelevant information for data analysis. However, there is
no gold standard for selecting significant wavelengths from the whole spectrum [49]. In this study,
weighted PLS regression coefficients, also called β-coefficients from the PLSR models, were used to
estimate the most influential wavelengths for TWC prediction. The method is based on the principle
of calculating β-coefficients corresponding to the full-spectrum model. The wavelengths with the
highest absolute values of regression coefficients were chosen and used for the development of new
PLSR models.

2.8. Visualization of Water Content

Using HSI, the spatial distribution of water within a sample can be visualized. TWC maps from
the kidney samples were obtained by multiplying the β-coefficients from the PLSR model with the
spectrum of each pixel in the image. The optimal multivariate model was chosen to display and map
each pixel of the hyperspectral image to predict water content in the kidney samples. The resulting
water distribution map is visualized with a linear color bar, representing the predicted values of every
pixel into different colors. High TWC is shown in blue, and those with low water values are shown in
red. For all visualization routines, the Colormap function of MATLAB was used.

3. Results

3.1. Spectral Features of Porcine Kidneys in the Spectral Range of 500 to 995 nm

In this study, kidneys were examined with a TWC between 44.27% and 89.27% (see Table 1).
The averaged absorbance and reflectance spectra of porcine kidney samples with physiological
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TWCs ≥ 80% and non-physiological TWCs < 80% in the wavelength range between 500 and 995 nm
are shown in Figure 2. The spectra were area normalized and smoothed.
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Kidney spectra were characterized by the tissue chromophores hemoglobin, lipids, and water,
which absorb in the visible/near-infrared (VIS/NIR) range. This spectral region is related to several
broadband peaks and fundamental vibrations. The main absorption of hemoglobin occurred in the
wavelength range between 500 and 800 nm, which was caused by the spectroscopic properties of
porphyrins [50]. For lipids, the absorption peak at 930 nm was associated with the third overtone
C–H section in the methylene group of lipids [39]. The most characteristic absorption features of water
consisted of two regions: an absorbance peak around 750 nm and around 970 nm assigned to the third
and second overtones of O–H stretching [37].

Although there was a trend that samples with high TWC showed high absorbance in the prominent
peaks, it can be assumed that other chromophores partly overlap these. Employing a simple linear
regression method would, therefore, not result in a reliable prediction of TWC. Consequently, the use of
multivariate modeling is a prerequisite for the extraction of quantitative information from the spectra
of kidney samples with respect to the water content.

3.2. Prediction of Water Content Using Full Spectral Range

In order to investigate which data are best suited for the prediction model, first the absorbance and
reflectance data in the entire spectral range between 500 and 995 nm were considered (100 wavelengths).
The performances of the PLSR models were evaluated using several variants of spectral preprocessing
methods (normalization followed by scatter correction or spectral derivation), which influenced the
final predictive power (shown in Table 3). The absorbance images of the kidney samples preprocessed
by SG smoothing following area normalization and the reflectance images preprocessed by MSC
following vector normalization exhibited the best results with RP

2 values of 0.968 and 0.963, as well as
RMSEP values of 2.016 and 2.155.

Table 3. Performance of PLSR for prediction TWC based on 100 wavelengths.

Normalization Filter LV’s
Validation Model Prediction Model

RMSECV R2
P RMSEP

Absorbance

Min-Max - 17 3.570 0.912 3.339
SNV 17 3.800 0.904 3.498
MSC 26 6.220 0.939 2.774
SG 17 3.557 0.905 3.463
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Table 3. Cont.

Normalization Filter LV’s
Validation Model Prediction Model

RMSECV R2
P RMSEP

Area - 21 4.628 0.968 2.026
SNV 17 3.961 0.901 3.542
MSC 3 6.320 0.876 3.970
SG 14 3.207 0.968 2.016

Vector - 15 3.285 0.960 2.263
SNV 17 3.995 0.902 3.529
MSC 25 5.949 0.926 3.068
SG 15 3.085 0.957 2.343

Reflectance

Min-Max - 17 3.048 0.961 2.225
SNV 23 3.028 0.955 2.401
MSC 8 5.620 0.795 5.102
SG 17 2.795 0.963 2.162

Area - 16 3.026 0.958 2.318
SNV 16 3.095 0.950 2.511
MSC 21 8.965 0.957 2.325
SG 15 2.928 0.942 2.704

Vector - 17 3.070 0.959 2.274
SNV 16 3.095 0.950 2.511
MSC 19 6.919 0.963 2.155

SG 16 2.925 0.942 2.714

Figure 3 shows the reference versus predicted value plots for TWC using the optimal PLSR models.
Both absorbance and reflectance data sets showed promising results.
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The Bland–Altman method was used to evaluate the differences between the measured and the
predicted TWC values (see Figure 4). For both absorbance and reflectance, there was no average
discrepancy between methods and no trend of the difference in relation to the mean. The limits of
agreement were [−4.39; +3.32]% for absorbance and [−4.02; +4.49]% for reflectance.
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3.3. Multivariate Statistical Analysis Based on Optimal Wavelengths

The selection of the most influential wavelengths was performed by calculating the β-coefficients
derived from the PLSR models. Figure 5 shows the regression coefficients of the best PLSR model,
an absorbance model. In general, wavelengths with values close to zero do not contribute to the
explanation of the chemical variation. High positive values are positively correlated with the dependent
variable water; negative values are negatively correlated. The spectral range between 500 and 700 nm
did not allow a definite assignment. A maximum was found at 750 nm. This peak is characterized by
the O-H stretching second overtone of water and the spectral properties of deoxyhemoglobin. Due to
the overlap of the water peak with the hemoglobin peak [51], the wavelength range of hemoglobin
absorption (500–800 nm) is not considered for a future model. The influence of lipid absorption in
the 930 nm wavelength range is compensated by a minimum of the regression coefficient. To avoid
possible influences on the model by image sensor noise, no wavelengths above 980 nm are used. Since
the β-regression coefficient method did not show clear minima and maxima, the range of 800–980 nm
(37 wavelengths) is selected as an optimized wavelength range.
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The performance of the wavelength-adapted model for TWC prediction by HSI is represented
in Table 4. The best prediction results were obtained with RP

2 values of 0.925 and 0.941, as well as
RMSEP values of 3.075 and 3.202 for the absorbance data preprocessed with min-max normalization
following SNV and reflectance data with area normalization.
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Table 4. Performance of PLSR for prediction TWC based on 37 wavelengths.

Normalization Filter LV’s
Validation Model Prediction Model

RMSECV R2
P RMSEP

Absorbance

Min-Max - 20 4.111 0.894 3.669
SNV 7 4.486 0.925 3.075
MSC 10 7.965 0.759 5.527
SG 14 3.868 0.904 3.481

Area - 12 5.072 0.904 3.494
SNV 12 3.807 0.886 3.801
MSC 4 8.610 0.824 4.725
SG 20 3.854 0.923 3.122

Vector - 13 3.584 0.914 3.295
SNV 12 3.789 0.887 3.779
MSC 4 7.195 0.490 8.0441
SG 17 3.837 0.921 3.159

Reflectance

Min-Max - 11 3.544 0.919 3.202
SNV 13 3.698 0.911 3.352
MSC 7 7.861 0.898 3.593
SG 13 3.752 0.929 3.001

Area - 11 3.485 0.941 3.202
SNV 13 3.687 0.913 3.327
MSC 1 9.641 0.201 10.065
SG 13 3.896 0.943 2.699

Vector - 12 3.416 0.937 2.819
SNV 13 3.687 0.913 3.327
MSC 15 8.160 0.852 4.336
SG 10 3.828 0.920 3.180

The relationship between measured versus predicted TWC values using the optimal PLSR models
is shown in Figure 6. The absorbance and the reflectance models showed promising but still slightly
worse results than the full spectral models presented above.
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Figure 7 shows the Bland–Altman plots for evaluating the differences between the measured and
the predicted TWC values. There was no average discrepancy between the methods, as well as no
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trend of the difference in relation to the mean observed for absorbance and reflectance, respectively.
The limits of agreement were [−6.29; +5.92]% for absorbance and [−4.97; +5.76]% for reflectance.
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3.4. Visualization of Water Content Distribution

The PLSR model that achieved the best results in TWC prediction on the test data (full wavelength
range absorbance spectra preprocessed with area normalization and SG) was employed to determine
the TWC within the kidney tissue during the drying process. Figure 8 illustrates the two-dimensional
distribution of TWC in one sample for three consecutive times. Due to the drying process, the kidney
sample changed in size and shape.Algorithms 2020, 13, x FOR PEER REVIEW 13 of 19 

 
Figure 8. TWC distribution maps of a kidney sample during the drying process. 

Before the drying process started, the tissue had a physiological TWC of ≥80%, which decreased 
with the drying process duration. The estimated values, based on the mean of the single-pixel 
predictions, for the TWC at the beginning of the drying process, after 10 min and after 20 min (82.30%, 
74.91%, and 59.40%) correspond well to the TWC determined by the reference method (82.39%, 
70.98%, and 60.02%). 

Finally, the TWC distribution map of a kidney during NMP is shown in Figure 9. Areas on the 
surface of the kidney without information on the TWC were assigned to specular reflections. The 
measured and the predicted TWC for the kidney were 82.76% and 81.95%, respectively. 

 
Figure 9. TWC distribution map of a kidney during NMP. 

4. Discussion 

This study demonstrated the feasibility of HSI in combination with PLSR to assess the TWC in 
porcine kidneys during NMP. Here, the wavelength range of 500 to 995 nm could be used to identify 
water-related characteristics of kidney tissue. PLSR models derived from the analysis of a suitable 
dataset were applied to quantify TWC. A model based on the absorbance spectra of the full 
wavelength range yielded the best performance in predicting the TWC and was used to visualize the 
TWC distribution of the kidneys’ surface. 

4.1. Hyperspectral Imaging for Spectral Characterization of Kidney Tissue in the VIS/NIR Region 

HSI enables fast and non-invasive measurement of tissue properties in, e.g., medical 
applications. Using this technique, information about physiological and pathological tissue 
characteristics can be obtained [20–25]. Water-specific tissue features of the kidney were assessed 
using HSI in the wavelength range between 500 and 995 nm. By predicting the TWC, tissue-related 
damage during ex vivo preservation could be detected in the future. 

Depending on the medical application, the analyzed HSI spectral range varies between 400 and 
2500 nm. However, tissue characterization is preferably performed in the optical window between 

Figure 8. TWC distribution maps of a kidney sample during the drying process.

Before the drying process started, the tissue had a physiological TWC of ≥80%, which decreased
with the drying process duration. The estimated values, based on the mean of the single-pixel
predictions, for the TWC at the beginning of the drying process, after 10 min and after 20 min (82.30%,
74.91%, and 59.40%) correspond well to the TWC determined by the reference method (82.39%, 70.98%,
and 60.02%).

Finally, the TWC distribution map of a kidney during NMP is shown in Figure 9. Areas on
the surface of the kidney without information on the TWC were assigned to specular reflections.
The measured and the predicted TWC for the kidney were 82.76% and 81.95%, respectively.
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4. Discussion

This study demonstrated the feasibility of HSI in combination with PLSR to assess the TWC
in porcine kidneys during NMP. Here, the wavelength range of 500 to 995 nm could be used to
identify water-related characteristics of kidney tissue. PLSR models derived from the analysis of
a suitable dataset were applied to quantify TWC. A model based on the absorbance spectra of the full
wavelength range yielded the best performance in predicting the TWC and was used to visualize the
TWC distribution of the kidneys’ surface.

4.1. Hyperspectral Imaging for Spectral Characterization of Kidney Tissue in the VIS/NIR Region

HSI enables fast and non-invasive measurement of tissue properties in, e.g., medical applications.
Using this technique, information about physiological and pathological tissue characteristics can
be obtained [20–25]. Water-specific tissue features of the kidney were assessed using HSI in the
wavelength range between 500 and 995 nm. By predicting the TWC, tissue-related damage during
ex vivo preservation could be detected in the future.

Depending on the medical application, the analyzed HSI spectral range varies between 400 and
2500 nm. However, tissue characterization is preferably performed in the optical window between
600 and 1000 nm. In this wavelength range, the amount of VIS/NIR light absorbed by the tissue is
limited, which allows a high penetration depth of the light into the tissue [19]. In the optical window,
the main absorbers are melanin, hemoglobin, lipids, and water [37,39,50]. Since the organic samples’
composition is complex, the absorption bands tend to be broad and generally overlap in different parts
of the NIR range [51]. Two water absorption peaks were observed at 760 and 970 nm [37]. Therefore,
the quantification of the TWC in medical applications or food analysis was successfully performed by
using the wavelength range of 400–1000 nm [27,37,38,47,52,53].

The application of HSI is limited by the low penetration depth of the propagating light into
the tissue. Depending on the wavelength, the illumination has a penetration depth of only a few
millimeters [54]. In the kidney, the main metabolic activity is concentrated in the cortex region [55,56].
An impairment of the kidney quality caused by IRI, for example, could have a decisive influence
on this external organ region and would, therefore, have a considerable impact on the physiological
condition and composition of the kidney. Consequently, metabolic-related kidney injury could be
detected with HSI.

4.2. Partial Least Square Regression for Prediction of the TWC in Kidneys

In this study, PLSR analysis was used to quantify the TWC by simulating an application during
normothermic preservation of ex vivo kidneys. In medical application, PLSR has not yet been used to
determine the TWC. Here, we proposed the suitability and effectiveness of this analytical tool to predict
the TWC in kidney tissue during a non-invasive application. For a TWC range between 44.27% and
89.27%, physiological and non-physiological water-related tissue characteristics can be represented.
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An important aspect of predictive model development is a suitable dataset. Two main aspects
were considered. On the one hand, differences in the chemical composition of the samples, such as
hemoglobin and fat, can affect both tissues scatter and spectral characteristics. For this reason,
a calibration model was developed using kidney samples that properly reflect the application scenario.
On the other hand, a similar distribution of TWCs between the training and test set is essential for
model development. To predict all possible TWC values, the models’ training input should cover the
full value range. Additionally, the test set to which the model is applied requires a similar distribution
of TWCs to reflect a realistic assessment of the models’ performance.

Here, we used PLSR for predictive model development. The reasons for using this method were,
on the one hand, that it is a commonly used and reliable multivariate data analysis method for predictive
model development [46]. On the other hand, in studies evaluating meat samples, the quantitative
relationship between the spectral data of the samples and their reference TWC values was determined
mainly by PLSR analysis [37,47,53]. Other methods whose performance has been tested exclusively
against PLSR are multiple linear regression, random forest, or support vector machines regression.
In this study, PLSR was chosen because it is a reliable analysis tool for data processing of spectra and
showed a better performance compared to the methods mentioned above [38,49,52].

In this study, two categories of PLSR models were built. The spectra utilized for multivariate
data analysis included both full-wavelength spectra and simplified spectra selected by β-coefficient
analysis. In addition, various preprocessing techniques were tested to evaluate the effect on model
performance for TWC prediction. Using the full spectral range, the best model based on absorbance
spectra (RP

2 of 0.969, RMSEP of 2.016) showed approximately the same performance as the model
based on reflectance spectra (RP

2 of 0.963, RMSEP of 2.155). The performance of the TWI calculation
method for medical applications given in Equation (1) is not specified [27], which does not allow any
comparison. Therefore, results from porcine meat analysis were considered as an alternative. Based on
RP

2 and RMSEP, the results were better or comparable to those of previous studies predicting TWC
using HSI and PLSR in pork (RP

2 of 0.91) [40], in pork longissimus dorsi muscles (RP
2 of 0.952 and

RMSEP of 1.396) [37], and in pork longissimus dorsi muscles during salting process (RP
2 of 0.941 and

RMSEP of 1.23) [49].
When using a simplified spectral range of 37 wavelengths, the performance of the models deteriorated

moderately compared to the models developed with the full spectral range of 100 wavelengths. The best
model based on absorbance spectra (RP

2 of 0.925 and RMSEP of 3.075) showed a slightly worse
performance than the best model based on reflectance spectra (RP

2 of 0.941 and RMSEP of 3.202).
One possibility for the deterioration of the results is the lack of information in the specified optimal
wavelength range. Although there is no standard method for selection of optimal wavelengths,
various approaches have been proposed for wavelength selection in spectral analyses: competitive
adaptive reweighted sampling [57], stepwise regression [58], artificial neural network [59], principal
component analysis [60], independent component analysis [61], and optimization algorithms [62].
It is possible that one of these methods can be used to determine the most important wavelengths
more precisely.

4.3. Visualization of Tissue Water Content in Kidneys

We demonstrated a pixel-by-pixel display of TWC values from the kidney ex vivo using HSI.
This visualization offers the possibility of locally resolving tissue-relevant changes. Additionally,
the HSI allows the simultaneous acquisition of further tissue parameters, such as the oxygen saturation
of the tissue [25].

A perspective relevance of this monitoring scenario, is that the physicians receive additional
visual information about the organ, which, in the context of NMP, for example, could allow a better
assessment of the organ quality and the indication for therapy adjustment.

A limitation of our study is the usage of only 23 kidneys from German Landrace pigs, to predict
the TWC in kidneys. Future research should include a higher amount of test subjects as well as pigs
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from other races or origin (e.g., laboratory surgery pigs) to ensure the general validity of our method.
To show the effectiveness of the proposed approach, other multivariate data analysis methods could
be considered. Furthermore, the presented algorithm could be transferred to other organs under the
condition of a suitable calibration model.

In summary, HSI in the wavelength range from 500 to 995 nm was used to predict the TWC in pig
kidneys. After data preprocessing, PLSR prediction models were created and compared to choose the
best model. Furthermore, the visualization of the spatial distribution of TWC was realized. Knowledge
of tissue-specific parameters could provide a promising opportunity to investigate assessment tools of
organ grafts during the preservation period.
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The following abbreviations are used in this manuscript:

AOAC Association of Official Analytical Chemists
ASTM American Society for Testing and Materials
FOV Field of View
HSI Hyperspectral Imaging
MSC Multiplicative Scatter Correction
NIR Near-Infrared
NMP Normothermic Machine Perfusion
PLSR Partial Least Squares Regression
RMSECV Root-Mean-Square Error resulted from Cross-Validation
RMSEP Root-Mean-Square Error of Prediction
SG Savitzky-Golay
SNV Standard Normal Variate
TWC Tissue Water Content
TWI Tissue Water Index
VIS Visible Light
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