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Abstract: We develop a family of three-step sixth order methods with generic weight functions
employed in the second and third sub-steps for solving nonlinear systems. Theoretical and
computational studies are of major concern for the convergence behavior with applications to special
cases of rational weight functions. A number of numerical examples are illustrated to confirm the
convergence behavior of local as well as global character of the proposed and existing methods
viewed through the basins of attraction.
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1. Introduction

Since exact solutions for nonlinear equations are rarely available, we usually resort to their
numerical solutions. To locate the desired numerical roots, many authors [1-9] have developed
high-order iterative methods including optimal eighth-order ones [10-15].

This paper is devoted to devise a class of sixth-order iterative root-finders for nonlinear systems
by employing a three-step weighted Jarratt-like method below:

Yn=xu— 7 f'(xn) " flxn), 7 €R,
zn = Xn = Tp(s) - f'(xn) ' f(xn), M
Xps1 = 2zn — Lp(s) - f/(xn) " f(2n),

where s = f/(x,) "' f'(yn), v is a parameter to be determined later and Tf, Ly : C — C are weight
functions being analytic [16-18] in a neighborhood of 1. Note that Scheme (1) uses two functional
values as well as two derivatives. We are certainly able to introduce generic weight functions using one
derivative and three functional values to develop general optimal eighth-order methods that covers
the existing ones for the zero of a given scalar function. However, expanding such approach to a
nonlinear system requires different weight functions. For unified analysis to be performed in both
scalar and vector functions, we aim to develop a family of Jarratt-like sixth-order iterative methods by
maintaining the same form of weight functions with two derivatives as well as two functional values.
This extension to nonlinear systems is the main strength of this paper.

The robustness of the current analysis presented here covers most existing studies on higher-order
root-finders using two derivatives and two function values for both scalar and vector equations.
The results of Theorem 1 give us not only fairly generic scalar function solvers, but also some
advantage of extending to a nonlinear system with any finite dimension. Such an extension is evidently
characterized by Theorem 2 to be studied in this analysis.

Algorithms 2020, 13, 303; doi:10.3390/a13110303 www.mdpi.com/journal/algorithms


http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/13/11/303?type=check_update&version=1
http://dx.doi.org/10.3390/a13110303
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 303 20f 24

Our major aim is not only to design a class of sixth-order methods by fully specifying the algebraic
structure of generic weight functions T¢(s) and L¢(s), but also to investigate their basins of attraction
behind the extraneous fixed points [19] when applied to polynomials. The last sub-step of (1) in the
form of weighted Newton’s method is clearly more convenient in dealing with extraneous fixed points
which are the roots of the weight function T (s) + L(s) - ;gzg .

The extraneous fixed points may lead us to attractive, indifferent, repulsive and chaotic orbits via
the related basins of attraction.

Section 2 investigates the main theorem regarding the convergence behavior with the desired
forms of weight functions, while Section 3 deals with special cases of weight functions that can cover
many of the existing studies using two derivatives and two functional evaluations. Section 4 discusses
the computational and long-term orbit behavior of the proposed iterative methods regarding scalar
functions. Section 5 presents numerical experiments in a d-dimensional Euclidean space by solving
a system of nonlinear vector equations f : R? — R encountered in a real life with d € {3,4,9,10}.
In addition, computational efficiency is addressed with issues related to the accuracy and applicability
of the proposed methods. Concluding remarks are stated in Section 6.

2. Main Theorem

The main theorem for a nonlinear scalar equation will be pursued and extended later in Section 5
to a system of nonlinear vector equations:

Theorem 1. Assume that f : D C C — C has a simple root « and is analytic in a region D containing a.

Let 6; = 0 fo j=2,3,---. Let xo be an initial guess chosen in a sufficiently small neighborhood of w.

T (w
Let Ty, Ly : C — C be analytic in a neighborhood of 1. Let T; = & le( ) sy and L; = ll,;s’l L(s)|,_, for
0<i<5IfTh=1T = —%,LO =1L = —%, then iterative scheme ( ) deﬁnes a family of fifth-order
methods for v € R — {0}. If we add further constraints either with {y = 3, T, = 3,|T3| < 0,|Ly| < oo}

or with {y = 1,Ly = 3,|L3| < o0, |Ta| < oo}, then iterative scheme (1) reduces to a family of sixth-order
methods satisfying the error equation below. Forn =0,1,2,- - -,

et — { 513 [2(—27 + 8L,)03 + 965] - [(135 + 64T3)05 — 276205 + 304] ¢§ + O(e?), if v = 3, @

[4(1 = 2T5) (9 + 4L3 + 2T2)03 + 4(1 + L3 + 3T2)63605 — 36,63 5 + O(e)), if v =1

Proof. Taylor series expansion of f(x,) about a up to sixth-order terms with f(«) = 0 leads us to
the following:
f(xn) = f'(a)[en + 0265 + O3¢5, + O4e5, + 565, + Ogel + O(e],)]- €)

It follows that
F'(xn) = f'(@)[1+ 2026, + 363¢2 + 404e5 + 505t + 606e5, + O(5)]. (4)

For brevity of notation, we denote e, by e, unless otherwise specified from now on. Symbolic
computation of Mathematica [20] yields:

— f(xn) —u
T

where Yy = (463 — 70,05 4 364), Y5 = —27(465 — 100363 + 303 + 50,04 — 205), Yo = (1665 — 5260363 +
330,02 + 280304 — 170504 — 130205 + 56¢).
In view of the fact that f'(yn) = f'(xn)le, - (y,—a), We get:

+(1—9y)e+ ’)/9262 — 2*)/(6% — 93)63 + Yae* + Yse® + Yeel + O(e7), (5)

F'(yn) = f'(@)[1 = 2(y = 1)8ae + [2763 +3(y — 1)°63]¢* + L7 3Die’ +O(e°)], (6)
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where D; = D;(7, 65,03, -+ ,06) for 3 < i < 5. Hence, we have:
, .
s = ;,EZ"; =1-—290e+ 37[26% +(-2+ ’)/)93])62 + Z?:3Eie’ + O(eé), (7)
n

where E; = E;(7,02,03,- -+ ,0g) for3 <i <5.
Noting that s = 1+ O(e) and J{(,((J;’; )) = O(e), we need a Taylor expansion of T¢(s) about s = 1 up
to fifth-order terms:

Tf(s) = To+ Ti(s — 1) + To(s = 1)* + Ts(s — 1)° + Tu(s — 1)* + Ts(s — 1)° + O(e°). )
Thus, we find
R ) f(xn) _ . 2
zn = xn — Tf(s) - %5 =a+ (1—-To)e+ (To +2Ty)0e"+
f'(xn)
[—2To(63 — 03) — v(8T163 + 4Toy03 + 3Ty (—2 + 7)83)]e® + Z6_, Wie' +O(e), )

where W; = Wi(,62,63,--- ,06,To,- -+, T5) for4 <i < 6.
In view of the fact that f(zx) = f(xn)le,—(z,—a) We get:

fzn) = f'(a)[(1 = To)e + [(1 — To)?62 + (Tp + 2Ty 7)62]e* + T8, Fe' + O(e7)], (10)

where F; = Fi(7,02,03,--,06,Tp,- -, T5) for 3 < i < 6. Noting that s = O(1) and j{,((i’;)) = O(e),

we need a Taylor expansion of L¢(s) about s = 1 up to fifth-order terms:
Le(s) = Lo+ Li(s = 1) + La(s = 1) + La(s — 1)’ + Lg(s — 1)* + Ls(s = 1)° + O(¢®).  (11)

Hence, we have:

Xp+1 = 2zn — Lg(s) - j:,((j;)) =a+(Lo—1)(Ty—1)e

+ [(To — 2Ly Toy +2(Ly + T1)y — Lo(—1 4 To + T3 + 2Ty ))626* + 2 3Gie' +0(e”),  (12)

where Gi = Gi(7!92/93/' o /961TO/' o rTSILOI' o /L5) for 3 < i < 6.
By taking

1 1
T0:1/T1:_E/LO:1/L1:_;/ (13)

we further obtain

Xp1 = &+ [4(=3 4 2Lo7?) (=1 +2Tp7?)05 + (=12 + 157y + 4(Ly + 3T2)y* — 6(Ly + 2T5)7>) 6363

+ %(v —1)(3y —2)63]¢° + Gee® + O(¢7). (14)

From (7 — 1)(3y — 2) = 0, we find two sets of relations:

2 9 3
{7_ ngZ— g},{’)’—l,Lz— 5}

for vanishing the fifth-order term in (14). Hence, we eventually have two sets of relations:

2 3 9 3
==, To=1,T1=——,T==,Ly=1,L1 = —=
{’)’ 3/ 0 s 41 4/ 2 8/ 0 s 1 2}/

1 3
{')/:1,’1—‘0:1,’1—1:** L0:1/L1:71/L2:7 ’
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which are substituted into Gg in (14) and lead us to the desired relation (2) with {|T3| < oo, |Lp| < oo}
when 7 = £, or with {|L3| < oo, |T5| < o0} wheny =1. O

Remark 1. The fifth-order expansion of the weight functions is considered due to the fact that s =1+ O(e)
and ]{,((Z”)) = O(e) or jf/((x”)) = O(e). However, the result of Theorem 1 shows that z = O(ek), J{[/((i’;)) =
O(e"), fork € {3,4} with v € {1,%}. Hence, we require only at most the third-order expansion for both
weight functions to achieve the desired sixth-order convergence. This favorable fact is used below to establish the

corresponding theorem for a family of sixth-order systems of nonlinear equations.

3. Special Cases of Weight Functions

Theorem 1 clearly covers the existing case study in R shown in [21]

7=3
Ty(s) = (1+ ypieae ) H1 —s), A € R, p € R — {0} (15)
Le(s) = 3(5—3s),

where H(t) = 1+ (3ﬁ;2)t + (9’3 ’ 38632 4A+2)t2 Note that Ty in (15) is a cubic-order rational weight

function. It also covers the existing case study in R shown in [2]

2
T=3
Ty(s) =1+ 02 (14 20l 0 B e R, (16)
Ly(s) = %(5 ),

where Ty in (15) is a second-order rational weight function.

Although the result of Theorem 1 allows an infinite number of other forms of weight functions
T¢(s) and L¢(s), we are specifically interested only in second-order rational forms for the both weight
functions Ty(s) and L¢(s).

_ ai+bis+gisz
{ Tr(s) = crasims )

__ pitqistk;s® .
Lf(s) = 7r;+(7,-s+n]sz’ for1 <i<2,
where the desired coefficients are to be determined based on the results of Theorem 1.
Two cases can be considered. The first case can be given as follows:
Case A: {y=2%To=1T1=-3,Ly=1L =-3Tr = §,|T3] < o0, |Ly| < o0}

b = l(96!1 —31g¢1 +16hy),c1 = —2a1 + 691 — 3hy,d; = %(9&11 —23¢1 +11hy), T3 = — 90y —23¢, +137)

16(3H1 —7g1 +4h1) 4

p1 = 3( 7k1—5ql+2(71 —|—4Tl) r = 3( 4k, — 21 —(Tl—|—T1) L, = —%. Hence,
the desired form of (17) becomes:

T (S) . aﬁ-%(9a1—31g1+16h1)s+g152

f T —2ay+6g1 3/ +3 (921 —23g; +11hy )5+ 52 (18)

1 (=7ky—5q1+201+411 ) +q15+k; 52
3 (—4k—2q1—01+m)+o1s+7is?

Li(s) =

where a1, g1, 111, k1, 91,01, and 7y are free parameters. Similarly, we can find the second case:
CaseB: {y=1Ty=1T1=-3,Lo=1L = -1,T = 3,|Th| < oo, |L3| < 0}

—9d2+4-6h — hy)—6d h
by — %(—‘12 2y — 5y + 4l), ¢ — %(2112 Cdy 29+ 1), Ty = 9d2+6hy (ay—7g0+2h5) — 64 (3g2+2h)

8(a2+d2*g2+2h2)2 4
p2 = %(7’(2 +0+2m), 1 = %(Zkz — 0y — ), 02 = 3( 8ky 4+ 02 +412), L3 %. Hence,

the desired form of (17) becomes:
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T (S) _ u2+%(—u2+2d2—5g2+4h2)s+g252
f %2&27d272g2+h2+d25+h252
_ Y(Tk2402—2m)+ 1 (—8k2+02+4T) )s+kys?

%(2k27(727T2)+0'28+T252

7

(19)

L f (S) ’
where ay,d>, g2, hy, ko, 09, and T, are free parameters.
Although numerous forms of weight functions T¢(s) and L¢(s) satisfying (18) or (19) are
applicable, we are specifically interested to the following forms:
Case A: v = 3

Tp(s) e {i(E2),16+2), %(6s+1+6i251> B W - (20)
1/3541\2 1,3 2 T
(S) c {1(3§t1) 12(5 _1), 35_1,55 (7 35 ), 752 37 4(1+ Sz)r 1+352/ 2 S, (1+SS) }

Remark 2. Existing studies with combinations of weight functions

(Tr.Lp) € {(235) 1G5, GER) 55), (56 + 2,2 = 1), (2(55), 3G — 1))} can be
found, respectively, in [3,8,9,22]. These existing methods are denoted by EM;, EMy, EM3, and EMy,

respectively, for use below. Note that selecting o = p = 2 in (16) readily yields Ty (s) = 352f I-

CaseB:y =1

2 1 1 1+s 3s—1 25— -2 1 1 4% 4
Ts(s) € {35 1'5553'2(3 s), —25(3s = 5), 5%, 352 ’ 1+s/3+2rs(573)/z(3+:z>/ 552571’524»3’
52
%(5_52),(32%) , (516) ,4(272) )2’ 16 (s+3) }, (21)

) (s+3)2’4 s+1
Li(s) e {83 L+ 1), 3(s -2+ 3), 5

(5
i1

—1
L (4s+1+ 24), (32— 7s + ,285) .

Remark 3. Existing studies with combinations of weight functions
(Tr, L) € {(%2 M) (155 25), (52,30 + %))} can be found, respectively, in [7,22,23].
These existing methods are denoted by EMs, EMg and EMjy, respectively, for use below.

In view of (20) and (21), we can select a total of 154 special pairs of second-order rational
weight functions (T¢(s), L¢(s)). Excluding known studies, the following pairs of weight functions
(Tf(s),L¢(s)) may be of great interest to us. The corresponding methods to such pairs of weight
functions (Tf(s), Lf(s)) are denoted by LK; for 1 < i < 10, respectively, and indicated on the right
of (22) and (23).

Case A:y = %
GED 2, K
e
(T(s), Ly(s)) = (%(5 + f) 25,31), ———LK; (22)
(5(5+ ), >57), - ——LK,
(8 —3s+3s%,5E), ———LKs.

One should be aware that Method LK, can be found by taking « = = 2 from (16).
CaseB:y =1

(35251’ l‘ssstll )’ ———LKg
(32, 55, ———LKy
(Te(s), Le(s) = § (52, 50, — — —LKg 23)
(35, 3(0+ %), ———LKg
G 55, — — LKy

4. Computational Experiments on Local and Global Convergence

For computational experiments, we first deal with local convergence of methods (1) for a variety
of test functions along with the existing methods EM1-EM7; then we discuss global convergence
underlying extraneous fixed points via basins of attraction. Numerical experiments for 17 methods
EM1- EM7 and LK1-LK10 were implemented with Mathematica with 300 and 140 digits of minimum
number of precision for scalar and vector equations, respectively.
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Definition 1. (Computational Convergence Order (COC) and Approximated Computational Convergence

Order (ACOC)) Assume that theoretical asymptotic error constant 1 = lim, o Ter 1P |p and convergence order

log len /1|
Tog le, 1]

Approximated computational convergence order py is defined as pp=|;
knowledge at four points x,, X1, Xn—2, Xn—3.

p > 1are known. Define p, = | /1| | as the computational convergence order. Note that limy, .o pn = p.

log ‘Xn Xn— 1‘/|xn 1= Xn— 2‘
Og(|xn 1= Xn—2|/[Xn—2—%n— 3|

‘ requiring

4.1. Local Convergence

Table 1 lists test scalar functions to measure the convergence behavior of proposed scheme (1).
Computed values of x, is listed with up to 15 significant digits for proper readability. The error bound
€ = 1 x 107180 is assigned for scalar equations.

Table 1. Test functions f;(x) with zeros « and initial guesses x.

i fi(x) « X0

1 sinx — log (1 + x?) 0 0.01

2 34 sinx — x2 1.97932014655621 2.0

3 2x — 7+ cosx - log (x? + 1) z 1.53

4 23 4o 4 sinx -2 0.719549366870672 0.73

5 x—+/3x3cos (&) + (x2+1 - 443 2 1.87

Xs .

6 ¢ TTT ] Ltiyv3 0.52 + 0.85i
7 xlogx — /x +x? 1 1.05

Here log z(z € C) represents a principal analytic branch with — v < Im(logz) < 7.

According to Table 2, sixth-order convergence is clearly seen. The values of computational
asymptotic error constant agree up to 10 significant digits with 7. It appears that the computational
convergence order well approaches 6. In Table 3, we compare numerical errors |x, — a| of proposed
Methods LK1-LK10 with those of existing Methods EM1-EM7. The least errors within the prescribed
error bound are highlighted in bold face. According to the comparison, Methods LK1 and LKS8
display slightly better convergence for most test functions, while other remaining methods exhibit
similar convergence.

Table 2. Convergence for test functions fj(x) — fy(x) with typically selected Methods EM1, LK1,

EMS5, LKe6.
Method f =n Xn | f ()] | — & lenlen_ 1 Pn
0 0.01 0.00989984 0.0100000
1 —1.33986049407934 x 10~12 1339 x 1012 1.339 x 10~12 1.339860494 1.296296296  5.99282
EM1 f; 2 —7.50000879616187x10~72 7.500x 10772 7.500x 10772 1.296296296 6.00000
3 —2.30714514140106x10747 2307 x 10747 2.307x107%%
0 2.0 0.0907026 0.0206799
1 1.97932014655603 7.783 x 10713 1.786 x 10713 0.002284503784  0.00248336214  6.02152
LK1 fr 2 1.97932014655621 3.520 x 10~7° 8.081 x 10780 0.002483362140 6.00000
3 1.97932014655621 0.0 x 1072 3.015 x 107328
0 1.53 0.0323961 0.0407963
1 1.57079629958335 2.058 x 1078 2721 x 1078 5.902375791 7190518106  6.06171
EM5 f; 2 1.57079632679490 2.208 x 10~45 2919 x 10~% 7.190518106 6.00000
3 1.57079632679490 3.367 x 10727 4.450 x 10267
0 0.73 0.0318041 0.0104506
1 0.719549366862969 2311 x 10~11 7.703 x 10712 5913012409 6.120642565  6.00757
LK6 fi 2 0.719549366870672 3.837 x 1079 1.278 x 1066 6.120642565 6.00000
3 0.719549366870672 1.20621 x 107327 1507 x 10~3%7
A close inspection of the asymptotic error constant 7(a, 6;, T, Ly) = M addresses one’s

attention to the local convergence dependent on f(x), xo, &, Tr and L¢. Accordingly, the convergence
of one method is hardly expected to be always better than the others.
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Table 3. Local convergence of selected methods for various test functions.

vy Method  |x, — & f(x)ix0
;001 f520  f5153 ;073 f5;1.87  f5;0.52+0.85i  f7;1.05
EM1 |x; —a| 1.33e-12*  4.03e-13  5.07e-9 1.64e-12 3.13e-5 9.14e-10 2.26e-9
|x2 — af 7.50e-72  2.30e-77 1.99e-50  2.49e-71  2.59e-26 2.72e-54 2.34e-53
EM2 [x1 — «f 2.54e-12  7.48e-13  1.11e-8 4.50e-12 3.92e-5 8.81e-10 3.8%-9
[xp — «f 6.61e-70  1.75e-75 5.43e-48 2.97e-68  1.63e-25 2.16e-54 1.11e-51
EM3 |x] — af 5.88e-12  1.68e-12  3.05e-8 1.49e-11 5.62e-5 8.08e-10 8.09e-9
[xy — & 2.26e-67 5.13e-73 6.77e-45 1.34e-64 2.73e-24 1.28e-54 1.94e-49
EM4 [x1 — «f 4.17e-12  1.20e-12  1.89%e-8 8.28e-12  4.89%e-5 8.49¢e-10 6.03e-9
|xp — af 2.05e-68  4.97e-74 2.37e-46  2.14e-66  9.32e-25 1.76e-54 2.45e-50
2/3 LK1 [x1 — «f 6.33e-13  1.78e-13  6.13e-9 3.26e-12 1.37e-5 9.89%e-10 6.46e-10
[xp — & 3.58e-74  8.08e-80 8.66e-50  3.13e-69  9.64e-30 4.55e-54 4.72e-57
LK2 |x] — af 748e-12  2.10e-12  3.32e-8 1.56le-11  6.43e-5 8.34e-10 1.00e-8
|xp — af 1.20e-66  2.51e-72 1.29e-44  1.86e-64  8.09e-24 1.78e-54 9.18e-49
LK3 [x1 — «f 3.59%e-12 1.04e-12  1.79e-8 8.13e-12 4.50e-5 8.3%-10 5.22e-9
[xp — «f 7.27e-69 1.80e-74 1.55e-46  1.87e-66  4.76e-25 1.57e-54 8.82e-51
LK4 |x] — af 1.05e-11  2.93e-12  5.35e-8 2.82e-11 7.39e-5 7.94e-10 1.34e-8
|x2 — af 1.32e-65  2.59-71 3.71e-43 1.17e-62  2.37e-23 1.29e-54 7.28e-48
LK5 [x1 — «f 3.58e-11 9.46e-12  1.94e-7 1.24e-10 1.27e-4 6.41e-10 3.85e-8
[xp — «f 6.72e-62  9.48e-68 3.57e-39  4.05e-58  1.74e-21 3.79e-55 1.24e-44
EM5 |x] — af 2.02e-12  3.88e-13  2.72e-8 2.23e-11 2.60e-5 2.17e-9 1.88e-9
|xp — af 1.16e-70  1.99e-77 291e-45 2.25e-63  2.11e-26 1.19e-51 1.16e-53
EMe6 [x1 — «f 1.38e-12  3.93e-13  2.88e-9 8.25e-13 1.33e-5 2.32e-9 1.96e-9
[xp — & 9.18e-72 1.94e-77 3.98e-52  2.26e-73  1.08e-28 1.49e-51 9.28e-54
EM7 |x1 — af 4.19e-13  8.51e-14  5.45e-9 3.56e-12 1.17e-5 2.03e-9 4.68e-10
|xp — af 2.00e-75  4.73e-82 3.20e-50 5.72e-69  4.62e-29 6.12e-52 6.03e-58
LK6 [x1 — «f 3.93e-12 1.12e-12  1.81e-8 7.70e-12 5.75e-5 1.91e-9 5.60e-9
[xp — «af 1.36e-68  3.03e-74 1.65e-46  1.27e-66  2.27e-24 4.21e-52 1.41e-50
1 LK7 |x] — af 7.75e-13  2.18e-13  1.10e-8 1.25e-11 2.17e-5 2.59e-9 1.60e-9
[xy — & 1.73e-73  3.02e-79 7.41e-48 4.21e-65  2.85e-27 3.33e-51 2.03e-54
LK8 [x1 — «f 227e-13  4.60e-14 2.11e-9 1.07e-12 8.59%-6 2.08e-9 2.65e-10
|xp — af 2.82e-77  6.39e-84 4.14e-53 1.29e-72  4.42e-30 7.24e-52 1.11e-59
LK9 [x1 — «f 3.38e-12  9.73e-13  2.33e-8 1.20e-11 1.99e-5 2.25e-9 4.43e-9
[x2 — & 4.73e-69 1.11e-74 1.02e-45 2.98e-65  2.16e-27 1.22e-51 2.77e-51
LK10 |x] — af 1.36e-12  3.81e-13  2.49e-9 5.51e-12 1.87e-5 2.45e-9 2.08e-9
|xp — af 8.46e-72  1.55e-77 2.54e-52  1.3le-67 1.12e-27 2.21e-51 1.37e-53

“133e-12= 133 x 10 2.
4.2. Global Convergence

We usually locate a zero « of f(x) by means of a fixed point ¢ of iterative maps:
Xp+1 :’%:(x,,),n:O,l,--- . (24)

In general, #; might possess other extraneous fixed points ¢ # w. It is well known that extraneous
fixed points may result in attractive, indifferent or repulsive cycles as well as other periodic orbits
influencing global convergence. Combining proposed methods (1) with maps (24), we find:

_ f(xn)
f'(xn)

where H¢(xn) = T(s) + Lg(s) - ;Ei’;; can be regarded as a weight function of the classical Newton’s

X1 = W5(xXn) = xn Hy(xn), (25)

method. We are interested in the dynamics [24-29] of maps (1) underlying their extraneous fixed
points of associated with their basins of attraction.

Good initial guesses for the numerical solutions of methods (1) can be determined from the basins
of attraction which exhibits convergence of global character. Table 4 features statistical data including
the average number of iterations per point, CPU time (in seconds), and number of points requiring
40 iterations. In the following examples, we take a 6 X 6 square centered at the origin containing all
the zeros of the given test functions. We then take 601 x 601 equally spaced points in the square as
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initial points for methods (1). We color the point based on the root it converged to. This way we can
figure out if the method converged within the maximum number of iteration and if it converged to the
root closer to the initial point.

Figures 1-4 present basins of attraction of 17 iterative maps when applied to various polynomials.

Example 1. As a first example, we have taken a quadratic polynomial with all real roots:
pi(z) = (2 - 1). (26)

Clearly the roots are +1. Basins of attraction for all the listed methods are given in Figure 1.
Consulting Table 4, we find that Methods LK1 and LK8 use the fewest iterations per point on average
(AvgCon), and they also have the fewest black points. Other remaining methods have AvgCon ranging
from 3.43 to 4.83. The fastest methods are EM2 with 49.406 s and EM6 with 48.032 s. Observe that
Methods LK5 and LK6 exhibit more chaotic nature along the imaginary axis than others.

Example 2. In our second example, we have taken a cubic polynomial:

pa(z) = (2% + 47% — 10). (27)

Basins of attraction are given in Figure 2. We now consult Table 4 to find that the methods with the
fewest AvgCon are EM1 with 4.2698 and EM6 with 3.9447 iterations. All the others require between
3.97 and 8.44. In terms of CPU time in seconds, the fastest are EM2 (129.172 s) and EM6 (128.797 s) and
the slowest are LK5 (306.672 s) and EM5 (172.548 s). The methods having the most black points are
LK5 with 75,147 and LK7 with 16,293, while the methods having the fewest are LK1 with 418 points
and EM6 with no points. Method LK5 displays most chaotic nature near the basin boundaries axis,
followed by Method LK4. Methods LK1, LK8, LK9 and EM6 present better stability than others.
Example 3. As a third example, we have taken another cubic polynomial:

p3(z) = (z° — z). (28)

Now, all the roots are real. The basins for this example are plotted in Figure 3. Based on Table 4
we find that the methods displaying the lowest AvgCon are EM3 with 4.3713 and LK8 with 4.2768.
The fastest methods are EM2 with 131.750 s and EM6 with 129.766 s, while the slowest are LK1 with
229.297 s and LK3 with 164.906 s. The methods having the fewest black points are LK1 with 3000 and
EM2 with 192. Methods LK4 and EM3 reveal the most chaotic nature, followed by Methods LK3 and
LK5. Methods LK8 and EM3 are more stable than others.
Example 4. As a fourth example, we have taken a quartic polynomial:

pa(z) = (z* - 1). (29)

The basins are given in Figure 4. In terms of AvgCon, EM1 with 5.1189 and EM4 with 4.4454
are the best, while LK5 with 6.6932 and EM1 with 5.4899 are the worst. The fastest are EM2 with
110.578 s and EM6 with 100.078 s, while the slowest are LK4 with 541.970 s and EM1 with 285.126 s.
The methods having the fewest black points are LK5 with 4 and EM2 with 0, while the methods having
the most black points are LK4 with 8444 and LK1 with 5762. Methods EM1, EM3, EM5, LK3, LK4 and
LK?7 are more chaotic than the others, while Methods EM6 and LK6 are more stable. Method LK1 is of
somewhat different stability character.
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Figure 1. Basins of attraction of the listed methods, for the roots of the polynomial z2 — 1.
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Figure 2. Basins of attraction of the listed methods, for the roots of the polynomial z3 + 22 + z + 1.
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Figure 3. Basins of attraction of the listed methods, for the roots of the polynomial z(z3 + 1).
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Figure 4. Basins of attraction of the listed methods, for the roots of the polynomial z(z? + é)
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Table 4. Global convergence behavior of selected methods for various examples.

Method
¥ Ex Conv
EM1 EM2 EM3 EM4 LK1 LK2 LK3 LK4 LK5
Ex1 CPU 55985 49406  59.704  58.016  51.750  52.781  59.297  59.499  58.985
NConpts 0 0 0 0 0 0 0 0 0

Conpts 360,000 360,000 359,964 359,964 360,000 359,996 360,000 359,856 351,604
AvgCon 35956  3.6421  3.8883 3.8883  3.3367  3.9541 3.7359  4.1172  4.8282

Bkpts 0 0 36 36 0 4 0 144 8396
Ex2 CPU 147.140 129.172 181.671 169.453 262.750 148.141 186.343 192281 306.672
NConpts 0 0 0 0 31130 0 0 0 32030
2/3 Conpts 348,170 357,746 343,698 357,078 328,452 354,802 348,498 337,638 252,823
AvgCon 42698 44981  4.6598  4.6601 43691 48186 45058 49145  8.4395

Bkpts 11,830 2254 16,302 2922 418 5198 11,502 22,362 75,147
Ex3 CPU 154.452  131.750 149.125 161.625 229.297 149.266 181.828 147.829 159.766

NConpts 0 0 0 0 6 0 0 0 0

Conpts 349,039 354,026 226,092 349,416 356,994 344,930 308,029 226322 287215
AvgCon 44275  4.5429 43713  4.6475 7.7363 47942 44893 44766  4.9749
Bkpts 10,961 5974 133,908 10,584 3000 15,070 51,971 133,678 72,785

Ex4 CPU 211.297 110.578 391.172 142.797 504.171 150.000 303.328 541.97 146.984
NConpts 0 0 0 0 182,324 0 0 0 118
Conpts 357,420 359,660 354,742 359,618 177,562 358,856 356,208 351,556 359,878
AvgCon  5.1189 5.1682 5.3757  5.2790 5.8742 5.3789 5.2601 5.5550 6.6932
Bkpts 2580 340 5258 382 114 1144 3792 8444 4

EM5 EMe6 EM?7 LKé6 LK7 LK8 LK9 LK10 -

Ex1 CPU 57.671  48.032  54.532 54297  50.641  54.109 58281  56.328
NConpts 0 0 148 0 0 0 0 0
Conpts 359,924 360,000 359,852 354,908 359,984 360,000 360,000 359,856 -
AvgCon 39965 34366 35932 39017 35050 3.3935 3.7446  3.4631

Bkpts 76 0 0 5092 16 0 0 0
Ex2 CPU 172.548 128.797 159.328 147.407 144.687 148.328 172500 162.219
NConpts 0 0 0 0 0 0 0 0
1 Conpts 343,983 360,000 354,417 356,718 343,707 359,474 359522 358554 -
AvgCon  4.8880 39447 44469 44769 42834 39776 4.57263 4.1854
Bkpts 16,017 0 5583 3282 16,293 526 478 1446
Ex3 CPU 152.344 129.766 151.719 138.062 138.062 152.187 164.906 155.969
NConpts 0 0 0 0 6 0 0 0

Conpts 334,256 359,808 350,497 337,990 344,846 357,584 354,886 353,352 -
AvgCon  4.8171 4.2823 45154 43329 43803  4.2768 47096  4.3668

Bkpts 25744 192 9503 22,010 15,154 2416 5114 6648
Ex4 CPU 285126  100.078 197.062 102.141 270438 128.39  140.844 131.531
NConpts 0 0 0 0 0 0 0 0

Conpts 355,406 360,000 357,822 359,320 354,238 359,774 359,820 359,518 -
AvgCon  5.4899 4.7871 5.1523 4.4454 4.8786 4.8366 53292  4.8444
Bkpts 4594 0 2178 680 5762 226 180 482

Conv, convergent behavior; CPU, processing CPU time in seconds; NConpts, number of points whose each
orbit is non-convergent but bounded; Conpts, number of points whose each orbit is convergent; AvgCon,
average number of iterations for convergence per point; Bkpts, number of points whose each orbit tends to
infinity within 40 iterations.

5. Extension to a Family of the Sixth-Order Methods for Nonlinear Systems of Equations

Let f: D C C4 — C9 with d € N have a zero « € D and be holomorphic in a neighborhood of «.
Taylor expansion of f(x,) about « easily gives:

n)erl

F(x) = F(@)(e™ + ce™? 4 1 ee™™) £ O]l D,n=01---, (30)

where e(®) = x(") — g and cj = jl!f’(a)’lf(j) (a) for j > 2. For notational convenience, we drop the

subscript 7 of e(™ and x(*) for the time being. We observe that f/(«) and f’(a) ! are d x d matrices,
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with c]-e(”)j € C“. From (30), we find that the truncated f(x) defines a polynomial in e with matrix
coefficients (independent of x). Hence, it is easily seen that

F'(x) = f'(a)(I 4 2cze + 336 4 - - - + meye™ 1) +O(|le]|™),n =0,1,- - -, (31)
where [ is the d x d identity matrix. The inverse of f’ (x(M) can be found by identifying
B = —(2coe + 3c3e? + - - - + mcye™ ! from the relation

(I-B) '=1+B+B>+B%+---, with ||B|| < 1. (32)

Consequently, we find that:
F1(x0) 71 = (I+ Xae + Xoe? + X36® + Xae* + Xse® + Xee®) f' () 1+ O(||¢]]), (33)

where X7 = —2c3, Xp = (4¢3 —3c3), X3 = —8cg —4cy +6(cacs + c302), Xy = 16¢5 + 9c§ — 5c5 4 8cacy +
8cycp — 12(c5c3 + c3¢5 + caczca), X5 = —32cg —6¢6 + 2(5c0¢5 + 6¢304 + 6C4C3 + 5¢507) + 24(c303 + C3C% +
62C3C% + C%Cng) — 2(9c2c§ + 80%64 + 9c§c2 + 8C4C% + 8cacacn + 9czeacs), Xo = 645 + 1602 +12¢9c6 —
20c3c5 + 15¢3¢5 + 15¢5¢3 + 12c6c2 — 48(c3e3 + 3¢5 + Cac363 + cac3¢5 + 3c3¢2) — 24(cac3c4 + c302¢4) —
3(9¢3 4 8cacacs + 8cacacs) — 4(5c5¢3 + 5eacser + 6(cacacs + cacsen)) +4(9c3c3 + 8c3ca + 9c3c5 + 8cach +
9c2c§cz + 862C4C% + 8C%C4C2 + 9C3C%C3 + 9cac3cac3 4 9c3c003C2).

Additional computations show that:
f1(x) 71 (x) = e — cpe® + (265 — 2c3)e® + (—4c5 — 3ca + 4cacs + 3czcn)et + 2?25 el +O(||e||”) with
oy = Wj(sz €3,€4,C5,Ce)-

ey =y—a=x—a—7f(x)"f(x) = e(1—7) +yc2e® = 27(c5 — c3)e + (43 + ey — deacs —
3c3cp)et + 216;5 %’jej + O(]le||”) with B; = Bj(7,¢2,¢3,C4,C5,Cp).

We find f'(y") = f’(x)|e_>ey and s = f'(x)71f'(y) = I —2yce +37(2¢3 + c3(y — 2))e® +
Y73 %6l + O([e][°) with ) = Gj(, ca, ¢3, ¢4, 05, C6).-

(s —1)* = y*[4c5e? +¢3 (=243 — 6(—2+7)cacs — 6(—2+7)c3c2))e + 3-74 Z;¢/]+0(|[e]|®) with
@j = 9]'(% €2,€3,C4,C5,C6)-

(s = I = 29[ — 453y + (12(1 + 29)c; +6(—2 + 7)vc5e5 + 6(=2 + 7)7escs + 6(—2 +
7)72c3¢2)et + &5€°] ) + O([[e][®) with & = &5 (7, ¢z, ¢3, ¢4, ¢5, ).

Theorem 1 suggests us to use Ty and L as at most third-degree matrix polynomials in (s — I).

ez = z—a = x—a—Te(s)f'(x) " f(x) = e— (Tol +Ti(s = I) + To(s — I)* + Ts(s —
D) f' ()" f(x) = e(l = To) + c2e*(To + 2T1y) +(c3(2To — 3T1 (=2 + 7)) — 263(To + 27(2T1 +
Ty7)))e® + 3-8y Fiel] +O(|[e|[”) with & = Fj(, 2, ¢3,¢a,¢5,¢6, To, T1, Ta).-

Equating the coefficients of the first and second-order terms in e, yields:

To=1,T; = —1/(27). (34)

We obtain: f(z) = f(x) |e_>eZ and f'(x)"1f(z) = (1 — To)e + (=2 + 3Ty + 2Ty y)coe® + ((—2 +2Tp +
3T§ — T3 = 3Ti(=2+7)7)e3 — 4(=1+ 2Ty + 3Ty + Tay?))3e> + 30, Gl + O(|le]|”), with % =
9i(v,c2,¢3,¢4,¢5,¢6,To, T1, T2).

et — y(ntl) _ g = 20—y — Lf(s)f’(x(”))’lf(z(")) = e, — (Lol + Li(s — I) + Lp(s —
0%+ La(s — D3) f (xM)=1f(z0) = (Lg — 1)(To — 1)e + (To — 2L1 Toy +2(L1 + T1)y + Lo(2 — 3Ty —
2T17y))cpe? + 2?23 ji?ef] +O(]|€7|]) with HG = H;(7,c2,¢3,¢4,5,¢6,To, T1, To, Lo, L1, L2)-

Now, we annihilate the first five coefficients of the terms up to the fifth-order terms of e 1) with
the use of (34) by taking the set of coefficients belowr:

{y=1,To=1,T1 =-1/2,Lo=1,L1 = —1,L, = 3/2}. (36)
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The discussions thus far lead us to the following theorem for nonlinear systems of equations.

Theorem 2. Let f : QO C C? — C? with d € N have a simple root « and be sufficiently Frétchet differentiable
in Q) containing «. Let x(©) be an initial guess chosen close to a. Let Ts, Ly C¥*d — C*4 be matrix functions
sufficiently Frétchet differentiable in a neighborhood of I, being defined by:

Tf(s) = Tol + Ti(s — I) + Ta(s — I)* + T3(s — 1) + O(||(s — I)*]]),

L¢(s) = Lol + Ly(s — I) + Lo(s — I)* + La(s — I)* + O(||(s — I)*||) with T;, L; € C fori = 0,1,2,3
ands = f'(xa) " f (%) F{y=23To=1T1 =3, =9,Lo =1L = —3,|T3 < oo,|Ls| < oo}
or{y=1Ty=1T = —%,LO =1,L; = -1,L, = %,|L3| < 00,|Tp| < oo} are given, then iterative
scheme (1) reduces to a family of sixth-order methods satisfying the error equation below. Forn =0,1,2,- - -,

[2(27—8L22)%35+64T3) S 2(27—- 8Lz)C%C4;%;3cg Gl 4
Q1) _ c%cZ—wcgcscﬂe(") +O(|le™ ), ify = 3. (37)

[—4cg(—1+2T2)(9+4L3+2T2)+(—6+12T2)C3c2 (1 —2Ta)cac3c3+
T(c2c3 +4(9 +4Ls 4 2To)c3c3 — be3cacs)] e (m)® +O(||e™ H) ify=1

where c; = ,f’( ) ff)(zx)forj:2,3,~~~

Equation (37) clearly reduces to (2) for a scalar function by identifying c; with 6;. In what follows,
we employ several test examples for the zeros of vector-valued functions to verify the convergence
behavior claimed here. In terms of Euclidean norm || e ||, we display the error sizes for e, = ||x(k+1) —

9)||, residual error ||f(x**+1)|| and ACOC using the error criterion of ||x(+1) — x(0)|| < 10140
within 20 iterations.

Test Example 1
We consider a nonlinear algebraic vector equation f : R — R? defined by f(x) = 0 with
x = (x1,x2,x3)T as follows:
nt(x3 +x3/2) —3x3 =0,
x%+x2/2+2cosx3=O, (38)
X1Xp — €Os Xp - sin(2x3) —2 = 0.

The exact solution is given by x = (1,2,71)T. We try to solve (38) with an initial guess vector
x( =(0.8,1.8,3.0)7 by method (1), and find the results in Table 5. We observe that ACOC approaches
up to 6, which is the theoretical order of convergence.

Test Example 2

We consider a nonlinear ODE boundary-value problem given below:
2y(x)y" (x) +y'(x)* +4y(x)* = 0,
(39)
= ( 1.
The exact solution is found to be y = (sin x)?. With the use of the central finite difference method,
the first and second derivatives are approximated by:

/(x) ~ yn+12_hyn71, y//( ) Yn+1 _2hy2n + Yn— 1[ (40)

where y, = y(xn),h = §(% — Z) = 7, N is the number of divisions of the interval [Z, Z]. It can be
shown that y(x +h) = y(x) + O(h3) ¥ (x) = O(h?) and ' (x) = O(h?) in view of Taylor expansion of

y(x + h) about x. This discretization yields the algebraic equations with 6 unknowns yo, y1, y2, 3, Y4, Ys:

Y71 —16(h* = 1)y? +y;1(=8y; — 2yj41) — 8yjyj11 + 7 =0, (41)
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forj = 0,1,--- ,N — 1, with boundary conditions yy = y(xo) = y(%) = }, and yy = y(xn) =
y(%) = 1. Further computation after selecting N = 5 gives us a nonlinear algebraic vector equation

f:R* — R* defined by f(y) = 0 withy = (y1,v2,y3,y4)" of the form:

1/16 — 16(—1+ h2)y? + 1/4(~8y1 — 2y2) — 8y1y2 + 3 = 0,
Y3 —16(—1+12)y3 + y1(—8y2 — 23) — 8yays + 3 =0,

y5 —16(—1+4 h?)y3 + y2(—8ys — 2y4) — 8yzyas +y5 =0,

14 y3 — 2y3(1 + 4y4) — 8ys — 16(—1 + h2)y5 = 0.

(42)

After solving (42) with an initial guess vector y(©) = (0.6,0.7,0.8,0.9)T by a typical method LK1,
we find the results in Table 6 and Figure 5. It is seen that ACOC approaches up to 6, which is the
theoretical order of convergence.

sinz(x)

1.+

0.8

0.6

0.6 0.8 1. 1.2 1.4

o |5
NS -

Figure 5. An ODE boundary value problem for Example 2.

The errors |(sinx)? — ;| for 1 < i < 4) at the internal nodes are, respectively, given by:

0.0045808024173838738376216319522, 0.00731167760933327109201071704851,
0.0073683157995758596940525729079, 0.00474700015993753712029421111822.

As a remark, we should note that the numerical solution by the central finite-difference methods is
accurate within the range of Ay(x) = O(h®) with h = 3% = 0.00918704.
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Table 5. Convergence results of Test Example 1.

k
0% MT Conv 1 2 3 4
[|x®+D) — x(®) || 9950514 x1075  1.605920x10"2*  6.683987 x 10144 -
EM1 [[F(x®+D)|| 2411043 x10™%  2.777255 x10~2*  1.003785 x 10143 -
ACOC - - 6.031727 -
a1 — x(®) || 1874364 x10~%  1.263701x10"2%  1.441060 x 10138 -
EM2 [[F(x®+D)|| 1728447 x10™*  1.309191 x10~2  1.564793 x 10138 -
ACOC - 5.995603 -
a1 — x(®) || 6184026 x10~*  1.132727x10"20 4735571 x10120 -
EM3 I|f (x k+1 M|l 5710069 x10~*  2.808419 x10720 6200273 x 10120 -
ACOC - - 5.937616 -
a1 — x(®) || 4268556 x10~*  1.600843 10721 3.291193 1012 -
EM4 I|.f (x k+1 M|l 3530786 x10~*  2.797766 x10~2! 5120856 x 1012 -
ACOC - - 5.950154 -
a1 — x| 2188288 x10*  2.036417x10"22 4127188 x 10132 -
2/3 1K1 [[f(x®+D)|| 3544655 x10~%  1.523420 x10~2  1.380288 x 10~ 13! -
ACOC - - 6.083509 -
[[x®+D) — x®)||  1,099663 x1073  1.535614x1018  2.400517 x 10108 -
LK2 [[f(x®+D)|| 1373880 x1073  1.832089 x10~ 18  4.662356 x 10108 -
ACOC - - 6.045514 -
[[x®+D) — x®)|| 2705259 x10~*  1.464141 x10~22  5.102270 x 10132 -
LK3 [[f(x®+D)|| 2328357 x10™*  1.521995 x10~ 2  5.744550 x 10132 -
ACOC - - 5.992229 -
[|xk+D) — x(K) || 1558340 x1073  2.184297 x10~Y7  3.479449 x 10~ 10! -
LK4 [1f(x k“) Y| 2171191 x1073 2361842 x10717  4.473893 x 10101 -
ACOC - - 6.048919 -
[|xk+D) — x(®)|| 6447430 x1073  3.754373 x10713  6.253864 x10~7° -
LK5 [[f(x®+D)|| 1431032 1072 3.975474 x10~ 3 9.442193 x10~75 -
ACOC - 6.036081 -
[|x®HD) — x(®) ]| 1266127 1071 1334229 x105  1.581618 x10~%  8.488895 x 10136
EM5 I|.f (x k+1 NIl 2066671 x1071  1.227262 x105  3.346691 x10~27  1.247900 x 10135
ACOC - - 5.512891 4.937955
[|x+D) — x(®) ]| 4.042375 x1073  1.704335 x10712  6.648600 x 106! -
EM6  |[f(x*tD)|] 9149067 x103  1.610892 x10712  1.329968 x 10~ -
ACOC - - 5.163562 -
a1 — x(®) ]| 1.664555 x1073  4.117280 x10~1°  4.812524 x10~7* -
EM7  |[f(x*tD)]| 3401916 x1073  5.017450 1071  8.231433 x10~7* -
ACOC - - 5.077437 -
[[x®+D) — x®)]| 1159241 x1072 1598320 x10~10  3.471780 x 10~ -
1 1Ké6 [[f(x®+D)|| 2345525 1072 1.432171 x10~10 5191559 x10~5! -
ACOC - - 5.173088 -
[|xk+D) — x(®)|| 3541294 x10~1  9.084211 x103  1.371646 x10~ 11 1.161833 x 10>
LK7 [[f(x®+D)|| 3.847192 10~ 9.088413 1073  3.418907 x10~11  1.280641 x10~*
ACOC - - 5.544776 4.882879
[|x®+D) — x(®) || 3163740 x1071 1064594 x10~*  4.230722 x10~2  6.046883 x 10104
LK8 [[f(x®+D)|| 1573963 x10~% 5304441 x10~2'  9.960412 107104 2258926 x 10~ 1%*
ACOC - - 4.722341 5.051280
[[xk+D) — x(®)]| 3157359 x10~1 7508417 x10~*  3.371253 10716 2.325497 x10~7°
LK9 [ (x*FDY| 1.530191 x1073  3.643990 x10716 4154766 x10~79  3.237105 x107154
ACOC - ) 4.706102 5.115202
[|x®+D) — x(®) || 3156074 x10~1  9.353115 x10~*  1.945715 x10~25  1.290117 x10~7
LK10  |[f(x®D)]| 2244598 x103  1.990170 x10~1°  2.732454 x10~75  1.406960 x 10154
ACOC - - 4.620646 5.151436
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Table 6. Convergence results of Test Example 2.
k

MT

Conv

1

2

3

4

2/3

EM

—_

[xtk+D — (8|

[|f (x|
ACOC

1.693893 x10~!
2.056367 x1073

1.149094 x 1073
6.362117 x10~18

3.549501 x10~18
6.267361 x107105
6.691255

3.493166 x10-105
1.065264 x 10153
5.996265

EM

N

[0+ — 28

[|f (x|
ACOC

1.692982 x10~1
2.583199 x103

1.428659 x1073
4955568 x10~17

2.746116 x10~17
2.773474 x10~%°
6.614289

1.538143 x10~%
1.214129 x10~153
5.996680

EM3

[0 — ]

|1 (xl ) Rl
ACOC

1.690899 x10~1
3.845543 x1073

2.112975 x103
1.256302 x10~1°

6.934014 x10-16
1.755204 x10~%0
6.559351

9.702901 x10~!
3.803022 x 10154
5.996044

EM4

[0 — ]

|1 (xl ) ol
ACOC

1.691984 x10~1
3.226540 x10~3

1.784083 x1073
3.003719 x10~16

1.665966 x 1016
2.255795 x 1094
6.590729

1.251394 x10~%4
1.718658 x 107153
5.995838

LK

—_

1) — 28

[Lf (x|
ACOC

1.696836 x10~1
9.769234 x10~4

5.056251 x10~4
1.081373 x10~20

5.617116 x10~21
2.049789 x 10122
6.712423

1.067837 x10~122
1.022636 x 107153
5.999711

LK2

1) — 28

el
ACOC

1.690923 x10~1
4438132 x1073

2.505552 x10~3
2.754313 x10~15

1573370 x10~1°
2.113408 x 1088
6.670640

1.203280 x 1088
1.214129 x 107153
5.992134

LK3

D — x|

IiEall
ACOC

1.692117 x10~1
3.075005 x10~3

1.691344 x1073
2.047404 x10~16

1.130119 x 1016
1.999450 x10~%5
6.586900

1.105887 x10~%
5.273843 x 10154
5.996870

LK4

[l — £

[1f(x k“)) I
ACOC

1.689594 x10~1
5.258560 x10~3

2.958354 x103
1.141154 x10~14

6.486550 x10~1°
1.584002 x 1084
6.636774

8.973645 x10~8°
1.162640 x10~133
5.991836

LK5

) — 28

IiCll
ACOC

1.685364 x10~1
1.156979 x10~2

6.414593 x103
2.297856 x 1012

1.328419 x10~12
2.303747 x10~70
6.821885

1.350065 x10~70
7.963328 x 107154
5.988638

EM5

[0 — ]

|1 (xl ) Rl
ACOC

1.692289 x 107!
2.749360 x103

7.728531 x10~*
3.407724 x10~18

1.465253 x10~18
5.285841 x 10109
6.290516

8.451602 x 10110
6.712506 x 10124
6.197380

EMe6

[0 — 0

el
ACOC

1.694268 x10~1
2.233122 x103

1.299228 x 1073
1.638869 x 10716

3.070758 x10~17
1.972892 x 1088
6.441857

9.845686 x 1088
1.103733 x 107153
5.173325

EM7

[+ — 28|

[f (x|
ACOC

1.694807 x10~1
1.531744 x1073

8.695880 x 104
2.119838 x10~20

3.551305 x10~2!
2.456366 x107122
7.594058

1.212608 x10~122
9.164962 x 10154
5.835131

LK6

[+ — 28|

[Lf (x|
ACOC

1.702183 x10~1
2510417 x103

1.263786 x1073
3.912749 x 1016

8.905640 x10~17
1.286062 x 1087
6.176587

7.142410 x 1087
1.022636 x 107153
5.329667

LK

N

[+ — 20|

IiEall
ACOC

1.694697 x10~1
1.782079 x1073

1.047665 x10~3
8.463587 x10~17

1.817552 x 10~
2.405609 x 1088
6.229764

1.353168 x10~88
1.179267 x 107153
5.168920

LK8

Rl

IiEall
ACOC

1.695517 x10~1
1.341414 x1073

7.818713 x10~*
1.199165 x10~20

2.349799 x10~2!
4.782437 x 107124
7.500364

2.572134 x107124
1.118751 x10~1%3
5.876048

LK9

) — 28

IiEall
ACOC

1.692138 x10~1
3.071484 x1073

1.711949 x10~3
5.523109 x 1016

7.627769 x10~17
6.890397 x 1088
6.692461

2.261434 x 1088
1.214129 x10~153
5.357465

LK10

[0 — B

[1f(x & D))
ACOC

1.694361 x10~1
2.163494 x103

1.263022 x1073
1.989944 x 1016

3.859268 x10~17
8.416084 x 1088
6.352198

4312641 x1088
5.273843 x 10154
5.249889
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Test Example 3

A two-dimensional nonlinear reaction-diffusion equation for a concentration u(x,t) of the
substance under consideration in a bounded domain ) C R? with continuous boundary 9 is
represented by an initial boundary value problem:

(43)

ur —dAu =u(a—u)in Q x (0,0),
u=gondQ)x (0,00),

where d > 0 is a diffusion coefficient, a is a positive constant, g is continuous on 0(2, and A is the
Laplacian operator. For brevity of analysis, letd = 1,4 = 1, and Q) = [0, 1] x [0, 1] (i.e., unit square
region). We are interested in steady state solutions to (43), which lead us to elliptic partial differential
equations with Dirichlet boundary conditions as follows:
Uyy +uyy = u(u—1)in [0,1] x [0,1],
x(x—1) (y—=1) (44)
u(x,0) =u(x,1) = 5~ +1,u(0,y) =u(ly) = L5~ +1.

By using central divided differences with step h = 1/4 in each component of the space vector,
we discretize (44) into a nonlinear system of equations with 25 nodes, 9 of which constitute interior
nodal variables x1, x2, - - - , x9 in (), while the remaining 16 nodes are boundary nodes. As a result,
we obtain a nonlinear algebraic vector equation f : R® — R defined by:

f(x) = Ax + 1?¥(x) —b =0, with x = (x1,%x2,--- ,X9)7, (45)
B -1 0 4—n> -1 0
where A= -T B -I|,B= —1  4—hr* —1 |, Iistheidentity matrix of size 3 x 3,
0 -I B 0 —1  4-—HK?

V() = (- ) and b= (3,032,507, 2.7, 2)T.

We solve (38) with an initial guess vector x(0) = (1,1,1,1,1,1,1,1, 1)T by a typical method LK1,
and find the results in Table 7. It is evident that ACOC reaches up to 6, being the theoretical order of
convergence. As can be seen in Table 7, the methods with 7y = 2/3 appear to converge more quickly
and better than those with v = 1.

Interior 16 nodal values of the steady-state solution of u(x, t) are illustrated with adjacent nodal

points connected by straight lines in Figure 6.

Figure 6. Steady state solution of the reaction-diffusion equation for Example 3.
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Table 7. Convergence results of Test Example 3.

k

1

2

3

EM1

21 (0
\

(&)
AcOC

2230120 x10~!
9.957324 x10~13

6.736388 x10~13
7.141684 x10~82

4536504 x 1082

1.826912 x10~154
6.004539

EM2

|x(k+1) (k)

[1f (&)
ACOC

2.230120 x10~1
1.767457 x10~12

1.267438 x10~12
6.182344 x 1080

4.035285 x 1080

3.498271 x 10154
6.002191

EM3

[|x (D) — x(®)

(&)
AcOC

2230120 x10~1
3.768017 x10~12

2.766996 x10~12
1.581912 x10~77

1.050932 x10~77

2473651 x10~154
5.998396

EM4

[x051) — 28

(&)
ACOC

7.495256 x10~3
2.256546 x 10721

1.558196 x 102!
3.262086 x10~133

2.153197 x 107133

1.826912 x 10154
5.987504

2/3 LK1

D — 0
IFEED) |
ACOC

2230120 x10~!
4578823 x10~13

3.364258x 1013
5.464893 x 108

4136278 x 1084

1.826912 x 10154
5.998447

LK2

e il
IFEE )|
ACOC

2230120 x10~!
4.879379 x 10712

3.625463 x10~12
9.868594 x10~77

6.626067 x10~77

3.498271 x 10154
6.000400

LK3

D — 0

(k+1)
HfoCOC)H

2.230120 x10~1
2.350565 x10~12

1.690241 x10~12
5.011579 x10~7°

3.277540 x10~7°

2473651 x10~154
5.999111

LK4

21 (0
\

[ (xED)|
AcoC

2230120 x10~!
6.554988 x10~12

4.876737 x10~12
8.425112 x10~76

5.664655 x10~76

4.775668 x 10154
5.997538

LK5

|x(k+1) (k)

[1f (&)
ACOC

2.230120 x10~1
2.189664 x10~11

1.633145 x10~ 1
4.097352 x10~72

2.761720 x10~72

2.790655 x 10154
5.996055

EM5

D —
IFEED)|
ACOC

2230120 x10~!
3.328247 x10~13

1.263880 x10~13
5.839804 x 108

2.738954 %108

2473651 x10~154
6.015056

EM6

e il
IFEE )|
ACOC

2230120 x10~!
4931396 x 10712

1.440429 x10~12
5.169287 x10~75

3.815658 x 10775

2.790655 x 10154
5.592300

EM7

D —
IFGEED)|
ACOC

2.230120 x10~1
3.009661 x10~13

9.195040 x10~14
1.315517 x10~%

9.072776 x10~88

2473651 x10~154
5.975547

1 LK6

[|xl+1) — x®)

[ (xED)|
AcOC

2230120 x10~!
5.029171 x10~12

1.540472 x10~12
6.674639 x10~74

4642753 x 1074

2.790655 x 10154
5.503817

LK7

|x(k+1) (k)

[1f (&)
ACOC

2.230120 x10~1
9.686043 x10~13

2.772391 x10713
2.828895 x10~78

2.131801 x10~78

4.775668 x 10154
5.461376

LK8

|2 D) — x(®)

(&)
Acoc

2230120 x10~1
2.973773 x10~13

8.798181 x10~ 14
1.085267 x10~%7

7.810164 x10~88

2473651 x10~154
5.970019

LK9

6D — <9

[1f (&)
ACOC

2.230120 x10~!
5.00431 x10~11

1.521759 x10~11
6.355336 x10~7°

4464500 x10~7°

4.284490 x 107154
6.238981

LK10

D — 0
IFEED)|
ACOC

2230120 x10~!
7.346393 x10~12

3.140371 x10~12
5.641973 x10~74

4.176009 x10~74

2473651 x10~154
5.693155

Test Example 4

A d-dimensional nonlinear equation f : R? — R? with d = max(4,n € N) is given by:

4
O:x,-—cos(xi—ij),izl,Z,--- ,d e N.

j=1
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The above nonlinear system is described in [4]. Selecting n = 10, we find 4 10 and solve
(46) in R with an initial guess vector x(°) = (0.75,0.75,---,0.75)T for the desired root x =
(0.5149332,0.5149332, - - - ,O.5149332)T € R0 in Table 8. It is evident that ACOC reaches up to 6,
being the theoretical order of convergence. As can be seen in Table 8, the methods with v = 2/3 appear
to converge more quickly and better than those with ¢ = 1.

Table 8. Convergence results of Test Example 4.

k
v MT 1 2 3

[]x+D) — x(0)||  7.433286 x10~1  1.760138 X105 1.064249 x 1032

EM1 [1f (xC k+1 M| 4777837 x107°  2.888862 x10732  1.826912 x1071%*
ACOC - - 5.884275

[l — x| 7433279 x1071  1.832336 1075  1.699619 x 1032

EM2 [1f (x&+Dy)| 4973815 x1075  4.613549 x10732  2.358534 x 10154
ACOC - - 5.866238

[]x*+D) — x0)|] 7.060120 x10~1  2.066996 x1075  1.050932 x 1032

EM3 [1f (x&+Dy) 3.968813 107> 4.518912 x10732  2.437651 x 1015
ACOC - - 6.098760

Hx(kH x®|] 7433270 x10'  1.925233 1075 2.905803 x 1032

EM4 Il f( \| 5225983 x107°  7.887687 x10732  7.458340 x10~1%
- - 5.847611

|\x<’<+1 x®)|| 7433299 x10°1  1.638128x107°  3.979469 x10~ %

2/3 LK1 I f( )H 4446645 x107°  1.080211 x10732  8.204174 x1071%*
- - 5.929892

Hx(k“ 0| 7433252 x1071 2100907 x107°  6.997564 x10~32

LK2 I f( )H 5.702845 x107°  1.899461 x10731  7.075603 x 10154
- - 5.820793

|\x<k+1> - x<k> | 7.320120 101 2190241 x107°  3.727540 x10~%2

LK3 [[f®+Dy| | 7.536565 x107° 5115079 x10731  7.743651 x10~15
ACOC - - 5.917090

[lx*+D) — x0)|] 6901011 1071 3.076737 x1075  4.664651 x 1032

LK4 [1f (x¢ k+1 N 4454988 x107°  1.225112 x1073!  7.375668 x 10715+
ACOC - - 6.164184

[]x®+) — x| 7433217 x1071  1.951033 x1075  3.688441 x 1032

LK5 [1f (x&+Dy)| 6.653254 107>  1.001212 x10731  1.826912 x10~15*
ACOC - - 5.833646

[l — x| 6230120 x1071  1.263880 x10™5  7.738954 x 1032

EM5 [1f (x®+D)y)| 3.328247 x107%  5.839804 x10~32  2.473651 x10~154
ACOC - - 5.585807

[]x®+D) — x| 6621130 x10~!  1.440429 x10~5  1.815658 x 103!

EM6 [1f (x&+Dy)| 4931396 x107°  5.169287 x1073!  2.790655 x 107154
ACOC - - 5.554915

[l — x| 5930120 x1071  1.395040 x105  1.072776 x1031

EM7 [1f (x&+Dy)| 3.009661 x10~>  1.315517 x10~31  2.473651 x10~15*
ACOC - - 5.642046

[]x*D) — x(0)]] 6212301 1071 2.450274 x10™5  3.642573 x10~3!

1 LK6 [1f (x®+Dy) 5.029171 107> 6.674639 x10732  2.790655 x 1015
ACOC - - 5.864574

[]x+D) —x®)|| 7.433602 x1071  1.398344 x107°  7.304552 x10~3*

LK7 [1f (x&+Dy)| 3.795743 x107°  1.982791 x103  7.420955 x 10154
ACOC - - 5.984871

[]x®+D) — x| 6692451 x10~1  2.819751 x10™5  5.180461 x 1032

LKS [1f (x®+Dy) 2.973773 x107°  1.085267 x10732  2.473651 x 1015
ACOC - - 6.110527

|\x<k+1 x®|] 3931569 x10~!1  1.115921 1075  5.460045 x 1032

LK9 Il f( )\| 5.00431 x10™5  6.355336 x10732  4.284490 x10~1%*
- - 5.786415

|\x<’<+1 x®)|| 7433626 x1071  1.633627 1075  1.381626 x10~3*

LK10 I f( \| 443440 107> 3.750370 x1073*  6.459112 x10~154

6.241405
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Computational Efficiency

The computational efficiency of an iterative method is defined by an efficiency index E = p/% [30],
with p as the order of convergence and d as the number of functional evaluations per iteration.
We require 7 scalar functions for each f and n? for each f’. The concept of the efficiency index
E applied to a nonlinear system of vector equations has been extended to treat the concept of
computational efficiency by using CE = p!/(#+P) [4], where op is the number of operations associated
with products and quotients. Suppose that n is the size of the matrix needed in the nonlinear

. o . . 3_ . .
system of vector equations. Matrix inversion requires "= product-quotient operations and

LU-decomposition technique for solving linear systems requires n> product-quotient operations,
including the n? product-quotient operations related to matrix multiplication by a vector. Note that
each method treated here follows the three set of linear systems (1) and has one matrix inverse f'(x,) '
Consequently, the number of functional evaluations plus product-quotient operations d + op becomes

2n +2n? + ”ST*” +6n% = %, which gives us the computational efficiency CE = 67 for
each listed method.

Many real-life application problems include ones related to: interval arithmetic benchmark,
neurophysiology, chemical equilibrium, kinematic application, combustion application, and economics
modeling, whose studies are described in [31]. The methods used therein are based on second-order
Newton-like approach which may be more efficient in real-life problems in terms of speed and
computational cost. On the other hand, our proposed family of sixth-order methods (1) is much more
accurate than Newton-like methods, but has more complexities owing to the high-order formulation
and require more CPU time to get the desired solution.

One certainly has to acknowledge that determining a better method than the other one should be
avoided through solving a function with a randomly chosen initial guess vector and comparing the
number of convergent iterations.

6. Conclusions

A family of Jarratt-like iterative methods for scalar and vector equations is developed and its
convergence properties are theoretically established through Theorems 1 and 2. Computational aspects
applied to various test equations agree well with the convergence behavior claimed in the theory
developed. Global convergence behavior of the listed methods is illustrated for typical polynomials
based upon their basins of attraction. The basins of attraction suggest selecting members of the iterative
methods (1) give better convergence.

We will focus our future study on extending the current approach with different weight functions
to the development of higher-order iterative root-finders.
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published version of the manuscript.
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