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Abstract: Currently, input modeling for Monte Carlo simulation (MSC) is performed either by fitting
a probability distribution to historical data or using expert elicitation methods when historical data are
limited. These approaches, however, are not suitable for wind farm construction, where—although
lacking in historical data—large amounts of subjective knowledge describing the impacts of risk
factors are available. Existing approaches are also limited by their inability to consider a risk factor’s
impact on cost and schedule as dependent. This paper is proposing a methodology to enhance
input modeling in Monte Carlo risk assessment of wind farm projects based on fuzzy set theory and
multivariate modeling. In the proposed method, subjective expert knowledge is quantified using
fuzzy logic and is used to determine the parameters of a marginal generalized Beta distribution.
Then, the correlation between the cost and schedule impact is determined and fit jointly into a
bivariate distribution using copulas. To evaluate the feasibility of the proposed methodology and to
demonstrate its main features, the method was applied to an illustrative case study, and sensitivity
analysis and face validation were used to evaluate the method. The results demonstrated that
the proposed approach provides a reliable method for enhancing input modeling in Monte Carlo
simulation (MCS).

Keywords: Monte Carlo simulation; input modeling; fuzzy logic; risk analysis and assessment;
multivariate distribution; marginal Beta; copula

1. Introduction

Wind and solar energy are expected to lead the future transformation of the global electricity
sector, with onshore and offshore wind predicted to produce about 35% of total electricity demands by
2050 [1]. To reach the targeted installation capacity, considerable investments in the construction of
renewable energy infrastructure are being made [1]. In Alberta, Canada, $3.6 billion will be invested
through the renewable electricity program (REP) to add 5000 megawatts of renewable energy by
2030 [2,3].

As a relatively novel type of infrastructure, wind farm construction is characterized by a lack of
relevant literature and a scarcity of historical data. The development of risk management plans for these
types of projects, therefore, are highly dependent on the collection of expert knowledge [4]. While the
boom in the wind energy industry has encouraged new contractors to engage in the construction
of these projects, a lack of data represents a challenge for new contractors when conducting risk
management. Inadequate risk identification and assessment can have a detrimental impact on these
large-scale projects, resulting in negative effects on cost, time, quality, and safety, while simultaneously
discouraging contractors from engaging in wind farm construction.
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Risk assessment is necessary during all phases of a wind farm project, including design,
construction, operation, maintenance, and life cycle planning [5]. Although there are several types
of qualitative and quantitative methods for reliability-based risk assessment, determining which
approach to apply in each phase of the project’s life cycle will depend on the amount and/or type of
data available at a particular phase [5]. Qualitative approaches (e.g., failure mode and effect analysis
(FMEA), fault tree analysis (FTA), event tree analysis (EVA), and risk matrices), are better suited to the
planning and early construction phases of a project when data are limited [5]. However, as projects
progress and as more data are gathered, quantitative methods (e.g., analytical methods, stochastic
methods, and Bayesian approaches) are favored because of their comprehensive capabilities [5].

Monte Carlo simulation (MCS) is a widely applied stochastic quantitative approach for risk
assessment. It is an extremely powerful tool used for understanding and quantifying the potential
effects of uncertainty on a project [6], and has been widely applied to simulate cost and time in
construction [7]. As with many quantitative methods, however, the application of MCS is constrained
by the need for variables to be input as probability density functions, limiting its use in the planning
and early construction phases of a project. Currently, there are two primary approaches for developing
the probability density functions that are input into MCS-based risk assessment models (Figure 1).

Figure 1. Levels of data available and accompanying methods used for input modeling.

As classified by Biller and Gunes [8], the two approaches are categorized based on data availability.
The first approach can be adopted when there is sufficient historical data available for a particular
variable [8]. In this case, a probability distribution is fit to the data and is then input into the risk
assessment model. The second approach is adopted when there is an absence of data. This approach
uses elicitation methods to construct the input distribution [8], where the risk analyst can decide to use
either (1) a probabilistic approach by choosing either triangular, uniform, or PERT distributions [9,10],
or (2) a possibility approach, where fuzzy numbers are used to represent the impact of a risk factor [11].

Wind farm construction does not have sufficient historical data available to complete a risk
assessment using the first approach. Nevertheless, there is a substantial amount of detailed subjective
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knowledge available [4]. The second approach, however, cannot make use of this knowledge,
thereby missing an opportunity to enhance the reliability of risk assessment results. Indeed, the current
state-of-the-art lacks methods that can derive an appropriate probability distribution function from
detailed subjective expert knowledge.

An additional difficulty experienced when conducting risk assessment modeling in wind farm
construction is the consideration of risk factors affecting schedule and cost as independent. Delays in
project schedule will often result in increased project costs, where impacts on cost are generally
accompanied by project delays [12]. Treating these cost and schedule impacts as dependent during risk
assessment modeling will help generate more realistic results. Methods for modeling the dependence
of a risk factor’s impact on cost and schedule, however, remain relatively unexplored.

To address these limitations, this paper proposes a methodology that is designed to enhance risk
assessment outcomes by (1) assisting risk analysts in fitting appropriate distributions for detailed
subjective knowledge of the cost and schedule impacts of risk factors (see dark grey area, Figure 1) and
(2) adapting existing methods to model the dependence between the cost and schedule impact of a
risk factor in a Monte Carlo simulation (MCS)-based risk assessment model. Fuzzy logic is used to
process and quantify subjective knowledge, which is then fit to a probabilistic distribution function
that represents the marginal distribution for the impact on either cost or schedule. Then, copula-based
modeling of multivariate distributions [13] is used to model the dependence between the cost and
schedule impact of a risk factor. The remaining sections of this paper are organized as follows: MCS in
risk assessment, input modeling for MCS, and correlation and dependence between input distributions
are first discussed in a literature review section. Then, the research methodology is explained. Next,
an illustrative case study is presented to demonstrate the functionality of the proposed method, and a
sensitivity analysis is performed to establish its validity. The final section summarizes conclusions and
future research directions.

2. Literature Review

2.1. MCS for Risk Assessment and Input Modeling

Risk assessment is conducted by evaluating the probability of occurrence and the impact of risk
factors to determine their severity on project outcomes. Mathematically, this is accomplished by
multiplying probability (P) by impact (I) [14,15] and summing the results to obtain an overall effect of
risk factor, n, on project cost and time, as per Equation (1):

S =
n∑

i=1

Pi ∗ Ii (1)

MCS is a probabilistic technique for the quantitative analysis of risks in the construction
industry [16]. MCS makes use of probability distributions rather than deterministic values to
model the uncertainty associated with a particular input [9]. In a MCS risk analysis experiment,
the term Ii in Equation (1) is replaced with a probability distribution function representing the impact
on cost or schedule.

A MCS experiment for assessing project risks is performed as follows. First, the baseline cost
and schedule of the individual activities are prepared [9]. Then, risk factors affecting the project are
identified, and the cost impact, schedule impact, probability of occurrence, and affected work-packages
are determined for each individual risk factor [9]. If a risk occurs while running the simulation
experiment, the cost and schedule impacts are added to the affected activities. An example project,
consisting of three activities (A, B, C) and one risk factor affecting Activity A, is presented in Figure 2.
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Figure 2. Monte Carlo (MC) simulation experiment for risk assessment.

A key limitation for the practical application of MCS in risk assessment is the development of risk
impact probability distributions that are not readily available because of insufficient historical data.
These distributions, therefore, must be derived from other existing information and knowledge [17,18].
The development of such distributions, known as input modeling, is widely discussed in literature
due to its impact on simulation outputs and, consequently, on the quality of decisions made based on
the simulation results [19]. Input modeling in the case of absent data is known as an elicitation process.
Here, expert judgment, recognized as a type of scientific data [20], is elicited and used to construct
probability distributions [21]. Elicitation of expert judgment can take three forms, where experts are
asked to specify (1) the cumulative distribution function, (2) the density distribution function, or (3)
to provide partial information about the distribution such as mean, standard deviation, or several
quintiles of the distribution [22]. The elicitation process typically involves the elicitation of the
most likely, maximum, and minimum values, or estimating the mean and variance from experts [23].
Several studies have provided a review and guidelines of the statistical methods used to elicit probability
distributions [22,24,25]. For example, Galway [26] concluded that multiple experts should be asked to
provide upper, lower, and most likely values for an uncertain quantity, which can then be fitted to a
triangular distribution. In contrast, Morris et al. [21] developed a web-based tool that has five optional
methods for the elicitation process, including a roulette method, quartile method, tertile method,
probability method, and hybrid method.

Another challenge of elicitation for risk assessment is the introduction of biases arising from
the inherent subjectivity of risk evaluation. Although experts are considered to be knowledgeable
and experienced, their judgment may, as a result of biases, be inaccurate—especially when judging
probability [27]. There are two major types of biases: cognitive and motivational. Cognitive biases
are defined as “systematic deviations [of expert evaluation] from logic, probability, or rational
choice theory” [28] and are often associated with heuristic judgment processes [29]. Examples of
cognitive biases include overconfidence (i.e., excessive confidence in one’s own answers to questions),
anchoring (i.e., the tendency to rely too heavily on one piece of information when making decisions),
and availability bias (i.e., the tendency to overestimate the likelihood of events with greater availability
in memory). Various debiasing methods, such as decomposition, multiple experts, and exploration of
the extremes of a target variable, can be applied to reduce cognitive biases [28].

Motivational biases are defined as “those in which judgments are influenced by the desirability or
undesirability of events, consequences, outcomes, or choices” [30]. One example of motivational bias
is the underestimation of project costs to provide more competitive bids. A strategy for overcoming
motivational biases, proposed by Montibeller and Winterfeldt [30], is the decomposition of a target
variable into component variables and events (i.e., root causes). It is expected that the evaluation of a
specific root cause by an expert will be more precise than the evaluation of a risk factor as a whole.
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As such, analysts are encouraged to adopt a decomposition strategy when eliciting subjective risk
evaluations from experts.

While recommendations for successfully inputting uniform, triangular, or PERT distributions into
Monte Carlo risk assessment models have been proposed in literature, other forms of input modeling
remain limited by a need for a large number of experts or by an inability to integrate their detailed
knowledge [9,10]. The fitting of expert opinion regarding the impact and probability of occurrence
of risks into a probability distribution has been proposed by Li et al. [31]. However, their approach
requires a large number of experts to be involved in the assessment, which is not feasible for novel
projects, such as onshore wind farms, where the number of experts at a construction company is
limited. Furthermore, their approach does not allow experts to express their detailed knowledge
about a risk factor, potentially limiting the accuracy and representativeness of the risk assessment
results. In 2003, Nasir et al. [24] proposed a methodology to enhance the input modeling of Monte
Carlo risk assessment using belief networks to estimate the boundaries (i.e., minimum and maximum)
of Beta-Pert distributions for activity durations. In their method, they assumed that, while experts
can estimate the most-likely activity duration, the boundaries are more difficult to estimate using
traditional methods [24]. The Bayesian belief network was, therefore, applied to integrate the risk
factors affecting activity duration when calculating the optimistic and pessimistic boundaries of
Beta-Pert. However, their model did not distinguish between the variability in activity duration and
the risk impact. Furthermore, their model was built using multiple questionnaires, making it difficult
for construction companies to implement this approach because of the number of experts and time
required to complete the questionnaires.

2.2. Correlation and Dependence in Risk Assessment

A common source of error in MCS is the assumption of independence between the input variables
of a model [32]. If two random variables are modeled as independent probability distributions in
a simulation model, the sampled random variates of the two distributions will exhibit one of the
following: (1) one variable is high, while the other is low, (2) both are high, or (3) both are low [25].
Disregarding the dependence or correlation in large risk models can result in estimation errors through
under- or overestimation [25]. To improve risk analysis and subsequent decision-making, relationships
between random variables must be considered [33].

Multiple research studies investigating the effect of correlation in Monte Carlo risk assessment
models have been conducted. Touran and Wiser [32] presented a methodology that can account for the
correlation between cost components in probabilistic cost estimation models. It is important to note,
however, that their model only considered variability in the cost of and correlation between project
work packages without considering external risk factors in their model. Touran [34] later extended
the methodology by proposing a method that can account for subjective correlation between cost
components by experts when historical data are absent.

Van Dorp and Duffey [25] proposed a method that can account for dependencies between activity
durations when developing a project schedule network. The authors suggested that activities affected
by the same external risk factor should be dependent and, therefore, that correlations between project
activities can be determined from common risk factors that are shared. However, the correlation
between cost and time impact of a risk factor was not considered in their model. Ökmen and Öztaş [35]
developed a heuristic method for correlating schedule-risk analysis in construction schedule planning.
Their model considered correlations between activities that are affected by the same risk factors,
as well as correlations between the risk factors themselves. However, only the impact of risks on
the schedule were modeled. Moret and Einstein [36] presented a model that considers correlations
between the costs of activities in rail line construction when calculating the cost of a rail project.
They then extended this by developing a comprehensive MCS model that considers (1) variability
in activity duration and cost, (2) correlations between the cost of the activities, and (3) external risk
factors affecting the project [37]. However, their model did not consider the correlation between the
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cost and schedule impact of a risk factor. Other research studies have attempted to use multivariate
distributions for presenting the output of a simulation model for integrated cost and schedule-risk
analysis [38,39]. While certain commercial software, such as @risk developed by the Palisade Group [40],
have correlations implemented, dependencies between the cost and schedule impact of a risk factor
have not been addressed by these previously developed models.

Copulas have been used in many applications to model dependencies between random variables.
A copula-based joint distribution can be constructed using assessed rank-order correlations and
marginal distributions, thereby reducing the effort required for assessments and to search for conditional
independence [33]. Copulas are a flexible method, as they do not have any restrictions on the type
of marginal distributions that can be used [41]. Using copulas to “couple” the marginal distribution
requires two steps, namely (1) modeling the marginal distributions and (2) modeling dependencies
between random variables [33]. Copulas have been used in risk management literature to successfully
model the dependencies between variables that can affect the decision to purchase a used aircraft [33],
in turn determining if the purchase of a used aircraft would generate more profit than using funds for
other investments. Copulas have also been used to model dependencies between the activities of a
project during the construction and scheduling of a project network [25].

2.3. Construction Risk Assessment in Onshore Wind Project and Its Challenges

Installing a wind turbine onto its foundation and completing final assembly appears on the
surface to be straightforward. However, constructing a wind farm involves a long list of civil
engineering and electrical work that require high levels of project management and coordination [42].
Once permits, approvals, and project finance are secured, the rigorous management of a complex series
of engineering, logistical, and electrical processes must occur to reduce uncertainties and risks [42].
While many studies have been conducted to enhance risk management in wind projects, most of
these studies have focused on the exploration and identification of risk factors affecting onshore wind
projects. For example, while several studies have investigated which risk factors affected the planning,
construction, and operation phases of wind projects [43,44], few studies have focused on methods for
assessing the risk factors. Kucukali [45] developed a methodology for assessing the overall risk severity
in wind projects based on a linguistic subjective scale. Rolik [46] proposed a Strengths, Weaknesses,
Opportunities, and Threats (SWOT) analysis approach to assess the risk level in wind energy projects.
Mohamed and colleagues [47] proposed a simulation-based approach to assess the severity of risk
factors on the cost and time of onshore wind projects. Because of the lack of historical data, triangular
and uniform distributions were used to depict the cost and schedule impact of the identified risk
factors [47]. Notably, none of the aforementioned studies were capable of (1) incorporating large
amounts of expert knowledge into simulation-appropriate input distributions and (2) considering the
dependency between cost and schedule.

2.4. Fuzzy Logic

Fuzzy logic is often used to solve problems characterized by subjective uncertainty, ambiguity,
and vagueness [48]. It has been widely applied by researchers in construction to incorporate
the influence of factors that are linguistically assessed into an uncertain variable quantity [49,50].
The application of fuzzy logic provides a means of quantifying subjective evaluations and converting
this information into a probability distribution function for input into MCS-based risk assessment
models. The application of fuzzy logic for the linguistic assessment of root causes of risk factors in
onshore wind projects, however, remains relatively unexplored.

3. Materials and Methods

This research proposes a method that is capable of addressing the current input modeling
limitations of MCS risk assessment (Figure 3). The methodology has three main components,
namely input data, data processing, and multivariate representation, which are detailed as follows.
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Figure 3. Research methodology.

3.1. Input Data

The input data component details the information required from the expert to successfully apply
the methodology. Here, an expert provides detailed information about the impact of risks on schedule
or cost, including (1) the minimum potential value of the risk impact (lower limit, A), (2) the maximum
potential value of the risk impact (upper limit, B), and (3) root causes of the risk factor along with
their evaluation.

To obtain this information, a root cause analysis, defined as “a structured investigation that aims to
identify the true cause of a problem and actions necessary to eliminate it” [51], is performed to identify
the potential root causes of different risk events [52,53]. Root cause analysis consists of five steps [51]:
problem understanding, problem-cause brainstorming, data gathering, data analysis, and root-cause
identification. Several tools and techniques can be applied for the identification of root causes, such as
cause-and-effect charts, matrix diagrams, five whys, fault tree analysis, and failure mode and effect
analysis. Here, the analyst may choose any root cause analysis method, provided that it is suited to
their application.

After the comprehensive identification of the root causes, possible scenarios that may occur
as a result of these root causes are then defined, ensuring that all possible combinations that can
lead to the primary risk factor are captured. All defined root causes/scenarios are assessed in terms
of frequency and adverse consequences on the overall schedule or cost. This is often described in
subjective terms, such as “if the root cause 1 is very severe, it will significantly impact the total schedule
or cost, and this is very likely.” As discussed previously, because of the subjectivity of the problem
domain, current methods are not able to consider root causes when deriving a probability distribution
for the impact.

3.2. Data Processing

3.2.1. Marginal Distributions

Fuzzy set theory is then used to scientifically quantify the combined influence of the root causes
to derive the marginal probability distribution functions that will be input into the MCS models.
The workflow for deriving the marginal distributions is illustrated in Figure 4, and a step-by-step
procedure of the proposed method is detailed in Supplement SA.

This study has chosen a Beta distribution to represent the marginal distribution of schedule or
cost impact. A Beta distribution was selected because (1) its specialized form, the PERT distribution,
is commonly applied in risk assessment studies [54], (2) it is a bounded distribution with finite limits,
making it intuitively plausible to many decision-makers in risk analysis [54], (3) it is flexible, taking any
shape according to its shape parameters (i.e., ß and α) [55,56], and (4) it is frequently used to describe
variability or uncertainty over a fixed (i.e., bounded) range [18]. The steps for integrating subjective
knowledge into the Beta distributions are detailed as follows.
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Figure 4. Quantification steps for marginal distribution.

A membership function is usually used in fuzzy sets to represent the relationship between a
range of possible values and a linguistic term [57]. The membership function assigns a membership
degree, in which the relation of these values to the linguistic term is defined within the interval [0, 1],
representing no and full membership, respectively. In general, the membership of a fuzzy set, A, in the
case of a discrete universe of discourse, X, is usually expressed as follows:

A =
∑n

1=1

µi

xi
=

µ1

x1
+

µ2

x2
+ . . . . . .+

µn

xn
=

∑
µA(x)/x, (2)

where µi = µi(xi) is the degree of belonging of element xi to set A, and n = the number of elements in set
A. In construction applications, triangular and trapezoidal fuzzy numbers are usually used to represent
the membership function. The development of the membership function, including the selection of
linguistic terms and the range of values that a linguistic term represent, is determined by the analyst.

Once root causes are identified and assessed linguistically, the quantification analysis can
be conducted. The fuzzy logic quantification algorithm combines the adverse consequence (C)
(i.e., the contribution of the root cause to the overall cost or schedule-risk impact as a percentage) and
the frequency of occurrence (F) for each root cause scenario. This is accomplished by calculating a
fuzzy relation matrix between (F) and (C), resulting in R (F, C), which is the Cartesian product F × C.
The elements of R (F, C) are computed as follows:

µR(xi, yi) = min[µF(xi),µC(yi)], (3)

where xi = an element of universe X; yi= an element of universe Y; µR(xi, yi) = the membership value
of element (xi, yi) in the fuzzy relation R; min = the minimum values of both elements xi and yi; µF(xi)

= the membership value of element xi in fuzzy set F; and µC(yi) = the membership value of element yi
in fuzzy set C.

Once all of the fuzzy relation matrices have been calculated, the fuzzy logic quantification
algorithm calculates the union matrix of all the fuzzy relation matrices, thereby representing the
combined effect of all root cause scenarios. The union of two fuzzy relations, for example S and Z,
is denoted by S

⋃
Z, and the membership function is calculated as follows:

µS∪Z(xi, yi) = max[µs(xi, yi),µz(xi, yi)], (4)
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where max = the maximum value of both relations s and z.
Union U, between the fuzzy relation matrices R (F, C), is then computed as:

U = max [(F1 × C1) ∪ (F2 × C2) ∪ (F3 × C3) . . . . . . . . . . . . ..∪ (Fk × Ck)], (5)

where max = the maximum value of the two relations.
The next step uses expert knowledge to subjectively assess the relationship between the adverse

consequence of a root cause and the overall cost or schedule impact of a risk factor. For example,
“if the adverse consequence of root 1 is large, then the overall risk impact is medium.” The range of a
risk factor impact (i.e., between minimum and maximum) is then calibrated by mapping the range
to a predefined scale using the concept of membership values. The mapping values represent the
confidence level with which the expert believes that a particular value belongs to the set [58] and
that the impact will be in a certain range. To facilitate mapping, the risk impact range is divided into
three equidistant subsets. Notably, Beta distributions can take multiple shapes, of which three cases,
as shown in Figure 5, are of interest for calibration. These are shapes that are (1) skewed to the upper
limit, (2) skewed to the lower limit, or (3) symmetric. Cases where the distribution is skewed toward
the lower limit are mapped to the small impact range; cases where the distribution is symmetric are
mapped to the medium impact range; while cases where the distribution is skewed toward the upper
limit are mapped to the large impact range.

Figure 5. Calibration of risk impact range.

Once all of the adverse consequences of root causes are related to the overall risk impact, a fuzzy
relation Q (C, I), which is the Cartesian product C × I between fuzzy subset C, representing the
adverse consequence, and fuzzy subset I, representing the overall risk impact as per Equation (3),
is computed. After forming all fuzzy relations matrices, a union matrix, V, of all relations is calculated
using Equation (5).

Finally, a fuzzy composition of the union matrices U and V is calculated to assess the overall
combined impact of all root causes. The composition is defined by Equation (6), which is the standard
max-min composition as follows:

U ◦V(xi, zk) = max
y j

{
min

[
µU(xi, yi),µV

(
y j, zk

)]}
, (6)

where U ◦V(xi, zk) = membership value of element (xi, zk) in composition matrix between U and V;
µU(xi, yi) = membership value of element (xi, yi) in union matrix U; and µV

(
y j, zk

)
= membership

value of element
(
y j, zk

)
in union matrix V.

A fuzzy subset from the composition matrix is used to represent the overall uncertain variable
under study [46]. A fuzzy subset (e.g., subset = O), or one row from the matrix, will be selected such
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that the product of the row summation and the corresponding frequency of occurrence is the maximum.
Then, the selected fuzzy subset (e.g., subset = O) will be used to calculate the mean, µI, and the variance,
σ2

I, of the marginal risk impact according to the following equations derived from [50,59–61]:

P(RI = zk) =
µo(zk)∑m
1 µo(zk)

, (7)

µI =
∑m

k=1
(zk) ∗ P(RI = zk), (8)

σ2
I =

[∑m

k=1
(zk)

2
∗ P(RI = zk)

]
−µI

2, (9)

where RI = risk impact; zk = element of the risk impact; P(RI = zk) = probability of occurrence of the
risk impact to be element zk; µo(zk) = membership value of element zk in subset O; and m = number of
risk impact elements in subset O.

Once the mean and variance are calculated, they are used, along with the minimum (A) and the
maximum (B), to derive a generalized Beta distribution. Equations (8) and (9) together with terms
A and B are used to estimate the shape parameters, α and ß, of the generalized Beta distribution as
follows [55]:

α =
µI −A
B−A

[
(µI −A)(B− µI)

σ2I
− 1

]
and (10)

ss = α

[
B− µI

µI −A

]
(11)

The probability density function is then visualized using shape parameters α and ß together with
the end points of distributions A and B.

3.2.2. Correlation of Dependent Variables

Using copula-based multivariate modeling requires the correlation between dependent variables
to be evaluated. When historical data are lacking, a subjective evaluation of the correlation from experts
is acquired. Here, the Spearman correlation (ρ) is used to measure the association between random
variables because of its ability to capture relationships through a pairwise measure of dependence [25,33].
While the Spearman correlation coefficient varies between −1 and +1, most correlations between
cost and schedule in construction are positive, limiting the values in this application to between 0
and 1 [34]. Correlations are classified into three categories, as proposed by Touran [34], to reflect the
linguistic representation of correlations often used by experts, namely weak (0–0.3), moderate (0.3–0.6),
and strong (0.6–1). The midpoint of each interval is chosen to represent the interval (i.e., 0.15 for weak,
0.45 for moderate, and 0.8 for strong). Consequently, the correlation matrix (R) will take one of the
following forms:

Rweak =

[
1 0.15

0.15 1

]
, (12)

Rmoderate =

[
1 0.45

0.45 1

]
, and (13)

Rstrong =

[
1 0.8

0.8 1

]
(14)

3.3. Multivariate Representation

The last component of the methodology is the multivariate representation of the marginal
distributions of the schedule- and cost-risk impacts that is achieved using copulas [13]. There are many
classes of copulas, including elliptical, Archimedean, and Marshall-Olkin [41]. Selection criteria for
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specific classes of copulas have yet to be established [36]; therefore, the class of copula selected is up to
the discretion of the analyst.

4. Application and Results

An illustrative case study is presented to demonstrate the functionality of the proposed approach.
The example risk factor chosen for illustration is public obstruction during the construction phase of
the project, which is a critical risk factor that is known to cause project delays and financial losses [62].

4.1. Input Data

Four root causes were identified, namely noise due to construction activities, harm to business
and farming activities of the local community, traffic disturbance due to logistic and supply chain to
the construction site, and poor communication with the local community. Scenarios/root causes that
may occur are detailed in Table 1.

Table 1. Root causes of risk factors with accompanying scenarios and assessment.

No. Root Cause/Scenario
Frequency of
Occurrence

(F)

Adverse Consequence
(C)

1 Construction noise is low Likely Very small
2 Construction noise is medium Likely Large
3 Construction noise is high Unlikely Large
4 Harm to activities is low Unlikely Small
5 Harm to activities is medium Somewhat likely Large
6 Harm to activities is high Unlikely Very large
7 Traffic disturbance is low Very likely Very small
8 Traffic disturbance is medium Somewhat likely Large
9 Traffic disturbance is high Unlikely Very large
10 Poor communication Unlikely Medium

4.2. Data Processing

4.2.1. Marginal Distributions

The assessment (Table 1) includes the frequency of occurrence (F) and adverse consequence (C)
of the scenario/root cause in linguistic terms. The linguistic terms were then represented using a
membership function chosen by the analyst. In this example, the following membership functions,
adopted from [58], were used to represent (F) and (C), as shown in Tables 2 and 3, respectively:

Table 2. Membership function for frequency of occurrence (F).

Element of
Linguistic
Variable

Frequency of Occurrence (F)

Very Unlikely Unlikely Somewhat
Likely Likely Very Likely

0 1 0 0 0 0
0.1 0.8 0.8 0 0 0
0.2 0.2 1.0 0 0 0
0.3 0 0.8 0.5 0 0
0.4 0 0 0.8 0 0
0.5 0 0 1 0.5 0
0.6 0 0 0.8 0.8 0
0.7 0 0 0.5 1.0 0.5
0.8 0 0 0 0.8 0.8
0.9 0 0 0 0.6 0.9
1.0 0 0 0 0 1
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Table 3. Membership function for adverse consequence (C).

Element of
Linguistic
Variable

Adverse Consequence (C)

Very Small Small Medium Large Very Large

0 1 1 0 0 0
0.1 0.81 0.9 0 0 0
0.2 0.25 0.5 0 0 0
0.3 0 0 0.2 0 0
0.4 0 0 0.8 0 0
0.5 0 0 1 0 0
0.6 0 0 0.8 0 0
0.7 0 0 0.2 0 0
0.8 0 0 0 0.5 0.25
0.9 0 0 0 0.9 0.81
1.0 0 0 0 1 1

Once the linguistic assessment was conducted for all scenarios, fuzzy relations were constructed
using Equation (3). Table 4 shows the fuzzy relation of the first scenario (i.e., construction noise is low).
Remaining scenarios were represented similarly (data not shown).

Table 4. Fuzzy relation R (F, C).

Frequency of Occurrence (F)
Adverse Consequence (C)

0 0.1 0.2

0.5 0.5 0.5 0.25
0.6 0.8 0.8 0.25
0.7 1.0 0.81 0.25
0.8 0.8 0.8 0.25
0.9 0.6 0.6 0.25

After all relations were determined, a fuzzy union matrix U of all relations was established using
Equations (4) and (5). Table 5 shows the fuzzy union matrix of all relations.

Table 5. Fuzzy union matrix (U) of all relations of the scenarios.

Frequency of
Occurrence (F)

Adverse Consequence (C)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0.8 0.8 0.5 0.2 0.8 0.8 0.8 0.2 0.5 0.8 0.8
0.2 1.0 0.9 0.5 0.2 0.8 1.0 0.8 0.2 0.5 0.9 1
0.3 0.8 0.8 0.5 0.2 0.8 0.8 0.8 0.2 0.5 0.8 0.8
0.4 0 0 0 0 0 0 0 0 0.5 0.8 0.8
0.5 0 0 0 0 0 0 0 0 0.5 0.9 1
0.6 0 0 0 0 0 0 0 0 0.5 0.8 0.8
0.7 1.0 0.81 0.25 0 0 0 0 0 0.5 0.9 1
0.8 0.8 0.8 0.25 0 0 0 0 0 0.5 0.8 0.8
0.9 0.9 0.81 0.25 0 0 0 0 0 0.5 0.5 0.5
1.0 1 0.81 0.25 0 0 0 0 0 0 0 0

Then, the end points of the cost-risk impact distribution were identified by the analyst as minimum
= $ 10,000 and maximum = $ 40,000. The range was divided into three equidistant sections, each with
the value of $ 10,000. Then, at the analyst’s discretion, each range impact was divided into five elements.
A membership degree for each element in each impact range was assigned by the analyst. The elements
in each range along with the membership degrees are provided in Figure 6.
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Figure 6. Ranges of risk impact along with values and their membership degree.

The adverse consequence of root causes was related to the overall risk impact subjectively
(i.e., if the consequence is very small, the impact will be small) by the expert, as shown in Table 6.

Table 6. Relationships between adverse consequence (C) and impact (I).

No. Adverse Consequence (C) Impact (I)

1 Very small Small
2 Small Small
3 Medium Medium
4 Large Large
5 Very large Large

Once assessed, each relationship was represented using a fuzzy relation matrix as per Equation
(3). An example of fuzzy relation for row No. 3, Q (Cmedium, Imedium), is provided Table 7.

Table 7. Fuzzy relation Q (C, I) between medium adverse consequence (C) and medium impact (I).

Adverse Consequence (C)
Impact (I)

20.0 22.5 25.0 27.5 30.0

0.3 0.2 0.2 0.2 0.2 0.2
0.4 0.7 0.8 0.8 0.8 0.7
0.5 0.7 0.85 1 0.85 0.7
0.6 0.7 0.8 0.8 0.8 0.7
0.7 0.2 0.2 0.2 0.2 0.2

After establishing all relations, a fuzzy union matrix, V, between all relations was established,
as detailed in Table 8, using Equations (4) and (5).

Table 8. Fuzzy union matrix V of all relationships between adverse consequence (C) and impact (I).

Adverse
Conseq.

Impact × 103

10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

0 1.0 0.9 0.8 0.7 0.6 0 0 0 0 0 0 0 0
0.1 0.9 0.9 0.8 0.7 0.6 0 0 0 0 0 0 0 0
0.2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0
0.4 0 0 0 0 0.7 0.8 0.8 0.8 0.7 0 0 0 0
0.5 0 0 0 0 0.7 0.85 1.0 0.85 0.7 0 0 0 0
0.6 0 0 0 0 0.7 0.8 0.8 0.8 0.7 0 0 0 0
0.7 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5
0.9 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.9 0.9
1.0 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.9 1.0

Fuzzy composition matrix U ◦V(xi, zk) of the union matrices U and V (Tables 5 and 8, respectively)
was calculated using Equation (6). The resulting matrix is provided as Table 9. The multiplication of
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the rows’ summation and frequency of occurrence is provided. Row No. 9 (Table 9, grey) was selected,
as it provided the maximum value for the product.

Table 9. Composition matrix U ◦V of all relationships between adverse consequence (C) and impact (I).

Fr
eq

ue
nc

y
of

O
cc

ur
re

nc
e

Impact × 103

R
ow

Su
m

M
ul

ti
pl

ic
at

io
n

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 10.0 1.00
0.2 1.0 0.9 0.8 0.7 0.7 0.85 1 0.85 0.7 0.7 0.8 0.9 1.0 10.9 2.18
0.3 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 10.0 3.00
0.4 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.8 0.8 3.6 1.44
0.5 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.9 1.0 3.9 1.95
0.6 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.8 0.8 3.6 2.16
0.7 1.0 0.9 0.8 0.7 0.6 0 0 0 0.5 0.7 0.8 0.9 1.0 7.9 5.53
0.8 0.8 0.8 0.8 0.7 0.6 0 0 0 0.5 0.7 0.8 0.8 0.8 7.3 5.84
0.9 0.9 0.9 0.8 0.7 0.6 0 0 0 0.5 0.5 0.5 0.5 0.5 6.4 5.76
1.0 1.0 0.9 0.8 0.7 0.6 0 0 0 0 0 0 0 0 4.0 4.00

After selecting the subset, row No. 9, that represents the cost-risk impact, the probability of each
element in the cost-risk impact subset was calculated, according to Equation (7), as follows:

P(RI = 10) = P(RI = 12.5) = P(RI = 15) = P(RI = 35) = P(RI = 37.5) = P(RI = 40) 0.8
7.3 = 0.1095,

P(RI = 17.5) = P(RI = 32.5) = 0.7
7.3 = 0.0958

P(RI = 22.5) = P(RI = 25) = P(RI = 27.5) = 0
7.3 = 0,

P(RI = 30) = 0.5
7.3 = 0.0685,

P(RI = 20) = 0.6
7.3 = 0.082

The mean and the variance were calculated, according to Equations (8) and (9), as follows:

µI = [(10 ∗ 0.1095) +(12.5 ∗ 0.1095) + (15 ∗ 0.1095) + ( 17.5 ∗ 0.0958)
+(20 ∗ 0.082) + (22.5 ∗ 0) + (25 ∗ 0) + (27.5 ∗ 0) + (30 ∗ 0.0685)
+(32.5 ∗ 0.0958) + (35 ∗ 0.1095) + (37.5 ∗ 0.1095)
+(40 ∗ 0.1095)] ∗ 103 = 24910 $

σ2
I =

[
(102

∗ 0.1095) +(12.52
∗ 0.1095) + (152

∗ 0.1095) + (17.52
∗ 0.0958)

+(202
∗ 0.082) + (22.52

∗ 0) + (252
∗ 0) + (27.52

∗ 0) + (302
∗ 0.0685)

+(32.52
∗ 0.0958) + (352

∗ 0.1095) + (37.52
∗ 0.1095)

+(402
∗ 0.1095)

]
∗ 106

− (24910)2 = 120488150

Finally, the shape parameters of the risk impact Beta distribution were calculated, based on the
minimum, maximum, mean, the variance, according to Equations (10) and (11), as follows:

α =
24910− 10000
40000− 10000

[
(24910− 10000)(40000− 24910)

120488150
− 1

]
= 0.43

ss = 0.43
[40000− 24910
24910− 10000

]
= 0.43

The resulting probability density function of the Beta distribution is presented in Figure 7.
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Figure 7. Marginal Beta distribution of cost-risk impact.

The marginal distribution of the schedule-risk impact was constructed in a manner similar to the
marginal distribution of the cost-risk impact. The same root causes were used together with their
evaluation in terms of frequency of occurrence (F) and adverse consequence (C). The mapping values
were also the same as the cost-risk impact. Only the lower and upper limits of the distribution were
changed. The lower limit was set to 1 day and the upper limit to 10 days. The range was divided
into three subranges, namely small (1, 2, 3, 4), medium (4, 5, 6, 7), and large (7, 8, 9, 10), as shown in
Figure 8, along with their mapping values. The shape parameters α = 0.412 and ß = 0.523 and the
fitted Beta distribution is presented in Figure 8.

Figure 8. Marginal Beta distribution of schedule-risk impact.

4.2.2. Validation of the Marginal Distribution

Two approaches, namely sensitivity analysis and expert validation, were used to investigate the
proposed methodology. In the sensitivity analysis, the influence of input parameters on the fitted
distribution was investigated, while the expert validation analysis was performed to evaluate the
proposed approach from the perspective of an expert.

• Sensitivity Analysis

Sensitivity analysis is a powerful technique for testing the internal consistency and reliability of
models [63] by analyzing the model behavior in response to variations in input values or parameters.
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The purpose of conducting a sensitivity analysis is to assess how the input variables of a model affect
the resulting probability distribution, allowing analysts to identify the input variables with the greatest
influence on the output of a model or system [64]. Two approaches are commonly used to conduct a
sensitivity analysis: local (also known as absolute [65]) and global. The local approach allows only one
variable of a model to be assessed at a time, while fixing all other variables to their original values [64].
Conversely, global sensitivity allows all input factors to vary simultaneously, where the sensitivity is
evaluated over the entire range of each input factor [64].

This study applied a local approach to investigate sensitivity of three input variables: (1) selection
of linguistic variables; (2) membership values of the linguistic variables; and (3) membership values for
calibrating and mapping the risk impact range. Sensitivity was calculated manually by changing the
values of the targeted parameters and examining the effect on the resulting marginal Beta distribution.
Parameters resulting in the greatest change were deemed to have the greatest impact on outputs.
Thus, experts are encouraged to remain cognizant of such parameters during the application of the
proposed method. Sensitivity of these parameters was tested on the parameters of the Beta distribution.
The selection of linguistic terms is at the discretion of the analyst [61]; however, the range that each
linguistic term represents must be investigated. The illustrative case study was investigated again
using different membership values for (F) and (C). First, the sensitivity of frequency of occurrence (F)
was tested by introducing a new membership function, adopted from [50], where the same linguistic
terms are used but the membership values were changed. Results are detailed in Table 10.

Table 10. New membership function for frequency of occurrence (F).

Element of
Linguistic Variable

Frequency of Occurrence (F)

Very Unlikely Unlikely Somewhat Likely Likely Very Likely

0 1 0 0 0 0
0.1 1 0 0 0 0
0.2 0.5 0.5 0 0 0
0.3 0 1 0 0 0
0.4 0 0.5 0.5 0 0
0.5 0 0 1 0 0
0.6 0 0 0.5 0.5 0
0.7 0 0 0 1.0 0
0.8 0 0 0 0.5 0.5
0.9 0 0 0 0 1
1.0 0 0 0 0 1

The shape parameters α = 0.389 and ß = 0.392 and the fitted Beta distribution is shown in
Figure 9. Differences between the original distribution and the one derived following the change the in
membership function of the frequency of occurrence (F) were minimal. The results demonstrate that
small variations in membership values have little effect on the output distribution.

Next, the influence of changing the membership function of the adverse consequence (C) was
investigated by introducing a new trapezoidal membership function, as shown in Table 11. The shape
parameters α = 0.592 and ß = 0.713 and the fitted Beta distribution are presented in Figure 10.
Again, the differences between the original distribution and the one derived following the change
in the membership function of the adverse consequence (C) were minimal. The results demonstrate
that the output distribution is not sensitive to changes in the membership function of the adverse
consequence (C).
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Figure 9. Marginal Beta distribution of cost-risk impact after changing the membership function of (F).

Table 11. New membership function for adverse consequence (C).

Element of
Linguistic Variable

Adverse Consequence (C)

Very Small Small Medium Large Very Large

0 1 0 0 0 0
0.05 1 0 0 0 0
0.1 0.5 0 0 0 0

0.15 0 0.5 0 0 0
0.2 0 1.0 0 0 0

0.25 0 1.0 0 0 0
0.3 0 0.5 0 0 0

0.35 0 0 0.5 0 0
0.4 0 0 1 0 0

0.45 0 0 1 0 0
0.5 0 0 1 0 0

0.55 0 0 1 0 0
0.6 0 0 0.5 0 0

0.65 0 0 0 0.5 0
0.7 0 0 0 1.0 0

0.75 0 0 0 1.0 0
0.8 0 0 0 0.5 0

0.85 0 0 0 0 0.5
0.9 0 0 0 0 1

0.95 0 0 0 0 1
1.0 0 0 0 0 1
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Figure 10. Marginal Beta distribution of cost-risk impact after changing membership function of (C).

The final sensitivity experiment investigated the influence of changing the membership values for
calibrating the risk impact range. This was conducted by experimenting with different mapping values,
while keeping all other values (i.e., membership functions for frequency of occurrence and adverse
consequences, boundaries of the risk impact, and root causes and their evaluation) unchanged and
set to their original values. The impact mapping values for each impact subset (i.e., “small impact”,
“medium impact”, or “large impact”, as in Figure 6) were changed for each trial. Specific changes are
summarized in Table 12. The parameters of the resulting distributions are detailed in Table 13, and the
resulting probability density functions are shown in Figure 11a–f.

Table 12. Summary of sensitivity analysis experimental parameters on mapping values.

Trial
Impact Mapping Values 1

PDF 2 Distribution
Small Medium Large

A 1 0 0 Figure 11a
Skews right, as values for small
impact subset are equal to 1.

B 0 1 0 Figure 11b
Symmetric, with peak at middle
where mapping values equal 1.

C 0 0 1 Figure 11c
Skews left, as values for large
impact subset are equal to 1.

D ↓
peak = 1,
other = ↓

↓ Figure 11d
Symmetric as in trial (b), but with
greater variance.

E ↑ until joint
point

↓ until joint
point 0 Figure 11e

Skews towards small and medium
joint point, where values
are greatest.

F 0 ↑ until joint
point

↓ until
joint point Figure 11f

Skews towards medium and large
joint point, where values
are greatest

1 As defined in Table 6. 2 Probability density function. Where ↓ = decreased gradually, and ↑ = increased gradually.
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Table 13. Results of sensitivity analysis of mapping values.

Trial
Statistical Parameters of Beta Distribution

Minimum ($) Maximum ($) α ß

A 10,000 40,000 1.5 7.5
B 10,000 40,000 8.5 8.5
C 10,000 40,000 7.5 1.5
D 10,000 40,000 1.3 1.3
E 10,000 40,000 12.035 32.785
F 10,000 40,000 35.175 13.44

1 
 

(c) (d) 

(e) (f) 

 Figure 11. Marginal Beta distributions after changing the mapping value of the risk impact range in
(a) Trial A, (b) Trial B, (c) Trial C, (d) Trial D, (e) Trial E, and (f) Trial F.

Results of the sensitivity analysis demonstrate that the proposed method is not particularly
sensitive to changes in the membership function of the frequency of occurrence (F) nor the adverse
consequence (C). In contrast, the model was shown to be sensitive to changes in the mapping values
of the risk impact range. This finding indicates the importance of capturing an expert’s perceived
impact values as precisely as possible. As discussed previously, decomposition of (1) a risk factor
into its root causes and/or (2) a risk impact range into smaller subsets can be used to reduce biases,
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thereby enhancing the comprehensiveness and accuracy of model results. This explains the shape of the
distribution observed in the illustrative case study (Figures 9 and 10), where the expert was not confident
about the mapping values for the risk impact, resulting in distribution with a uniform-like appearance.

• Expert Validation

Expert face validation is used to assess the practical applicability of a proposed method by having
a subject-matter expert evaluate the results of a proposed method [63]. The illustrative case study
results and sensitivity analysis were discussed with three experts (i.e., a director, a project manager,
and project coordinator) from a large construction company in Alberta, Canada—each with an average
of 15 years of practical experience in construction management and risk analysis. Definitions of
the terms representative, comprehensive, and ease of use (described as follows) were provided to
the experts. Then, experts were asked whether or not they believed that the proposed method was
characterized by each definition. Results are detailed as follows.

The experts agreed that the proposed method was representative, defined here as the ability of a
method to representatively express the knowledge of the expert as a probability distribution function.
In particular, findings that distribution shape is sensitive to the mapping values of the range impact
increased their confidence that the representation was appropriate.

The experts also agreed that the proposed method was comprehensive, defined here as the ability of
a method to include available information regarding the risk impact. They were satisfied with the level
of information that the method allows them to incorporate while deriving the probability distribution.

In contrast, the experts indicated that the proposed method was, in its current form, not easy to
use—particularly by analysts that may not be familiar with fuzzy logic computations. They agreed
that full computerization of the approach would considerably facilitate its application in industry.
Accordingly, this method was computerized within an in-house developed simulation engine,
SimphonyProject.NET [47], developed for integrated assessment of risks.

4.3. Multivariate Representation

Following expert validation, a marginal distribution of the cost and schedule-risk impact based on
expert knowledge was determined, as shown in Figure 12. The parameters of the final cost marginal
distribution were lower limit = $10,000, upper limit = $40,000, shape parameter α = 2.7, and ß = 12.745;
and the parameters of the final schedule marginal distribution were lower limit = 1 day, upper limit = 10
days, shape parameter α = 2.26, and ß = 1.13. Membership functions provided in Tables 2 and 3 were
used to derive the final marginal distributions. The steps of deriving the marginal distribution of
the cost-risk impact are detailed in Supplement SB. To represent the cost and schedule-risk impact
of the risk factor using multivariate distribution, an expert was asked to subjectively evaluate the
correlation as either weak, moderate, or strong. A strong correlation between cost and schedule
impact was evaluated, and the correlation matrix in Equation (14) was consequently used in the
bivariate distribution.

Figure 12. Final marginal distribution of the (a) cost impact and (b) schedule impact.
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Here, a multivariate normal copula [13] was chosen because it (1) does not have constraints
on the marginal distributions and (2) has been successfully applied in other risk assessment studies
with Beta as marginal distributions [33]. A copula package in R [13] was used to implement the
multivariate modeling of the dependence of the cost- and schedule-risk impacts. The package allows
the user to define the dependence structure and the marginal distributions separately. The dependence
structure consists of the number of correlated random variables and the correlation coefficient.
The marginal distributions were defined using extraDistr package [66], which allows for a generalized
beta distribution that is not bound between 0 and 1. The dependence structure between the cost
and schedule impact, specifically the two marginal distributions and the correlation between them,
is presented in Figure 13. The output joint probability density function of the bivariate fitted distribution
is presented in Figure 14 as a contour plot; a representation of the 3-dimentional surface of the joint
probability distribution function is shown in Figure 15. The cumulative density function of the bivariate
joint distribution is shown in Figure 16. It is this fitted distribution that will be used to model the risk
factor (i.e., public obstruction) with correlated cost and schedule impact in a MCS experiment.

Figure 13. Dependence structure between cost and schedule-risk impact.

Figure 14. Probability density function of the joint distribution.
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Figure 15. Contour plot of the joint probability density function.

Figure 16. Cumulative density function of the joint distribution.

5. Application and Practical Benefits

Output of the model is presented in Figure 14. The process is repeated until a probability density
function of the joint distribution is derived for each risk factor. These distributions can then be
input into any existing MCS-based decision-support systems. Notably, for risk factors that have only
schedule or risk impacts, marginal distributions will only be calculated for the cost-risk impact or
schedule-risk impact (Figure 12a,b). MCS-based decision-support systems use the distributions to
sample a cost-risk impact, schedule-risk impact, or joint cost-schedule risk impact value for each risk
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factor based on its probability of occurrence. The results of several simulation iterations are then
combined to provide a number of project insights, such as (1) the expected project completion date
as cumulative distribution, (2) the expected project cost as a cumulative distribution, and (3) time
and cost contingencies. Readers are referred to [12,37,47] for more information on the application of
MCS-based decision-support systems for risk assessment.

A primary benefit of the proposed method is its ability to incorporate detailed information into
risk analysis inputs. Existing methods for deriving probability distributions from expert knowledge
(e.g., elicitation of parameters for triangular, Pert, or uniform distributions) can only incorporate
minimum, maximum, and most likely risk impact values. Experts are neither able to provide detailed
information regarding the consideration of root causes nor perform risk impact decomposition,
limiting the specificity and, in turn, accuracy, of model results. In contrast, the proposed method allows
experts to consider the root causes of a risk factor while providing impact values within an impact
range through value mapping. Indeed, results of the sensitivity analysis, which demonstrated that the
model was particularly sensitive to changes in mapping values (Figure 11), indicate the importance
of accurately capturing subjective information. Methods that allow for the decomposition of input
information, such as mapping values to smaller ranges, can allow experts to more precisely express
their subjective knowledge, thereby enhancing the comprehensiveness of model results.

A second benefit of the fuzzy logic approach presented here is the transformation of qualitative
statements into a quantitative-like format (i.e., probability distribution function), thereby supporting
the input of subjective data into quantitative methods, such as MCS. In turn, the proposed approach
allows the use of one reliability-based risk assessment method throughout the life-cycle of a project.
This alleviates the need for separate qualitative and quantitative methods in different phases of the
project, in turn enhancing the consistency of output results.

6. Discussion

Difficulty selecting an input distribution that comprehensively represents risk impact [67] has
limited the use of probabilistic simulation-based risk assessment in practice—particularly in the
planning and construction phase of wind farm projects that are characterized by a lack of historical
data. While various methods and recommendations to overcome this challenge have been suggested
in literature [67], existing methods are not capable of incorporating a large amount of subjective
knowledge in a time-sensitive, practical manner. Indeed, a flexible method that allows the expert to
represent their subjective knowledge as a probability distribution has not been described in literature.
The proposed approach addresses this limitation by allowing a risk analyst to (1) reliably assess the
risk impact based on subjective knowledge and expertise, (2) consider the root causes of a risk factor
when calculating its impact, (3) model the dependence between the cost and schedule impacts of a
risk factor that has both cost and schedule impact, (4) reduce biases in expert evaluation through the
decomposition of a risk factor, and (5) overcome the limitation for using MCS in practice (i.e., the need
for historical data) [68].

This research study proposed a fuzzy-based multivariate analysis approach to address limitations
regarding data availability for construction risk assessment of onshore wind projects. The proposed
approach was used to successfully solve an illustrative case study of one risk factor common to wind
projects. Benefits of proposed method, which included the ability to incorporate detailed subjective
knowledge of an expert through the consideration of additional risk factor details, were demonstrated.
Furthermore, mapping values provided by experts within the impact range were found to have
a considerable impact on the density function of resulting distribution (Figure 11). This was in
contrast to minimal impact observed following modifications to the fuzzy membership function
of adverse consequence (C) and frequency of occurrence (F) for evaluating root causes (Figures 9
and 10). Although the proposed approach shares similarities with previously developed methods
(i.e., determination of minimum and maximum impact values), here, the probability density function
of the resulting distribution is enhanced by two notable contributions, namely (1) calculating the most
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probable value from the combination of the root causes and their assessment and (2) mapping values
to a risk impact range. Notably, this method can be applied to any type of project characterized by
access to limited data and is, therefore, not limited to wind farm construction.

While the proposed method showed an improvement over previously developed approaches,
the findings of this study should be interpreted in consideration of the following limitations. First,
the membership function used in this study is a linear triangular and trapezoidal membership
function. Other non-linear shapes for membership functions were not investigated and may affect the
results. Nevertheless, most membership functions can be accurately represented by either triangular or
trapezoidal functions [69]. Second, the risk impact range was divided into three subsets; the examination
of more subsets may help experts to better express their belief and confidence about a risk impact.
Third, the multivariate approach proposed here will require additional data pooling efforts to ensure
that data for all impact dimensions are collected. Models must be built on information that is available
and may need to be adjusted in instances where data are lacking, incomplete, or in an inappropriate
format for analysis. In this research, a normal copula was used based on the recommendations of
previous studies. Future work will include testing multiple copulas, comparing their performance,
and developing a complete MCS model for risk assessment considering the developed probability
distributions by the proposed method.

7. Conclusions

Input modeling is the first step in MCS-based risk assessment of construction projects.
Typically derived using historical project data, the use of MCS-based risk assessment in newer
projects has been limited. Because of this, the subjective knowledge of risk analysts at a detailed level
has not been properly considered when developing probability distributions for Monte Carlo risk
assessment in construction. Therefore, this research tried to address the limitation of input modeling
for risk assessment when historical data are lacking with only detailed subjective knowledge available.
In particular, this research tried to devise a method that can make used of the experts’ subjective
knowledge with minimized biases when deriving a probability distribution for a risk factor impact.
This research has developed a method capable of capturing and modeling expert subjective knowledge
by deriving a flexible generalized Beta distribution through fuzzy logic. Distribution for risk factor
impacts with either one type of impact (i.e., cost or time) or both (i.e., cost and time) can be developed
with the proposed method. Risk factors that have both cost and schedule impact can be modeled using
bivariate distributions by considering the correlation between cost and schedule impact of a risk factor,
with the fitted generalized Beta distribution representing the marginal distributions for schedule and
cost-risk impact. The method was applied to assess one risk factors common to wind farm construction.
Sensitivity analysis was performed, and the model was found to be sensitive to changes in the mapping
values of a risk factor impact range. In contrast, changing the shape of the membership function did
not affect the resulting distribution. We found that the decomposition of a risk factor into its root
causes and decomposition of the risk impact into smaller ranges allows the experts to depict their
subjective knowledge more accurately, comprehensively, and with lower biases. An implication of
these findings is that both expert subjective knowledge and risk impact decomposition should be
taken into account when deriving input distributions for MCS risk assessment. This will enable the
application of quantitative methods in the early stages of a project, thereby improving decision-making
processes. The proposed approach enables the effective, representative, and comprehensive elicitation
of the probability distribution for input modeling in MCS-based risk assessment when only a detailed
level of subjective knowledge exists.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4893/13/12/325/s1,
Supplement SA: Detailed methodology for deriving a marginal Beta distribution from expert opinion of risk
impact on cost and schedule, Supplement SB: Derivation of the marginal distribution using SimphonyProject.NET.
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