Supplement A

Detailed methodology for deriving a marginal Beta distribution from expert opinion of risk impact on cost and schedule.

Step 1: Define the root causes of a risk factor (Ni) and the possible scenarios for each root cause.

Step 2: For each root cause or scenario (Mi), subjectively evaluate the frequency of occurrence and adverse consequence using the corresponding fuzzy membership function.

Step 3: Using Equation 3, form a fuzzy relationship between the adverse consequence and frequency of occurrence for each root cause/scenario.

$$
\begin{equation*}
\mu_{R}\left(x_{i}, y_{i}\right)=\min \left[\mu_{F}\left(x_{i}\right), \mu_{C}\left(y_{i}\right)\right] \tag{3}
\end{equation*}
$$

where $x_{i}=$ an element of universe X
$y_{i}=$ an element of universe
$\mathrm{Y} ; \mu_{R}\left(x_{i}, y_{i}\right)=$ the membership value of element $\left(x_{i}, y_{i}\right)$ in the fuzzy relation R $\min =$ the minimum values of both elements x_{i} and y_{i}
$\mu_{F}\left(x_{i}\right)=$ the membership value of element x_{i} in fuzzy set F
$\mu_{C}\left(y_{i}\right)=$ the membership value of element y_{i} in fuzzy set C.

Step 4: Using Equations 4 and 5, develop a fuzzy union matrix between all relationships.

$$
\begin{equation*}
\mu_{S \cup Z}\left(x_{i}, y_{i}\right)=\max \left[\mu_{s}\left(x_{i}, y_{i}\right), \mu_{z}\left(x_{i}, y_{i}\right)\right] \tag{4}
\end{equation*}
$$

where $\max =$ the maximum value of both relations s and z.
Union \mathbf{U}, between the fuzzy relation matrices $\mathrm{R}(\mathrm{F}, \mathrm{C})$, is then computed as:

$$
\left.\begin{array}{l}
U=\max \\
\left.C_{k}\right)
\end{array}\right]\left[\begin{array}{lllll}
\left(F_{1} \times\right. & C_{1}
\end{array}\right) \cup\left(F_{2} \times C_{2}\right) \cup\left(F_{3} \times C_{3}\right) \ldots \ldots \ldots \ldots \cup\left(F_{k} \times\right.
$$

where $\max =$ the maximum value of the two relations.

Step 5: Define the minimum and maximum (A, B) values for the risk impact.

Step 6: Divide the impact range (between minimum and maximum) into equal subsets.

Step 7: Evaluate the mapping value of each range (example provided as follows):

Impact range	Small impact			Medium impact					Large impact				
Impact value	$10 \quad 12.5 \quad 15.0$	17.5	$\underline{20.0}$	20.0	$\underline{22.5}$	$\underline{25.0}$	27.5	30.0	30.0	32.5	35.0	37.5	40
Mapping degree	$1.0 \quad \underline{0.9} \quad \underline{0.8}$	0.7	0.6	0.7	0.85	1.0	$\underline{0.85}$	0.7	0.5	0.7	0.8	0.9	1.0

Step 8: Using Equation 3, form a fuzzy relationship between the adverse consequence of a root cause/scenario and the range of a risk impact.

$$
\begin{equation*}
\mu_{R}\left(x_{i}, y_{i}\right)=\min \left[\mu_{F}\left(x_{i}\right), \mu_{C}\left(y_{i}\right)\right] \tag{3}
\end{equation*}
$$

where $x_{i}=$ an element of universe X
$y_{i}=$ an element of universe
$\mathrm{Y} ; \mu_{R}\left(x_{i}, y_{i}\right)=$ the membership value of element $\left(x_{i}, y_{i}\right)$ in the fuzzy relation R $\min =$ the minimum values of both elements x_{i} and y_{i}
$\mu_{F}\left(x_{i}\right)=$ the membership value of element x_{i} in fuzzy set F
$\mu_{C}\left(y_{i}\right)=$ the membership value of element y_{i} in fuzzy set C .

Step 9: Using Equations 4 and 5, develop a fuzzy union matrix between all relationships in Step 8.

$$
\begin{equation*}
\mu_{S \cup Z}\left(x_{i}, y_{i}\right)=\max \left[\mu_{s}\left(x_{i}, y_{i}\right), \mu_{z}\left(x_{i}, y_{i}\right)\right] \tag{4}
\end{equation*}
$$

where $\max =$ the maximum value of both relations s and z.
Union \mathbf{U}, between the fuzzy relation matrices $\mathrm{R}(\mathrm{F}, \mathrm{C})$, is then computed as:

$$
\left.\begin{array}{l}
U=\max \tag{5}\\
\left.C_{k}\right)
\end{array}\right] \quad\left(\begin{array}{ll}
\left(F_{1} \times C_{1}\right) & \cup\left(F_{2} \times C_{2}\right) \cup\left(F_{3} \times C_{3}\right)
\end{array} \ldots \ldots \ldots \ldots . .\right.
$$

where $\max =$ the maximum value of the two relations.

Step 10: Using Equation 6, develop the fuzzy composition matrix between the fuzzy union matrices developed in Step 4 and Step 9.

$$
\begin{equation*}
U \circ V\left(x_{i}, z_{k}\right)=\max _{y_{j}}\left\{\min \left[\mu_{U}\left(x_{i}, y_{i}\right), \mu_{V}\left(y_{j}, z_{k}\right)\right]\right\} \tag{6}
\end{equation*}
$$

where $U \circ V\left(x_{i}, z_{k}\right)=$ membership value of element $\left(x_{i}, z_{k}\right)$ in composition matrix between U and V $\mu_{U}\left(x_{i}, y_{i}\right)=$ membership value of element $\left(x_{i}, y_{i}\right)$ in union matrix U $\mu_{V}\left(y_{j}, z_{k}\right)=$ membership value of element $\left(y_{j}, z_{k}\right)$ in union matrix V .

Step 11: Using Equations 7 through 9, select one row from the fuzzy composition matrix to calculate the mean and variance of the distribution.

$$
\begin{align*}
& P\left(\boldsymbol{R}_{I}=z_{k}\right)=\frac{\mu_{o}\left(z_{k}\right)}{\sum_{1}^{m} \mu_{o}\left(z_{k}\right)} \tag{7}\\
& \mu_{I}=\sum_{k=1}^{m}\left(z_{k}\right) * P\left(R_{I}=z_{k}\right) \tag{8}\\
& \sigma_{I}^{2}=\left[\sum_{k=1}^{m}\left(z_{k}\right)^{2} * P\left(R_{I}=z_{k}\right)\right]-\mu_{I}^{2} \tag{9}
\end{align*}
$$

where $R_{I}=$ risk impact
$z_{k}=$ element of the risk impact
$P\left(R_{I}=z_{k}\right)=$ probability of occurrence of the risk impact to be element z_{k}

$$
\begin{aligned}
& \mu_{o}\left(z_{k}\right)=\text { membership value of element } z_{k} \text { in subset } \mathrm{O} \\
& \mathrm{~m}=\text { number of risk impact elements in subset } \mathrm{O}
\end{aligned}
$$

Step 12: Using the mean and variance, fit the results to a Beta distribution, using Equations 10 and 11 , to calculate the shape and scale parameters.

$$
\begin{align*}
& \alpha=\frac{\mu_{I}-A}{B-A}\left[\frac{\left(\mu_{I}-A\right)\left(B-\mu_{I}\right)}{\sigma^{2}{ }_{I}}-1\right] \tag{10}\\
& B=\alpha\left[\frac{B-\mu_{I}}{\mu_{I}-A}\right] \tag{11}
\end{align*}
$$

Step 13: Visualize the marginal Beta distribution of cost or schedule impact using the minimum and maximum derived in Step 5 and the scale and shape parameters derived in Step 12 (example of a resulting marginal Beta distribution is provided as follows):

Supplement B

Derivation of the marginal distribution using
 SimphonyProject.NET

The steps for deriving the marginal distribution in SimphonyProject. NET, and a graphical user interface created to make the method easy for analyst lacking expertise in fuzzy logic, are presented as follows:

Step 1:

Step 2:

Step 2: Allocate membership values for each likelihood linguistic term

Step 3:

Step 3: Allocate membership values for each adverse consequence linguistic term

Step 4:

Step 4: Allocate membership values for each risk impact range

Step 5:

Step 5: Identify and assess the root causes of a risk factor

Step 6:

Step 7:

