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Abstract: In this paper we study the optimization of the discrete-time stochastic linear-quadratic
(LQ) control problem with conic control constraints on an infinite horizon, considering multiplicative
noises. Stochastic control systems can be formulated as Markov Decision Problems (MDPs) with
continuous state spaces and therefore we can apply the direct-comparison based optimization
approach to solve the problem. We first derive the performance difference formula for the LQ problem
by utilizing the state separation property of the system structure. Based on this, we successfully
derive the optimality conditions and the stationary optimal feedback control. By introducing the
optimization, we establish a general framework for infinite horizon stochastic control problems.
The direct-comparison based approach is applicable to both linear and nonlinear systems. Our work
provides a new perspective in LQ control problems; based on this approach, learning based algorithms
can be developed without identifying all of the system parameters.

Keywords: linear-quadratic; Markov decision process(MDP); conic constraints; stochastic control;
direct-comparison based approach

1. Introduction

In this paper we study the discrete-time stochastic linear-quadratic (LQ) control optimal problem
with conic control constraints and multiplicative noises on an infinite horizon. There exist in the
literature various studies on the estimation and control problems of systems with a multiplicative
noise [1,2]. As for the LQ type of stochastic optimal control problems with multiplicative noise,
investigations have been focused on the LQ formulation with indefinite penalty matrices on control
and state variables for both continuous-time and discrete-time models (see, e.g., [3,4]).

In an LQ optimal problem, the system dynamics are both linear in state and control variables,
and the cost function is quadratic in these two variables [5]. One important attractive quality of the
LQ type of optimal control models is its explicit control policy which can be derived by solving the
corresponding Riccati equation. Due to the elegant structure, the LQ problem has always been a hot
issue in optimal control research. Since the fundamental research on deterministic LQ problems by
Kalman [6], there have been a great number of studies on it; see [5,7,8]. In the past few years, stochastic
LQ problems have drawn more and more attention on this topic, due to the promising applications
in different fields, including dynamic portfolio management, financial derivative pricing, population
models, and nuclear heat transfer problems; see [9–11].

This paper is motivated by two recent developments: LQ optimal control and Markov decision
problems (MDPs). First, the constrained LQ problem is significant in both theory and applications.

Algorithms 2020, 13, 49; doi:10.3390/a13020049 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-3745-2620
https://orcid.org/0000-0002-2349-6067
https://orcid.org/0000-0002-5958-6910
http://dx.doi.org/10.3390/a13020049
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/2/49?type=check_update&version=2


Algorithms 2020, 13, 49 2 of 12

Due to the constraints on state and control variables, it is hard to obtain the explicit control policy
by solving the Riccati equation [5]. Recently, there have been studies regarding the constrained LQ
optimal control problems, such as [12–14]. Meanwhile, in real applications, considering some practical
limits, such as the risk or the economic regulations, we have to take some constraints on the control
variables into the consideration. In the LQ control problems, including the positivity constraint for the
control, some literature, [15,16], propose the optimality conditions and some numerical methods to
characterize the optimal control policy. In this paper, we characterise the limits as the conic control
constraints considering the real applications.

Work by Cao [17] and Puterman [18] demonstrate that stochastic control problems can be viewed
as Markov decision problems. Therefore, the constrained stochastic LQ control problem can be
formulated as an MDP, such as [19]. A direct-comparison based approach (or relative optimization),
which originated in the area of discrete event systems, has been developed in the past years for the
optimization of MDPs [17].

With this approach, optimization is based on the comparison of the performance measures of
the system under any two policies. It is intuitively clear, and it can provide new insights, leading to
new results to many problems, such as [20–26]. This approach is very convenient and suitable to the
performance optimization problems, leading to results including the property of under-selectivity
in time-nonhomogeneous Markov processes [24]. In this paper, we show that the special features of
the constrained stochastic LQ optimal control make it possible to be solved by the direct-comparison
based approach, leading to some new insights for the problem.

In our work, we consider the stochastic LQ control problem through an MDP formulation in the
infinite horizon. Through the direct-comparison based approach [17], we first derive the performance
potentials for the LQ problem by utilizing the state separation property of the system structure. Based
on this, we successfully derive the optimality conditions and the stationary optimal feedback control.
We show that the optimal control policy is a piece-wise affine function with respect to the state
variables. In real applications, the proposed methodology can be used in many fields, such as system
risk contagion [26] and power grid systems [27].

Our work provides a new perspective for LQ control problems. Compared with the former
literature, such as [5,13], we still consider the multiplicative noises. We establish a general framework
for studying infinite horizon stochastic control problems. With the direct-comparison based approach,
which is applicable to both linear and nonlinear systems, we propose more results for the performance
optimization problems, and the results can be extended easily. In addition, without identifying all the
system parameters, this approach can be implemented on-line, and learning based algorithms can be
developed.

The paper is organized as follows. Section 2 introduces an MDP formulation of the constrained
stochastic LQ problem with multiplicative noises; some preliminary knowledge on MDP and the state
separation property is also provided. In Section 3, we derive the performance difference formula, which
is the foundation of the performance optimization; based on it, the Poisson equation and Dynkin’s
formula can be obtained. Then we derive the optimality condition and the optimal policy through the
performance difference formula. In Section 4, we illustrate the results by numerical examples. Finally,
we conclude the paper in Section 5.

2. Problem Formulation

2.1. Problem with Infinite Time Horizon

In this section, we study the infinite horizon discrete-time stochastic LQ optimal control problem,
in which the conic control constraints are also considered; see [5,14]. For simplicity of the parameters,
we consider a one dimensional dynamic system with a multiplicative noise described by

xl+1 = Axl+Bul(xl) + [Axl + Bul(xl)]ξl , (1)
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for time l = 0, 1, · · · . By denoting R (R+) as the set of real (nonnegative real) numbers, in this system,
A ∈ R and B ∈ R1×m are deterministic values; xl ∈ R is the state with x0 being given; and ul ∈ Rm

is a feedback control law at time l. For each l, ξl denotes an independent identically distributed
one-dimensional multiplicative noise, satisfying a normal distribution with mean 0 and variance
σ2, σ ≥ 0. For each l, ξl denotes a one-dimensional noise. ξl and ξk are independent for every l 6= k.

Now, we consider the conic control constraint sets (cf. [5])

Cl := {ul |ul ∈ Fl , Hul ∈ Rn
+}, (2)

for l = 0, 1, · · · , where H ∈ Rn×m is a deterministic matrix; and Fl is the filtration of the information
available at time l. Let Cl ⊂ Rm be a given closed cone; i.e., αul ∈ Cl whenever ul ∈ Cl and α ≥ 0; and
ul + vl ∈ Cl whenever ul , vl ∈ C.

The goal of optimization is to minimize the total reward performance measure in a quadratic form:

(PA) min
{ul}|∞l=0

ηu = lim
L→∞

E[
L−1

∑
l=0

(Qx2
l + u′lRul)|x0]

(s.t.) {xt, ut} satisfies (1) and (2) for l = 0, 1, · · · ,

(3)

where Q ∈ R+ and R ∈ Rm×m
+ are deterministic. Here we denote the transpose operation by a prime

in the superscript , such as u′l . {ul} denotes the control sequence {u0, u1, · · · }. We also assume that
(3) exists.

Therefore, the performance function of (3) is

f u(x) = Qx2 + u′Ru. (4)

In this paper, we will show that the direct-comparison based approach leads to more new results
for the total rewards problem [7], and that the results can be easily extended.

2.2. MDPs with Continuous State Spaces

For a stationary control law ul = u(x), at time l = 0, 1, · · · , the constraint (2) can be written as

C := {u|u ∈ Rm, Hu ∈ Rn
+}.

Then the above stochastic control problem can be viewed as an MDP with continuous state spaces.
More precisely, u(x) plays a similar role of actions in MDPs, and then the control law u is the same as
a policy.

Consider a discrete-time Markov chain X := {xl}∞
l=0 with a continuous state space on R.

The transition probability can be described by a transition operator P as

(Ph)(x) :=
∫
R

h(y)P(dy|x), (5)

where P(dy|x) is the transition probability function, with x, y ∈ R; and h(y) is any measurable function
on R. As ξl is independent Gaussian noises, given the current state xl = x, under the stationary
control u(x), y = xl+1 satisfies a normal distribution with mean µy = Ax + Bu(x) and variance
σ2

y = [Ax + Bu(x)]2σ2. Then we have the transition function of this system as follows,

Pu(dy|x) = 1√
2πσy

exp{−
(y− µy)2

2σ2
y
}dy. (6)
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Let B be the σ-field of R containing all the (Lebesgue) measurable sets. For any set B ∈ B, we can
define the identity transition function I(B|x). I(B|x) = 1 if x ∈ B; I(B|x) = 0 otherwise. For any
function h and x ∈ R, we have (Ih)(x) = h(x).

The product of two transition functions P1(B|x) and P2(B|x) is defined as a transition function
(P1P2)(B|x):

(P1P2)(B|x) :=
∫
R

P2(B|y)P1(dy|x),

where x, y ∈ R, B ∈ B.
For any transition function P, we can define the kth power, k = 0, 1, · · · , as P0 = I, P1 = P,

and Pk = PPk−1, k = 2, · · · . Suppose that the Markov chain X is time-homogeneous with transition
function P(B|x), x ∈ R, B ∈ B. Then the k-step transition probability functions, denoted as
P(k)(B|x), k = 1, 2, · · · , are given by the 1-step transition function defined as P(1)(B|x) = P(B|x) and

P(k)(B|x) :=
∫
R

P(dy|x)Pk−1(B|y), k ≥ 2.

For any function h(x), we have

(P(k)h)(x) =
∫
R

h(y)P(k)(dy|x) = P(P(k−1))h(x).

That is, as an operator, we have P(k) = P(P(k−1)). Recursively, we can prove that P(k) = Pk.
Suppose that a Markov chain X with a continuous state space on R has a steady-state distribution

π satisfying π = πP. Define function e(x) = 1 for all x ∈ R. We denote the performance potential g as
a function which satisfies the Poisson equation (cf. [17])

(I − P)g(x) + η(x) = f (x), (7)

where I and P are two transition functions, and η(x) = (π f )e(x) = ηe(x). Then if g is a solution to (7),
so is g + ce, with any constant c. We define

gK := {I +
K

∑
k=1

(Pk − eπ)} f , (8)

and assume the limit g(x) := limK→∞ gK(x) exists for x ∈ R. Then we have the following lemma,

Lemma 1 (Solution to Poisson Equations [17]). For any transition function P and performance function
f (x), if

lim
k→∞

Pk f = (eπ) f = ηe,

lim
K→∞

gK = g, and lim
K→∞

PgK = Pg,

hold for every x ∈ R, then

g = {I +
∞

∑
k=1

(Pk − eπ)} f , (9)

is a solution to the Poisson Equation (7).
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2.3. State Separation Property

In order to derive the explicit solution of the stochastic LQ control problem with conic constraints,
Reference [14] gives the following lemma for the state separation property of the LQ problem,

Lemma 2 (State Separation [14]). In the system (1), for any x ∈ R, the optimal solution for problem (3) at
time l is a piecewise linear feedback policy

u∗(xl) =

{
K̂∗xl , if xl ≥ 0,

−K̄∗xl , if xl < 0,
(10)

for l = 0, 1, · · · , whereK := {K ∈ Rm|HK ∈ Rn
+} associated with the control constraint sets Cl ; K̂∗, K̄∗ ∈ K,

are the optimal values of two correspondent auxiliary optimization problems, and the superscript “∗” corresponds
to the optimal control.

Based on (10) in Lemma 2, the stationary control can be written as u(x) = K̂x1x≥0 − K̄x1x<0,
where 1B is an indicator function, such that 1B = 1, if the condition B holds true and 1B = 0 otherwise;
and K̂, K̄ ∈ K. Applying this control, the system dynamics (1) becomes

xl+1 = Ĉxl1xl≥0 + C̄xl1xl<0

+ [Ĉxl1xl≥0 + C̄xl1xl<0]ξl , (11)

for l = 0, 1, · · · , where

Ĉ = A + BK̂, C̄ = A− BK̄. (12)

Moreover, the performance measure (3) becomes

ηu(x) = lim
L→∞

E[
L−1

∑
l=0

Ŵx2
l 1xl≥0 + W̄x2

l 1xl<0|x0 = x],

where Ŵ = Q + K̂TRK̂ and W̄ = Q + K̄TRK̄. Therefore, the performance function (4) becomes

f (x) = Ŵx21x≥0 + W̄x21x<0. (13)

It is easy to verify that Ŵ and W̄ are positive semi-definite. We assume that this one-dimensional
state system is stable, and then the spectral radiuses of Ĉ and C̄ are less than 1, i.e., Cmax = max(Ĉ, C̄) <
1. In the next section, we will derive the performance potentials for the LQ problem, which is the
foundation of the performance optimization. Based on this, the Poisson equation and the Dynkin’s
formula can be derived. The direct-comparison based approach provides a new perspective for this
problem,and the results can be extended easily.

3. Performance Optimization

In this section, utilizing the state separation property, we derive the performance difference
formula, which compares the performance measures of any tow policies, and then derive the optimality
condition and the optimal policy with the direct-comparison based approach.



Algorithms 2020, 13, 49 6 of 12

3.1. Performance Difference Formula

We denote Ŵ0 = Ŵ and W̄0 = W̄. Then we have the performance function as f (x) = Ŵ0x21x≥0 +

W̄0x21x<0. With the initial condition x0 = x, by (5), (6), (11), and (13), the performance operator is

(P f )(x) = Ŵ1x21x≥0 + W̄1x21x<0, (14)

where

Ŵ1 = (a1Ŵ0 + a2W̄0)Ĉ2, W̄1 = (a1Ŵ0 + a2W̄0)C̄2,

and

a1 = σφ(
1
σ
) + (1 + σ2)Φ(

1
σ
), (15)

a2 = −σφ(− 1
σ
) + (1 + σ2)Φ(− 1

σ
), (16)

with φ(·) as the probability density function of a standard normal distribution. We can verify that a1

and a2 are both nonnegative constants, with a1 + a2 = 1 + σ2.
As P2 f = P(P f ), continuing this process, we obtain

(Pk f )(x) = Ŵkx21x≥0 + W̄kx21x<0, (17)

where

Ŵk = (a1Ŵk−1 + a2W̄k−1)Ĉ2,

W̄k = (a1Ŵk−1 + a2W̄k−1)C̄2.

We set W∗0 = max(Ŵ0, W̄0).
In order to ensure the stability of the system, Reference [14] gives some assumptions. Here we

assume max(Ĉ2, C̄2) < 1/(1 + σ2) ≤ 1. Then we have

Ŵk ≤ (1 + σ2)k(Ĉ2)kW∗0 , W̄k ≤ (1 + σ2)k(C̄2)kW∗0 .

Therefore, we have

lim
k→+∞

Ŵk = lim
k→+∞

W̄k = 0. (18)

We denote Ĝk := ∑k
i=0 Ŵi and Ḡk := ∑k

i=0 W̄i. Based on the above claims, we obtain that Ĝk and
Ḡk would converge when k→ +∞. Thus we denote

Ĝ := lim
K→+∞

ĜK =
+∞

∑
k=0

Ŵk, Ḡ := lim
K→+∞

ḠK =
+∞

∑
k=0

W̄k.

Based on the definition of total rewards (3), we have

η(x) = Ĝx21x≥0 + Ḡx21x<0. (19)

By (17) and (18), we have

lim
k→+∞

(Pk f )(x) = 0.
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Then we have proved that the closed-loop system (11) is L2-asymptotically stable, i.e.,
liml→∞ E[(xl)

2] = 0. Therefore, the total rewards η(x) exists, that is, a piecewise quadratic function
with positive semi-definite matrices Ĝ and Ḡ.

Now, we define the discrete version of generator, A for any function h(x), x ∈ R, such that

Ah(x) := (Ph)(x)− h(x). (20)

Taking h(x) as η(x), and by the definition of η(x) in (3), we have the Poisson equation as follows,

Aη(x) + f (x) = 0. (21)

By (5) and (20), we obtain the discrete version of Dynkin’s formula as

E{
K−1

∑
k=0

[Ah(xk)]|x0} = E{h(xK)|x0} − h(x0). (22)

and if the limit K → ∞ exists, then

E{
∞

∑
k=0

[Ah(xk)]|x0} = lim
K→∞

E{h(xK)|x0} − h(x0).

Now, we consider two policies u, u′ ∈ U0, resulting in two independent Markov chains X and X′

in the same state space R, with P, f , η,A, E, and P′, f ′, η′,A′, E′, respectively. Let x′0 = x0. Applying
the Dynkin’s Formula (22) on X′ with h(x) = η(x) yields

E′{
K−1

∑
k=0

[A′η(x′k)|x0} = E′{η(xK)]|x0} − η(x0). (23)

Noting that η′(x0) = limK→∞ ∑K−1
k=0 {E

′[ f ′(xk)]|x0}, and limK→∞ E′{η(xK)|x0} = 0 due to
asymptotical stability. Then by (23), we obtain the performance difference formula:

η′(x0)− η(x0) = lim
K→∞

K−1

∑
k=0

E′{(A′η + f ′)(x′k)|x0}. (24)

3.2. Optimal Policy

Based on the performance difference Formula (24), we have the following optimality condition.

Theorem 1 (Optimality Condition). A policy u∗ in C is optimal if, and only if,

Auηu∗ + f u ≥ 0 = Au∗ηu∗ + f u∗ , ∀u ∈ C. (25)

From (25), the optimality equation is:

min
u∈C
{Auηu∗ + f u} = 0. (26)

Proof. First, the “if” part follows from the performance difference Formula (24) and the Poisson
Equation (21).

Next, we prove the “only if” part: Let u∗ be an optimal policy. We need to prove that (25) holds.
Suppose that this is not true. Then, there must exist one policy, denoted as u′, such that (25) does not
hold. That is, there must be at least one state, denoted as y, such that

Pu∗ηu∗(y) + f u∗(y) > Pu′ηu∗(y) + f u′(y).



Algorithms 2020, 13, 49 8 of 12

Then we can create a policy ũ by setting ũ = u′ when x = y, and ũ = u∗ when x 6= y. We have
ηu∗ > ηu′ . This contradicts to the fact that u∗ is an optimal policy.

Based on the optimality condition, the optimal control u∗ can be obtained by developing policy
iteration algorithms. Roughly speaking, we start with any policy u0. At the kth step, k = 0, 1, · · · ,
given a piecewise linear policy uk(x) = K̂x1x≥0 − K̄x1x<0, where K̂, K̄ ∈ K, we want to find a better
policy by (26). We consider any policy u(x). Setting h(x) = ηuk (x) = Ĝx21x≥0 + Ḡx21x<0, by (5),
(12), and (14), we have

(Puηuk )(x) =(a1Ĝ + a2Ḡ)(A + BK̂)2x21x≥0

+ (a1Ĝ + a2Ḡ)(A− BK̄)2x21x<0. (27)

where a1 and a2 satisfy Equations (15) and (16), respectively.
Then, from (4) and (27), we have

uk+1(x) = arg{min
u∈C

[(Puηuk )(x) + f u(x)]}

= K̂k+1x1x≥0 − K̄k+1x1x<0,

with

K̂k+1 = arg min
K∈K

[a1Ĉ2Ĝ + a2Ĉ2Ḡ + Q + KTRK],

K̄k+1 = arg min
K∈K

[a1C̄2Ĝ + a2C̄2Ḡ + Q + KTRK],

where Ĉ = A + BK, and C̄ = A− BK.
It can be seen that if the policy uk(x) is a piecewise linear control, then we can find an improved

policy uk+1(x), which is also piecewise linear. Moreover, if K̂k+1 = K̂ and K̄k+1 = K̄, i.e., uk+1 = uk,
then the iteration stops. The policy uk satisfies the optimal condition (26) in Theorem 1, and therefore
is an optimal control.

Therefore, we can obtain the optimal policy as follows,

u∗(x) = K̂∗x1x≥0 − K̄∗x1x<0, (28)

where

K̂∗ = arg min
K∈K

[a1Ĉ2Ĝ∗ + a2Ĉ2Ḡ∗ + Q + KTRK], (29)

K̄∗ = arg min
K∈K

[a1C̄2Ĝ∗ + a2C̄2Ḡ∗ + Q + KTRK]. (30)

Moreover,

Ĝ∗ = min
K∈K
{a1Ĉ2Ĝ∗ + a2Ĉ2Ḡ∗ + Q + KTRK}, (31)

Ḡ∗ = min
K∈K
{a1C̄2Ĝ∗ + a2C̄2Ḡ∗ + Q + KTRK}. (32)

The original problem (3) is transformed to two auxiliary optimization problems (29) and (30).
Under the optimal control u∗ in (28), the closed-loop system (11) is L2-asymptotically stable. From (19),
with the initial condition x0 = x, we know the optimal total reward performance is

η∗(x) = Ĝ∗x21x≥0 + Ḡ∗x21x<0, (33)

where Ĝ∗ and Ḡ∗ satisfy (31) and (32), respectively.
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Policy iteration can also be implemented on-line, the performance (potential) can be learned on a
sample path without knowing all the transition probabilities. In on-line algorithms, the computation
of policy evaluation is O(n), where n is the length of a sample path. Additionally, Reference [14] also
provides some algorithms for calculating the optimal policy.

4. Simulation Examples

In this section, we use two numerical examples to illustrate the optimal policy for the constrained
LQ control problem (3).

Example 1. We consider a stochastic LQ system with x0 = 10, m = 3, A = 0.8, and B = (−0.35, 0.18, 0.25)′.
The cost matrix is

R =

1.2 0.6 0.4
0.6 1.8 0.2
0.4 0.2 2.4

 , and Q = 1.2.

For time l = 0, 1, · · · , the variance of the 0-mean i.i.d. Gaussian noise ξl is σ2 = 0.25. We consider the
conic constraint u ≥ 0. By applying Theorem 1, the stationary optimal control is u∗l (xl) = K̂∗xl1xl≥0 −
K̄∗xl1xl<0, for l = 0, 1, · · · , where K̂∗ = (0.574, 0, 0)′, K̄∗ = (0, 0.250, 0.270)′, Ĝ∗ = 2.773 and Ḡ∗ = 3.473.
Furthermore, the optimal reward performance is η∗(x0) = Ĝ∗x2

01x0≥0 + Ḡ∗x2
01x0<0 = 623.987.

As shown in Figure 1a plots the outputs Ḡ∗ and Ĝ∗ with respect to iteration time K; Figure 1b
plots the state trajectories of 50 samples by setting x0 = 10 and implementing the stationary optimal
control u∗. It can be observed that x∗l converges to 0 after time l = 20 and this closed loop system is
asymptotically stable.

Number of iterations K
0 5 10 15 20 25 30 35 40 45 50

Ḡ
∗
a
n
d
Ĝ

∗

0

1

2

3

4

5

Ḡ∗

Ĝ∗

(a) Performance potential parameters Ḡ∗ and Ĝ∗.

Time l
0 5 10 15 20 25 30

S
ta
te

x
∗ l

-5

0

5

10

15

(b) State trajectories of 50 samples under the optimal control u∗.

Figure 1. The simulation results of Example 1.
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Example 2. In the second case, we assume x0 = 10, A and B, following the identical discrete distribution with
five cases. We assume A ∈ (−0.7,−0.6, 0.9, 1, 1.1), and

B ∈
{ 0.18
−0.05
−0.140

 ,

 0.03
−0.12
−0.03

 ,

−0.05
0.05
0.05

 ,

−0.01
0.05
0.01

 ,

−0.05
0.01
0.06

}
,

each of which has the same probability 0.2. The cost matrix is

R =

1.5 0.6 0.4
0.6 1.5 0.2
0.4 0.2 2.5

 , and Q = 1.5.

For time l = 0, 1, · · · , the variance of the 0-mean i.i.d. Gaussian noise ξl is σ2 = 0.25. We consider
the conic constraint u ≥ 0. By applying Theorem 1, the stationary optimal control is u∗l (xl) = K̂∗xl1xl≥0 −
K̄∗xl1xl<0, for l = 0, 1, · · · , where K̂∗ and K̄∗ are identified as follows, K̂∗ = (0.259, 0.100, 0.130)′, K̄∗ =
(0.100, 0.500, 0.100)′, Ĝ∗ = 4.111 and Ḡ∗ = 3.859. Furthermore, the optimal reward performance is η∗(x0) =

Ĝ∗x2
01x0≥0 + Ḡ∗x2

01x0<0 = 489.23.

As shown in Figure 2a plots the outputs Ḡ∗ and Ĝ∗ with respect to iteration times K; Figure 2b
plots the state trajectories of 50 samples by setting x0 = 10 and implementing the stationary optimal
control u∗. It can be observed that x∗l converges to 0 after time l = 35 and this closed loop system is
asymptotically stable.

(a) Performance potential parameters Ḡ∗ and Ĝ∗.

(b) State trajectories of 50 samples under the optimal control u∗.

Figure 2. Simulation Results of Example 2.
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5. Conclusions

In this paper, we apply the direct-comparison based optimization approach to study the rewards
optimization of the discrete-time stochastic linear-quadratic control problem with conic constraints on
an infinite horizon. We derive the performance difference formula by utilizing the state separation
property of the system structure. Based on this, the optimality condition and the stationary optimal
feedback control can be obtained. The direct-comparison based approach is applicable to both linear
and nonlinear systems. By introducing the the LQ optimization problem, we establish a general
framework for studying infinite horizon control problems with total rewards. We verify that the
proposed optimal approach can solve the LQ problems. Then we illustrate our results by two
simulation examples.

The results can easily be extended to the cases of non-Gaussian noises and average rewards.
Most significantly, our methodology can deal with a very general class of linear constraints on state
and control variables, which includes the cone constraints, positivity and negativity constraints, and the
state-dependent upper and lower bound constraints as a special case. In addition to the problem with
the infinite control horizon, our results still fit problems with a finite horizon. In addition, without
identifying all the system structure parameters, this approach can also be implemented on-line, and
learning based algorithms can be developed.

Finally, this work focuses on the discrete-time stochastic LQ control problem. Our next step is to
investigate continuous cases. As the constrained LQ problem has a wide range of applications, we hope
to apply our approach in more areas, such as dynamic portfolio management, security optimization of
cyber-physical systems, and financial derivative pricing, in our future research.
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