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Abstract: Optical coherence tomography (OCT) is an optical high-resolution imaging technique for
ophthalmic diagnosis. In this paper, we take advantages of multi-scale input, multi-scale side output
and dual attention mechanism and present an enhanced nested U-Net architecture (MDAN-UNet), a
new powerful fully convolutional network for automatic end-to-end segmentation of OCT images. We
have evaluated two versions of MDAN-UNet (MDAN-UNet-16 and MDAN-UNet-32) on two publicly
available benchmark datasets which are the Duke Diabetic Macular Edema (DME) dataset and the
RETOUCH dataset, in comparison with other state-of-the-art segmentation methods. Our experiment
demonstrates that MDAN-UNet-32 achieved the best performance, followed by MDAN-UNet-16
with smaller parameter, for multi-layer segmentation and multi-fluid segmentation respectively.

Keywords: optical coherence tomography; fully convolutional network; layer segmentation; fluid
segmentation

1. Introduction

Optical coherence tomography (OCT) is a high-resolution three-dimensional imaging technique,
which has significant advantages such as high speed, real time, and non-invasiveness [1]. OCT is
widely used clinically and becomes the gold standard in diagnostic imaging for the leading macular
diseases such as Diabetic Macular Edema (DME) and choroidal neovascularization(CNV) [2]. DME,
caused by fluid leakage from damaged macular blood vessels, is the most common cause of vision loss
in American adults [3]. Ophthalmologists use retinal thickness maps to assess the severity of DME.
However, manual segmentation of the cyst area is a time-consuming task and prone to human error [4].
Thus, it is necessary to promote the automatic segmentation method of OCT image, which runs fast
and prevents subjective factors.

Since the 2000s, classic machine learning methods have been widely used for tasks related to
the retina segmentation [5]. Chiu et al. [6] applied a kernel regression-based method to classify the
retinal layer and subsequently used Graph Construction as well as dynamic programming to refine
the process. Karri et al. [7] utilized structured random forests to learn specific edges of the retinal
layer to enhance Graph Construction. Additionally, he improved the spatial consistency between OCT
frames by adding appropriate constraints to the Dynamic Programming paradigm for segmentation.
Montuoro et al. [8] proposed an auto-context loop for joint segmentation of retinal layer and fluid.
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For any segmentation target, deep learning has got comparable or better results to previous
methods of classic machine learning [5]. The full convolutional neural network (FCN) [9] has achieved
remarkable results in the field of image segmentation. Ronneberger et al. were inspired by the
FCN network and proposed the U-Net [10], which combines deep semantic information and spatial
information through encoder blocks, decoder blocks and skip connection. U-Net architectures,
having achieved the best results in many medical image segmentation tasks, are widely used in
OCT segmentation, such as optic nerve head tissues segmentation [11], drusen segmentation [12],
intraretinal cystoid fluid (IRC) segmentation [13], fluid regions segmentation [14], and retinal layers
segmentation [15]. Lu et al. [16], achieving the best results in the RETOUCH competition, applied
Graph-Cut to perform layer segmentation on OCT images as pre-processing and utilize U-Net to
segment 3 types of fluid. Venhuizen et al. [13] used a cascaded U-Net network to segment the OCT
fluid region and achieved very good accuracy. Inspired by U-Net, Roy et al. [17] proposed ReLayNet
which achieved accurate results in a joint segmentation of seven retina layers and fluid region in
pathological OCT scans.

A limitation of U-Net is that the consecutive pooling layers reduce spatial information of the
feature to learn higher abstract feature representations [18]. Nevertheless, dense prediction tasks need
rich spatial information. CE-Net [18], using the first few layers of the pre-trained resnet-34 [19] model
based on the ImageNet data set [20] as the network encoder part and applying the decoder part they
proposed, have achieved good results in OCT layer segmentation, cell boundary segmentation and lung
segmentation. Zhou et al. [21] improved the U-Net and proposed a nested U-Net network (U-Net++)
structure to take advantage of deep supervision [22] and re-designed skip pathways which aim at
reducing the difference in semantic information between the encoder and decoder blocks. Additionally,
a lot of mechanisms have been utilized to segmentation tasks. The multi-scale input, aiming at
achieving multiple level sizes of receptive field, has been demonstrated to improve the performance
of segmentation network [23,24]. Side output mechanism, first proposed by [25], helps to resolve
gradient vanishing problem and capture multi-level representations. Attention mechanism, widely
applied in many tasks [26–29], is able to capture long-range dependencies. In addition, Fu et al. [30]
proposed Position Attention Module (PAM) and Channel Attention Module (CAM) to capture global
information in spatial and channel dimension respectively.

In this paper, we integrated multi-scale input, multi-scale side output and attention mechanism
into our method and present MDAN-UNet, an enhanced nested U-Net architecture for segmentation
of OCT images. The main contributions can be listed as:

1. We present an enhanced nested U-Net architecture named MDAN-UNet, taking advantages
of re-designed skip pathways [21], multi-scale input, multi-scale side output and attention
mechanism;

2. We propose two versions of our method, which are MDAN-UNet-16 and MDAN-UNet-32 where
16 and 32 denote the number of convolutional kernels in the first encoder block. We validate the
proposed methods on two OCT segmentation tasks (layer segmentation and fluid segmentation),
and our methods outperform state-of-the-art networks, including Unet++ [21].

2. The proposed Approach

In order to automatically segment fluid region or layer, we designed a UNet++ [21] alike network.
The architecture of our network is shown in Figure 1. As shown in Figure 1, we propose MDAN-UNet,
an end-to-end multi-scale and dual attention-enhanced nested U-Net shape architecture. MDAN-UNet
consists of three main components, namely multi-scale input, Nested U-Net [21] shape convolutional
network as the main body structure and multi-scale side output and multi-scale label.
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Figure 1. An overview of the proposed MDAN-UNet architecture. The blue and green parts denote
re-designed skip pathways [21] and red line indicates deep supervision.

2.1. Multi-Scale Input

As opposed to [23,24], which constructed multi-scale input by employing average pooling layer,
we constructed multi-scale input by taking the first value (in the upper left corner) for every 2 × 2,
4 × 4, 8 × 8 and 16 ×16 non-overlapping area, respectively. We take the way to construct input(1)in
Figure 1 as an example. Different from max pooling layer with stride equal to 2 by getting max values
for every 2 × 2 non-overlapping area, we take the first value(in the upper left corner) for every 2 × 2
non-overlapping area. The way we construct input(1) is shown in Figure 2.

Figure 2. Illustration of how to construct input(1). We take the first value indicated by the red circle (in
the upper left corner) for every 2 × 2 non-overlapping area.

After experiencing a convolution block, the feature maps of current input are simply added to the
encoder layers. Let ini(i ∈ {1, 2, 3, 4}) denote the output of node Ini. input(i)(i ∈ {0, 1, 2, 3, 4}) denotes
the input in the i down-sampling layer along the encoder, and xi,0(i ∈ {0, 1, 2, 3, 4}) denotes the output
of node Xi,0(i ∈ {0, 1, 2, 3, 4}). The formulation of ini(i ∈ {1, 2, 3, 4}) and xi,0(i ∈ {0, 1, 2, 3, 4}) can be
calculated as:

ini = F(input(i)) (i ∈ {1, 2, 3, 4})

xi,0 =

{
F(input(i)) i=0

F(M(xi−1,0)) + ini i=1,2,3,4
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where F(·) is the convolution block shown in Figure 1, consisting of two identical operations, for each
operation including convolution layer with kernel size 3 × 3, batch normalization, ReLU layer in
sequence. Moreover, M(·) denotes the down-sampling operation which is a max pooling layer with
stride equal to 2. The main advantage of our multi-scale input is: it can achieve multiple level sizes
of receptive field so that it can enhance the ability of multi-scale detection; more specifically, it can
effectively strengthen the ability of multi-scale lesion segmentation.

2.2. Nested U-Net shape convolutional network

We applied the nested U-Net [21] convolutional network as the main body structure to learn
rich representations in the OCT images. Similarly to original nested U-Net, our method comprises an
encoder and decoder connected by a series of nested dense convolutions block. As shown in Figure 1,
node Xi,j, identical to [21], denotes the convolution layer of dense block, where i is the down-sampling
layer along the encoder and j is the convolution layer of the dense block along the skip pathway.

As opposed to U-Net++ [21] utilizing 2D bilinear up-sampling operation, we apply a 2D
transposed convolution operation [31] for up-sampling layer. In addition, we apply dual attention
block for the output of node X4,0 to capture information in global view. Taking model’s parameters
into consideration, we construct dual attention block by applying Position Attention Module (PAM)
and Channel Attention Module (CAM) [30] at the deepest stage of encoding. Let X be the feature map,
our dual attention block can be formulated as:

dual_out = {H(Θ(PAM(X)) + Θ(CAM(X))), H(Θ(PAM(X))), H(Θ(CAM(X)))}

where H(·) denotes a dropout layer [32,33] with rate equal to 0.1 followed by a convolution operation,
Θ(·) denotes convolution layer, batch normalization layer and ReLU layer in sequence, and PAM(·)
and CAM(·) denote the Position Attention Module and Channel Attention Module respectively whose
detail can be found in [30]. Additionally, {} is the concatenation layer. The architecture of dual
attention block is shown in Figure 3.
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Figure 3. An overview of the proposed dual attention block in MDAN-UNet-16. The dual attention
block in MDAN-UNet-32 has double number of feature maps’ channels for every convolutional layer.

2.3. Multi-Scale Side Output and Multi-Scale Label

We apply multi-scale side output and multi-scale label to help the early layer do back propagation
and to relieve gradient vanishing problem. We construct side output by being averaged by multiple
convolution layer of dense block along current down-sampling layer. Additionally, we employ
side_output(i) (i ∈ {0, 1, 2, 3}) to help early training, but only apply side_output(0) as the final
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prediction map. Let side_output(i) denote the side output computed by the down-sampling layer with
index i along the encoder, and it is computed as:

side_output(i) =
∑4−i

j=1 Φ(xi,j)

4−i (i ∈ {0, 1, 2, 3})

where Φ(·) is a convolution operation with 1*1 kernel.
Owing to multi-scale side output, we construct multi-scale label in the same way as constructing

multi-scale input. Precisely, we take the first value(in the upper left corner) for every 2 × 2, 4 × 4
and 8 × 8 non-overlapping area respectively in the original label to get different size of labels for
side_output(1), side_output(2) and side_output(3) respectively. As shown in Figure 1, the total loss in
the training stage is:

L_total = L(0) + L(1) + L(2) + L(3) (1)

where L(i) is the loss for side_output(i) and the way to calculate L(i) is shown in section 3 below.

3. Loss Function

Our proposed network is trained by minimizing a joint loss function defined as below:

L = LWCE + LDice (2)

where LWCE denotes the weighted multi-class cross entropy and LDice denotes the dice loss.

• Weighted multi-class cross entropy, commonly used in semantic segmentation [9,10,17] to deal
with the unbalance classes. Given a pixel i in the image Xn, its formulation can be defined
as follow:

LWCE = − ∑
i∈Xn

C

∑
c

W(i)
n Y(i,c)

n log(P(i,c)
n ) (3)

where W(i)
n denotes the weight associated with pixel i, and C is the number of classes. P(i,c)

n is the
estimated probability of pixel i belonging to class c, and Y(i,c)

n is one for the ground truth of pixel i
belonging to class c and zero for others.

Because most of the images are backgrounds, the classes are unbalance. What’s more, pixels
near the boundary region are difficult to identify. So we apply larger weight for pixels belonging
to foreground as well as pixels near the boundary region. Let a pixel i in the image Xn, the
formulation of W(i)

n is defined as follow:

W(i)
n = 1 + λ1I(abs(O(Y(i)

n )) > 0) + λ2I(Y
(i)
n = L) (4)

where I(·) is an indicator function, with one for (·) is true and zero for others, and Y(i)
n is value

of pixel i in the ground map. L represents the values for foreground classes. O denotes the
gradient operator.

• Dice loss, proposed by [34], is commonly used to minimize the overlap error between the predicted
probability and the true label. It can deal with class imbalance problems. To make sure all pixel
values in the predicted probability are positive and in range 0 to 1 when calculating dice loss, we
apply soft-max to the predicted probability. The soft-max is defined as:

SC(p(i,c)n ) = exp(p(i,c)n )

∑c′∈C exp(P(i,c′)
n )

where p(i,c)n is the pixel value in feature channel c at the pixel position

i. Given a pixel i in the image Xn, the formulation of dice loss is defined as:

Ldice = ∑
c∈C

1−
2 ∑i∈Xn Y(i,c)

n SC(P(i,c)
n ) + ε

∑i∈Xn((Y
(i,c)
n )2 + SC(P(i,c)

n )2) + ε
(5)



Algorithms 2020, 13, 60 6 of 17

where P(i,c)
n is the estimated probability of pixel i in feature channel c. Y(i,c)

n is one for the ground
truth of pixel i belonging to class c and zero for others.

4. Experiments

We applied our method on two OCT segmentation tasks: layer segmentation and fluid
segmentation. In order to present convincing results in our experiments, we executed all methods three
times and averaged the testing values as the results while the train set and test set remained unchanged.

4.1. Experiments settings

The implementation of our network is based on an open-source deep learning toolbox:
Pytorch [35]. The experiments were run in Ubuntu 16.04 system with GeForce RTX 2080, which
has 8Gigabyte memory. In our experiments, the parameters in Equation ( 4 ) are set as λ1 = 5, λ2 = 5.
The Adam optimizer [36] is used with initial learning rate of 0.001 for OCT layer segmentation and
0.0005 for OCT fluid segmentation. We adopt a learning rate decay schedule where the current learning
rate is multiplied by 0.8 after every 15 epochs. The maximum epoch is 100. For every epoch, we
randomly select current batches to train with a probability of 0.8 for OCT layer segmentation and 0.5
for OCT fluid segmentation. In addition, selected batches are randomly cropped so as to increase
the robustness of the network. In order to apply fair comparison, the experiments settings are kept
constant for all comparison methods.

4.2. Layer Segmentation

4.2.1. Dataset

To show that our method is applicable to OCT multi-layer segmentation, we apply our method
to segment 7 retina layers on Duke publicly available data set [6]. Duke publicly available data
set [6] comprises 10 DME volumes, each contains 61 SD-OCT B-scan images with a size of 496 × 768.
Only 11 images in each volume were labeled by two experts. Eight boundaries were demarcated
to divide each B-scan image into nine parts. They include Region above the retina (RaR), Inner
limiting membrane (ILM), Nerve fiber ending to Inner plexiform layer(NFL-IPL), Inner Nuclear layer
(INL), Outer plexiform layer (OPL), Outer Nuclear layer to Inner segment myeloid (ONL-ISM), Inner
segment ellipsoid (ISE), Outer segment to Retinal pigment epithelium (OS-RPE) and Region below the
retina (RbR).

4.2.2. Preprocessing

The way we processed the dataset is nearly identical to [7]. Firstly, we picked 110 OCT images
with labelled and all the “nan” in contour was interpolated by the intermediate location value. Then,
the two contour locations provided by two experts were averaged for 55 images from the first five
volumes as train data annotation. We evaluated methods respectively on both annotations from two
experts for the rest 55 images. Due to the lack of expert edge locations, we only chose the dataset
with columns from 120 to 650. To train in the U-Net shape network, rows from input images were
zero-padded to size of 496 × 544 and rows from labels were padded with −1 to size of 496×544.
When calculating the loss or evaluation metrics, the value of −1 is ignored. Due to the small number
of training samples are available, we applied three processes of data argumentation to enhance the
robustness as well as invariance properties of the network and preventing from overfitting, namely
random horizontal flip, resizing after random cropping and elastic deformation [37].

4.2.3. Comparative Methods and Metric

We compared our proposed method with some state-of-the-art OCT layer segmentation
algorithms: learning layer specific edges method (LSE) [7], U-Net [10], ReLayNet [17], CE-Net [18]
and U-Net++ with deep supervision [21]. Note that we did not run LSE [7] in out experiment and
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apply the original result in [7] due to the fact that the way we processed the data set is nearly identical
to [7]. To evaluate the performance, we adopted three standard metrics as calculated in [6,7]. They are
dice score (denote it as DSC), estimated contour error for each layer (denote it as CE) and estimated
thickness error for each layer (denote it as TE).

• Dice score, which has been commonly used to evaluate the overlap of OCT segmentation:

DSC = 2|P
⋂

Y|
|P|+|Y|

where P and Y are predicted output and ground truth respectively.
• Estimated contour error calculates mean absolute difference between the predicted layer contour

and the ground truth layer contour along the column. The estimated contour error for contour c
can be formulated as

CEc =
∑N

i abs(pci−gci)
N

where pci and gci denote the predicted row location of contour c in column i and the ground truth
one respectively, and N is the number of pixels for one row.

• Estimated thickness error for each layer calculates absolute difference in layer thickness. The
estimated thickness error for layer l can be formulated as:

TEl =
∑N

i abs(|pli|−|gli|)
N

where
∣∣∣pli
∣∣∣ and

∣∣∣gli
∣∣∣ denote the number of pixels belonging to layer l in column i and the ground

truth one respectively. N is the number of pixels for one row.

4.2.4. Results

a. Qualitative evaluation
We present a qualitative evaluation of two versions of MDAN-UNet in contrast with the

comparative methods. We observe that three comparative methods perform well at layer segmentation
but poorly at background segmentation (as indicated by the red arrows in Figure 4). U-Net shows the
worst performance, followed by U-Net++ and CE-Net, for misdivision of background region into layer
region. Due to the fact that there is no attention mechanism on comparative methods, comparative
methods have a lot of false detections in the background region except ReLayNet. ReLayNet, using
larger convolutional kernel whose size is 7 × 3, has a larger receptive field and therefore achieves a
relatively good performance in terms of segmentation of background region compared with U-Net,
U-Net++ and CE-Net. The prediction of MDAN-UNet-32, MDAN-UNet-16 and ReLayNet are of high
quality and outperform other methods.
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(a) Test OCT B-scan. (b) Expert1 annotation. (c) Expert2 annotation.

(d) MDAN-UNet-32 prediction. (e) MDAN-UNet-16 prediction. (f) ReLayNet prediction.

(g) CE-Net prediction. (h) UNet++ prediction. (i) U-Net prediction.

Figure 4. Layer segmentation comparison of a Test OCT B-scan. (a) A Test OCT B-scan,
(b,c) the segmentation results completes by two different experts, (d) MDAN-UNet-32 prediction,
(e) MDAN-UNet-16 prediction, (f–i) comparative methods’ predictions

b. Quantitative evaluation
We present quantitative evaluation of two versions of MDAN-UNet in contrast with the

comparative methods in terms of the number of parameters and convolutional kernels (Table 1),
mean dice score (Table 2), mean thickness error for each layer (Table 3) and mean contour error
(Table 4).
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Table 1. Comparison of the number of networks’ parameters and convolutional kernels. Xi,j/Xi,k

in column headers refer to encoder/decoder and the values in those columns denote the number of
convolutional kernels.

Architecture Params X0,0/X0,4 X1,0/X1,3 X2,0/X2,2 X3,0/X3,1 X4,0/X4,0

U-Net [10] 13.39M 64 128 256 512 1024
ReLayNet [17] 7.74M 64 64 64 64 64

CE-Net [18] 29M - - - - -
UNet++ [21] 9.16M 32 64 128 256 512

MDAN-UNet-16 3.77M 16 32 64 128 256
MDAN-UNet-32 15.02M 32 64 128 256 512

Table 2. Mean dice score(DSC): performance comparison of layer segmentation.The best one shown in
bold type and ‘*’ marks the second best.

ILM NFL-IPL INL OPL ONL-ISM ISE OSE-RPE Average

Expert 1

LSE [7] 0.874 0.909 0.807 0.770 0.944 0.889 0.868 0.866
U-Net [10] 0.884 0.917 0.818 0.793 0.947 * 0.901 0.871 0.876

ReLayNet [17] 0.884 0.914 0.811 0.795 0.945 0.895 0.870 0.874
CE-Net [18] 0.885 0.917 * 0.823 0.795 0.947 0.892 0.871 0.876
UNet++ [21] 0.887 0.920 0.815 0.794 * 0.948 0.902 0.880 0.878

MDAN-UNet-16 0.890 * 0.923 * 0.823 * 0.800 0.950 0.900 0.874 * 0.880
MDAN-UNet-32 * 0.889 0.924 0.830 0.806 0.957 0.902 * 0.876 0.883

Expert 2

LSE [7] 0.868 0.900 0.802 0.756 0.944 0.878 0.845 0.856
U-Net [10] 0.873 0.904 0.810 0.772 0.943 0.880 0.838 0.860

ReLayNet [17] 0.870 0.898 0.805 0.768 0.945 *0.886 0.844 0.860
CE-Net [18] * 0.874 0.903 * 0.814 0.775 0.948 0.882 0.841 0.862
UNet++ [21] 0.870 0.905 0.803 0.770 * 0.947 0.888 * 0.850 0.862

MDAN-UNet-16 0.877 * 0.908 0.810 * 0.777 * 0.947 0.885 0.847 * 0.865
MDAN-UNet-32 * 0.874 0.909 0.818 0.783 0.948 0.883 0.848 0.866

Table 3. Thickness error(TE) for each layer: performance comparison of layer segmentation. The best
one shown in bold type and ‘*’ marks the second best.

ILM NFL-IPL INL OPL ONL-ISM ISE OSE-RPE Average

Expert 1

LSE [7] 1.764 2.25 2.195 2.315 2.314 1.268 1.231 1.905
U-Net [10] 1.542 1.763 1.936 1.732 2.126 1.149 * 1.037 1.612

ReLayNet [17] 1.558 1.894 1.802 1.699 2.165 1.178 1.032 1.618
CE-Net [18] 1.567 1.852 1.638 1.745 2.039 1.234 1.104 1.597
UNet++ [21] 1.533 1.887 1.733 1.743 * 1.952 1.060 1.111 1.574

MDAN-UNet-16 1.466 * 1.728 1.661 * 1.701 2.006 1.112 1.092 * 1.538
MDAN-UNet-32 * 1.480 1.686 * 1.640 1.710 1.928 * 1.099 1.055 1.514

Expert2

LSE [7] 2.055 2.533 2.264 2.25 2.303 1.327 1.429 2.023
U-Net [10] * 1.891 * 2.117 2.010 1.860 2.129 1.318 1.347 1.810

ReLayNet [17] 2.028 2.273 1.900 1.732 2.160 1.374 1.319 1.827
CE-Net [18] 1.920 2.192. 1.835 1.833 * 1.978 1.393 1.349 1.786

U-Net++ [21] 1.931 2.126 1.932 1.803 2.030 1.286 1.284 1.767
MDAN-UNet-16 1.881 2.128 1.905 * 1.778 2.054 * 1.277 * 1.298 * 1.760
MDAN-UNet-32 * 1.891 2.110 * 1.869 1.816 1.959 1.257 1.311 1.745
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Table 4. Mean contour error(CE): performance comparison of layer segmentation. The best one shown
in bold type and ‘*’ marks the second best.

Contour1 Contour2 Contour3 Contour4 Contour5 Contour6 Contour7 Contour8 Average

Expert 1

LSE [7] 0.969 1.625 1.698 1.704 2.146 0.863 1.086 0.863 1.369
U-Net [10] 1.046 1.455 1.450 1.788 1.997 0.796 1.490 0.936 1.369

ReLayNet [17] 1.024 1.523 1.530 1.811 1.886 0.906 * 0.902 0.796 1.297
CE-Net [18] 0.996 1.448 1.445 * 1.547 1.764 0.963 0.971 0.943 1.260
UNet++ [21] * 0.981 1.377 1.495 1.595 1.840 0.833 0.896 0.931 1.244

MDAN-UNet-16 0.995 1.334 * 1.357 1.603 * 1.802 * 0.779 0.950 0.872 *1.212
MDAN-UNet-32 1.040 * 1.336 1.323 1.493 1.825 0.777 0.919 * 0.832 1.193

Expert2

LSE [7] * 0.906 1.826 1.853 1.753 2.125 0.901 1.229 1.112 1.463
U-Net [10] 1.026 1.721 1.623 1.887 2.089 0.865 1.782 1.170 1.521

ReLayNet [17] 0.965 1.865 1.739 1.892 1.930 0.842 1.157 * 1.070 1.432
CE-Net [18] 0.966 1.740 1.605 * 1.678 1.810 0.911 1.203 1.186 1.387
UNet++ [21] 0.968 1.733 1.634 1.812 *1.884 0.824 1.110 1.187 1.394

MDAN-UNet-16 0.926 1.671 * 1.534 1.769 1.887 * 0.839 1.152 1.102 * 1.364
MDAN-UNet-32 1.043 * 1.690 1.514 1.641 1.928 0.867 * 1.148 1.064 1.362

We report the number of parameters and convolutional kernels of models given in Table 1. We
observe that the number of parameters of MDAN-UNet-16, which is 3.77M, is much less than others.
Additionally, ReLayNet [17], with 7.74 M parameters, has the second smallest parameters among them.
MDAN-UNet-32 has about 6M more parameters than UNet++ [21] and about 1.6M more parameters
than U-Net [10]. Moreover, CE-Net [18] has the largest parameters.

The dice score of each experiment for every epoch is illustrated in Figure 5. As we can see, all the
methods reach an average DSC of 0.8 in the first 20 epochs and achieve stable DSC after 80 epochs.
In addition, the DSC for MDAN-UNet-32 increases at a faster rate compared with other methods
in the first 10 epochs, and the rapid increase in DSC for MDAN-UNet-32 may be attributed to the
multi-scale side output which can enhance deep supervision and help early layer training. The DSC for
MDAN-UNet-32, MDAN-UNet-16 and CE-Net [18] maintain a relatively stable growth after 15 epochs,
while the DSC for U-Net [10], UNet++ [21] and ReLayNet [17] fluctuates. The DSC for MDAN-UNet is
more stable than the DSC for U-Net [10], UNet++ [21] and ReLayNet [17], and the possible reasons can
be listed as follows: in the first place, MDAN-UNet takes advantages of multi-scale input which could
achieve multiple level sizes of receptive field; secondly, MDAN-UNet utilizes multi-scale side output
and multi-scale label which could help layer training correctly; moreover, MDAN-UNet applies dual
attention block to capture global information in a spatial and channel dimension.

Figure 5. Evolution of test dice score (DSC) when training on Duke publicly available dataset. The DSC
is the average of DSC for expert 1 annotation and expert 2 annotation.

From the comparison shown in Tables 2–4, MDAN-UNet-32 achieves best performance to achieve
the highest average dice score: 0.883 for expert 1 annotation and 0.866 for expert 2 annotation, lowest
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average thickness error(TE): 1.514 and 1.745 for two experts’ annotation respectively, and lowest
average contour error: 1.193 and 1.362 for two experts’ annotation respectively. From the aspect of
average dice score, average thickness error and average contour error, MDAN-UNet-16 achieves
second best performance, followed by U-Net++, CE-Net, U-Net, ReLayNet and LSE in sequence. With
the smallest parameter, MDAN-UNet-16 shows promising performance and outperforms U-Net++,
CE-Net, ReLayNet and LSE in layer segmentation. From the aspect of average dice score and average
thickness error, all fully convolution networks outperform LSE, the traditional segmentation method.
When it comes to contour error(CE), LSE achieves an average of 1.369 for expert 1 annotation, the
same as U-Net, and achieve an average of 1.463 for expert 2 annotation which is better than U-Net
with an average of 1.521.

c. Ablation study
In order to demonstrate the effectiveness of multi-scale input, multi-scale side output and the

dual attention block, we conducted the following ablation experiments. Our proposed method is an
enhanced UNet++ network; therefore, UNet++ [21] is the most fundamental baseline model. We replace
2D transposed convolution with 2D bilinear up-sampling operation in UNet++ [21], and called the
modified UNet++ as Backbone. Additionally, we add dual attention block to Backbone(remove input(1),
input(2), input(3), input(4) ,side_output(1), side_output(2) and side_output(3) from MDAN-UNet-32,
as shown in Figure 1 while others remain unchanged), and denote it as Backbone+Attention Block.
We remove multi-scale side output and multi-scale label (remove side_output(1), side_output(2),
side_output(3), and let L(0) as total loss shown in Figure 1) from MDAN-UNet-32 while others remain
unchanged, and denote it as Backbone+Attention Block+Multi-input.

As shown in Table 5, we observe that Backbone shows a slight improvement in performance in
comparison of UNet++ [21], and that Backbone+Attention Block shows better performance than
Backbone except for the average of thickness error(TE), which verifies the effectiveness of the
dual attention block. We also observe that Backbone+Attention Block+Multi-input shows better
performance than Backbone+Attention Block in all aspects, so the multi-scale input could improve
the performance. In addition, Backbone+Attention Block+Multi-input yields a result of 0.883 in
average dice score for expert 1 annotation, the same as MDAN-UNet-32 (Backbone+Attention
Block+Multi-input+Multi-scale side output and Multi-scale label) yields, but performs poorly in
other aspects. In other words, multi-scale side output and multi-scale label could further improve the
performance. From the above analysis, we can draw a conclusion that multi-scale input, multi-scale
side output and the dual attention block improve the performance, respectively.

Table 5. Ablation study on Duke publicly available dataset. The value is an average of DSC, TE or CE.
The best one shown in bold type.

Expert 1 Expert 2

DSC TE CE DSC TE CE

UNet++ [21] 0.878 1.574 1.244 0.862 1.767 1.394
Backbone 0.879 1.561 1.241 0.863 1.766 1.392

Backbone+Attention Block 0.881 1.557 1.225 0.864 1.788 1.379
Backbone+Attention Block+Multi-input 0.883 1.542 1.202 0.865 1.766 1.371

MDAN-UNet-32 0.883 1.514 1.193 0.866 1.745 1.362

4.3. Fluid Segmentation

4.3.1. Datasets

In this paper, we also showed that our method is applicable for OCT multi-fluid segmentation.
We applied our method to segment 3 types of retinal fluid. The datasets used in this paper were kindly
provided by the MICCAI RETOUCH Group [38]. There are a total of 112 volumes (70 volumes for the
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training set and 42 volumes for the test set) with three different types of fluid manually labeled: the
intraretinal fluid (IRF), subretinal fluid(SRF) and the pigment epithelial detachment (PED). For the
training set, 24 volumes were acquired with each of the two OCT images devices: Cirrus, Spectralis.
The remaining 22 volumes were acquired with Topcon (T-1000 and T-2000). OCT acquired with Cirrus
comprises 128 B-scan images with a size of 512 × 1024 and OCT acquired with Spectralis comprises
49 B-scan images with a size of 512 × 496. OCT acquired with Topcon comprises 128 B-scan images
with a size of 512 × 650 (T-1000) or 512 × 885 (T-2000). Due to the fact that the segmentation maps of
test set were kept secret, we evaluated our method on the training set by dividing them into our own
training set and test set under the approval of the MICCAI RETOUCH Group [38]. Precisely, we chose
the first 15, 15 and 14 volumes acquired with Cirrus, Spectralis and Topcon respectively as our training
set in this paper. The last 9, 9 and 8 volumes acquired with Cirrus, Spectralis and Topcon, respectively,
were used to be our test set. In a word, we had 44 volumes for the training set and 26 volumes for the
test set.

4.3.2. Preprocessing

The way we processed the dataset is similar to [39]. Because of the variations between images
acquired with different devices, we normalized the voxel values to range [0,255] by histogram matching
using a randomly selected OCT scan as the template. In addition, a median filter along the z-dimension
was applied to reduce noise. In order to utilize the 3D information, each training image was obtained
by concatenating three adjacent slices in a sequence. Due to the different sizes of the images, slices
in the training set were cropped to a size of 512 × 400 by putting the fluid region in the center of the
y-dimension. Thus, the size of each image in the training set is 512 × 400 × 3 pixels. For the test set,
we applied networks to test OCT from different devices respectively so that we don’t have to apply
the cropping process. Notes that OCT images acquired with Topcon are zero-padded from a size of
512 × 650 × 3 pixels or 512 × 885 × 3 pixels to 512 × 896 × 3 pixels and labels are padded with −1,
which is ignored when calculating evaluation metrics.

4.3.3. Comparative Methods and Metric

We compare our proposed method with some state-of-the-art deep FCN algorithms: U-Net [10]
and U-Net++ with deep supervision [21] . To evaluate the performance, we adopt 2 standard metrics
suggested by [39]. They are dice score (denote it as DSC) and absolute volume difference (AVD), where
the formulation of dice score have been defined above.

• Absolute volume difference(AVD) [mm3]:

AVD = abs(|P| − |Y|)

where P and Y are predicted output and ground truth respectively.

4.3.4. Results

a. Qualitative evaluation
We present a qualitative evaluation for fluid segmentation. As shown in Figure 6, we observe

that UNet++ and U-Net relatively has a large number of missed detections of IRF (green region).
In addition, U-Net prediction shows a large number of false detections of SRF (yellow region) and
other networks perform well on the segmentation of SRF. We also observe that the prediction of
MDAN-UNet-32 is of high quality and outperforms other methods . MDAN-UNet-16 prediction
outperforms UNet++ and U-Net for less missed detections for IRF. Noted that there are still a lot
of miss detections of PED (red region) for MDAN-UNet-16 and a lot of false detections of PED for
U-Net and UNet++. The high imbalance of classes may partly explain why it is difficult for automatic
segmentation methods to segment fluid correctly.
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(a) Test OCT B-scan. (b) Ground truth. (c) MDAN-UNet-32 prediction.

(d) MDAN-UNet-16 prediction. (e) UNet++ prediction. (f) U-Net prediction.

Figure 6. Fluid segmentation comparison of a Test OCT B-scan from Spectralis. The green region
indicates IRF, the yellow region refers to SRF and the red part refers to PED.

b. Quantitative evaluation
We present quantitative evaluation MDAN-UNet-16 and MDAN-UNet-32 in contrast with the

comparative methods in terms of mean dice score and mean AVD [mm3].
From the comparison shown in Table 6, we observe that the segmentation of IRF is better than

for SRF and PED. However, [38] reported that the segmentation of PED is better than for SRF and
IRF. Additionally, automatic methods’ performance on Topcon scans is the lowest and [38] reports
that automatic method performance on Spectralis scans is the lowest. The factor that we evaluate
our method on the training set by dividing them into our own training set and test set may partly
explain why there are some differences between us and [38]. We also observe that MDAN-UNet-32
achieves the best average dice score: 0.677 for images from Cirrus, 0.685 for images from Spectralis
and 0.648 for images from Topcon, followed by MDAN-UNet-16 with an average dice score of 0.662,
0.679 and 0.609 for images from Cirrus, Spectralis and Topcon respectively. For the images from Cirrus,
U-Net achieves a mean dice score of 0.627 for all, which is better than UNet++. Nevertheless, UNet++
shows a better performance than U-Net in terms of mean dice score for the images from Spectralis and
Topcon. From the aspect of average dice score, MDAN-UNet-16 and MDAN-UNet-32 always achieve
top two performances. In addition, UNet++ outperforms U-Net in Cirrus and Topcon images but gets
worst performance in Spectralis images.
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Table 6. Mean dice score (standard deviation): performance comparison of fluid segmentation. The
best one shown in bold type and ‘*’ marks the second best.

IRF SRF PED ALL

Cirrus

U-Net [10] 0.676(0.16) * 0.739(0.09) 0.485(0.21) 0.627(0.20)
UNet++ [21] 0.646(0.23) 0.665(0.17) 0.500(0.14) 0.604(0.21)

MDAN-UNet-16 * 0.724(0.11) 0.708(0.12) 0.530(0.19) * 0.662(0.17)
MDAN-UNet-32 0.753(0.11) 0.743(0.11) * 0.512(0.14) 0.677(0.16)

Spectralis

U-Net [10] 0.524(0.26) 0.600(0.38) 0.709(0.24) 0.592(0.31)
UNet++ [21] 0.563(0.20) 0.745(0.27) * 0.714(0.24) 0.651(0.25)

MDAN-UNet-16 0.627(0.17) * 0.736(0.26) * 0.714(0.26) * 0.679(0.23)
MDAN-UNet-32 * 0.621(0.17) 0.731(0.30) 0.754(0.22) 0.685(0.23)

Topcon

U-Net [10] 0.652(0.14) 0.494(0.36) * 0.600(0.07) 0.594(0.23)
UNet++ [21] 0.668(0.11) 0.493(0.36) 0.598(0.10) 0.602(0.23)

MDAN-UNet-16 * 0.675(0.11) * 0.516(0.26) 0.586(0.26) * 0.609(0.23)
MDAN-UNet-32 0.706(0.10) 0.530(0.38) 0.677(0.02) 0.648(0.23)

average 0.652(0.16) 0.641(0.26) 0.614(0.17) 0.635(0.22)

We also present performance comparison of fluid segmentation in terms of mean AVD [mm3] in
Table 7. We observe that MDAN-UNet-32 achieves the lowest mean AVD for images from three types of
devices. MDAN-UNet-16 ranks second in terms of mean AVD for images from Spectralis and Topcon.
For images from Cirrus, U-Net achieves a mean AVD of 0.161 and outperforms MDAN-UNet-16 and
UNet++. Thus, in terms of average dice score and mean AVD, MDAN-UNet-32 performs best, and
MDAN-UNet-16 is the second.

Table 7. Mean AVD [mm3] (standard deviation): performance comparison of fluid segmentation.
The best one shown in bold type and ‘*’ marks the second best.

IRF SRF PED ALL

Cirrus

U-Net [10] 0.193(0.25) 0.132(0.12) 0.120(0.15) * 0.161(0.21)
UNet++ [21] 0.203(0.26) * 0.097(0.10) * 0.128(0.11) 0.164(0.20)

MDAN-UNet-16 * 0.153(0.20) 0.098(0.10) 0.241(0.18) 0.171(0.19)
MDAN-UNet-32 0.144(0.20) 0.085(0.07) 0.141(0.11) 0.134 (0.16)

Spectralis

U-Net [10] 0.080(0.09) 0.098(0.11) 0.096(0.06) 0.089(0.09)
UNet+ [21] 0.104(0.12) * 0.072(0.08) * 0.089(0.05) 0.092(0.09)

MDAN-UNet-16 * 0.063(0.08) 0.091(0.10) 0.095(0.08) * 0.079(0.09)
MDAN-UNet-32 0.056(0.12) 0.047(0.05) 0.067(0.06) 0.056(0.09)

Topcon

U-Net [10] * 0.036(0.03) * 0.061(0.07) 0.051(0.04) 0.048(0.05)
UNet++ [21] * 0.036(0.03) 0.073(0.08) * 0.039(0.04) 0.048(0.05)

MDAN-UNet-16 0.048(0.03) 0.040(0.04) 0.054(0.02) * 0.047(0.03)
MDAN-UNet-32 0.034(0.03) 0.064(0.09) 0.026(0.004) 0.041(0.07)

4.4. Discussion

Our experiment demonstrates that MDAN-UNet-32 and MDAN-UNet-16 outperform the
state-of-the-art methods in terms of retinal layer segmentation and fluid segmentation. We observe
that the performance of fluid segmentation methods varies for OCT from different devices. There
are two possible reasons for this. In the first place, each OCT volume in the RETOUCH dataset [38]
corresponds to different patients, and the size and number of fluid lesions in different OCT volumes
are different. For example, some OCT volumes only have a single small volume of fluid, while some
OCT volumes have three kinds of fluids with large region. Therefore, the data distributions in OCT
volume collected by the three devices are not consistent. Secondly, the resolutions of OCT volume
from the three devices are also different. For example, an OCT volume for Circus, Spectralis and
Topcon consists of 128 B-scans with a size of 512 × 1024, 49 B-scans with a size of 512 × 496 and 128
B-scans with a size of 512 × 885 pixels(T-2000) or 512 × 650(T-1000) respectively. In addition, the axial
resolutions of OCT for Circus, Spectralis and Topcon are 2 µm, 3.9 µm and 2.6/3.5 µm (T-2000/T-1000)
respectively [38].
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We also observe that MDAN-UNet significantly outperforms comparative methods in fluid
segmentation but provides marginal improvements in layer segmentation. There are some possible
reasons responsible for inconsistency of the results. The first possible reason is that the position of
each layer is relatively fixed while the position of each fluid varies greatly, and the distribution of
layers is similar between OCT volumes while the distribution of fluids varies greatly between OCT
volumes. The second possible reason is that the layer region accounts for a large proportion of the
OCT images so that slight false detections or missed detections have little effect on the result while
the fluid region is usually small so that slight false detections or missed detections will have a great
impact on the results. The significant improvement of the performance of the proposed algorithm for
fluid segmentation verifies the effectiveness of the proposed multi-scale input, multi-scale side output
and dual attention mechanism for lesion segmentation of OCT.

5. Conclusions

In this paper, we propose an end-to-end multi-scale nested U-Net shape deep network to
segment seven retina layers and three types of fluid respectively. The proposed architecture
takes advantages of multi-scale input, multi-scale side output, re-designed skip pathways from
U-Net++ [21] and dual attention mechanism. The multi-scale input aims at enabling the network to
fuse multi-scale information, and multi-scale side output aims at enhancing the early layer training
and deep supervision. In addition, re-designed skip pathways reduce the information gap between
encoder blocks and decoder blocks, and dual attention block enables capturing global information
in spatial and channel dimension respectively. We proposed MDAN-UNet-16, the small network,
and MDAN-UNet-32, the big one. MDAN-UNet-32 outperforms the state-of-the-art retinal layer
and fluid segmentation methods and MDAN-UNet-16, with the smallest parameters, achieves a
better performance than LSE [7], U-Net [10], ReLayNet [17] , CE-Net [18] and U-Net++ with deep
supervision [21].
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in retina. Prog. Retin. Eye Res. 2018, 67, 1–29.

6. Chiu, S.J.; Allingham, M.J.; Mettu, P.S.; Cousins, S.W.; Izatt, J.A.; Farsiu, S. Kernel regression based
segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Express
2015, 6, 1172–1194.

7. Karri, S.; Chakraborthi, D.; Chatterjee, J. Learning layer-specific edges for segmenting retinal layers with
large deformations. Biomed. Opt. Express 2016, 7, 2888–2901.



Algorithms 2020, 13, 60 16 of 17

8. Montuoro, A.; Waldstein, S.M.; Gerendas, B.S.; Schmidt-Erfurth, U.; Bogunović, H. Joint retinal layer and
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