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Abstract: An important element in the integration of the fourth industrial revolution is the development
of efficient algorithms to deal with dynamic scheduling problems. In dynamic scheduling, jobs can be
admitted during the execution of a given schedule, which necessitates appropriately planned rescheduling
decisions for maintaining a high level of performance. In this paper, a dynamic case of the multiprocessor
open shop scheduling problem is addressed. This problem appears in different contexts, particularly those
involving diagnostic operations in maintenance and health care industries. Two objectives are considered
simultaneously—the minimization of the makespan and the minimization of the mean weighted flow
time. The former objective aims to sustain efficient utilization of the available resources, while the latter
objective helps in maintaining a high customer satisfaction level. An exact algorithm is presented for
generating optimal Pareto front solutions. Despite the fact that the studied problem is NP-hard for both
objectives, the presented algorithm can be used to solve small instances. This is demonstrated through
computational experiments on a testbed of 30 randomly generated instances. The presented algorithm
can also be used to generate approximate Pareto front solutions in case computational time needed
to find proven optimal solutions for generated sub-problems is found to be excessive. Furthermore,
computational results are used to investigate the characteristics of the optimal Pareto front of the studied
problem. Accordingly, some insights for future metaheuristic developments are drawn.

Keywords: Industry 4.0; dynamic scheduling; multi-processor open shop scheduling; multi-objective
optimization; exact algorithms

1. Introduction

Scheduling problems have several different structures and exist in a wide variety of real-life
applications [1]. Due to their direct impact on the performance of industrial and service organizations,
they are receiving an ever-growing interest from researchers to develop efficient algorithms [2,3].
Despite the fact that most scheduling problems belong the NP-hard class, there is a demand for exact
algorithms as they can be used for solving small to intermediate size instances. They also provide a basis
for developing and assessing approximate algorithms. With their combinatorial nature, multi-objective
scheduling problems represent a big challenge for exact algorithms development.

The multiprocessor open shop scheduling problem (MOSP) is commonly encountered in maintenance
and health care diagnostic systems. These systems are composed of a set of workstations that are available
to process a set of jobs. Each workstation conducts a specific maintenance or diagnostic task that cannot
be done on the other workstations in the system. Each workstation may contain more than one machine
working in parallel. These machines are not necessarily identical, meaning that the processing times
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can vary for the same job from one machine to another in a workstation. A job requires the processing
on a subset of the workstations in the system with no specific visiting order. This paper is concerned
with a dynamic case of the MOSP, denoted DMOSP, in which jobs continuously arrive to the system at
pre-assigned arrival times during the execution period of a schedule. Each job has a priority represented
by a numerical value that represents its level of importance with respect to the other jobs.

In the studied DMOSP, it is assumed that a machine cannot process more than one job at a time and
a job cannot be processed on more than one machine at a time. Once a job started its processing on a
machine, it cannot be interrupted. Job release times and processing times on machines are deterministic
and known a priori. In order to allow for rescheduling decisions at any point of time, we consider a
situation in which some machines may not be ready for processing arriving jobs at the beginning of the
schedule, yet their ready times are known a priori. This allows for a rolling horizon application of the
developed algorithm. As pointed out by Uhlmann and Frazzon [4], more contributions are still needed for
the dynamic rescheduling problems since they represent an important part of the integration of the fourth
industrial revolution.

Two performance measures are considered. The first measure is the maximum completion time
for all jobs (makespan). The second measure is the mean weighted flow time (MWFT) of the jobs.
The minimization of the makespan improves the utilization of the machines by reducing their total
idle time; meanwhile, the minimization of the MWFT improves customer satisfaction level. Both
objectives are considered simultaneously in this paper. Despite its common occurrence in real-life
applications, the multi-objective DMOSP has rarely been addressed in the literature. The consideration
of the aforementioned two objectives simultaneously is of a practical importance to the decision maker.
In this paper, an a posteriori method is followed in which a set of Pareto front solutions will be presented
to the decision maker to choose one to implement [5].

In relevance to the scheduling literature, the studied problem can be represented as
O(R)|am, rj|Cmax, MWFT according to the three-field notation of Graham et al. [6] with the extension
of Vignier et al. [7]. Here, am refers to the machines’ ready times, rj refers to the jobs’ release times,
Cmax refers to the makespan minimization objective, and MWFT refers to the mean weighted flow time
minimization objective. The NP-hardness of the DMOSP can be easily derived from the NP-hardness of
its specialization—the traditional static, deterministic open shop scheduling problem (OSP). In the OSP,
there is exactly one machine in each workstation, all jobs arrive at the beginning of the schedule, and each
job must visit all workstations. The NP-hardness of the OSP with more than two machines is proven by
Gonzalez and Sahni [8] for the minimization of the makespan, and by Achugbue and Chin [9] for the
minimization of the total weighted completion time that is equivalent to MWFT when all jobs arrive at the
beginning of the schedule. Despite this fact, small size instances can still be solved by generating optimal
Pareto front solutions.

Due to its relevance to many real-life applications, the OSP has received a lot of attention in the
literature for the single-objective cases. However, the multi-objective OSP has received little attention
in the literature. Seraj et al. [10] studied the OSP with the objectives of minimizing total tardiness
and mean completion time simultaneously. Based on a mixed-integer linear programming model,
they proposed a fuzzy programming method for finding efficient solutions and compared it with a
tabu search approach. Only one paper is found to deal with the makespan and total completion time
minimization objectives by Sha et al. [11]. Although they considered the minimization of the total machine
idle time as well that objective is correlated with the minimization of the makespan. They proposed a
particle swarm optimization approach for solving the problem. In the literature, more attention is given
to the minimization of due date related objectives along with another completion time-based objective.
Tavakkoli-Moghaddam et al. [12] and Panahi and Tavakkoli-Moghaddam [13] studied the OSP with the
minimization of the total tardiness and the minimization of the makespan simultaneously. They proposed
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an ant colony optimization approach hybridized with simulated annealing and compared the results with
the non-dominated sorting genetic algorithm (NSGA-II). Later, a hybrid immune algorithm is developed
by Naderi et al. [14] for the total tardiness and the total completion time minimization objectives.

In the literature of the special case of the MOSP in which each workstation contains identical parallel
machines, different constructive heuristics are proposed for minimizing the makespan by Schuurman
and Woeginger [15], Jansen and Sviridenko [16], and Sevastianov and Woeginger [17]. Those heuristics
are linear-time approximation algorithms that have proven bounds on their gaps from the optimal
solution. Naderi et al. [18] provided a mixed integer linear programming (MILP) model and developed
a hybrid memetic algorithm-simulated annealing approach for the objective of minimizing the total
completion time. Goldansaz et al. [19] considered a special case in which there are job independent setup
times and sequence-dependent job removal times. They developed a mathematical programming model
and proposed a hybrid imperialist competitive algorithm. Later, a general case of the MOSP in which
workstations may not have identical machines and jobs do not have to visit all workstations is studied
by Abdelmaguid [20]. He developed an MILP model and proposed a scatter search with a path relinking
approach that is shown to generate optimal or near optimal solutions for the objective of minimizing
the makespan.

Another closely related specialization of the MOSP is the proportionate multiprocessor open shop
scheduling problem (PMOSP) in which the machines in each workstation are identical and the processing
times on the workstations do not vary among jobs. Different metaheuristic approaches have been
proposed in the literature for the objective of minimizing the makespan including genetic algorithm
by Matta [21], tabu search by Abdelmaguid et al. [22], a hybrid particle swarm optimization-tabu search
approach by Abdelmaguid [23], and scatter search with a path relinking approach by Abdelmaguid [20].
For the objective of minimizing the total completion time, Zhang et al. [24] presented three metaheuristic
approaches based on a genetic algorithm, hybrid particle swarm optimization, and simulated annealing.

For the single-objective DMOSP, Bai et al. [25] addressed a special case in which workstations contain
parallel identical machines. They proved the asymptotic optimality of the general dense scheduling
algorithm for the makespan minimization objective. In addition, they proposed a differential evolution
algorithm for moderate-size problems. Only one paper is found to address a special case of the
multi-objective DMOSP by Wang and Chou [26]. They considered a problem in which there are only four
workstations and the parallel machines in each workstation are identical. This specific case of the DMOSP
is encountered in chip sorting in light emitting diode (LED) manufacturing. They considered the objectives
of the minimization of the makespan and the minimization of total weighted tardiness simultaneously.
They proposed two simulated annealing approaches and provided minor computational experiments
for them.

2. Objective and Methodology

This paper attempts to fill in the gap in the literature for the multi-objective optimization of the
general DMOSP. The objective of this paper is to develop an exact algorithm for obtaining optimal Pareto
front solutions for the DMOSP. For the developed algorithm, a mixed-integer linear programming (MILP)
model is developed which is based on the MILP model in [20] for the MOSP. The state-of-the-art MILP
solver IBM ILOG CPLEX 12.8 (IBM, Armonk, NY, USA) is used for obtaining proven optimal solutions for
the sub-problems generated within the developed algorithm.

The combinatorial nature of the scheduling problems in general results in a discrete Pareto front
that is not uniformly distributed. This requires careful manipulations of the different metaheuristic
approaches that are mostly developed for continuous optimization problems. This also necessitates a solid
base for comparing solutions developed by metaheuristic approaches with exact Pareto front solutions.
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For this sake, this paper provides a testbed of 30 randomly generated instances of small size. The optimal
Pareto front solutions for these instances are found using the developed exact algorithm. The associated
computational results are used to investigate the capabilities and limitations of the developed exact
algorithm. Furthermore, some insights are drawn from the obtained optimal solutions that can be used for
future metaheuristic developments.

3. Materials and Methods

In this section, the developed exact algorithm is outlined. First, a mixed-integer linear programming
(MILP) model for the studied DMOSP is presented. This model is used by the exact algorithm for generating
sub-problems that are solved using CPLEX. A demonstrative example is then presented to show how the
developed algorithm can be used for conducting rescheduling decisions in a rolling-horizon approach.

3.1. Mixed Integer Linear Programming Model

Mathematical programming models can be used to solve small instances and can provide a basis of
efficient algorithmic developments for the scheduling problems. In combinatorial optimization problems,
like the studied DMOSP, different mathematical programming models can be developed for the same
problem [27]. In the scheduling literature, MILP models can be classified into three types depending
on how the binary scheduling decision variables are defined. These types are firstly appeared in the
literature of the job shop scheduling problem. The first type is a discrete-time model in which the time
span of the schedule is divided into small time units and the binary decision variables are related to the
assignment of one time unit on a machine to process a given job. This model is due to Bowman [28].
It is not favored in most of the published work due to the huge number of decision variables and the
complexity of formulating the constraints.

The other two MILP models utilize different binary decision variables for representing permutations
of operations. Permutations for the OSP and its generalizations refer to both the processing sequences
of jobs on machines or the visiting order of jobs to workstations. The second MILP model is due to
Wagner [29]. It is a permutation-position model in which binary variables are defined to decide whether
an operation is assigned to a position in a permutation or not. The third MILP model is due to Manne [30].
It is a disjunctive model in which permutations are indirectly represented by a pairwise job precedence
relationships; that is, if job j succeeds job k, the binary variable takes the value of one, and it takes a value
of zero, otherwise.

In the scheduling literature, comparisons of the different MILP models are provided for the flow
shop scheduling problem [31], for the OSP [32], for the flexible job shop scheduling [33] and for the job
shop scheduling problem [34]. The disjunctive MILP models have less size in terms of the number of
decision variables and number of Constraints [32]. In terms of the speed of an MILP solver of finding
optimal solutions, Stafford et al. [31] found out that permutation-position models can provide quicker
results for the flow shop scheduling problem. This may be due to the structure of problem in which
processing order on machines is naturally represented by permutations while jobs have fixed order in
visiting the machines. On the other hand, for the flexible job shop scheduling problem, the computational
experiments by Demir and Kürşat Işleyen [33] show that the disjunctive models provide quicker results.
The same conclusion is confirmed by Ku and Beck [34] for the job shop scheduling problem. For the
MOSP, Abdelmaguid [20] developed a disjunctive model for the objective of minimizing the makespan.
In this paper, that model is extended for the multi-objective DMOSP. The following are the lists of the
used notations.
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Sets:
W = Set of workstations = {1, 2, 3, . . .}
Mw = Set of parallel machines in workstation w ∈ W
M =

⋃
w∈W Mw = Set of all machines in the system

J = Set of arriving jobs
Wj = Subset of workstations required for job j ∈ J
Jw = Subset of jobs that require processing on workstation w ∈ W
Oj = Set of operations of job j ∈ J
O =

⋃
j∈J Oj = set of all operations to be processed

Indexes and labels:
w, q = Workstation indexes from setW
m = Machine index from setM
j, k = Job indexes from set J
oj,w = Label for the operation of processing job j ∈ J in workstation w ∈Wj

Given data:
am = Non-negative ready time of machine m ∈ M
rj = Non-negative release (arrival) time of job j ∈ J
pj = Priority of job j ∈ J
dj,w,m = Processing time of operation oj,w on machine m ∈ Mw

Decision variables:
xj,w,q = A binary variable that equals 1 if operation oj,w is processed before operation oj,q and equals 0, otherwise,

where w, q ∈Wj & q > w
yj,w,m = A binary variable that equals 1 if operation oj,w is decided to be processed on machine m ∈ Mw and equals

0, otherwise
zj,k,w,m = A binary variable that equals 1 if operation oj,w is processed before operation ok,w on machine m ∈ Mw

and equals 0, otherwise, where j 6= k and w ∈Wj ∩Wk

sj,w = Start time of processing operation oj,w

cj = Completion time of job j
Cmax = Maximum completion time (makespan)
MWFT = Mean weighted flow time

Accordingly, the developed MILP model is formulated as follows:

Minimize Cmax (1)

Minimize MWFT = ∑j∈J pj
(
cj − rj

)/
|J | (2)
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Subject to the following constraints:

Cmax ≥ cj ∀j ∈ J (3)

cj ≥ sj,w + ∑
m∈Mw

dj,w,myj,w,m ∀oj,w ∈ Oj ∀j ∈ J (4)

∑
m∈Mw

yj,w,m = 1 ∀oj,w ∈ O (5)

sj,w ≥ rj ∀oj,w ∈ Oj ∀j ∈ J (6)

sj,w ≥ ∑
m∈Mw

amyj,w,m ∀w ∈Wj ∀j ∈ J (7)

sj,q − sj,w ≥ ∑
m∈Mw

dj,w,myj,w,m −M
(
1− xj,w,q

)
∀w, q ∈Wj & q > w ∀j ∈ J (8)

sj,w − sj,q ≥ ∑
m∈Mq

dj,q,myj,q,m −Mxj,w,q ∀w, q ∈Wj & q > w ∀j ∈ J (9)

zj,k,w,m + zk,j,w,m ≤
1
2
(
yj,w,m + yk,w,m

)
∀m ∈ Mw ∀w ∈Wj ∩Wk ∀j, k ∈ J & j ≺lex k (10)

zj,k,w,m + zk,j,w,m ≥ yj,w,m + yk,w,m − 1 ∀m ∈ Mw ∀w ∈Wj ∩Wk ∀j, k ∈ J & j ≺lex k (11)

sk,w − sj,w ≥ ∑
m∈Mw

dj,w,myj,w,m −M
(

1− ∑
m∈Mw

zj,k,w,m

)
∀w ∈Wj ∩Wk ∀j, k ∈ J & j 6= k (12)

xj,w,q, yj,w,m, zj,k,w,m ∈ {0, 1} ∀j, k, w, q, m (13)

In the developed MILP model, the makespan minimization objective is represented by Equation (1),
and the objective of minimizing the mean weighted flow time is represented by Equation (2). Constraints (3)
define the relationships between the makespan and the completion times of the jobs; while Constraints (4)
relate the completion times of the jobs to the completion times of their operations. Constraints (5) limit the
number of machines that will be assigned to an operation to only one in its corresponding workstation.
Constraints (6) and (7) restrict the start time of every operation not to be less than the release time of its
corresponding job and the available time of its assigned machine.

The processing sequence of the operations belonging to a given job (job route) is represented by the
disjunctive Constraints (8) and (9). Depending on the relative order of every pair of operations defined
by the binary variables xj,w,q, the start time of an operation must be greater than or equal to the finish
time of its preceding operation. Constraints (10) and (11) together restrict the disjunctive relationships in
Constraints (12) to every pair of operations that are assigned to the same machine. The notation j ≺lex k is
used to represent a lexicographic order of the elements in the set of jobs. Constraints (12) define the start
times relationships of every pair of operations depending on their relative processing order represented by
the decision variables zj,k,w,m. Finally, constraints (13) are the domain constraints.

3.2. Exact Algorithm

One of the efficient mathematical programming methods that can be used to generate the set of optimal
non-dominated solutions is the ε-constraint method. It is based on the idea of solving a single-objective
mathematical programming model in which one objective is selected, while the values of the other
objectives are bounded by upper or lower limits. These limits are the ε values which are iteratively
updated in an organized fashion to obtain the desired set of non-dominated solutions. As pointed out by
Mavrotas [35], the ε-constraint method has several advantages over the weighing method that attempts to
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generate the set of non-dominated solutions by solving a single-objective model in which the objective
function is the weighted summation of the considered objectives.

For the application of the ε-constraint method to the studied DMOSP, consider an MILP model
composed of the Objective Function (1) and the Constraints (3) to (13). This model is denoted
DMOSP-CMAX model. In addition, consider an MILP model composed of the Objective Function (2) and
the Constraints (3) to (13), in addition to the ε-constraint defined by the Inequality (14). This model is
denoted DMOSP-MWFT(ε):

Cmax ≤ ε (14)

Based on the two models, DMOSP-CMAX and DMOSP-MWFT(ε), Algorithm 1 outlines the steps of
the proposed ε-constraint method for the DMOSP.

Algorithm 1 ε-constraint method for DMOSP

1: procedure ε-CONSTRAINT( )
2: Input: DMOSP instance
3: Output: Set of non-dominated schedules (P)
4: s0 = solution of DMOSP-CMAX
5: Cmax = Cmax(s0)
6: P = ∅
7: s1 = solution of DMOSP-MWFT(M)
8: P = P ∪ {s1}

9: ε = max
j∈J

{
cj(s1)

}
- δ

10: while ε > Cmax do
11: s = solution of DMOSP-MWFT(ε)
12: P = P ∪ {s}
13: If MWFT(s) = MWFT(s1) then P = P\{s1}
14: s1 = s

15: ε = max
j∈J

{
cj(s)

}
- δ

16: end while

17: end procedure

Algorithm 1 starts its iterations by solving the DMOSP-CMAX model. The resultant Cmax is the
lowest value that can be achieved for the makespan for the given instance, which is denoted Cmax. This is
followed by iteratively solving the DMOSP-MWFT(ε) model at different values of ε. These iterations start
with a sufficiently large value of ε at M which allows for obtaining the minimum value of the MWFT
objective. After solving the DMOSP-MWFT(ε) model, the value of ε is set equal to a value that is just below
the maximum completion time among all jobs of the resultant solution by a small deviation δ. The value of
δ needs to be sufficiently small to be able to enumerate all non-dominated solutions. Whenever all rj, am

and dj,w,m values are integers, δ can be any decimal number in the range [0,1].
The solution of the DMOSP-MWFT(ε) model will have a MWFT value that is not larger than the

privously obtained solution s1. If they have equal MWFT values, the new solution s dominates s1,
which means that the latter must be removed from the Parto set, which is denoted P .

It is important to note here that the initial solution s0 obtained by solving the DMOSP-CMAX model
is not included in the efficient non-dominated set P . Instead, the final solution obtained in the last step of
the iterations is included. This solution has the same makespan as s0, while its MWFT value is not larger
than that of s0.
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3.3. Demonstrative Example

To demonstrate the application of the ε-constraint method in solving the DMOSP based on
the presented MILP model, consider a small maintenance shop consisting of five workstations
W = {1, 2, 3, 4, 5}. The sets of machines are defined as M1 = {m1,1}, M2 = {m2,1, m2,2}, M3 = {m3,1, m3,2},
M4 = {m4,1} and M5 = {m5,1}. At the beginning of the schedule (i.e., at time zero), all machines are ready,
i.e., am = 0 ∀m ∈ M. Four outstanding jobs, J = {A, B, C, D} with priorities pA = 2, pB = 4, pC = 10
and pD = 6, are waiting to be processed, i.e., rj = 0 ∀j ∈ J . Table 1 provides the required workstations
and processing times for the jobs.

Table 1. Initially required workstations and processing times for the jobs in the demonstrative example.

Jobs

Workstations

1 2 3 4 5

m1,1 m2,1 m2,2 m3,1 m3,2 m4,1 m5,1

A 96 91 57 60 68
B 84 79 85
C 33 104 85 73 79
D 44 82 76 56 61 31

The corresponding MILP model is prepared using the OPL language [36] and is solved using IBM
ILOG CPLEX version 12.8. The value of M is set to 10,000 and the value of δ is chosen to be 0.1. A total of
four solver runs are needed to generate the set of non-dominated solutions, one using the DMOSP-CMAX
model and three iterations using the DMOSP-MWFT(ε) model. Figure 1 shows the Gantt charts of the
generated three non-dominated schedules. As demonstrated in Figure 1, despite the relatively small
differences in the values of the two objective functions, the three schedules exhibit large discrepancies in
the processing sequences on machines and job routes. Of course, the small differences in the values of the
objective functions will accumulate over the scheduling periods affecting the system’s performance on the
long run.

Next, we demonstrate how the developed model and the ε-constraint algorithm can be used for
guiding the rescheduling decisions whenever a new job arrives to the system during the execution of a
selected schedule. Consider a situation in which the decision maker chooses “Schedule #2” from the set
of the originally generated non-dominated schedules shown in Figure 1. A new job E arrives at time 80
which requires the processing on workstations 1, 3, and 5, and has a priority pE = 10. Assuming that the
processing intervals provided by Schedule #2 are strictly followed with no deviation, the rescheduling
problem can be formulated using the developed MILP model as follows. Since the processing of a job
cannot be interrupted, the unfinished processes at time 80 will continue and their corresponding finish
times define the machine available times. Meanwhile, the remaining operations that did not start yet at
time 80 form a modified set of jobs which are denoted Ā, B̄, C̄ and D̄ and their priorities remain unchanged.
Table 2 shows the corresponding machine available times, job ready times, and the processing times for
the rescheduling problem.

The ε-constraint method is applied to the rescheduling problem. Three non-dominated schedules
are generated with the following pairs of objective function values (Cmax, MWFT): (257, 816), (252, 816.8),
and (242, 826.8). If the decision maker opts to choose the schedule with the minimum makespan,
the corresponding Gantt chart of the modified schedule is shown in Figure 2.
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Figure 1. Optimal Pareto front and the Gantt charts of the corresponding schedules for the
demonstrative example.

Table 2. Data for the rescheduling example after introducing job E at time 80 in the demonstrative example
starting with Schedule #2 in Figure 1.

Jobs

Workstations

1 2 3 4 5

m1,1 m2,1 m2,2 m3,1 m3,2 m4,1 m5,1

rj\am 100 96 85 80 80 80 85

Ā 96 57 60 68
B̄ 85 84 79
C̄ 85 33 73 79
D̄ 100 82 76 31
E 80 38 61 67 63
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Figure 2. Gantt chart of the updated schedule after introducing job E at time 80 in the demonstrative
example starting with Schedule #2 in Figure 1.
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4. Results and Discussion

The main purpose of the computational experiments in this paper is to assess the performance of
the developed exact algorithm in terms of the computational time requirements and to investigate the
characteristics of the optimal Pareto front solutions of the studied problem. A total of 30 specially designed
small instances are randomly generated and used in the current computations. These instances can be
used as a testbed for future algorithmic developments.

In the designed instances, the number of workstations and the number of jobs are fixed at 5 and 10,
respectively. The number of machines in a workstation is randomly generated from a discrete uniform
distribution between 1 and 2. Job priority is randomly generated from a uniform distribution between
1 and 10. In the DMOSP structure, there is no restriction that a job has to visit all workstations. This is
represented in the generated instances using a loading level (LL) factor, which represents the probability
that a job visits a workstation during the instance generation. In the generated small instances, LL is set
equal to 0.7.

Processing times of jobs on machines are randomly generated as follows. First, for each workstation
w ∈ W , a nominal processing time, denoted d̃w, is randomly generated from a uniform distribution
between 30 and 50 multiplied by the number of machines in the workstation. For each machine
m ∈ Mw, a processing time adjustment factor, denoted PTFm, is randomly generated from a uniform
distribution between 0.8 and 1.2. Accordingly, the processing time for job j ∈ J is determined as
dj,w,m =

⌈
d̃w × PTFm ×Vj

⌉
, where Vj is a randomly generated decimal number uniformly between 0.9 and

1.0 to represent the variability in the processing times among jobs.
Job release times are randomly generated using an average percentage of late jobs of 50%, which is

realized by generating a decimal random number using uniform distribution between 0 and 1.0. If this
decimal number is found to be below 0.5, the corresponding job’s release time is assigned a non-zero value.
In such a case, rj =

⌈
RTFj ×∑w∈Wj

(
∑Mw dj,w,m

/
|Mw|

)/∣∣Oj
∣∣⌉, where RTFj is a release time factor that is

randomly generated from a uniform distribution between 0.2 and 2.
Similarly, machine available times are randomly generated using an average percentage of busy

machines at the beginning of the schedule of 50%. In case a machine is randomly chosen to be busy,
its available time is calculated as am =

⌈
ATFm × d̃w

⌉
, where ATFm is the ready time factor for machine

m ∈ Mw in workstation w. Here, ATFm is randomly generated from a uniform distribution between 0.2
and 2.

Based on the selected ranges for the processing times generation scheme, it is found that the value of
M = 1000 is sufficient for the validity of the constraints in the developed model. Since the generated job
release times, machine available times, and processing times on machines are all integers, the value of δ is
arbitrarily chosen as 0.9.

Computations using IBM ILOG CPLEX 12.8 are conducted on a laptop having an Intel Core i7-7550U
central processing unit with a speed of 2.7 GHz and 8 GB physical memory under a Windows 10 operating
system. The collected numerical measures are intended to be used to understand the shape of the optimal
Pareto front as well as the computational time requirements.

4.1. Computational Time

Figure 3 illustrates the details of the computational times of the developed exact algorithm for the 30
instances. The Cmax time is the computational time needed for finding a proven optimal solution for the
DMOSP-CMAX subproblem; meanwhile, the MWFT time is the cumulative time spent for finding proven
optimal solutions for all generated DMOSP-MWFT(ε) subproblems.
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Figure 3. Computational times for the 30 instances.

As shown in Figure 3, the computational time for the DMOSP-CMAX subproblem represents a
small fraction of the total computational time needed to obtain the full optimal Pareto front. It exceeds
100 s only in four times; among them, for two different times, it exceeds 1000 s. For only six times,
the total computational time exceeds the 10,000 s limit. If exceeding this limit is not practically acceptable,
the CPLEX solver used for solving the subproblems generated within the developed exact algorithm can
be terminated at an arbitrary intermediate time. This will result in an approximate solution that is not
guaranteed to belong to the OPFs.

4.2. Characteristics of the Optimal Pareto Front

The number of optimal Pareto front solutions (OPFs) obtained for each instance is an important
characteristic for the studied problem. Among the 30 instances, it is found that the number of OPF ranges
from 1 to 23. Figure 4 presents the frequency distribution of the number of OPFs for the 30 instances. It is
evident that there is a high level of variability in that number. However, having a median of 5 indicates
that the number of OPFs is generally few. Meanwhile, there is no statistical evidence that the number of
OPFs is correlated with the size of the instance represented by the total number of operations which ranges
from 27 to 38 in the randomly generated instances as demonstrated by the scatter plot in Figure 5.
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Figure 5. A scatter plot for the number of optimal Pareto front solutions versus the size of the instance.

Another important characteristic is the wideness of the Pareto front which can be represented by the
percentage difference between the maximum and the minimum values of both objective values for each
instance. Dividing the wideness by the number of OPFs less than one provides an average indication of the
spacing between solutions along the Pareto front for both objectives. This is referred to here as the spacing
indicator. Therefore, for both objectives, the spacing indicators are evaluated as in Equations (15) and (16):

σCmax =
max
s∈P
{Cmax(s)} −min

s∈P
{Cmax(s)}

(|P| − 1)×min
s∈P
{Cmax(s)}

× 100 (15)

σMWFT =
max
s∈P
{MWFT(s)} −min

s∈P
{MWFT(s)}

(|P| − 1)×min
s∈P
{MWFT(s)} × 100 (16)

It is found that the spacing for the makespan (σCmax ) is mostly larger than the spacing for the MWFT
(σMWFT) in 22 instances and the opposite happens only in five instances. Table 3 lists the descriptive
statistics for both spacing indicators for 27 instances since only one optimal Pareto front solution is found
in three instances, and, therefore, their corresponding values are excluded.
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To the best of our knowledge, there is no standard reference to compare the spacing indicators of the
OPFs of the DMOSP with. However, comparing the statistics for the two objective functions as summarized
in Table 3 provides insights about the shape of the optimal Pareto front. The range, which is the difference
between the maximum and the minimum observed values, is more than 8.5 times larger for σCmax than
σMWFT . Supported by the ratio of the standard deviation of σCmax to that of σMWFT , it is evident that the
Pareto front is more stretched in the direction of the makespan objective. For both spacing indicators,
comparing the means with the median, first and third quartiles indicate that their distributions are skewed
to the right. This means that the spacing indicators tend to have values that are relatively higher than the
minimum reported values.

Table 3. Descriptive statistics for the spacing indicators based on 27 instances.

Indicator Mean Std. Dev. Minimum First Quartile Median Third Quartile Maximum

σCmax 1.913 2.215 0.214 0.694 1.350 1.971 10.510
σMWFT 0.5646 0.3687 0.1138 0.2742 0.4413 0.7204 1.3145

5. Conclusions and Future Research

This paper presented an exact solution algorithm for generating optimal Pareto front solutions
for the dynamic multiprocessor open shop scheduling problem considering simultaneously the two
objectives of minimizing the makespan and minimizing the mean weighted flow time. Both objectives are
important in practical real-life applications. The developed exact algorithm is based on the ε-constraint
method. It utilizes CPLEX, a state-of-the-art MILP solver, for solving subproblems generated based on a
developed MILP model. Computational experiments are conducted on a set of randomly generated 30
instances to assess the computational time requirements of the developed algorithm and to investigate the
characteristics of the optimal Pareto front of the studied problem.

Computational time results demonstrated that the developed exact algorithm can be practically useful
for instances having up to 10 jobs, five workstations, and one or two machines in a workstation. In 80%
of the cases, the computational times were found to be less than 10,000 s. In some real-life applications,
such a computational time limit can be acceptable if the time span of running the schedule itself is over a
few days. Alternatively, instead of generating the optimal Pareto front solutions, the CPLEX solver can be
terminated at a pre-specified time limit. This will result in approximate solutions that are not proven to be
optimal, yet they represent a good approximation of the optimal Pareto front. This adaptation allows the
utilization of the developed exact algorithm as an approximate approach.

Regarding the characteristics of the optimal Pareto front of the studied problem, computational results
revealed that the size of the optimal Pareto front is small as it is composed of a small number of six to seven
solutions on average. No evidence is found for the correlation between the size of the problem instance
represented by the number of operations and the number of optimal Pareto front solutions. This result
indicates that future algorithmic approaches need to pay more attention to intensification strategies as
opposed to obtaining dense non-dominated solutions. This may contradict the traditional intention
of multi-objective metaheuristic approaches that look for having a large “volume” of non-dominated
solutions. Generally, intensification can be achieved by well-designed neighborhood search functions that
are capable of improving solutions in both directions of the considered objective functions.

In addition, computational results show that the optimal Pareto front is more stretched in the direction
of the makespan objective by having larger distances between every pair of consecutive solutions along
the Pareto front compared to the mean weighted flow time objective. This characteristic may imply that
more attention needs to paid to algorithmic techniques that seek to improve the MWFT objective to be
able to deal with the small distances in that direction.
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Future metaheuristic developments for the studied problem can benefit from recent population
management structures such as the use of a reference set and the adaptive hybrid mutation operation which
can be effectively used to manage neighborhood search functions in evolutionary based metaheuristics as
demonstrated by Chen et al. [37].

Funding: This research received no external funding.
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Abbreviations

The following abbreviations are used in this manuscript:

DMOSP Dynamic multiprocessor open shop scheduling problem
MILP Mixed-integer linear programming
MOSP Multiprocessor open shop scheduling problem
MWFT Mean weighted flow time
OSP Open shop scheduling problem
OPFs Optimal Pareto front solutions
PMOSP Proportionate multiprocessor open shop scheduling problem
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