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Abstract: In this study, a new modification of the meta-heuristic approach called Co-Operation of
Biology-Related Algorithms (COBRA) is proposed. Originally the COBRA approach was based
on a fuzzy logic controller and used for solving real-parameter optimization problems. The basic
idea consists of a cooperative work of six well-known biology-inspired algorithms, referred to
as components. However, it was established that the search efficiency of COBRA depends on
its ability to keep the exploitation and exploration balance when solving optimization problems.
The new modification of the COBRA approach is based on other method for generating potential
solutions. This method keeps a historical memory of successful positions found by individuals to lead
them in different directions and therefore to improve the exploitation and exploration capabilities.
The proposed technique was applied to the COBRA components and to its basic steps. The newly
proposed meta-heuristic as well as other modifications of the COBRA approach and components were
evaluated on three sets of various benchmark problems. The experimental results obtained by all
algorithms with the same computational effort are presented and compared. It was concluded that the
proposed modification outperformed other algorithms used in comparison. Therefore, its usefulness
and workability were demonstrated.

Keywords: optimization; co-operation; biology-inspired algorithms; external archive; probabilistic
distribution

1. Introduction

Many real-world problems can be formulated as optimization problems, which are characterized
by different properties such as, for example, many local optima, non-separability, asymmetricity, etc.
These problems arise from various scientific fields, such as engineering and related areas. For solving
such kinds of problems, researchers have presented different methods over recent years, and heuristic
optimization methods and their modifications are among them [1,2]. Random search-based and
nature-inspired algorithms are faster and more efficient than traditional methods (Newton’s method,
bisection method, Hooke-Jeeves method, etc.) while solving high-dimensional complex multi-modal
optimization problems, for example [3]. However, they also have difficulties in keeping the balance
between exploration (the procedure of finding completely new areas of the search space) and
exploitation (the procedure of finding the regions of a search space close to previously visited points)
when solving these problems [4–6].
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Biology-inspired (population-based) algorithms such as Particle Swarm Optimization (PSO) [7],
Ant Colony Optimization (ACO) [8], the Artificial Bee Colony (ABC) [9], the Whale Optimization
Algorithm (WOA) [10], the Grey Wolf Optimizer (GWO) [11], the Artificial Algae Algorithm (AAA) [12],
Moth-Flame Optimization (MFO) [13] and others are among the most popular and frequently used
heuristic optimization methods. These algorithms imitate the behavior of a group of animals
(individual or social) or some of their features. Thus, the process of optimization consists of generating
a set of random solutions (called individuals in other words) and leading them to the optimal solution
for a given problem.

Biology-inspired algorithms have found a variety of applications for real-world problems from
different areas due to their high efficiency, for example [14–16]. These algorithms gained popularity
among research due to the fact that they can be used for solving various optimization problems
regardless of the objective function’s features. Nevertheless, according to the No Free Lunch (NFL)
theorem there is no universal method for solving all optimization problems [17]. Therefore, researchers
propose new optimization algorithms to increase the efficiency of the currently existing algorithms for
solving a wider range of optimization problems.

One way to modify currently existing techniques consists of developing collective meta-heuristics,
which use the advantages of several techniques at the same time and, therefore, are more efficient [18–20].
In [21] the meta-heuristic approach COBRA (Co-Operation of Biology-Related Algorithms) based on
parallel functioning of several populations was proposed for solving unconstrained real-valued
optimization problems. Its main idea can be described as the simultaneous work of several
biology-inspired algorithms with similar schemes, which compete and cooperate with each other.

The original version of the COBRA consisted of six popular biology-inspired component
algorithms, namely the Particle Swarm Optimization Algorithm (PSO) [7], the Cuckoo Search
Algorithm (CSA) [22], the Firefly Algorithm (FFA) [23], the Bat Algorithm (BA) [24], the Fish School
Search Algorithm (FSS) [25] and, finally, the Wolf Pack Search Algorithm (WPS) [26]. However, various
other heuristics can be used as component algorithms (for example, the ones mentioned above) for
COBRA as well as previously conducted experiments demonstrating that even the already chosen
bio-inspired algorithms can be combined differently [27].

Later, the fuzzy logic-based controllers [28] were proposed for the automated selection of
biology-inspired algorithms to be included in the ensemble from a predefined set, and the number of
individuals in each population [29]. The idea of using fuzzy controllers for parameter adaptation of
the heuristic was previously explored by researchers, for instance in [30,31], and their usefulness was
established. The fuzzy-controlled COBRA modification was named COBRA-f and its efficiency was
demonstrated in [32].

The COBRA-f approach, like the original COBRA algorithm, was developed for continuous
optimization [29], but despite its effectiveness compared to the mentioned biology-inspired algorithms
(in other words its components), the COBRA-f meta-heuristic still needs to address the problem of
exploitation and exploration [33]. As was noted before, a variety of ideas has been proposed to find
the exploration-exploitation balance in the population-based biology-related algorithms, including
methods of parameter adaptation [34–36], island models [37,38], population size control [39,40],
and many others. One of the most valuable ideas proposed for the Differential Evolution (DE) [41]
algorithm in the study [42] is to use an external archive of potentially good solutions, which has
limited size and updated during the optimization process. This idea is similar to the one used in
multi-objective optimizers such as SPEA or SPEA2 [43], where an external archive of non-dominated
solutions is maintained.

The main idea of the archive is to save promising solutions that may have valuable data about
the search space and its potentially good areas, thereby highlighting the algorithms’ successful search
history [43]. The idea of applying this information could be used to any biology-related optimization
heuristic, for instance [44,45]. In this study, the idea of applying a success history-based archive of
potentially good solutions is implemented for the COBRA-f algorithm.
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This paper is an extended version of our paper published in the proceedings of the 8th
International Workshop on Mathematical Models and their Applications (IWMMA 2019) (Krasnoyarsk,
Russian Federation, 18–21 November 2019) [46]. Algorithm introduced in [46] was tested on two
additional sets of benchmark functions. Moreover, population size changes were observed while
solving various benchmark problems with 10 and 30 variables. It should be noted that in this study
several modifications were discussed and the number of compared algorithms increased.

Therefore, in this paper, first original COBRA meta-heuristic and its version COBRA-f are
presented, and then a description of the newly proposed method for the fuzzy-controlled COBRA
is presented. The next section contains the experimental results obtained by the original COBRA
algorithm, the COBRA-f with fuzzy controller and the proposed approach as well as the results
obtained by the COBRA’s components with and without external archive are presented and discussed.
The conclusions are given in the last section.

2. Co-Operation of Biology-Related Algorithms (COBRA)

Five biology-inspired optimization methods, to be more specific, Particle Swarm Optimization
(PSO) [7], Wolf Pack Search (WPS) [26], the Firefly Algorithm (FFA) [23], the Cuckoo Search Algorithm
(CSA) [22] and the Bat Algorithm (BA) [24] were used as basis for the meta-heuristic approach called
Co-Operation of Biology-Related Algorithms or COBRA [21]. These algorithms are referred to as
“component algorithms” of the COBRA approach. It should be noted that the number of component
algorithms can be changed (increased or decreased), and it affects the workability of the COBRA
meta-heuristic, which was proved in [27].

All mentioned population-based algorithms have their advantages and disadvantages. So,
the possibility of using all of them simultaneously while solving any given optimization problem
(namely their advantages) was the reason for the development of a new potentially better cooperative
approach. Also experimental results show that it is hard to determine which algorithm should be
used for a given problem, thus using a cooperative meta-heuristic means that there is no longer the
necessity to choose one of the mentioned biology-inspired algorithms [21].

The optimization process of the COBRA approach starts with generating one population for each
biology-inspired component algorithm, and therefore, with generating five (or six later when the Fish
School Search (FSS) [25] algorithm was added to the collective) populations. After that all populations
are executed in parallel or in other words are executed simultaneously, cooperating with each other.

All listed component algorithms are population-based heuristics, and thus, for each of them
the population size or number of individuals (potential solutions) should be chosen beforehand,
and this number does not change during the optimization process. However, the COBRA approach is a
self-tuning meta-heuristic. Thus, first the minimum and maximum numbers of individuals throughout
all populations are defined, and then the initial sizes of populations. Then the population size for each
component algorithm changes automatically during the optimization process.

The number of individuals in the population for each component depends on the fitness values
of these individuals, namely the population size can increase or decrease during the optimization
process. If the overall population fitness value was not improved during a given number of iterations,
then the size of each population increased, and vice versa, if the overall population fitness value was
constantly improved during a given number of iterations, then the size of each population decreased.
Moreover, a population size can increase by accepting individuals removed from other populations in
case if its average fitness value is better than the average fitness value of all other populations. Thus,
the “winner algorithm” can be determined as an algorithm whose population has the best average
fitness value at every step.

The original algorithm COBRA additionally has a migration operator, which allows
“communication” between the populations in ensemble. To be more specific, “communication” was
determined in the following way: populations exchange individuals in such a way that a part of the
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worst individuals of each population is replaced by the best individuals of other populations. Thus,
the group performance of all algorithms can be improved.

The performance of the COBRA meta-heuristic approach was evaluated on a set of various
benchmark and real-world problems and the experiments showed that COBRA works successfully
and is reliable on different optimization problems [21]. Moreover, the simulations showed that COBRA
outperforms its component algorithms when the dimension grows or when complicated problems are
solved, and therefore, it should be used instead of them [21].

3. Fuzzy-Controlled COBRA

As was mentioned in the previous section, the original COBRA approach has six similar
biology-inspired component algorithms, which mimic the collective behavior of their corresponding
animal groups, thereby allowing the global optima of real-valued functions to be found. Performance
analysis showed that all of them are sufficiently effective for solving optimization problems, and their
workability has been established [21,47].

However, there are various other algorithms which can be used as components for COBRA as
well as previously conducted experiments demonstrating that even the biology-inspired algorithms
already chosen can be combined in different ways. For example, in [27] five different combinations of
the population-based heuristics for the COBRA algorithm were presented, and their efficiency was
examined on test problems from the CEC 2013 competition [48]. It was established that three of them
show the best results on test functions depending on the number of variables [27].

The described problem was solved by controllers based on fuzzy logic [28]. The fuzzy controller
implements a more flexible parameter tuning algorithm, compared to the original approach used in
COBRA [29]. The fuzzy controller operates by using special fuzzification, inference and defuzzification
schemes [28], which allow generating real-valued outputs. In the mentioned study [29], component
algorithms are rated with success values, which were used as the fuzzy-controller inputs, and the
amount of population size changes as its outputs.

The controller based on fuzzy logic used in this study had 7 inputs, including 6 success rates of
component algorithms and the success rate of the whole population, and 6 outputs, including the
number of individuals to add or remove from every heuristic component algorithm. The success of
every component was determined as the best achieved fitness value of the corresponding component.
This choice was made in accordance with the research presented in [29]. The 7-th input variable was
determined as the ratio of the number of steps, during which the best-found fitness value (found by all
algorithms together) was improved, to the adaptation period, which was a parameter.

To obtain the output values, the Mamdani fuzzy inference procedure was used, and the rules had
the following form:

Rq : IF x1 is Aq1 . . . xn is Aqn THEN y1 is Bq1 . . . yk is Bqk, (1)

where Rq is the q-th fuzzy rule, x = (x1,. . . , xn) is the set of input values in n-dimensional space (n = 7
in this case), y = (y1,. . . , yk) is the set of outputs (k = 6), Aqi is the fuzzy set for the i-th input variable,
Bqj is the fuzzy set for the j-th output variable. The rule base consisted of 21 fuzzy rules and was
structured as follows: the rules were each three rules were organized to describe the case when one of
the components achieved better fitness values than the others (as there are six components, a total of 18
rules were set); the last 3 rules used the total success rate for all components (variable 7) to determine
if solutions should be added or removed from all components, thus regulating the amount of available
computational resources [29]. Part of the described rules base is presented in Table 1.
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Table 1. Part of the rule base.

Rule

1 IF x1 is A3 x2–x6 is A4 x7 is DC THEN y1 is B3 y2–y6 is B1

2 IF x1 is A2 x2–x6 is A4 x7 is DC THEN y1 is B2 y2–y6 is B2

3 IF x1 is A1 x2–x6 is A4 x7 is DC THEN y1 is B1 y2–y6 is B3

. . . . . .

19 IF x1–x6 is DC x7 is A1 THEN y1 is B1

20 IF x1–x6 is DC x7 is A2 THEN y1 is B2

21 IF x1–x6 is DC x7 is A3 THEN y1 is B3

The input variables were set to be in [0, 1], and the fixed triangular fuzzy terms were used for
this case. The fourth fuzzy term A4 was added, “larger than 0” (opposite to A1) in addition to three
classical terms A1, A2 and A3 and the “Don’t Care” (DC) condition. The A4 and ‘DC are needed to
simplify the rules and decrease their number [29].

The output variables were also set using 3 triangular fuzzy terms. These terms were symmetrical,
and their positions were determined according to 2 pairs of values, which encoded the right and left
positions of the central term, and the middle position of the left and right terms, and the minimal and
maximal values for the side terms. These values were especially optimized with the PSO heuristic [7]
and the following parameters were found: [−12;−2; 0; 19] according to [29]. The defuzzification
was performed by calculating using the center of mass approach for the shape obtained after the
fuzzy inference.

The “communication”, or in other words the migration operator, did not have any changes.
The fuzzy-controlled COBRA performance was evaluated on a set of benchmark optimization problems
with 10 and 30 variables from [48]. The experimental results have shown that the COBRA-f algorithm
can find best solutions for many benchmark problems. Moreover, the COBRA-f meta-heuristic
algorithm was compared to its components, as well as original COBRA. Thus, the simulations and
the comparison have shown that the COBRA-f algorithm is superior to the previously proposed
biology-related component algorithms, especially with the growth of the dimension [29].

4. Proposed Approach

In this study, a new modification consisting of using the success history-based position adaptation
of potential solutions (SHPA) is introduced. The main idea is to improve the search diversity of
biology-inspired component algorithms of the fuzzy-controlled COBRA meta-heuristic approach and
consequentially COBRA’s efficiency. The key concept of the proposed technique is described below.

First, one population for each component algorithm is generated, namely the set of potential
solutions called individuals and represented as real-valued vectors with length D is randomly
generated, where D is the number of dimensions for a given optimization problem. It should be
noted that on this step the population size for each component is chosen beforehand and will be
changed later automatically by the fuzzy controller. Also, additionally for each population (component
algorithm) an external archive for best-found positions is created. At the beginning the external archive
is empty and then its size can increase to the maximum value, which is chosen by the end-user and
stays the same during the work of the component algorithm.

The best position found by a given individual or in other words the local best-found position in
the search space for each individual in each population is saved. Initially each individual’s current
coordinates are used as its local best. If later a better position is found, then it will be used as the local
best and the previous one will be stored in the mentioned external archive.

The pseudo-code introduced in Algorithm 1 for a minimization problem can describe the process
of updating the external archive for each component algorithm.
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Algorithm 1 The process of updating the external archive for component algorithms

1: The objective function is f
2: for i in 1. . . 6 do
3: Ni is the size of the i-th population
4: Ai is the external archive for the i-th population
5: |Ai| is the maximum size for the i-th external archive
6: ki is the current number of individuals stored in the archive Ai (ki ≤ |Ai|)
7: for j in 1. . . ki do
8: Aij is the j-th individual stored in the archive Ai

9: end for
10: for j in 1. . . Ni do
11: Pij is the j-th individual in the i-th population
12: localij is the local best for each Pij

13: end for
14: end for
15: for i in 1. . . 6 do
16: for j in 1. . . Ni do
17: if f (Pij) < f (localij) then
18: if (ki + 1 ≤ |Ai|) then
19: Ai(ki+1) = localij
20: ki = ki + 1
21: end if
22: if (ki + 1 > |Ai|) then
23: randomly choose the integer r from 1 to |Ai|
24: if f (localij) < f (Air) then
25: Air = localij
26: end if
27: end if
28: localij = Pij

29: end if
30: end for
31: end for

As was already mentioned, all component algorithms are executed in parallel after generating of
six populations (one for each of them) and creation of the external archives. Thus, when individuals
change their positions in the search space according to the formulas given for the considered component
algorithm they can use with some probability pa the potential solutions stored in the i-th external
archive, where i = 1,. . . , 6.

It should be noted that the value of the probability pa depends on the considered biology-inspired
component algorithm. More specifically, previously conducted research showed that only three
components of the COBRA approach, namely the Firefly Algorithm, the Cuckoo Search Algorithm
and the Bat Algorithm, demonstrate statistically better results by using an archive for the individual’s
position adaptation [49]. Thus, only these three algorithms use archives during their execution.

First, let us consider the Bat Algorithm [24]. Each i-th individual from the population in the Bat
Algorithm is represented by its coordinates xi = (xi1,. . . , xiD) and velocity vi = (vi1,. . . , viD), where
D is the number of dimensions of the search space. The following formulas are used for updating
velocities and locations/solutions in the BA approach:

vi(t + 1) = vi(t) + (xi(t)− x∗) · fi, (2)
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xi(t + 1) = vi(t + 1) + xi(t), (3)

where t and (t + 1) are the numbers indicating the current and the next iterations, x∗ is the current
best-found solution by the whole population, and fi is the frequency of the emitted pulses for the i-th
individual [24]. Thus, with the probability pa instead of x∗ the randomly chosen individual from the
external archive (if it is not empty) will be used. It should be noted that the external archive is also
selected randomly (it is not necessarily the external archive created for the BA population). It is done
with the expectation that individuals will move in multiple directions and, therefore, will be able to
find better solutions.

For the other two biology-inspired component algorithms, FFA and CSA, the external archives
were used in the similar way: with a given probability pa the current point of attraction x∗ was changed
to a stored in the archive solution (from a randomly chosen archive). To be more specific, in the CSA
approach individuals were sorted according to the objective function [22]. Then part of the worst
ones was removed from the population and new individuals instead of them were generated by using
the external archives with a given probability pa. On the other hand, in the FFA approach a firefly
or individual moves towards another firefly or individual if the latest has a better objective function
value [23]. Thus, while using the proposed technique for the FFA approach the firefly can be moved
also towards individuals from the external archives.

There are two basic steps after the simultaneous execution of all component algorithms: the fuzzy
controller makes a decision about the population sizes of components (this step is called competition)
and migration, or in other words the exchanging of individuals between populations (co-operation).
To be more specific, the size of each population can decrease by removing some of individuals from the
population to the minimal value chosen by the end-user or increase (the overall maximum size of all
populations together is also established by the end-user beforehand). While increasing the population
size or in other words adding new individuals, these new individuals can be generated by using the
scheme in Algorithm 2.

Algorithm 2 Generating of the new individuals

1: paddi is the probability for using the normal distribution N(a, σ) with mean value a and standard
deviation σ by the i-th population

2: |Aci| is the current archive size of the i-th population
3: algbesti is the currently best-found position by the i-th population
4: Generate random number rand from the interval [0, 1]
5: if rand ≤ paddi and |Aci| > 0 then
6: Generate random integer r from [1, |Aci|]
7: a = 0.5 · (Acir + algbesti)

8: σ = |Acir˘algbesti|
9: Generate new individual indnew = N(a, σ)

10: else
11: Generate new individual indnew around the algbesti

12: end if

As was already noted, all populations communicate with each other by exchanging individuals.
However, in this modification of the fuzzy-controlled COBRA, part of the worst individuals of each
population is replaced by the new individuals generated by a scheme similar to the one described above
(using normal distribution), but instead of algbesti the current best-found position by all populations
is used and the external archive is also randomly chosen.

Thus, the proposed success history-based position adaptation method of the potential solutions
depends on the probability pa (there are three values for this probability, or more specifically, one value
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for each component algorithm that uses its archive during the execution), the maximum archive size
|Ai| and probabilities paddi (one for each component algorithm).

5. Results and Discussions

5.1. Numerical Benchmarks

To check the efficiency of the proposed algorithm, the modified fuzzy-controlled COBRA
algorithm is tested on three different sets of test problems, which are 23 classical problems [50],
nine standard benchmark problems with 10 and 30 variables [50], and 16 problems taken from the CEC
2014 competition [51]. These functions have been widely used in the literature [49] or [52], for example.

These functions are known as SET-1, SET-2 and SET-3, respectively. These functions are based
on a set of classical benchmark functions such as Ackley’s, Rastrigin’s, Katsuura’s, Griewank’s,
Weierstrass’s, Sphere’s, HappyCat’s, Swefel’s, HGBat and Rosenbrock’s functions. They span a diverse
set of features such as noise in the fitness function, non-separable, multimodality, ill-conditioning
and rotation, among others. The functions in the stated sets of test problems are separated into three
groups: unimodal, high-dimensional and low-dimensional multi-modal benchmark functions.

5.2. Compared Algorithms and Parametric Setup

The performance of the suggested modification of the COBRA algorithm (which will be called
COBRA-SHA hereinafter) was compared with other state-of-the-art algorithms like PSO [7], WPS [26],
FFA [23], CSA [22], BA [24] and FSS [25]. These algorithms have several parameters that should be
initialized before running. The optimal control parameters usually depend on problems and they are
unknown without prior knowledge. Therefore, the initial values of the necessary parameters for all
algorithms were taken from original papers dedicated to them and proposed by authors.

Furthermore, the proposed approach was compared with modifications of the FFA, CSA and
BA algorithms, which also use the external archives, as it was established previously that their usage
improves the workability of the listed heuristics [48]. Let us denote them as FFA-a, CSA-a and BA-a,
respectively.

To show the advantage of the proposed modification more clearly, it was also compared with the
fuzzy-controlled COBRA-f [29] and also with a similar modification of the COBRA meta-heuristic,
in which unlike COBRA-SHA, each component algorithm can use only its own external archive (this
modification was named COBRA-fas) [53]. Parameters of the fuzzy controllers for the COBRA-fas and
COBRA-SHA approaches were found by PSO in the same way as for the COBRA-f algorithm [10],
namely the following parameters were obtained: [−3;−2; 0; 10], [−3;−2; 5; 10] and [−12;−2; 0; 19]
respectively. Thus, the fuzzy sets for the outputs of the obtained controllers can be represented by
Figure 1.

For all mentioned biology-inspired component algorithms, the initial population size was equal
to 100 on each of 23 benchmark functions from SET-1 for comparison, while the maximum number of
iterations was equal to 1000. Thus, to check the efficiency of the proposed algorithm COBRA-SHA,
the maximum number of function evaluations was set to 100, 000. The same number of function
evaluations was used for the fuzzy-controlled COBRA-f and modification COBRA-fas. There were also
30 program runs of all algorithms, included in the comparison, for benchmark problems from SET-1.

While solving optimization problems from SET-2, the maximum generation number was 5000
and the population size for each component algorithm as well as for the FFA-a, CSA-a and BA-a
modifications was equal to 100. Therefore, the maximum number of function evaluations for the
COBRA-f, COBRA-fas and COBRA-SHA algorithms was set to 500, 000. It should be noted that the
number of programs runs of all algorithms for benchmark problems from SET-2 was the same as for
the problems from SET-1.
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Figure 1. Fuzzy terms for all 6 outputs.

Finally, 16 test functions taken from the CEC 2014 Special Session on Real-Parameter
Optimization [51] were solved 51 times by all mentioned heuristics. All these functions are
minimization problems; they are all also shifted and scaled. The same search ranges were defined for
all of them: [−100, 100]D, where D = 30 is the number of dimensions. For all algorithms included in
the comparison, the maximum number of function evaluations was equal to 300, 000. The population
size for component algorithms and their modifications was set to 100.

During the experiments, the maximum archive size As for each component of the COBRA-fas
and COBRA-SHA meta-heuristics as well as for the FFA-a, CSA-a and BA-a algorithms was equal
to 50. In addition, previously conducted experiments showed that the probability of using the
external archive should have the following values for FFA-a, CSA-a and BA-a: 0.75, 0.6 and 0.15
respectively [49]. The same probabilities were used for the respective components of the COBRA-fas
and COBRA-SHA approaches. For the rest of their component algorithms, the probability of using the
external archive was set to 0 (the archive was not used specifically during the execution of a given
component algorithm but was updated if conditions applied). Finally, the probability paddi for the i-th
(i = 1,. . . , 6) component algorithm of the COBRA-SHA meta-heuristic was set to 0.25.

For the collective meta-heuristic COBRA-f and its modifications mentioned in this study, while
solving problems from SET-1, SET-2 and SET-3 the minimum population size for each component was
set to 0, but if the total sum of population sizes was equal to 0 then all population sizes increased to 10.
Additionally, the maximum total sum of population sizes was set to 300.

5.3. Numerical Analysis on Benchmark Functions

5.3.1. Numerical Results for SET-1

Each of the 23 problems was solved by all the stated algorithms, and experimental results such as
mean value (mean), standard deviation (SD), median value (med) and worst (worst) of the best-so-far
solution in the last iteration are reported. The obtained results are presented in Table 2. The outcomes,
namely the mean and standard deviation values, are averaged over the number of program runs,
which was equal to 30, and the best results are shown in bold type in Table 2.
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Table 2. Minimization results of 23 benchmark functions from SET-1 for compared algorithms.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

1

mean 1.59E−06 5.79E−06 0.000757 5.18E−06 0.00313 0.000388 0.001314 5.71E−07 7.78E−05 3.00E−10 9.75E−33 8.34E−104
sd 2.43E−06 4.19E−06 7.54E−05 6.99E−06 3.73E−05 0.000332 0.000367 1.85E−07 6.51E−05 9.00E−10 5.16E−32 4.49E−103

med 1.36E−07 5.19E−06 0.000719 1.49E−06 0.003123 0.000473 0.001172 5.39E−07 6.60E−05 7.08E−23 3.50E−96 0
worst 5.62E−06 1.92E−05 0.000907 1.76E−05 0.003331 0.000851 0.002526 1.08E−06 0.000221 3.00E−09 2.88E−31 2.50E−102

2

mean 0.186667 0.227403 0.028172 0.001134 0.403881 0.035159 0.281052 0.003197 0.031517 5.06E−05 3.37E−32 9.86E−38
sd 0.076303 0.012788 0.012715 0.000682 1.03462 0.022733 0.461951 0.000603 0.024053 0.000111 1.81E−31 5.31E−37

med 0.2 0.225912 0.026171 0.001028 0.050673 0.031 0102245 0.002904 0.029492 5.30E−17 2.10E−66 2.09E−130
worst 0.3 0.245405 0.054523 0.002339 5.53259 0.083424 2.30718 0.004141 0.073688 0.0003 1.01E−30 2.96E−36

3

mean 0.002586 0.238068 0.028531 0.079277 0.095334 0.016487 0.023881 0.003036 0.004284 3.15E−08 2.00E−24 5.79E−45
sd 0.004729 0.051457 0.004659 0.095424 0.145768 0.020547 0.043687 0.001282 0.003749 1.70E−07 1.07E−23 3.12E−44

med 0.001377 0.224195 0.029681 0.023966 0.023425 0.006678 0.010645 0.002862 0.003024 7.74E−31 6.79E−116 8.30E−87
worst 0.015563 0.317626 0.033384 0.223789 0.607488 0.073099 0.238069 0.008804 0.014703 9.45E−07 5.98E−23 1.74E−43

4

mean 0.787991 0.225498 0.033573 0.040128 0.232527 0.002159 0.088004 0.003279 0.002697 1.77E−18 2.94E−14 2.16E−16
sd 0.072534 0.037601 0.010726 0.020981 0.097467 0.001356 0.127233 0.000519 0.001475 1.73E−18 1.32E−13 1.16E−15

med 0.763544 0.197098 0.034117 0.052292 0.200287 0.001925 0.049211 0.002901 0.002951 1.40E−18 7.62E−39 3.76E−25
worst 0.904316 0.280872 0.049304 0.062139 0.667288 0.004693 0.64908 0.004011 0.004691 6.37E−18 7.32E−13 6.47E−15

5

mean 24.3935 26.768 30.9688 0.044777 32.9873 0.562678 29.8896 0.001852 0.54081 0.632481 0.709068 0.447074
sd 1.17226 0.260772 0.397344 0.011904 6.95187 0.38868 2.73287 0.000402 0.334356 1.59647 0.651327 1.21442

med 25.3141 26.7417 31.1182 0.049437 29.731 0.206465 28.6806 0.001617 0.547022 0.076141 0.396998 6.09E−06
worst 25.4328 27.1092 31.1302 0.051008 58.5146 0.981097 39.7638 0.002882 0.975569 7.06745 2.79167 5.06674

6

mean 4.37E−07 0 0 0.00084 0.069408 0 0.035759 0.000856 0 0 0 0
sd 3.80E−07 0 0 0.000306 0.001029 0 0.011896 0.000246 0 0 0 0

med 5.39E−07 0 0 0.000732 0.069306 0 0.032395 0.001038 0 0 0 0
worst 1.21E−06 0 0 0.001217 0.071567 0 0.062217 0.001038 0 0 0 0

7

mean 0.022798 0.011072 0.034065 0.001386 0.119858 0.000363 0.023482 0.0003 0.000283 0.000971 0.000164 0.000183
sd 0.009644 0.006379 0.006115 0.000726 0.024429 0.000916 0.009803 7.16E−05 0.000455 0.002437 0.000184 0.000123

med 0.018051 0.013906 0.0354315 0.001851 0.11158 0.000172 0.02019 0.000353 9.16E−05 0.000148 0.000105 0.000172
worst 0.041091 0.02156 0.045658 0.002248 0.173204 0.005127 0.060796 0.000465 0.001617 0.009513 0.000944 0.000562

8

mean −3365.88 −3715.84 −1953.42 −3833.45 −2004.41 −4113.93 −2233.67 −4189.83 −4095.29 −4080.25 −4129.2 −4187.24
sd 348.708 0.365664 349.539 102.134 34.4298 241.696 218.254 0 340.29 297.391 325.696 13.9255

med −3597.64 −3715.98 −1924.47 −3833 −2004.41 −4189.83 −2291.01 −4189.83 −4189.83 −4189.83 −4189.83 −4189.83
worst −2999.38 −3714.49 −1596.36 −3594.6 −1969.98 −3107.78 −1300.58 −4189.83 −2709.11 −2973.94 −2375.27 −4112.25

9

mean 25.1497 0.443485 25.9596 0.003443 31.1039 0.014076 21.6072 1.42E−05 0.012228 0 0 0
sd 14.569 0.150292 9.92443 0.000182 7.9054 0.014305 2.1656 2.47E−06 0.013029 0 0 0

med 23.3826 0.476669 23.3999 0.003429 26.381 0.008969 21.7469 1.46E−05 0.006788 0 0 0
worst 44.9872 0.612069 40.5318 0.003724 44.8781 0.046842 26.2129 1.46E−05 0.039491 0 0 0
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Table 2. Cont.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

10

mean 2.33524 0.286503 0.022724 0.007219 2.19393 −4.44E−16 1.87908 0.001914 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16
sd 5.22105 0.107099 0.006266 0.033985 0.56606 0 0.675231 0.000136 0 0 0 0

med 0.000238 0.233252 0.022854 0.000711 2.0135 −4.44E−16 1.64645 0.001889 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16
worst 14.0099 0.498479 0.032924 0.190152 4.68214 −4.44E−16 4.78962 0.002645 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16

11

mean 0.022367 0.667855 0.02914 0.005382 1.3761 6.23E−06 0.330717 0.004404 7.38E−06 6.68E−12 0 0
sd 0.012069 0.06976 0.007509 0.00053 0.1058 4.95E−06 0.249647 0.000421 6.54E−06 3.60E−11 0 0

med 0.017244 0.664388 0.03115 0.005528 1.33741 5.67E−06 0.246232 0.004419 5.33E−06 0 0 0
worst 0.041632 0.762223 0.040675 0.00609 1.68613 1.65E−05 1.44168 0.005244 2.27E−05 2.00E−10 0 0

12

mean 0.832804 0.002054 0.030286 0.007105 1.23821 0.285361 1.11234 1.62E−05 0.165609 0.000471 0.00015 4.74E−05
sd 2.4112 0.000881 0.010161 0.025964 0.474751 0.303834 0.538147 8.53E−06 0.136602 0.001761 0.000607 0.000253

med 0.032622 0.001947 0.027299 2.22E−05 1.09173 0.15708 0.914424 1.48E−05 0.144359 2.45E−05 3.37E−05 8.97E−16
worst 8.0664 0.003608 0.054965 0.104246 3.43408 1.1781 3.49961 3.61E−05 0.543077 0.009578 0.003419 0.001412

13

mean 0.069719 0.038975 0.030959 2.46E−05 0.836476 0.292157 0.477642 1.47E−05 0.399484 0.002164 0.001114 1.15E−09
sd 0.134767 0.017712 0.013819 8.74E−05 0.120599 0.204197 0.239367 7.57E−06 0.206086 0.00597 0.004535 3.02E−09

med 0.000175 0.048161 0.033939 3.92E−06 0.801098 0.398078 0.403263 1.03E−05 0.144359 0.000442 3.14E−16 2.08E−18
worst 0.521717 0.065703 0.052993 0.000492 1.20327 0.799661 1.40009 2.66E−05 0.798164 0.030962 0.02375 1.04E−08

14

mean 0.998 0.998 1.5642 0.998 1.9947 0.998 1.01566 0.998 0.998 0.998 0.998 0.998
sd 0 7.08E−12 0.892633 1.57E−16 0.979812 1.75E−16 0.06081 9.90E−16 4.74E−16 0 0 0

med 0.998 0.998 1.0605 0.998 1.992 0.998 0.998 0.998 0.998 0.998 0.998 0.998
worst 0.998 0.998 3.9686 0.998 6.9034 0.998 1.24136 0.998 0.998 0.998 0.998 0.998

15

mean 0.000641 0.005924 0.000524 0.000366 0.001927 0.003983 0.000864 0.000324 0.003981 0.000566 0.00031 0.000307
sd 0.000216 0.008707 2.17E−19 8.05E−05 0.000119 0.002392 0.000977 6.55E−05 0.002794 0.000269 1.13E−05 1.12E−07

med 0.000783 0.000673 0.000524 0.000365 0.001975 0.002992 0.000558 0.000308 0.002615 0.000389 0.000307 0.000307
worst 0.000783 0.020363 0.000524 0.000783 0.002242 0.008416 0.005758 0.000653 0.008663 0.000941 0.000369 0.000308

16

mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0281 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
sd 0 1.97E−07 6.66E−16 2.69E−05 0.00149 5.51E−16 3.97E−06 5.20E−08 2.88E−07 0 0 0

med −1.0316 −1.0316 −1.0316 −1.0316 −1.0268 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
worst −1.0316 −1.0316 −1.0316 −1.0315 −1.0268 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

17

mean 0.39789 0.39789 0.39789 0.398604 0.39809 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
sd 0 1.34E−08 0 0.001596 2.64E−08 2.01E−15 2.12E−05 5.42E−15 3.19E−16 0 0 0

med 0.39789 0.39789 0.39789 0.397918 0.39809 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
worst 0.39789 0.39789 0.39789 0.403215 0.39809 0.39789 0.398006 0.39801 0.39789 0.39789 0.39789 0.39789

18

mean 3.00E+00 3.00001 3.0145 3.081 3.02798 3.00E+00 3.00011 3.01732 3.00E+00 3.00E+00 3.00E+00 3.00E+00
sd 2.22E−15 1.41E−06 8.88E−16 0.032441 0.081617 2.86E−14 0.000416 0.003692 1.42E−14 0 0 0

med 3.00E+00 3.00E+00 3.0145 3.0579 3.0128 3.00E+00 3.00E+00 3.0184 3.00E+00 3.00E+00 3.00E+00 3.00E+00
worst 3.00E+00 3.00001 3.0145 3.1464 3.4675 3.00E+00 3.00217 3.0184 3.00E+00 3.00E+00 3.00E+00 3.00E+00
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Table 2. Cont.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

19

mean −3.8628 −3.8628 −3.8617 −3.8627 −3.8312 −3.2190 −3.8627 −3.8472 −3.8628 −3.8628 −3.8628 −3.8628
sd 3.11E−15 2.76E−07 0.000558 8.61E−05 0.022515 0.638175 0.00043 0.016026 1.46E−06 0 0 3.44E−06

med −3.8628 −3.8628 −3.8619 −3.8627 −3.8328 −3.7754 −3.8628 −3.8614 −3.8628 −3.8628 −3.8628 −3.8628
worst −3.8628 −3.8628 −3.8609 −3.8623 −3.7831 −2.2391 −3.8604 −3.8257 −3.8628 −3.8628 −3.8628 −3.8628

20

mean −3.2429 −3.3223 −3.3137 −3.2012 −3.2179 −3.3192 −3.2908 −3.2523 −3.3223 −3.3221 −3.3223 −3.3223
sd 0.056194 5.58E−05 0.002282 0.001506 0.371432 0.016419 0.117259 0.078632 8.15E−05 0.001024 0.000126 0.000142

med −3.2032 −3.3222 −3.3121 −3.2017 −3.3223 −3.3222 −3.3224 −3.3121 −3.3223 −3.3223 −3.3224 −3.3224
worst −3.2032 −3.3222 −3.3121 −3.1964 −1.3854 −3.2307 −2.684 −3.1471 −3.322 −3.3166 −3.3217 −3.3216

21

mean −4.4259 −10.1532 −10.147 −10.1531 −9.67012 −10.153 −10.1231 −10.1532 −9.74075 −10.153 −10.153 −10.1532
sd 3.1596 1.64E−05 8.88E−15 4.68E−05 1.21432 0.000913 0.138499 2.23E−05 1.55633 0 0.001217 0

med −2.6829 −10.1532 −10.147 −10.1531 −10.1387 −10.1532 −10.1532 −10.1532 −10.1532 −10.153 −10.1532 −10.1532
worst −2.6829 −10.1532 −10.147 −10.153 −4.07347 −10.1481 −9.38354 −10.1531 −2.56105 −10.153 −10.1464 −10.1532

22

mean −5.2731 −10.4029 −10.3966 −10.4027 −9.89302 −9.46839 −10.3104 −10.4029 −9.85423 −10.4028 −10.4029 −10.4029
sd 0.952733 6.63E−06 0.002702 0.000178 0.100572 2.11049 0.406034 2.20E−05 1.59768 0.000272 5.62E−05 0

med −5.0877 −10.4029 −10.3964 −10.4028 −9.9117 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029
worst −5.0877 −10.4029 −10.3937 −10.4021 −9.35142 −3.55911 −8.14783 −10.4028 −5.02718 −10.4014 −10.4026 −10.4029

23

mean −4.0308 −10.5364 −10.531 −10.5362 −9.37719 −10.2025 −10.4969 −10.5364 −10.5309 −10.5227 −10.5364 −10.5364
sd 2.9128 1.07E−05 0.002013 0.000154 1.6799 1.20832 0.16659 5.05E−05 0.029262 0.073438 0 0

med −2.8066 −10.5364 −10.53 −10.5362 −10.0336 −10.5364 −10.5364 −10.5364 −10.5363 −10.5364 −10.5364 −10.5364
worst −2.4217 −10.5364 −10.53 −10.5359 −4.41148 −4.61133 −9.61849 −10.5362 −10.3733 −10.1272 −10.5364 −10.5364
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From Table 2 it can be observed that the proposed approach COBRA-SHA outperformed other
compared state-of-art approaches and their modifications as well as COBRA-f and the similar
modification COBRA-fas on the first two unimodal functions ( f1 and f2) in terms of the mean,
standard deviation, median, and worst value of the results. Regarding function f3, COBRA-SHA was
outperformed only by the modification COBRA-fas in terms of the median value, while it was the best
among the compared algorithms according to the other statistical results.

The fuzzy-controlled COBRA outperformed the other algorithms on the function f4. Regarding
the fifth unimodal function, while the CSA modification with the external archive demonstrated the
best results in terms of the mean, standard deviation and the worst values, the median value obtained
by the proposed approach COBRA was better. Several algorithms, including COBRA-f, COBRA-fas
and COBRA-SHA, were able to find the optimum value for the function f6 during each program run.
Finally, regarding function f7, COBRA-fas and CSA-a outperformed the other algorithms.

For multi-modal functions f8– f13 with many local minima, the final results are more important
because this function can reflect the algorithm’s ability to escape from poor local optima and obtain
the near global optimum. For functions f9, f10 and f11, COBRA-SHA was successful in finding the
global minimum as well as the fuzzy-controlled COBRA and the similar modification COBRA-fas.
For function f8, CSA with the external archive (CSA-a) outperformed the other algorithms included
in the comparison. Regarding f12, the proposed approach COBRA-SHA was the best in terms of the
median value, while CSA-a outperformed all the compared algorithms according to the other statistical
results. Moreover, for functions f13 the proposed modification COBRA-SHA produced better results
compared to the others.

For f14– f23 with only a few local minima, the dimension of the function is also small. For functions
f14, f16, f17, f18, f21, f22 and f23, COBRA-SHA was successful in finding the global minimum. Regarding
f14 and f16, PSO, COBRA-f, COBRA-fas and COBRA-SHA produced the same results. For function
f17, PSO, FSS, COBRA-f, COBRA-fas and COBRA-SHA also gave the same values. Regarding f18

COBRA-f, COBRA-fas and COBRA-SHA produced the same mean, standard deviation, median and
worst values. Finally, for function f23 the two similar modifications proposed in this study, namely
COBRA-fas and COBRA-SHA, demonstrated the same results.

From Table 2, it can be observed that the COBRA-SHA approach performs better than the other
algorithms on the multi-modal low-dimensional benchmarks. For example, regarding function f15,
the COBRA-SHA approach outperformed other algorithms included in the comparison in terms of
the mean, median and worst values. However, for function f19 COBRA-f and COBRA-fas were able
to find the optimum value during each program run and they outperformed COBRA-SHA. Finally,
regarding function f20, the best mean and median values were found by the proposed modifications
COBRA-fas and COBRA-SHA.

Additionally, in Table 3 the results of the comparison between COBRA-SHA and the other
mentioned algorithms according to the Mann-Whitney statistical test with significance level p = 0.01
are presented. The following notations are used in Table 3: “+” means that COBRA-SHA was better
compared to a given algorithm, similarly “−” means that the proposed algorithm was statistically
worse, and ”=” means that there was no significant difference between their results.

Table 3. Results of the Mann-Whitney statistical test with p = 0.01 for SET-1, comparison of COBRA-SHA with
other approaches.

PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas
+ 18 15 20 22 23 14 18 16 12 10 4
= 5 8 3 0 0 9 5 7 11 13 18
− 0 0 0 1 0 0 0 0 0 0 1

Total 18 15 20 22 23 14 18 16 12 10 3
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The results of the Mann-Whitney statistical test are presented in Figure 2. The values on the graph
represent the total score, i.e., number of improvements, deteriorations and non-significant differences
between COBRA-SHA and other approaches.

Figure 2. Results of the Mann-Whitney statistical test with p = 0.01, comparison of COBRA-SHA with
other approaches (SET-1).

In addition, all the mentioned algorithms were compared with the proposed modification
COBRA-SHA according to the Friedman statistical test. The obtained results are demonstrated in
Figure 3. The following notations were used in Figure 3: COBRA-f was denoted as “COBRA”,
COBRA-fas was denoted as “C-FAS” and for COBRA-SHA the notation “C ARC” was used.
The Friedman ranking was performed for every test function separately and used the results of
all runs for ranking.

Thus, it was established that the results obtained by the proposed approach are statistically
better according to the Friedman and Mann-Whitney tests than the results obtained by the stated
biology-inspired algorithms (PSO, WPS, FSS, FFA, CSA and BA) and their modifications with the
external archive (FFA-a, CSA-a, BA-a). Despite this, it can be seen that the results achieved by FFA-a,
CSA-a and BA-a are statistically better than the ones found by their original versions. Moreover,
COBRA-SHA statically outperformed the fuzzy-controlled COBRA-f. However, there is almost no
difference between the results obtained by COBRA-SHA and the similar modification COBRA-fas on
functions from SET-1.

5.3.2. Numerical Results for SET-2

To show the advantage of the proposed modification COBRA-SHA more clearly, it was compared
with the same algorithms (mentioned previously) by using benchmark functions from SET-2.
The functions used in SET-2 are Sphere, Rosenbrock, Quadric, Schwefel, Griewank, Weierstrass,
Quartic, Rastrigin and Ackley, which are frequently used benchmark functions to test the performance
of various optimization algorithms. These functions can be described as continuous, differentiable,
separable, scalable and multi-modal.

The experimental results obtained for 10- and 30-dimensional functions by the listed
biology-inspired algorithms and their modifications are shown in Tables 4 and 5. From these tables, it
can be observed that the COBRA-SHA approach performs better than the other algorithms included in
the comparison.
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Figure 3. Results of the Friedman statistical test for SET-1.

For example, regarding function f1, the COBRA-SHA approach outperformed the other algorithms
included in the comparison in terms of the mean, best and worst values when D = 10. However,
for the same function with D = 30 COBRA-f was able to find the best value during 51 program runs,
while COBRA-SHA was still better than the others in terms of the mean and worst values. Similarly,
for function f3 the best value was found by COBRA-f, and COBRA-SHA was able to achieve better
mean and worst values both with D = 10 and with D = 30.

Regarding functions f5 and f8 with 10 and 30 variables, COBRA-f, COBRA-fas and COBRA-SHA
were able to find the optimum solutions during each program run. It should be noted that for function
f4 with 10 variables, the proposed modifications CSA-a, COBRA-fas and COBRA-SHA also achieved
the optimum value during each program run, while the modification BA-a and the original algorithm
COBRA-f found the optimum several times. On the other hand, for the same function but with 30
variables COBRA-SHA outperformed the other algorithms included in comparison. Additionally,
for the last function f9 both with D = 10 and with D = 30 COBRA-f, COBRA-fas, COBRA-SHA, BA
and its modification BA-a demonstrated the same good results.

As for the second function f2 (D = 10 and D = 30), CSA-a outperformed the other algorithms
in terms of mean and worst values, but the best value was found by the COBRA-fas approach.
Regarding function f6 with 10 variables, the PSO algorithm demonstrated the best results, while for
that benchmark problem with 30 variables COBRA-fas outperformed every algorithm included in
comparison. Finally, for function f7 with D = 10, BA and BA-a gave better results, and with D = 30
COBRA-SHA did the same.
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Table 4. Experimental results for 10-dimensional functions from SET-2.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

1

best 1.63E−24 8.63E−08 0.000161 6.56E−08 0.000599 6.67E−10 0.000273 4.90E−08 4.75E−13 0 0 0
worst 3.51E−24 3.69E−06 0.000403 1.70E−07 0.002639 4.44E−06 0.001723 1.50E−07 3.99E−06 2.81E−15 6.47E−16 1.05E−223
mean 8.60E−24 8.42E−07 0.00026 1.07E−07 0.000995 1.10E−06 0.000678 1.05E−07 9.46E−07 1.88E−16 2.16E−17 3.58E−225

sd 1.06E−23 9.00E−07 9.64E−05 3.02E−08 0.00058 1.15E−06 0.000405 2.64E−08 1.11E−06 7.02E−16 1.16E−16 0

2

best 0.049514 0.213844 7.40186 0.001172 11.4098 0.089051 10.7438 0.000126 0.088981 0.044043 7.54E−24 1.25E−11
worst 0.17305 0.330575 8.46311 0.010075 20.0667 0.089954 16.0295 0.001501 0.089981 0.189479 1.7902 0.015126
mean 0.082267 0.257968 7.99109 0.005168 15.6137 0.0893 13.452 0.000679 0.089217 0.099337 0.063924 0.001354

sd 0.041129 0.043318 0.393817 0.00263 3.023 0.000287 1.96209 0.000373 0.000273 0.031152 0.320857 0.003361

3

best 1.45E−17 1.70E−15 0.000484 7.54E−05 0.027544 0.001073 0.007773 3.83E−05 0.000231 0 6.29E−170 0
worst 6.19E−16 3.77E−05 0.001354 0.00029 0.092337 0.009179 0.051593 0.000246 0.007369 1.39E−11 4.25E−13 5.67E−104
mean 1.65E−16 2.66E−06 0.000959 0.000193 0.058774 0.005257 0.025486 0.000163 0.003161 7.51E−13 1.54E−14 1.89E−105

sd 1.72E−16 9.38E−06 0.000304 5.54E−05 0.026681 0.00191 0.015622 5.10E−05 0.0019 2.89E−12 7.64E−14 1.02E−104

4

best 118.438 236.89 1870.76 236.88 1970.439 16.029 1773.079 0 0 0 0 0
worst 950.541 830.59 2658.19 1191.97 2807.619 507.569 2882.499 0 474.63 1899.23 0 0
mean 526.392 584.91 2217.53 586.12 2436.108 333.146 2387.664 0 63.226 65.36 0 0

sd 227.166 152.965 254.724 316.432 292.505 136.605 313.144 0 132.54 340.72 0 0

5

best 0.017241 0.013663 0.004056 5.71E−05 0.114819 1.99E−09 0.020086 4.81E−05 2.76E−09 0 0 0
worst 0.076242 0.074725 0.008699 0.000168 0.31823 4.46E−08 0.038537 0.000151 2.72E−08 0 0 0
mean 0.052542 0.043517 0.006624 0.000109 0.209934 1.04E−08 0.029265 9.81E−05 8.10E−09 0 0 0

sd 0.017733 0.013805 0.001311 2.35E−05 0.058816 1.19E−08 0.00484 3.10E−05 6.80E−09 0 0 0

6

best −7.15E−09 −9.76E−10 0.001233 0.000745 0.052097 0.071887 0.038534 0.000739 0.016961 −7.06E−09 −7.15E−09 −1.59E−09
worst −7.15E−09 6.46E−13 0.002208 0.001241 0.07805 0.281316 0.062414 0.001121 0.290965 1.06E−14 −7.36E−10 −3.69E−10
mean −7.15E−09 −2.27E−10 0.001515 0.001067 0.063843 0.146193 0.050823 0.000984 0.13815 −1.21E−09 −3.28E−09 −1.26E−09

sd 0 3.1E−10 0.000201 0.000105 0.006625 0.045155 0.006592 9.61E−05 0.059034 2.28E−09 2.07E−09 4.01E−10

7

best 3.59E−05 9.19E−05 0.000943 4.12E−05 0.010896 2.98E−11 0.001142 2.35E−05 6.21E−12 9.63E−11 1.05E−09 3.60E−07
worst 0.00044 0.002463 0.00362 0.000545 0.079071 0.000104 0.011006 0.000295 0.000122 0.001366 0.000889 0.000625
mean 0.000172 0.000811 0.002205 0.000251 0.025808 2.53E−05 0.00501 0.000112 4.31E−05 0.000187 0.000106 3.87E−05

sd 0.000105 0.000599 0.000645 0.000121 0.016032 2.81E−05 0.00313 5.91E−05 3.97E−05 0.000277 0.00018 0.000117

8

best 0 1.59E−05 0.079887 0.000398 1.16538 1.22E−05 0.913614 4.70E−06 6.98e−06 0 0 0
worst 5.96975 0.000482 4.11265 0.000897 3.77051 0.004259 3.10652 8.42E−06 0.002881 0 0 0
mean 1.49244 0.000154 1.46415 0.000688 2.67899 0.001166 1.92521 6.88E−06 0.000892 0 0 0

sd 1.42456 0.000140 1.06661 0.000101 0.882195 0.001023 0.679404 1.05E−06 0.000828 0 0 0

9

best 6.33E−10 0.003801 0.023337 0.000409 0.308134 −4.44E−16 0.336958 0.000284 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16
worst 4.37E−09 0.009605 0.053186 0.000601 0.622152 −4.44E−16 0.662198 0.000501 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16
mean 2.30E−09 0.006637 0.037914 0.000561 0.551782 −4.44E−16 0.473258 0.000432 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16

sd 1.08E−09 0.001927 0.00896 4.21E−05 0.078404 0 0.093197 5.53E−05 0 0 0 0
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Table 5. Experimental results for 30-dimensional functions from SET-2.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

1

best 7.48E−09 6.36E−06 0.000678 7.94E−07 0.007467 3.26E−07 0.003507 3.28E−07 1.53E−07 0 3.50E−245 0
worst 4.42E−07 8.57E−05 0.002339 1.61E−06 0.012457 7.42E−06 0.00799 1.85E−06 5.68E−06 1.39E−09 9.89E−17 2.12E−153
mean 8.05E−08 2.57E−05 0.001251 1.21E−06 0.009875 3.15E−06 0.006719 9.97E−07 2.32E−06 5.22E−11 5.10E−18 7.08E−155

sd 1.17E−07 1.98E−05 0.000545 2.23E−07 0.001831 2.10E−06 0.001642 3.29E−07 1.60E−06 2.50E−10 1.99E−17 3.81E−154

2

best 4.02311 23.3265 28.7236 0.038619 24.2272 0.113483 23.3448 0.002302 0.185628 0.285918 5.70E−24 3.50E−13
worst 95.4854 26.4443 31.9758 0.067259 39.6549 0.99761 32.6799 0.004364 0.989079 1.49014 8.56207 6.13598
mean 27.133 25.8494 30.34 0.055504 33.7613 0.357173 27.1604 0.003269 0.366328 0.735802 0.330907 0.453617

sd 23.7975 0.607571 0.961172 0.007542 5.93207 0.309672 3.4977 0.000627 0.30763 0.243995 1.54065 1.44316

3

best 5.07E−06 2.71E−12 0.060012 0.001028 0.322504 0.000134 0.175958 0.00093 9.35E−05 0 5.95E−287 0
worst 0.000135 0.001832 0.237043 0.002791 0.550335 0.850951 0.371275 0.002275 0.679043 1.44E−07 3.09E−06 1.39E−83
mean 2.85E−05 0.000137 0.114584 0.001676 0.413367 0.302892 0.248386 0.001326 0.2167 9.40E−09 1.03E−07 4.64E−85

sd 2.63E−05 0.000454 0.049979 0.000405 0.061947 0.268716 0.063439 0.000336 0.204856 2.96E−08 5.56E−07 2.50E−84

4

best 1430.16 711.09 7256.25 2065.45 4302.27 1065.99 3839.3 1172.04 1667.29 479.79 973.99 0.69
worst 4009.78 2493.49 8048.99 3772.6 6232.18 3575.7 4976.6 2230.44 3808.23 8765.01 8428.67 2164.89
mean 2880.63 1722.74 7718.99 2931.71 4970.56 2355.616 4306.47 1616.2 2483.364 3636.12 3448.09 992.24

sd 665.536 346.134 251.117 396.32 505.547 693.659 324.354 281.819 484.67 2009.84 1529.11 752.587

5

best 2.01E−05 0.02125 0.031964 0.004579 0.985317 8.23E−07 0.162201 0.003088 4.06E−07 0 0 0
worst 0.071629 0.201301 0.054336 0.006515 4.01342 5.35E−05 0.278935 0.005083 1.83E−05 0 0 0
mean 0.015925 0.068628 0.044808 0.005549 1.94925 7.87E−06 0.217594 0.004098 4.55E−06 0 0 0

sd 0.01754 0.035889 0.005258 0.000444 0.629016 1.08E−05 0.030519 0.000482 3.51E−06 0 0 0

6

best −1.43E−08 −2.11E−09 0.009111 0.003985 0.159804 1.64588 0.137022 0.0037764 1.40487 −1.52E−08 −2.14E−08 −4.76E−09
worst 4.00005 8.02E−11 0.012609 0.004652 0.215385 3.77569 0.177311 0.004444 3.08984 −1.42E−14 −2.07E−08 −3.46E−09
mean 0.393583 −3.62E−10 0.010757 0.00441 0.192516 2.74361 0.158296 0.004192 2.51587 −1.77E−09 −2.14E−08 −4.72E−09

sd 0.887319 5.25E−10 0.000862 0.00016 0.014027 0.430395 0.010487 0.000169 0.394677 4.42E−09 1.75E−10 2.36E−10

7

best 0.000649 0.001728 0.018116 0.003075 0.042188 2.70E−06 0.022063 0.000232 7.90E−05 1.50E−06 7.50E−07 6.40E−08
worst 0.002563 0.043489 0.052811 0.008607 0.329453 0.001255 0.122512 0.000797 0.001308 0.00249 0.001102 0.000455
mean 0.001312 0.008538 0.030278 0.005395 0.109827 0.000615 0.051377 0.000532 0.000522 0.000634 0.000217 4.33e−05

sd 0.000442 0.007738 0.00889 0.001207 0.065303 0.000357 0.024771 0.000105 0.000312 0.000741 0.000299 0.000103

8

best 5.30645 0.004985 7.80848 0.000965 19.1848 6.28E−05 13.4142 3.00E−05 4.60E−05 0 0 0
worst 45.1519 0.039664 16.5551 0.001177 44.8064 0.019243 28.1859 3.77E−05 0.040512 0 0 0
mean 22.1346 0.01158 12.1611 0.001082 31.7436 0.006696 20.667 3.40E−05 0.005412 0 0 0

sd 8.62544 0.006953 2.0392 5.77E−05 7.30051 0.005976 4.8378 1.97E−06 0.008099 0 0 0

9

best 0.000371 0.022325 0.004768 0.000616 1.20685 −4.44E−16 1.21979 0.000601 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16
worst 0.002949 0.068854 0.035269 0.000646 1.6977 −4.44E−16 1.6212 0.000644 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16
mean 0.001444 0.036204 0.025515 0.000634 1.4192 −4.44E−16 1.37873 0.000631 −4.44E−16 −4.44E−16 −4.44E−16 −4.44E−16

sd 0.000698 0.01133 0.007693 5.91E−06 0.127772 0 0.094204 7.96E−06 0 0 0 0
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Additionally, in Table 6 the results of the comparison between COBRA-SHA and the other
mentioned algorithms according to the Mann-Whitney statistical test with significance level p = 0.01
are presented. The same notations as in Table 3 are used in Table 6. The results of the Mann-Whitney
statistical test are presented in Figures 4 and 5.

Figure 4. Results of the Mann-Whitney statistical test with p = 0.01, comparison of COBRA-SHA with
other approaches (SET-2, D = 10).

Figure 5. Results of the Mann-Whitney statistical test with p = 0.01, comparison of COBRA-SHA with
other approaches (SET-2, D = 30).

Table 6. Results of the Mann-Whitney statistical test with p = 0.01 for SET-2, comparison of COBRA-SHA with
other approaches.

D PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas

10
+ 8 9 9 9 9 7 9 8 7 5 2
= 0 0 0 0 0 2 0 1 2 4 5
− 1 0 0 0 0 0 0 0 0 0 2

30
+ 8 9 9 8 9 8 9 8 8 6 4
= 0 0 0 1 0 1 0 1 1 3 2
− 1 0 0 0 0 0 0 0 0 0 3

Total 14 18 18 17 18 15 18 16 15 11 1

In addition, all the stated algorithms were compared with the proposed modification COBRA-SHA
according to the Friedman statistical test. The obtained results are demonstrated in Figures 6 and 7.
The following notations were used in Figures 6 and 7: COBRA-fas was denoted as “C-FAS” and for
COBRA-SHA the notation “C-SHA” was used.
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Figure 6. Results of the Friedman statistical test for SET-2 (D = 10).

Figure 7. Results of the Friedman statistical test for SET-2 (D = 30).

It was again established that the results obtained by the proposed approach are statistically better
according to the Friedman and Mann-Whitney tests than the results obtained by the mentioned
biology-inspired algorithms (PSO, WPS, FSS, FFA, CSA and BA) and their modifications with
the external archive (FFA-a, CSA-a, BA-a). Moreover, COBRA-SHA statically outperformed the
fuzzy-controlled COBRA-f in 11 out of 18 cases. However, as for SET-1 there is almost no difference
between the results obtained by COBRA-SHA and the similar modification COBRA-fas on functions
from SET-2.

5.3.3. Numerical Results for SET-3

The next step was to test and compare the stated biology-inspired algorithms and their
modifications by using benchmark functions from SET-3. The 16 functions with D = 30 used in
SET-3 were taken from the CEC 2014 competition [51]. All these functions are minimization problems
with a shifted and rotated global optimum, which is randomly distributed in [−80, 80]. The search
range for all problems was [−100, 100]. The statistical results in terms of mean, standard deviation and
best solution of different algorithms for functions from CEC 2014 are listed in Table 10. The best results
are shown in bold.

From Table 7, it can be observed that the COBRA-SHA approach in most cases performs better than
the other algorithms included in the comparison in terms of the mean value. To be more specific, this
happened for the first three unimodal functions f1, f2 and f3. Moreover, for function f2 COBRA-SHA
outperformed the other algorithms by all criteria. However, for f1 and f3 the best results (out of 51
program runs) were found by the COBRA-fas approach.
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Table 7. Minimization results of 16 benchmark functions from SET-3 for compared algorithms.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

1
mean 8.39E+07 3.98E+06 1.51E+09 1.19E+08 1.21E+09 9.61E+07 4.35E+08 9.68E+07 4.13E+07 3.29E+06 2.90E+06 8.04E+05

sd 8.02E+07 4.58E+06 4.12E+08 3.48E+07 2.33E+08 9.70E+07 2.02E+08 6.10E+06 2.15E+07 1.19E+06 2.96E+06 4.52E+05
best 3.85E+06 3.37E+05 7.10E+08 5.95E+07 7.26E+08 2.84E+07 3.02E+08 8.89E+07 1.07E+07 1.17E+06 1.60E+05 2.89E+05

2
mean 7.21E+07 192442 1.38E+09 1.17E+08 1.10E+09 6.02E+07 4.68E+08 5.71E+07 4.03E+07 93605.64 1.97219 0.998929

sd 8.41E+07 90259.2 3.43E+08 3.26E+07 2.05E+08 6.46E+07 2.08E+08 1.29E+07 2.95E+07 1.43E+05 5.09984 2.037952
best 2.21E+06 70124 6.55E+08 4.28E+07 6.67E+08 2.84E+07 3.14E+08 4.70E+07 2.62E+07 7012.77 0.000436 2.19E-05

3
mean 12214.1 3026.72 8982.22 3591.59 3556.53 3275.33 3076.88 2458.54 2741.96 2336.28 2412.75 1085.76

sd 103.24 2128.7 7933.59 822.848 2530.09 2423.51 1832.37 36.1531 2507.81 2143.46 2682.25 1553.823
best 131.23 141.635 681.498 1934.53 734.757 431.92 252.753 2402.45 200.133 76.757 0.177521 17.579

4
mean 593.719 101.177 460.351 689.687 113.594 489.229 97.9647 416.944 388.562 142.139 83.8228 78.8988

sd 466.567 33.5444 404.367 143.184 28.6232 208.082 23.035 105.033 173.892 48.0123 32.0827 42.76286
best 113.053 22.2891 81.996 355.984 90.3722 27.3223 82.7883 356.954 2.75597 20.6071 4.44291 0.086259

5
mean 20.6853 20.23312 20.8368 21.2328 20.9926 20.9439 20.2327 20.9925 20.7586 20.0379 20.2732 20.155

sd 0.238867 0.315897 0.053797 0.065782 0.054457 0.135402 0.268122 0.069387 0.080094 0.112778 0.402076 0.281863
best 20.0831 20.0355 20.6212 21.0601 20.8095 20.6953 20.0214 20.8928 20.6542 20.0001 20.0014 19.9997

6
mean 18.8283 18.8698 45.1587 48.0122 41.2204 43.0776 40.9472 38.8478 38.5239 18.2647 15.1855 13.5046

sd 3.42198 4.00268 1.60656 1.65627 1.55277 2.36256 1.70132 2.00784 1.76074 4.1308 2.96969 1.99827
best 10.7812 8.16276 41.887 44.145 36.8078 38.0094 35.683 37.5067 36.5252 10.6881 8.38367 8.86692

7
mean 51.8866 0.518515 58.6923 0.753269 83.4212 1.12894 58.9804 0.592204 1.08989 0.411581 0.104303 0.003761

sd 25.0887 0.308391 24.1262 0.105676 42.0467 0.189258 30.6096 0.084048 0.153035 0.116403 0.58717 0.005962
best 0.826791 0.045837 24.0078 0.505352 7.68658 0.544682 4.82137 0.524759 0.733626 0.207174 0 1.99E-06

8
mean 62.388 96.4317 67.2538 48.4182 75.2201 49.3641 63.7288 46.6257 49.4966 8.22026 14.9715 7.70399

sd 24.4177 49.3056 17.4248 3.31222 21.842 3.56256 28.317 4.47713 2.79193 17.0268 2.49395 5.69825
best 22.9252 39.7987 35.0188 39.1922 39.5088 39.9211 31.9843 33.9115 45.1326 1.00027 8.14899 0.025269

9
mean 127.545 608.887 505.51 498.126 370.515 207.649 308.54 489.142 112.552 123.304 143.374 93.82118

sd 31.7914 44.5918 34.5337 39.9579 25.8412 39.6209 24.3239 44.33 28.283 38.3498 55.1968 23.69127
best 71.7975 512.787 439.895 401.902 302.235 107.96 259.269 354.224 61.2855 55.105 69.082 48.7532

10
mean 2174.14 2177.71 2092.54 3066.58 3368.45 1606.31 2251.61 2782.38 1563.79 789.262 773.36 440.916

sd 530.221 1979.64 704.005 362.634 948.916 67.3303 566.22 352.359 42.8626 829.996 1030.89 308.284
best 1184.98 420.536 744.611 2060.35 1867.1 1422.06 1181.37 1810.78 1461.74 16.8956 0.383125 7.76201

11
mean 3283.8 2661.23 7360.36 4232.33 4048.15 3430.39 3375.72 3916.73 3173.48 3063.51 2640.34 2144.361

sd 676.481 503.675 350.278 377.418 382.531 541.859 314.884 361.479 405.867 537.292 528.1465 329.8605
best 2158.17 1393.71 6469.71 3514.68 3146.97 2454.84 2474.3 3227.44 2724.36 1843.91 1488.29 1408.18
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Table 7. Cont.

f PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas COBRA-SHA

12
mean 1.38976 0.691141 1.92891 0.526562 3.64401 0.54154 2.30959 0.430085 0.417287 0.287138 0.66262 0.244787

sd 0.621095 0.138272 0.334828 0.11541 0.553865 0.133514 0.477087 0.409838 0.082642 0.112853 0.52344 0.184052
best 0.251804 0.342053 1.21756 0.256158 2.22435 0.303577 1.36058 0.084931 0.316876 0.116226 0.106171 0.111626

13
mean 0.948196 0.572278 0.893216 0.567708 0.791244 0.886569 0.746248 0.515527 0.90204 0.508758 0.506873 0.386105

sd 0.56097 0.039752 0.351253 0.040777 0.069577 0.075431 0.068078 0.097557 0.057402 0.112616 0.116107 0.103661
best 0.507178 0.480567 0.613709 0.486725 0.703318 0.713484 0.598444 0.308969 0.78502 0.290496 0.277532 0.19549

14
mean 1.10203 0.809976 0.939455 0.549019 1.81242 1.61733 1.18273 0.550761 1.62775 0.289925 0.512543 0.272963

sd 0.761013 1.34069 0.404122 0.076461 1.13061 0.190428 0.769868 0.084641 0.170442 0.093759 0.296611 0.04739
best 0.583866 0.258488 0.516975 0.341437 0.595286 1.08681 0.500411 0.368413 1.17583 0.135345 0.197402 0.190261

15
mean 16.4881 11.1549 13.1341 18.3757 38.1927 20.876 28.0316 18.1106 21.5514 14.8516 10.2203 10.0955

sd 33.3129 3.26455 0.175324 2.88225 87.3353 2.79681 62.2056 3.03703 2.39859 4.82808 3.90424 4.73805
best 3.73779 6.22384 12.8651 11.7077 0.677848 14.2342 1.30462 10.0503 16.132 7.92992 4.05726 4.13327

16
mean 11.8611 10.68171 13.2156 13.5836 13.4623 13.5083 12.9707 13.4556 13.1031 11.5425 12.3751 9.99059

sd 0.439775 0.766201 0.228776 0.202326 0.272579 0.32676 0.191361 0.208746 0.363715 0.454196 0.905579 1.13569
best 10.8519 8.32414 12.3006 13.0718 12.8603 12.7806 12.6219 13.0652 12.745 10.6312 10.4191 7.30814
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Regarding the multi-modal functions f4, f8, f9, f13 and f16, COBRA-SHA was able to outperform
all the biology-inspired algorithms included in the comparison in terms of mean and best values.
The COBRA-SHA modification performed better than the other algorithms for the rest of the
multi-modal functions (namely f6, f7, f10, f11, f12, f14 and f15) except the fifth benchmark problem,
but it was able to find the best value for f5. The fuzzy-controlled COBRA-f found the best solution
for function f14 and gave the best mean value for function f5. As with the COBRA-SHA modification,
COBRA-fas gave the best values for functions f7 and f10. For functions f6 and f11, the best values
were found by the WPS algorithm, while for function f15 it was found by the FFA algorithm. Finally,
the modification CSA-a was able to achieve the best value for function f12.

The results of the comparison between COBRA-SHA and the other mentioned algorithms
according to the Mann-Whitney statistical test with significance level p = 0.01 are presented in
Table 8 (the same notations are used). The results of the Mann-Whitney statistical test are presented in
Figure 8. Then all the stated algorithms were compared with the proposed modification COBRA-SHA
according to the Friedman statistical test. The obtained results are demonstrated in Figure 9 (the same
notations as in Figures 6 and 7 are used).

Table 8. Results of the Mann-Whitney statistical test with p = 0.01 for SET-3, comparison of COBRA-SHA with
other approaches.

PSO WPS FSS CSA FFA BA FFA-a CSA-a BA-a COBRA-f COBRA-fas

+ 15 15 16 16 15 16 15 15 16 12 11

= 1 1 0 0 1 0 1 1 0 4 5

− 0 0 0 0 0 0 0 0 0 0 0

Total 15 15 16 16 15 16 15 15 16 12 11

Figure 8. Results of the Mann-Whitney statistical test with p = 0.01 for SET-3, comparison of
COBRA-SHA with other approaches.

Thus, it was established that the results obtained by the proposed approach are statistically better
according to the Friedman and Mann-Whitney tests than the results obtained by the mentioned
biology-inspired algorithms (PSO, WPS, FSS, FFA, CSA and BA) and their modifications with
the external archive (FFA-a, CSA-a, BA-a). Moreover, COBRA-SHA statically outperformed the
fuzzy-controlled COBRA-f. Furthermore, the experimental results for the benchmark problems from
SET-3 showed that the COBRA-SHA approach is more useful for solving complex multi-modal
optimization problems than the similar modification COBRA-fas. Therefore, the workability and
usefulness of the proposed COBRA-SHA algorithm were demonstrated.
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Figure 9. Results of the Friedman statistical test for SET-3.

5.3.4. Population Sizes Change

Additionally, in this study, population size changes were observed while solving benchmark
problems from SET-2 and SET-3 with 10 and 30 variables. Figure 10 shows the change of the
COBRA-f, COBRA-fas and COBRA-SHA component population sizes during the optimization process
on three functions from SET-2 with 10 variables, namely Schwefel’s function (the first column),
Weierstrass’s function (the second column) and Ackley’s function (the third column), with the
best-found fuzzy-controller parameters.

The figures on the first row demonstrate the original fuzzy-controlled COBRA-f tuning procedure
behavior, the figures on the second row show the COBRA-fas modification, and finally the figures
on the third row show the proposed COBRA-SHA approach. The behavior of these three tuning
methods is quite different. The standard COBRA-f tends to give all resources to one component (which
can be seen for Weierstrass’s and Ackley’s functions). However, for Schwefel’s function, which is a
complex optimization problem with many local minima, there was competition between the PSO and
BA approaches for resources while the FFA component still had the biggest population size.

The COBRA-fas modification demonstrated similar behavior for Schwefel’s function (CSA had the
largest amount of resources while FSS and BA competed for “second place”). However, for Ackley’s
function all the components had population sizes with the number of individuals within the range
[22, 23] during the optimization process. It should be noted that the same solutions were found by
the COBRA-f and COBRA-fas approaches, but while COBRA-f was able to find a solution with 300
individuals throughout all populations, the COBRA-fas modification used only 133.

Finally, the proposed algorithm COBRA-SHA increased all population sizes simultaneously (but
differently): each population contained at least 20 individuals. Nevertheless, the largest amounts of
resources were usually given to two components: for example, in the case of Schwefel’s function the
winners were the FFA and BA algorithms, but for Weierstrass’s function, they were the WPS and FSS
algorithms. It should be noted that while solving Ackley’s problem by COBRA-SHA all components
had 49–51 individuals in their populations.
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Figure 10. Population size changes for SET-2 with 10 variables.

Next, Figure 11 shows the change of the COBRA-f, COBRA-fas and COBRA-SHA component
population sizes during the optimization process on three functions from SET-2 with 30 variables,
namely the Sphere function (the first column), the Quartic function (the second column) and
Ackley’s function (the third column) with the best-found fuzzy-controller parameters. The algorithms
demonstrate the same behavior as in the previous case (benchmark problems from SET-2 but with
10 variables).

However, let us consider the optimization process while solving the Quartic problem with the
COBRA-fas approach. First, the BA algorithm appeared to be the best choice for the fuzzy controller.
Thus, it increased the BA’s population to 40 individuals, when other populations had minimal sizes.
After that, the population sizes did not change, and only after more than 250, 000 calculations was the
FFA approach able to improve the optimization process, with its population size starting to increase
gradually. Therefore, in the end FFA had the largest amount of resources.

Finally, Figure 12 shows the change in the COBRA-f, COBRA-fas and COBRA-SHA component
population sizes during the optimization process on three functions from SET-3, namely Rotated Discus
Function (the first column), Shifted and Rotated HGBat Function (the second column) and Shifted
and Rotated Expanded Scaffer’s F6 Function (the third column) with the best-found fuzzy-controller
parameters. The first problem is unimodal, and the others are multi-modal.
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Figure 11. Population size changes for SET-2 with 30 variables.

The standard COBRA-f tuning method usually makes multiple oscillations, but the winning
component is changed over time. The COBRA-fas method with the first problem could not make
a decision regarding which component was the best during the first 150, 000 calculations, but later
the population of the WPS algorithm started to increase gradually and the population of the FSS
algorithm became three times greater than it was initially. For the second stated problem, the PSO
component appeared to be the most successful at the beginning of the optimization process. However,
its population size did not change after 20, 000 calculations. On the other hand, the population size of
the FSS component increased after 50, 000 calculations and it had the largest amount of resources by
the end of the optimization process. For the last problem, as with the Discuss function, COBRA-fas
could not determine the winner component algorithm at first, but then it increased the population of
the FFA approach and minimized the sizes of all other populations down to zero simultaneously.

As for the COBRA-SHA modification, it did not minimize population sizes down to zero, thus,
provided a more diverse set of potential solutions. Regarding the Discuss problem, even though the
FFA component gave better results than other biology-inspired algorithms at first, the WPS component
started to outperform it quite early. Therefore, by the end of the optimization process the WPS
component had the largest amount of resources, and the FFA approach the second largest, while the
populations of other components had at least 20 individuals. A similar situation can be observed for
the HGBat Function with FSS and PSO components as winners. As for the last benchmark problem,
during the first 70, 000 calculations the population of the FFA algorithm increased and consisted of
more than 100 individuals, while at the same time, the population sizes of other algorithms were close
to 20 and did not change. Nevertheless, the population size of the WPS component then started to
increase significantly, still delivering goal function improvements. By the end of the optimization
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process, the WPS component algorithm had the largest number of individuals, yet that number was
close to the number of individuals of the FFA’s population.

Thus, the demonstrated cases represent different scenarios where the resource tuning is helpful,
as it is able to change the algorithm structure in accordance with the current requirements.

Figure 12. Population size changes for SET-3.

6. Conclusions

In this paper, a new modification of the meta-heuristic COBRA, namely the COBRA-SHA
meta-heuristic, is proposed for solving real-valued optimization problems. To be more specific, a new
modification is based on an alternative way of generating potential solutions. The stated technique
uses a historical memory of successful positions found by individuals to guide them in different
directions and thus to improve their exploration and exploitation abilities. The proposed method was
applied to the components of the COBRA approach and to its basic procedures. The COBRA-SHA
algorithm was tested using the three sets of benchmark functions. The experimental results show that
the performance of the proposed algorithm is superior to that of the other biology-inspired algorithms
in exploiting the optimum and it also has advantages in exploration.

Still, in this study several of the simplest variants of the biology-inspired component algorithms
have been used for the proposed approach. Thus, further work should be focused on implementing
their newer versions in the collective of the COBRA-SHA algorithm, as well as on comparisons with
them. Moreover, there are still several parameters introduced for this modification, which were chosen
empirically. Therefore, the performance of the COBRA-SHA approach should be tested for different
parameter adaptation schemes. Moreover, the proposed modification should be applied for other
optimization problem types (constrained, large-scale, multi-objective and so on).
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