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Abstract: Let P be a set of n points in Rd, k ≥ 1 be an integer and ε ∈ (0, 1) be a constant. An ε-coreset
is a subset C ⊆ P with appropriate non-negative weights (scalars), that approximates any given set
Q ⊆ Rd of k centers. That is, the sum of squared distances over every point in P to its closest point in
Q is the same, up to a factor of 1± ε to the weighted sum of C to the same k centers. If the coreset
is small, we can solve problems such as k-means clustering or its variants (e.g., discrete k-means,
where the centers are restricted to be in P, or other restricted zones) on the small coreset to get faster
provable approximations. Moreover, it is known that such coreset support streaming, dynamic and
distributed data using the classic merge-reduce trees. The fact that the coreset is a subset implies
that it preserves the sparsity of the data. However, existing such coresets are randomized and their
size has at least linear dependency on the dimension d. We suggest the first such coreset of size
independent of d. This is also the first deterministic coreset construction whose resulting size is not
exponential in d. Extensive experimental results and benchmarks are provided on public datasets,
including the first coreset of the English Wikipedia using Amazon’s cloud.
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1. Background

Given a set of n points in Rd, and an error parameter ε > 0, a coreset in this paper is a small set of
weighted points in Rd, such that the sum of squared distances from the original set of points to any set
of k centers in Rd can be approximated by the sum of weighted squared distances from the points in
the coreset. The output of running an existing clustering algorithm on the coreset would then yield
approximation to the output of running the same algorithm on the original data, by the definition of
the coreset.

Coresets were first suggested by [1] as a way to improve the theoretical running time of existing
algorithms. Moreover, a coreset is a natural tool for handling Big Data using all the computation
models that are mentioned in the previous section. This is mainly due to the merge-and-reduce tree
approach that was suggested by [2,3] and is formalized by [4]: coresets can be computed independently
for subsets of input points, e.g., on different computers, and then be merged and re-compressed again.
Such a binary compression tree can also be computed using one pass over a possibly unbounded
streaming set of points, where in every moment only O(log n) coresets exist in memory for the n points
streamed so far. Here the coreset is computed only on small chunks of points, so a possibly inefficient
coreset construction still yields efficient coreset constructions for large sets; see Figure 1. Note that the
coreset guarantees are preserved while using this technique, while no assumptions are made on the
order of the streaming input points. These coresets can be computed independently and in parallel via
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M machines (e.g., on the cloud) and reduce the running time by a factor of M. The communication
between the machines is also small, since each machine needs to communicate to a main server only
the coreset of its data.

In practice, this technique can be implemented easily using the map-reduce approach of modern
software for Big Data such as [5].

Coresets can also be used to support the dynamic model where points are deleted/inserted.
Here the storage is linear in n since we need to save the tree in memory (practically, on the hard drive),
however the update time is only logarithmic in n since we need to reconstruct only O(log n) coresets
that correspond to the deleted/inserted point along the tree. First such coreset of size independent of d
was introduced by [6]. See [1,2] for details.

Figure 1. Coresets construction from data streams [2]. The black arrows indicate “merge-and-reduce”
operations. The intermediate coresets C1, . . . , C7 are numbered in the order in which they would be
generated in the streaming case. In the parallel case, C1, C2, C4 and C5 would be constructed in parallel,
followed by C3 and C6, finally resulting in C7. The Figure is from [7].

Constrained k-Means and Determining k

Since the coreset approximates every set of k centers, it can also be used to solve the k-means
problem under different constraints (e.g., allowed areas for placing the centers) or given a small set of
candidate centers. In addition, the set of centers may contain duplicate points, which means that the
coreset can approximate the sum of squared distances for k′ < k centers. Hence, coresets can be used
to choose the right number k of centers up to k′, by minimizing the sum of squared distances plus f (k)
for some function of k. Full opensource is available [8].

2. Related Work

We summarize existing coresets constructions for k-means queries, as will be formally defined in
Section 4.

Importance Sampling

Following a decade of research, coreset of size polynomial in d were suggested by [9]. Ref [10]
suggested an improved version of size O(dk2/ε2) in which is a special case of the algorithms proposed
by [11]. The construction is based on computing an approximation to the k-means of the input
points (with no constraints on the centers) and then sample points proportionally to their distance
to these centers. Each chosen point is then assigned a weight that is inverse proportional to this
distance. The probability of failure in these algorithms reduces exponentially with the input size.
Coresets of size O(dk/ε2), i.e., linear in k, were suggested in work of [12], however the weight of a
point may be negative or a function of the given query. For the special case k = 1, Inaba et al. [13],
provided constructions of coresets of size O(1/ε2) using uniform sampling.

Projection based coresets. Data summarization which are similar to coresets of size O(k/ε) that
are based on projections on low-dimensional subspaces that diminishes the sparsity of the input
data were suggested by [14] by improving the analysis of [4]. Recently [15] improves both on [4,14]
by applying Johnson-Lindenstrauss Lemma [16] on construction from [4]. However, due to the
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projections, the resulting summarizations of all works mentioned above are not subset of the input
points, unlike the coreset definition of this paper. In particular, for sparse data sets such as adjacency
matrix of a graphs, documents-term matrix of Wikipedia, or images-objects matrix, the sparsity of the
data diminishes and a single point in the summarization might be larger than the complete sparse
input data.

Other type of weak coresets approximates only the optimal solution, and not every k centers.
Such randomized coresets of size independent of d and only polynomial in k were suggested by [11]
and simplified by [12].

Deterministic Constructions. The first coresets for k-means [2,17] were based on partitioning
the data into cells, and take a representative point from each cell to the coreset, as is done in hashing
or Hough transform [18]. However, these coresets are of size at least k/εO(d), i.e., exponential in
d, while still providing result which is a sub-set of the the input in contrast to previous work [17].
While, our technique is most related to the deterministic construction that was suggested in [4]
by recursively computing k-means clustering of the input points. While the output set has size
independent of d, it is not a coreset as defined in this paper, since it is not a subset of the input and thus
cannot handle sparse data as explained above. Techniques such as uniform sampling for each cluster
yields coresets with probability of failure that is linear in the input size, or whose size depends on d.

m-means is a coreset for k-means? A natural approach for coreset construction, that is strongly
related to this paper, is to compute the m-means of the input set P, for a sufficiently large m, where the
weight of each center is the number of point in its cluster. If the sum of squared distances to these
m-centers is about ε factor from the k-means, we obtain a (k, ε)-coreset by (a weaker version of)
the triangle inequality. Unfortunately, it was recently proved in [19] that there exists sets such that
m ∈ kΩ(d) centers are needed in order to obtain this small sum of squared distances.

3. Our Contribution

We suggest the following deterministic algorithms:

1. An algorithm that computes a (1 + ε) approximation for the k-means of a set P that is distributed
(partitioned) among M machines, where each machine needs to send only kO(1) input points to
the main server at the end of its computation.

2. A streaming algorithm that, after one pass over the data and using kO(1) log n memory returns
an O(log n)-approximation to the k-means of P. The algorithm can run “embarrassingly in
parallel [20] on data that is distributed among M machines, and support insertion/deletion of
points as explained in the previous section.

3. Description of how to use our algorithm to boost both the running time and quality of any
existing k-means heuristic using only the heuristic itself, even in the classic off-line setting.

4. Extensive experimental results on real world data-sets. This includes the first k-means clustering
with provable guarantees for the English Wikipedia, via 16 EC2 instances on Amazon’s cloud.

5. Open-code for for fully reproducing our results and for the benefit of the community. To our
knowledge, this is the first coreset code that can run on the cloud without additional
commercial packages.

3.1. Novel Approach: m-Means Is A Coreset for k-Means, for Smart Selection of m

One of our main technical result is that for every constant ε > 0, there exists an integer m ∈ kO(1)

such that the m-means of the input set (or its approximation) is a (k, ε)-coreset; see Theorem 2.
However, simply computing the m-means of the input set for a sufficiently large m might yield m that
is exponential in d, as explained by [19] and the related work. Instead, Algorithm 1 carefully selects
the right m between k and kO(1) after checking the appropriate conditions in each iteration.
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3.2. Solving k-Means Using k-Means

It might be confusing that we suggest to solve the k-means problem by computing m-means for
m > k. In fact, most of the coreset constructions actually solve the optimal problem in one of their first
construction steps. The main observation is that we never run the coreset on the complete input of n
(or unbounded stream of) points, but only on small subsets of size ∼ 2m. This is since our coresets are
composable and can be merged (to 2m points) and reduced back to m using the merge-and-reduce tree
technique. The composable property follows from the fact that the coreset approximates the sum of
squared distances to every k-centers, and not just the k-means for the subset at hand.

3.3. Running Time

Running time that is exponential in k is unavoidable for any (1 + ε)-approximation algorithm
that solves k-means, even in the planar case (d = 2) [21] and ε < 0.1 [4]. Our main contributions is a
coreset construction that uses memory that is independent of d and running time that is near-linear in
n. To our knowledge this is an open problem even for the case k = 2. Nevertheless, for large values of
ε (e.g., ε > 10) we may use existing constant factor approximations that takes time polynomial in k to
compute our coreset in time that is near-linear in n but also polynomial in k.

In practice, provable (1 + ε)-approximations for k-means are rarely used due to the lower bounds
on the running times above. Instead, heuristics are used. Indeed, in our experimental results we
evaluate this approach instead of computing the optimal k-means during the coreset construction and
on the resulting coreset itself.

4. Notation and Main Result

The input to our problem is a set P′ of n points in Rd, where each point p ∈ P′ includes
a multiplicative weight u(p) > 0. In addition, there is an additive weight ρ > 0 for the set.
Formally, a weighted set in Rd is a tuple P = (P′, u, ρ), where P′ ⊆ Rd, u : P′ → [0, ∞). In particular,
an unweighted set has a unit weight u(p) = 1 for each point, and a zero additive weight.

4.1. k-Means Clustering

For a given set Q = {q1, · · · , qk} of k ≥ 1 centers (points) in Rd, the Euclidean distance from a
point p ∈ Rd to its closest center in Q is denoted by 1.7em(p, Q) = minq∈Q ‖p− q‖2. The sum of these
weighted squared distances over the points of P is denoted by

cost(P, Q) := ∑
p∈P′

u(p) · 1.7em2(p, Q) + ρ.

If P is an unweighted set, this cost is just the sum of squared distances over each point in P′ to its
closest center in Q.

Let P′i denote the subset of points in P′ whose closest center in Q is qi, for every i ∈ [m] =

{1, · · · , m}. Ties are broken arbitrarily. This yields a partition
{

P′1, · · · , P′k
}

of P′ by Q. More generally,
the partition of P by Q is the set {P1, · · · , Pk}where Pi = (P′i , ui, ρ/k), and ui(p) = u(p) for every p ∈ P′i
and every i ∈ [k].

A set Qk that minimizes this weighted sum cost(P, Q) over every set Q of k centers in Rd is called
the k-means of P. The 1-means µ(P) of P is called the centroid, or the center of mass, since

µ(P) =
1

∑p′∈P′ u(p′) ∑
p∈P′

u(p) · p.

We denote the cost of the k-means of P by opt(P, k) := cost(P, Qk).
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4.2. Coreset

Computing the k-means of a weighted set P is the main motivation of this paper. Formally, let ε > 0
be an error parameter. The weighted set S = (S′, w, φ) is a (k, ε)-coreset for P, if for every set Q ⊂ Rd

of |Q| = k centers we have

(1− ε)cost(P, Q) ≤ cost(S, Q) ≤ (1 + ε)cost(P, Q),

That is,

(1− ε) ∑
p∈P

u(p)1.7em2(p, Q) + ρ ≤ ∑
p∈S

w(p) · 1.7em2(p, Q) + φ ≤ (1 + ε) ∑
p∈P

u(p) · 1.7em2(p, Q) + ρ.

To handle streaming data we will need to compute “coresets for union of coresets”, which is the
reason that we assume that both the input P and its coreset S are weighted sets.

4.3. Sparse Coresets

Unlike previous work, we add the constraints that if each point in P is sparse, i.e., has few
non-zeroes coordinates, then the set S will also be sparse. Formally, the maximum sparsity s(P) :=
maxp∈P ‖p‖0 of P is the maximum number of non zeroes entries ‖p‖0 = | {i | pi 6= 0, i ∈ [d]} | over
every point p in P.

In particular, if each point in S is a linear combination of at most α points in P, then s(S) ≤ α · s(P).
In addition, we would like that the set S will be of size independent of both n = |P| and d.

We can now state the main result of this paper.

Theorem 1 (Small sparse coreset). For every weighted set P = (P′, u, ρ) in Rd, ε > 0 and an integer k ≥ 1,
there is a (k, ε)-coreset S = (S′, w, φ) of size |S| = kO(1/ε2) where each point in S′ is a linear combination of
O(1/ε2) points from P′. In particular, the maximum sparsity of S′ is s(P)/ε2.

By plugging this result to the traditional merge-and-reduce tree in Figure 1, it is straight-forward
to compute a coreset using one pass over a stream of points.

Corollary 1. A (k, ε log n) coreset (S, w, φ) of size |S| = log(n) · kO(1/ε2) and maximum sparsity s(P)/ε2

can be computed for the set P of the n points seen so far in an unbounded stream, using |S| · s(P)/ε2 memory
words. The insertion time per point in the stream is log(n) · 2(k/ε)O(1)

. If the stream is distributed uniformly
to M machines, then the amortized insertion time per point is reduced by a (multiplicative) factor of M to
(1/M) log(n) · 2(k/ε)O(1)

. The coreset for the union of streams can then be computed by communicating the M
coresets to a main server.

5. Coreset Construction

Our main coreset construction algorithm k-MEAN-CORESET(P, k, ε) gets a set P as input,
and returns a (k, ε)-coreset (S, w); see Algorithm 1.

To obtain running time that is linear in the input size, without loss of generality, we assume that
P has |P| = kO(1/ε2) points, and that the cardinality of the output S is |S| ≤ |P|/2. This is thanks to the
traditional merge-and-reduce approach: given a stream of n points, we apply the coreset construction
only on subsets of size 2 · |S| from P during the streaming and reduce them by half. See Figure 1 and
e.g., [4,7] for details.

Algorithm Overview

In Line 1 we compute the smallest integer m = kt such that the cost opt(P, m) of the m-means
of P is close to the cost opt(P, mk) of the (mk)-means of P. In Line 3 we compute the corresponding
partition {P1, · · · , Pm} of P by its m-means Qm = {q1, · · · , qm}. In Line 5 a (1, ε)-sparse coreset Si of
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size O(1/ε2) is computed for every Pi, i ∈ [m]. This can be done deterministically e.g., by taking the
mean of Pi as explained in Lemma 1 or by using a gradient descent algorithm, namely Frank-Wolfe,
as explained in [22] which also preserves the sparsity of the coreset as desired by our main theorem.
The output of the algorithm is the union of the means of all these coresets, with appropriate weight,
which is the size of the coreset.

The intuition behind the algorithm stems from the assumption that m-means clustering will have
lower cost than k-means and this is actually supported by series of previous work [23,24]. In fact
our experiments in Section 7 evidence that in practice it actually works better than anticipated by
theoretical bounds.

Algorithm 1: k-MEAN-CORESET(P, k, ε)

Input: A weighted set P of points in Rd, integer k ≥ 1, and error parameter ε ∈ (0, 1/4).
Output: A (k, ε)-coreset S for P that satisfies Theorem 1.

1 Compute the smallest integer t ≥ 0 such that opt(P, kt)− opt(P, kt+1) ≤ ε2 · opt(P, k)
/* opt(P, m) is the m-mean cost of P. */

2 Set m← kt

3 Set {P1, . . . , Pm} ← the partition of P by opt(P, m)

4 for i := 1 to m do
5 Compute a (1, ε)-coreset Si = (S′i , wi, φi) for Pi
6 Set w(µ(Si))← ∑p∈S′i

wi(p)

7 Set S′ ← ⋃m
i=1 µ(Si)

8 Set φ← ∑m
i=1 cost(Si, µ(Si))

9 Set S← (S′, w, φ)

10 return S

6. Proof of Correctness

The first lemma states the common fact that the sum of squared distances of a set of point to a
center is the sum of their squared distances to their center of mass, plus the squared distance to the
center (the variance of the set).

Lemma 1. For every x ∈ Rd

cost(P, x) = cost(P, µ(P)) + ‖µ(P)− x‖2 ∑
p∈P

u(p).

Proof. We have

cost(P, x)− ρ = ∑
p∈P

u(p) ‖p− x‖2 = ∑
p∈P

u(p) ‖(p− µ(P)) + (µ(P)− x)‖2

= ∑
p∈P

u(p) ‖p− µ(P)‖2 + ∑
p∈P

u(p) ‖µ(P)− x‖2 + 2(µ(p)− x) · ∑
p∈P

u(p)(p− µ(P)).

The last term equals zero since µ(P) =
1

∑p′∈P u(p′)
·∑p∈P u(p) · p, and thus

∑
p∈P

u(p)(p− µ(P)) = ∑
p∈P

u(p) · p− ∑
p∈P

u(p)µ(P) = ∑
p∈P

u(p) · p− ∑
p∈P

u(p) · p = 0.
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Hence,

cost(P, x) = ρ + ∑
p∈P

u(p) ‖p− µ(P)‖2 + ∑
p∈P

u(p) ‖µ(P)− x‖2 = cost(P, µ(P)) + ‖µ(P)− x‖2 ∑
p∈P

u(p).

The second lemma shows that assigning all the points of P to the closest center in Q yields a small
multiplicative error if the 1-mean and the k-means of P has roughly the same cost. If t = 0, this means
that we can approximate cost(P, Q) using only one center in the query; see Line 1 of Algorithm 1.
Note that (1 + 2ε)/(1− 2ε) ≤ 1 + 4ε for ε < 1/4.

Lemma 2. For every set Q ⊆ Rd of |Q| = k centers we have

cost(P, Q) ≤ min
q∈Q

cost(P, {q}) ≤ cost(P, Q) · 1 + 2ε

1− 2ε
+

opt(P, 1)− opt(P, k)
(1− 2ε)ε

. (1)

Proof. Let q∗ denote a center that minimizes cost(P, {q}) over q ∈ Q. The left inequality of (1) is then
straight-forward since

cost(P, Q)−min
q∈Q

cost(P, {q}) = ∑
p∈P′

min
q∈Q

u(p) ‖p− q‖2 − ∑
p∈P′

u(p) ‖p− q∗‖2

= ∑
p∈P′

u(p)
(

min
q∈Q
‖p− q‖2 − ‖p− q∗‖2

)
≤ 0.

(2)

It is left to prove the right inequality of (1). Indeed, for every p ∈ P′, let qp ∈ Q denote the closest
point to p in Q. Ties are broken arbitrarily. Hence,

min
q∈Q

cost(P, {q})− cost(P, Q) = ∑
p∈P′

u(p) ‖p− q∗‖2 − ∑
p∈P′

u(p)
∥∥p− qp

∥∥2 .

Let {P1, · · · , Pk} denote the partition of P by Q =
{

q1, · · · , qk
}

, where Pi are the closest points to

qi for every i ∈ [k]; see Section 4. For every p ∈ P′i , let q∗p = µ(Pi). Hence,

∑
p∈P′i

u(p) ‖p− q∗‖2 − ∑
p∈P′i

u(p)
∥∥p− qp

∥∥2 (3)

= ∑
p∈P′i

u(p) ‖p− µ(Pi)‖2 + ‖µ(Pi)− q∗‖2 ∑
p∈P′i

u(p) (4)

−

 ∑
p∈P′i

u(p) ‖p− µ(Pi)‖2 +
∥∥∥µ(Pi)− qi

∥∥∥2
∑

p∈P′i

u(p)

 (5)

= ∑
p∈P′i

u(p)
(∥∥∥q∗p − q∗

∥∥∥2
−
∥∥∥q∗p − qp

∥∥∥2
)

, (6)

where in (4) and (5) we substituted x = q∗ and x = qp respectively in Lemma 1, and in (6) we use the
fact that q∗p = µ(Pi) and qp = qi for every p ∈ Pi. Summing (6) over i ∈ [k] yields
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∑
p∈P′

u(p) ‖p− q∗‖2 − ∑
p∈P′

u(p)
∥∥p− qp

∥∥2
= ∑

p∈P′
u(p)

(∥∥∥q∗p − q∗
∥∥∥2
−
∥∥∥q∗p − qp

∥∥∥2
)

= ∑
p∈P′

u(p)
(∥∥∥(q∗p − µ(P)) + (µ(P)− q∗)

∥∥∥2
−
∥∥∥(q∗p − µ(P)) + (µ(P)− qp)

∥∥∥2
)

(7)

= ∑
p∈P′

u(p)
(
‖µ(P)− q∗‖2 −

∥∥µ(P)− qp
∥∥2
)

(8)

− 2 ∑
p∈P′

u(p)(q∗p − µ(P))(q∗ − qp). (9)

To bound (8), we substitute x = q∗ and then x = q in Lemma 1, and obtain that for every q ∈ Q(
‖µ(P)− q∗‖2 − ‖µ(P)− q‖2

)
∑

p∈P′
u(p) = cost(P, {q∗})− cost(P, µ(P))− (cost(P, {q})− cost(P, µ(P)))

= cost(P, {q∗})− cost(P, {q}) ≤ 0.

where the last inequality is by the definition of q∗. This implies that for every p ∈ P′,

‖µ(P)− q∗‖2 −
∥∥µ(P)− qp

∥∥2 ≤ 0.

Plugging the last inequality in (8) yields

∑
p∈P′

u(p) ‖p− q∗‖2 − ∑
p∈P′

u(p)
∥∥p− qp

∥∥2 ≤ −2 ∑
p∈P′

u(p)(q∗p − µ(P))(q∗ − qp) (10)

≤ 2 ∑
p∈P′

u(p)
∥∥∥q∗p − µ(P)

∥∥∥ ∥∥q∗ − qp
∥∥ = ∑

p∈P′
u(p) · 2 ·

∥∥∥q∗p − µ(P)
∥∥∥

√
ε

·
√

ε
∥∥q∗ − qp

∥∥ (11)

≤ ∑
p∈P′

u(p)


∥∥∥q∗p − µ(P)

∥∥∥2

ε
+ ε

∥∥q∗ − qp
∥∥2

 (12)

=
1
ε ∑

p∈P′
u(p)

∥∥∥q∗p − µ(P)
∥∥∥2

+ ε ∑
p∈P′

u(p)
∥∥q∗ − qp

∥∥2 , (13)

where (11) is by Cauchy-Schwartz inequality, and in (12) we use the fact that 2ab ≤ a2 + b2 for every
a, b ≥ 0.

To bound the left term of (13) we use the fact q∗p = µ(Pi) and substitute x = µ(P), P = Pi in
Lemma 1 for every i ∈ [k] as follows.

∑
p∈P′

u(p)
∥∥∥q∗p − µ(P)

∥∥∥2
=

k

∑
i=1
‖µ(Pi)− µ(P)‖2 ∑

p∈P′i

u(p)

=
k

∑
i=1

 ∑
p∈P′i

u(p) ‖p− µ(P)‖2 − ∑
p∈P′i

u(p) ‖p− µ(Pi)‖2


= ∑

p∈P′
u(p) ‖p− µ(P)‖2 −

k

∑
i=1

∑
p∈P′i

u(p)
∥∥p− µ(P′i )

∥∥2 ≤ opt(P, 1)− opt(P, k).

(14)
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To bound the right term of (13) we use (a− b)2 ≤ a2 + b2 + 2|ab| ≤ 2a2 + 2b2 to obtain

∑
p∈P′

u(p)
∥∥q∗ − qp

∥∥2
= ∑

p∈P′
u(p)

∥∥(q∗ − p) + (p− qp)
∥∥2

≤ ∑
p∈P′

u(p)
(

2 ‖q∗ − p‖2 + 2
∥∥p− qp

∥∥2
)
= 2 · (cost(P, {q∗}) + cost(P, Q))) .

Plugging (14) and the last inequality in (13) yields

cost(P, {q∗})− cost(P, Q) = ∑
p∈P′

u(p) ‖p− q∗‖2 − ∑
p∈P′

u(p)
∥∥p− qp

∥∥2

≤ opt(P, 1)− opt(P, k)
ε

+ 2 · ε (cost(P, {q∗}) + cost(P, Q)) .

Rearranging,

cost(P, {q∗}) ≤ cost(P, Q) · 1 + 2ε

1− 2ε
+

opt(P, 1)− opt(P, k)
(1− 2ε)ε

Together with (2) this proves Lemma 2.

Lemma 3. Let S be a (1, ε)-coreset for a weighted set P in Rd. Let Q ⊆ Rd be a finite set. Then

(1− ε)min
q∈Q

cost(P, {q}) ≤ min
q∈Q

cost(S, {q}) ≤ (1 + ε)min
q∈Q

cost(P, {q}) (15)

Proof. Let qP ∈ Q be a center such that cost(P, {qP}) = minq∈Q cost(P, {q}), and let qS ∈ Q be a
center such that cost(S, {qS}) = minq∈Q cost(S, {q}). The right side of (15) is bounded by

min
q∈Q

cost(S, {q}) = cost(S, {qS}) ≤ cost(S, {qP}) ≤ (1 + ε)cost(P, {qP}) = (1 + ε)min
q∈Q

cost(P, {q}),

where the first inequality is by the optimality of qS, and the second inequality is since S is a coreset for
P. Similarly, the left hand side of (15) is bounded by

(1− ε)min
q∈Q

cost(P, {q}) = (1− ε)cost(P, {qP}) ≤ (1− ε)cost(P, {qS}) ≤ (1− ε)(1 + ε)cost(S, {qS})

= (1− ε2)min
q∈Q

cost(S, {q}) ≤ min
q∈Q

cost(S, {q}).

where the last inequality follows from the assumption ε < 1.

Lemma 4. Let S be the output of a call to k-MEAN-CORESET(P, k, ε). Then S is a (k, 15ε)-coreset for P.

Proof. By replacing P with Pi in Lemma 1 for each i ∈ [m] it follows that

cost(Pi, Q) ≤ min
q∈Q

cost(Pi, Q) ≤ cost(Pi, Q) · 1 + 2ε

1− 2ε
+

opt(Pi, 1)− opt(Pi, k)
(1− 2ε)ε

.

Summing the last inequality over each Pi yields

cost(P, Q) ≤
m

∑
i=1

min
q∈Q

cost(Pi, Q) ≤ cost(P, Q) · 1 + 2ε

1− 2ε
+

1
(1− 2ε)ε

m

∑
i=1

(opt(Pi, 1)− opt(Pi, k)) . (16)
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Since {P1, · · · , Pm} is the partition of the m-means of P we have ∑m
i=1 opt(Pi, 1) = opt(P, m).

By letting Qi be the m-means of Pi we have

m

∑
i=1

opt(Pi, k) =
m

∑
i=1

cost(Pi, Qi) ≥
m

∑
i=1

cost(Pi,∪m
j=1Qj) = cost(P,∪m

j=1Qj) ≥ opt(P, mk).

Hence,

m

∑
i=1

(opt(Pi, 1)− opt(Pi, k)) ≤ opt(P, m)− opt(P, mk) ≤ ε2opt(P, k) ≤ ε2cost(P, Q),

where the second inequality is by Line 1 of the algorithm. Plugging the last inequality in (16) yields

cost(P, Q) ≤
m

∑
i=1

min
q∈Q

cost(Pi, Q) ≤ cost(P, Q) · 1 + 3ε

1− 2ε
. (17)

Using Lemma 3, for every i ∈ [m]

(1− ε)min
q∈Q

cost(Pi, {q}) ≤ min
q∈Q

cost(Si, {q}) ≤ (1 + ε)min
q∈Q

cost(Pi, {q})

By summing over i ∈ [m] we obtain

(1− ε)
m

∑
i=1

min
q∈Q

cost(Pi, {q}) ≤
m

∑
i=1

min
q∈Q

cost(Si, {q}) ≤ (1 + ε)
m

∑
i=1

min
q∈Q

cost(Pi, {q}).

By this and Lemma 1

(1− ε)
m

∑
i=1

min
q∈Q

cost(Pi, {q}) ≤ cost(S, Q) ≤ (1 + ε)
m

∑
i=1

min
q∈Q

cost(Pi, {q}).

Plugging the last inequality in (17) yields

(1− ε)cost(P, Q) ≤ (1− ε)
m

∑
i=1

min
q∈Q

cost(Pi, Q)

≤ cost(S, Q)

≤ (1 + ε)
m

∑
i=1

min
q∈Q

cost(Pi, {q}) ≤ (1 + ε)cost(P, Q) · 1 + 3ε

1− 2ε
≤ (1 + 15ε)cost(P, Q).

(18)

Hence, S is a (k, 15ε) coreset for P.

Lemma 5. There is an integer t < 1 + 1/ε2 such that

opt(P, kt)− opt(P, kt+1) ≤ ε2 · opt(P, k). (19)

Proof. Contradictively assume that (19) does not hold for every integer i < 1 + 1/ε2. Hence,

opt(P, k)− opt(P, kd1/ε2e+1) =
d1/ε2e

∑
i=1

(
opt(P, ki)− opt(P, ki+1)

)
> d1/ε2e · ε2opt(P, k) ≥ opt(P, k).

Contradiction, since opt(P, kd1/ε2e+1) ≥ 0.

Using the mean of Pi in Line 5 of the algorithm yields a (1, ε)-coreset Si as shown in Lemma 1.
The resulting coreset is not sparse, but gives the following result.
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Theorem 2. There is m ≤ k1/ε2
such that the m-means of P is a (k, 15ε)-coreset for P.

Proof of Theorem 1: We compute Si a (1, ε) mean coreset for 1-mean of Pi at line 5 of Algorithm 1 by
using variation of Frank-Wolfe [22] algorithm. It follows that |Si| = O(1/ε2) for each i, therefore the
overall sparsity of S is s(P)/ε2. This and Lemma 4 concludes the proof.

7. Comparison to Existing Approaches

In this section we provide experimental results of our main algorithm of coreset constructions.
We compare the clustering with existing coresets and small/medium/large datasets. Unlike most of
the coreset papers, we also run the algorithm on the distributed setting via a cloud as explained below.

7.1. Datasets

For our experimental results we use three well known datasets, and the English Wikipedia
as follows.

MNIST handwritten digits [25]. The MNIST dataset consists of n = 60, 000 grayscale images of
handwritten digits. Each image is of size 28 × 28 pixels and was converted to a row vector row of
d = 784 dimensions.

Pendigits [26]. This dataset was downloaded from the UCI repository. It consists of 250 written
letters by 44 humans. These humans were asked to write 250 digits in a random order inside boxes
of 500 by 500 tablet pixel resolution. The tablet sends x and y tablet coordinates and pressure level
values of the pen at fixed time intervals (sampling rate) of 100 milliseconds. Digits are represented as
constant length feature vectors of size d = 16 the number of digits in the dataset is n = 10, 992.

NIPS dataset [27]. The OCR scanning of NIPS proceedings over 13 years. It has 15,000 pages and
1958 articles. For each author, there is a corresponding words counter vector, where the ith entry in the
vector is the number of the times that the word used in one of the author’s submissions. There are
overall n = 2865 authors and d = 14, 036 words in this corpus.

English Wikipedia [28]. Unlike previous datasets that were uploaded to memory and then
compressed via streaming coresets, the English Wikipedia practically can not be uploaded completely
to memory. The size of the dataset is 15GB after converting to a term-documents matrix via gensim [29].
It has 4M vectors, each of 105 dimensions and an average of 200 non-zero entries, i.e., words per
document.

7.2. The Experiment

We applied our coreset construction to boost the performance of Lloyd’s k-means heuristic
as explained in Section 8 of previous work [6]. We compared the results with the current data
summarization algorithms that can handle sparse data: uniform and importance sampling.

7.3. On the Small/Medium Datasets

we evaluate both the offline computation and the streaming data model. For offline computation
we used the datasets above to produce coresets of size 100 ≤ m ≤ 1500, then computed k-means for
k = 10, 15, 20, 25 till convergence. For the streaming data model, we divided each dataset into small
subsets and computed coresets via the merge-and-reduce technique to construct a coreset tree as in
Figure 1. Here, the coresets are smaller, of size 10 ≤ m ≤ 500, and the values for k-means are the same.

We computed the sum of squared distances to the original (full) set of points, from each resulting
set of k centers that was computed from the coreset. These sets of centers are denoted by C1, C2 and
C3 for uniform, non uniform sampling and our coreset respectively. The “ground truth” or “optimal
solution” Ck was computed using k-means on the entire dataset until convergence. The empirical
estimated error ε was then defined to be ε = Ct/Ck − 1 for coreset number t = 1, 2, 3. Note that,
since Lloyd’s k-means is a heuristic, its performance on the reduced data might be better, i.e., ε < 0.
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These experiments were run on a single common laptop machine with 2.2GHz quad-core Intel
Core i7 CPU and 16GB of 1600MHz DDR3L RAM with 256GB PCIe-based onboard SSD.

7.4. On the Wikipedia Dataset

We compared the three discussed data summarization techniques, while each one was computed
in parallel and in a distributed fashion on 16 EC2 virtual servers. We repeated computation for
k = 16, 32, 64 and 128, and coresets size in the range [32, 1024].

This experiment was executed via Amazon’s Web Services (“cloud”), using 16 EC2 virtual
computation nodes of type c4.4xlarge, which 8 vCPU and 15GiB of RAM. We repeated distributed
computation evaluating for coresets of sizes 256, 512, 1024 and 2048 points for k-means with k =

16, 32, 64, 128.

7.5. Results

The results of experiment for k = 15, 20, 25 on small datasets for offline computation are depicted
on Figure 2, where it’s evident that error of kmeans computation fed by our coreset algorithm results
outperforms error of uniform and non-uniform sampling.

(a) MNIST, k = 15 (b) Pendigits, k = 15 (c) NIPS, k = 15

(d) MNIST, k = 20 (e) Pendigits, k = 20 (f) NIPS, k = 20

(g) MNIST, k = 25 (h) Pendigits, k = 25 (i) NIPS, k = 25

Figure 2. Offline coresets computation for small datasets (uniform sampling, non uniform sampling
and our algorithm).

For streaming computation model our algorithm is able to provide results which are better than
other two as could be explored in Figure 3. In addition, existing algorithms suffer from “cold start” as
common in random sampling techniques: there is a slow convergence to the small error, compared to
our deterministic algorithm that introduces small error already after a small sample size.
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(a) MNIST, k = 15 (b) Pendigits, k = 15 (c) NIPS, k = 15

(d) MNIST, k = 20 (e) Pendigits, k = 20 (f) NIPS, k = 20

(g) MNIST, k = 25 (h) Pendigits, k = 25 (i) NIPS, k = 25

Figure 3. Streaming coresets computation for small datasets (uniform sampling, non uniform sampling
and our algorithm).

At Figure 4 presented results of the experiment on Wikipedia dataset for different values of
k = 32, 64, 128, as it could be easily observed proposed coreset algorithm provides good results of big
sparse dataset and provides lower energy cost compared to uniform and non-uniform approaches.

(a) Wikipedia, k = 32 (b) Wikipedia, k = 64 (c) Wikipedia, k = 128

Figure 4. Comparison of uniform sampling, non uniform sampling and our algorithm based on
Wikipedia in distributed setting with 16 servers.

Figures 5–7 show the box-plot of error distribution for all the three coresets in the offline and
streaming settings. Our algorithm shows a little variance across all experiments, its mean error is very
close to its median error, indicating that it produces stable results.

Figure 5. Error (y-axis) box-plots for real-data sets, ofline computation model.
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Figure 6. Error (y-axis) box-plots for real-data sets, streaming computation model.

Figure 7. Error (y-axis) box-plots for wikipedia dataset, distributed computation for k = 32, 64 and 128.

Figure 8 shows the memory (RAM) footprint during the coreset construction based on
synthetically generated random data. The oscillations corresponds to the number of coresets in
the tree that each new subset needs to update. For example, the first point in a streaming tree is
updated in O(1), however the 2ith point for some i ≥ 1 climbs up through O(log i) levels in the tree,
so O(log i) coresets are merged.

Figure 8. Allocated memory (y-axis) grows logarithmically during streaming coreset construction.
The Zig-zag patterns caused by the binary merge-reduce tree in Figure 1.

8. Conclusions

We proved that any set of points in Rd has a (k, ε)-coreset which consists of a weighted subset of
the input points whose size is independent of n and d, and polynomial in 1/ε. Our algorithm carefully
selects m such that the m-means of the input with appropriate weights (clusters’ size) yields such
a coreset.

This allows us to finally compute coreset for sparse high dimensional data, in both the streaming
and the distributed setting. As a practical example, we computed the first coreset for the full English
Wikipedia. We hope that our open source code will allow researchers in the industry and academia to
run these coresets on more databases such as images, speech or tweets.

The reduction to k-means allows us to use popular k-means heuristics (such as Lloyd-Max) and
provable constant factor approximations (such as k-means++) in practice. Our experimental results on
both a single machine and on the cloud shows that our coreset construction significantly improves
over existing techniques, especially for small coresets, due to its deterministic approach.
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We hope that this paper will also help the community to answer the following three
open problems:

(i) Can we simply compute the m-means for a specific value m ∈ kO(1/ε) and obtain a (k, ε)-coreset
without using our algorithm?

(ii) can we compute such a coreset (subset of the input) whose size is m ∈ (k/ε)O(1)?
(iii) Can we compute such a smaller coreset deterministically?
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