
algorithms

Article

Ensemble Deep Learning Models for Forecasting
Cryptocurrency Time-Series

Ioannis E. Livieris 1,* , Emmanuel Pintelas 1, Stavros Stavroyiannis 2 and Panagiotis Pintelas 1

1 Department of Mathematics, University of Patras, GR 265-00 Patras, Greece; ece6835@upnet.gr (E.P.);
ppintelas@gmail.com (P.P.)

2 Department of Accounting & Finance, University of the Peloponnese, GR 241-00 Antikalamos, Greece;
computmath@gmail.com

* Correspondence: livieris@upatras.gr

Received: 17 April 2020; Accepted: 8 May 2020; Published: 10 May 2020
����������
�������

Abstract: Nowadays, cryptocurrency has infiltrated almost all financial transactions; thus, it is
generally recognized as an alternative method for paying and exchanging currency. Cryptocurrency
trade constitutes a constantly increasing financial market and a promising type of profitable
investment; however, it is characterized by high volatility and strong fluctuations of prices over time.
Therefore, the development of an intelligent forecasting model is considered essential for portfolio
optimization and decision making. The main contribution of this research is the combination of
three of the most widely employed ensemble learning strategies: ensemble-averaging, bagging and
stacking with advanced deep learning models for forecasting major cryptocurrency hourly prices.
The proposed ensemble models were evaluated utilizing state-of-the-art deep learning models as
component learners, which were comprised by combinations of long short-term memory (LSTM),
Bi-directional LSTM and convolutional layers. The ensemble models were evaluated on prediction
of the cryptocurrency price on the following hour (regression) and also on the prediction if the
price on the following hour will increase or decrease with respect to the current price (classification).
Additionally, the reliability of each forecasting model and the efficiency of its predictions is evaluated
by examining for autocorrelation of the errors. Our detailed experimental analysis indicates that
ensemble learning and deep learning can be efficiently beneficial to each other, for developing strong,
stable, and reliable forecasting models.

Keywords: deep learning; ensemble learning; convolutional networks; long short-term memory;
cryptocurrency; time-series

1. Introduction

The global financial crisis of 2007–2009 was the most severe crisis over the last few decades with,
according to the National Bureau of Economic Research, a peak to trough contraction of 18 months.
The consequences were severe in most aspects of life including economy (investment, productivity,
jobs, and real income), social (inequality, poverty, and social tensions), leading in the long run to
political instability and the need for further economic reforms. In an attempt to “think outside the box”
and bypass the governments and financial institutions manipulation and control, Satoshi Nakamoto [1]
proposed Bitcoin which is an electronic cash allowing online payments, where the double-spending
problem was elegantly solved using a novel purely peer-to-peer decentralized blockchain along with a
cryptographic hash function as a proof-of-work.

Nowadays, there are over 5000 cryptocurrencies available; however, when it comes to scientific
research there are several issues to deal with. The large majority of these are relatively new, indicating
that there is an insufficient amount of data for quantitative modeling or price forecasting. In the

Algorithms 2020, 13, 121; doi:10.3390/a13050121 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-3996-3301
http://dx.doi.org/10.3390/a13050121
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/5/121?type=check_update&version=2


Algorithms 2020, 13, 121 2 of 21

same manner, they are not highly ranked when it comes to market capitalization to be considered
as market drivers. A third aspect which has not attracted attention in the literature is the separation
of cryptocurrencies between mineable and non-mineable. Minable cryptocurrencies have several
advantages i.e., the performance of different mineable coins can be monitored within the same
blockchain which cannot be easily said for non-mineable coins, and they are community driven
open source where different developers can contribute, ensuring the fact that a consensus has to be
reached before any major update is done, in order to avoid splitting. Finally, when it comes to the top
cryptocurrencies, it appears that mineable cryptocurrencies like Bitcoin (BTC) and Ethereum (ETH),
recovered better the 2018 crash rather than Ripple (XRP) which is the highest ranked pre-mined coin.
In addition, the non-mineable coins transactions are powered via a centralized blockchain, endangering
price manipulation through inside trading, since the creators keep a given percentage to themselves,
or through the use of pump and pull market mechanisms. Looking at the number one cryptocurrency
exchange in the world, Coinmarketcap, by January 2020 at the time of writing there are only 31 mineable
cryptocurrencies out of the first 100, ranked by market capitalization. The classical investing strategy in
cryptocurrency market is the “buy, hold and sell” strategy, in which cryptocurrencies are bought with
real money and held until reaching a higher price worth selling in order for an investor to make a profit.
Obviously, a potential fractional change in the price of a cryptocurrency may gain opportunities for
huge benefits or significant investment losses. Thus, the accurate prediction of cryptocurrency prices
can potentially assist financial investors for making their proper investment policies by decreasing their
risks. However, the accurate prediction of cryptocurrency prices is generally considered a significantly
complex and challenging task, mainly due to its chaotic nature. This problem is traditionally addressed
by the investor’s personal experience and consistent watching of exchanges prices. Recently, the
utilization of intelligent decision systems based on complicated mathematical formulas and methods
have been adopted for potentially assisting investors and portfolio optimization.

Let y1, y2, . . . , yn be the observations of a time series. Generally, a nonlinear regression model of
order m is defined by

yt = f (yt−1, yt−2, . . . , yt−m, θ), (1)

where m values of yt, θ is the parameter vector. After the model structure has been defined, function
f (·) can be determined by traditional time-series methods such as ARIMA (Auto-Regressive Integrated
Moving Average) and GARCH-type models and their variations [2–4] or by machine learning methods
such as Artificial Neural Networks (ANNs) [5,6]. However, both mentioned approaches fail to
depict the stochastic and chaotic nature of cryptocurrency time-series and be successfully effective
for accurate forecasting [7]. To this end, more sophisticated algorithmic approaches have to be
applied such as deep learning and ensemble learning methods. From the perspective of developing
strong forecasting models, deep learning and ensemble learning constitute two fundamental learning
strategies. The former is based on neural networks architectures and it is able to achieve state-of-the-art
accuracy by creating and exploiting new more valuable features by filtering out the noise of the input
data; while the latter attempts to generate strong prediction models by exploiting multiple learners in
order to reduce the bias or variance of error.

During the last few years, researchers paid special attention to the development of time-series
forecasting models which exploit the advantages and benefits of deep learning techniques such as
convolutional and long short-term memory (LSTM) layers. More specifically, Wen and Yuan [8] and
Liu et al. [9] proposed Convolutional Neural Network (CNN) and LSTM prediction models for stock
market forecasting. Along this line, Livieris et al. [10] and Pintelas et al. [11] proposed CNN-LSTM
models with various architectures for efficiently forecasting gold and cryptocurrency time-series price
and movement, reporting some interesting results. Nevertheless, although deep learning models are
tailored to cope with temporal correlations and efficiently extract more valuable information from
the training set, they failed to generate reliable forecasting models [7,11]; while in contrast ensemble
learning models although they are an elegant solution to develop stable models and address the high
variance of individual forecasting models, their performance heavily depends on the diversity and



Algorithms 2020, 13, 121 3 of 21

accuracy of the component learners. Therefore, a time-series prediction model, which exploits the
benefits of both mentioned methodologies may significantly improve the prediction performance.

The main contribution of this research is the combination of ensemble learning strategies
with advanced deep learning models for forecasting cryptocurrency hourly prices and movement.
The proposed ensemble models utilize state-of-the-art deep learning models as component learners
which are based on combinations of Long Short-Term Memory (LSTM), Bi-directional LSTM (BiLSTM)
and convolutional layers. An extensive experimental analysis is performed considering both
classification and regression problems, to evaluate the performance of averaging, bagging and
stacking ensemble strategies. More analytically, all ensemble models are evaluated on prediction
of the cryptocurrency price on the next hour (regression) and also on the prediction if the price on
the following hour will increase or decrease with respect to the current price (classification). It is
worth mentioning that the information of predicting the movement of a cryptocurrency is probably
more significant that the prediction of the price for investors and financial institutions. Additionally,
the efficiency of the predictions of each forecasting model is evaluated by examining for autocorrelation
of the errors, which constitutes a significant reliability test of each model.

The remainder of the paper is organized as follows: Section 2 presents a brief review of state of the
art deep learning methodologies for cryptocurrency forecasting. Section 3 presents the advanced deep
learning models, while Section 4 presents the ensemble strategies utilized in our research. Section 5
presents our experimental methodology including the data preparation and preprocessing as well as
the detailed experimental analysis, regarding the evaluation of ensemble of deep learning models.
Section 6 discusses the obtained results and summarizes our findings. Finally, Section 7 presents our
conclusions and presents some future directions.

2. Deep Learning in Cryptocurrency Forecasting: State-of-the-Art

Yiying and Yeze [12] focused on the price non-stationary dynamics of three cryptocurrencies
Bitcoin, Etherium, and Ripple. Their approach aimed at identifying and understand the factors which
influence the value formation of these digital currencies. Their collected data contained 1030 trading
days regarding opening, high, low, and closing prices. They conducted an experimental analysis
which revealed the efficiency of LSTM models over classical ANNs, indicating that LSTM models are
more capable of exploiting information hidden in historical data. Additionally, the authors stated
that probably the reason for the efficiency of LSTM networks is that they tend to depend more on
short-term dynamics while ANNs tends to depend more on long-term history. Nevertheless, in case
enough historical information is given, ANNs can achieve similar accuracy to LSTM networks.

Nakano et al. [13] examined the performance of ANNs for the prediction of Bitcoin intraday
technical trading. The authors focused on identifying the key factors which affect the prediction
performance for extracting useful trading signals of Bitcoin from its technical indicators. For this
purposed, they conducted a series of experiments utilizing various ANN models with shallow and deep
architectures and datasets structures The data utilized in their research regarded Bitcoin time-series
return data at 15-min time intervals. Their experiments illustrated that the utilization of multiple
technical indicators could possibly prevent the prediction model from overfitting of non-stationary
financial data, which enhances trading performance. Moreover, they stated that their proposed
methodology attained considerably better performance than the primitive technical trading and
buy-and-hold strategies, under realistic assumptions of execution costs.

Mcnally et al. [14] utilized two deep learning models, namely a Bayesian-optimised Recurrent
Neural Network and a LSTM network, for Bitcoin price prediction. The utilized data ranged from the
August 2013 until July 2016, regarding open, high, low and close of Bitcoin prices as well as the block
difficulty and hash rate. Their performance evaluation showed that the LSTM network demonstrated
the best prediction accuracy, outperforming the other recurrent model as well as the classical statistical
method ARIMA.



Algorithms 2020, 13, 121 4 of 21

Shintate and Pichl [15] proposed a new trend prediction classification framework which is
based on deep learning techniques. Their proposed framework utilized a metric learning-based
method, called Random Sampling method, which measures the similarity between the training
samples and the input patterns. They used high frequency data (1-min) ranged from June 2013 to
March 2017 containing historical data from OkCoin Bitcoin market (Chinese Yuan Renminbi and US
Dollars). The authors concluded that the profit rates based on utilized sampling method considerably
outperformed those based on LSTM networks, confirming the superiority of the proposed framework.
In contrast, these profit rates were lower than those obtained of the classical buy-and-hold strategy;
thus they stated that it does not provide a basis for trading.

Miura et al. [16] attempted to analyze the high-frequency Bitcoin (1-min) time series utilizing
machine learning and statistical forecasting models. Due to the large size of the data, they decided
to aggregate the realized volatility values utilizing 3-h long intervals. Additionally, they pointed out
that these values presented a weak correlation based on high-low price extent with the relative values
of the 3-h interval. In their experimental analysis, they focused on evaluating various ANNs-type
models, SVMs and Ridge Regression and the Heterogeneous Auto-Regressive Realized Volatility
model. Their results demonstrated that Ridge Regression considerably presented the best performance
while SVM exhibited poor performance.

Ji et al. [17] evaluated the prediction performance on Bitcoin price of various deep learning
models such as LSTM networks, convolutional neural networks, deep neural networks, deep residual
networks and their combinations. The data used in their research, contained 29 features of the Bitcoin
blockchain from 2590 days (from 29 November 2011 to 31 December 2018). They conducted a detailed
experimental procedure considering both classification and regression problems, where the former
predicts whether or not the next day price will increase or decrease and the latter predicts the next
day’s Bitcoin price. The numerical experiments illustrated that the deep neural DNN-based models
performed the best for price ups-and-downs while the LSTM models slightly outperformed the rest of
the models for forecasting Bitcoin’s price.

Kumar and Rath [18] focused on forecasting the trends of Etherium prices utilizing machine
learning and deep learning methodologies. They conducted an experimental analysis and compared
the prediction ability of LSTM neural networks and Multi-Layer perceptron (MLP). They utilized daily,
hourly, and minute based data which were collected from the CoinMarket and CoinDesk repositories.
Their evaluation results illustrated that LSTM marginally outperformed MLP but not considerably,
although their training time was significantly high.

Pintelas et al. [7,11] conducted a detailed research, evaluating advanced deep learning models
for predicting major cryptocurrency prices and movements. Additionally, they conducted a detailed
discussion regarding the fundamental research questions: Can deep learning algorithms efficiently
predict cryptocurrency prices? Are cryptocurrency prices a random walk process? Which is a proper
validation method of cryptocurrency price prediction models? Their comprehensive experimental
results revealed that even the LSTM-based and CNN-based models, which are generally preferable
for time-series forecasting [8–10], were unable to generate efficient and reliable forecasting models.
Moreover, the authors stated that cryptocurrency prices probably follow an almost random walk
process while few hidden patterns may probably exist. Therefore, new sophisticated algorithmic
approaches should be considered and explored for the development of a prediction model to make
accurate and reliable forecasts.

In this work, we advocate combining the advantages of ensemble learning and deep learning for
forecasting cryptocurrency prices and movement. Our research contribution aims on exploiting the
ability of deep learning models to learn the internal representation of the cryptocurrency data and the
effectiveness of ensemble learning for generating powerful forecasting models by exploiting multiple
learners for reducing the bias or variance of error. Furthermore, similar to our previous research [7,11],
we provide detailed performance evaluation for both regression and classification problems. To the



Algorithms 2020, 13, 121 5 of 21

best of our knowledge, this is the first research devoted to the adoption and combination of ensemble
learning and deep learning for forecasting cryptocurrencies prices and movement.

3. Advanced Deep Learning Techniques

3.1. Long Short-Term Memory Neural Networks

Long Short-term memory (LSTM) [19] constitutes a special case of recurrent neural networks
which were originally proposed to model both short-term and long-term dependencies [20–22].
The major novelty unit in a LSTM network is the memory block in the recurrent hidden layer which
contains memory cells with self-connections memorizing the temporal state and adaptive gate units
for controlling the information flow in the block. With the treatment of the hidden layer as a memory
unit, LSTM can cope the correlation within time-series in both short and long term [23].

More analytically, the structure of the memory cell ct is composed by three gates: the input gate,
the forget gate and the output gate. At every time step t, the input gate it determines which information
is added to the cell state St (memory), the forget gate ft determines which information is thrown away
from the cell state through the decision by a transformation function in the forget gate layer; while the
output gate ot determines which information from the cell state will be used as output.

With the utilization of gates in each cell, data can be filtered, discarded or added. In this way,
LSTM networks are capable of identifying both short and long term correlation features within time
series. Additionally, it is worth mentioning that a significant advantage of the utilization of memory
cells and adaptive gates which control information flow is that the vanishing gradient problem can be
considerably addressed, which is crucial for the generalization performance of the network [20].

The simplest way to increase the depth and the capacity of LSTM networks is to stack LSTM
layers together, in which the output of the (L− 1)th LSTM layer at time t is treated as input of the Lth
layer. Notice that this input-output connections are the only connections between the LSTM layers
of the network. Based on the above formulation, the structure of the stacked LSTM can be describe
as follows: Let hL

t and hL−1
t denote outputs in the Lth and (L− 1)th layer, respectively. Each layer

L produces a hidden state hL
t based on the current output of the previous layer hL−1

t and time hL
t−1.

More specifically, the forget gate f L
t of the L layer calculates the input for cell state cL

t−1 by

ft = σ
(

WL
f [h

L
t−1, hL−1

t ] + bL
f

)
,

where σ(·) is a sigmoid function while WL
f and b f are the weights matrix and bias vector of layer L

regarding the forget gate, respectively. Subsequently, the input gate iL
t of the L layer computes the

values to be added to the memory cell cL
t by

iL
t = σ

(
WL

i [h
L
t−1, hL−1

t ] + bL
i

)
,

where WL
i is the weights matrix of layer L regarding the input gate. Then, the output gate oL

t of the Lth
layer filter the information and calculated the output value by

oL
t = σ

(
WL

o [h
L
t−1, hL−1

t ] + bL
o

)
,

where Wo
f and bo are the weights matrix and bias vector of the output gate in the L layer, respectively.

Finally, the output of the memory cell is computed by

ht = oL
t · tanh

(
cL

t

)
,

where · denotes the pointwise vector multiplication, tanh the hyperbolic tangent function and



Algorithms 2020, 13, 121 6 of 21

cL
t = f L

t · cL
t−1 + iL

t · c̃L
t−1,

c̃L
t = tanh

(
WL

c̃ [h
L
t−1, hL−1

t ] + bL
c̃

)
.

3.2. Bi-Directional Recurrent Neural Networks

Similar with the LSTM networks, one of the most efficient and widely utilized RNNs architectures
are the Bi-directional Recurrent Neural Networks (BRNNs) [24]. In contrast with the LSTM,
these networks are composed by two hidden layers, connected to input and output. The principle
idea of BRNNs is that each training sequence is presented forwards and backwards into two separate
recurrent networks [20]. More specifically, the first hidden layer possesses recurrent connections from
the past time steps, while in the second one, the recurrent connections are reversed, transferring
activation backwards along the sequence. Given the input and target sequences, the BRNN can be
unfolded across time in order to be efficiently trained utilizing a classical backpropagation algorithm.

In fact, BRNN and LSTM are based on compatible techniques in which the former proposes the
wiring of two hidden layers, which compose the network, while the latter proposes a new fundamental
unit for composing the hidden layer.

Along this line, Bi-directional LSTM (BiLSTM) networks [25] were proposed in the literature,
which incorporate two LSTM networks in the BRNN framework. More specifically, BiLSTM
incorporates a forward LSTM layer and a backward LSTM layer in order to learn information
from preceding and following tokens. In this way, both past and future contexts for a given
time t are accessed, hence better prediction can be achieved by taking advantage of more
sentence-level information.

In a bi-directional stacked LSTM network, the output of each feed-forward LSTM layer is the
same as in the classical stacked LSTM layer and these layers are iterated from t = 1 to T. In contrast,
the output of each backward LSTM layer is iterated reversely, i.e., from t = T to 1. Hence, at time t,

the output of value
←
h t in backward LSTM layer L can be calculated as follows

←
f t = σ

(
WL
←
f
[hL

t−1, hL−1
t ] + bL

←
f

)
,

←
i

L
t = σ

(
WL
←
i
[hL

t−1, hL−1
t ] + bL

←
i

)
,

←
o

L
t = σ

(
WL
←
o
[hL

t−1, hL−1
t ] + bL

←
o

)
,

←
c

L
t =

←
f

L

t ·
←
c

L
t−1 +

←
i

L
t ·
←
c̃

L

t−1,
←
c̃

L

t = tanh
(

WL
←
c̃
[hL

t−1, hL−1
t ] + bL

←
c̃

)
,

←
h t =

←
o

L
t · tanh

(
←
c

L
t

)
.

Finally, the output of this BiLSTM architecture is given by

yt = W
[→

h t,
←
h t

]
+ b.

3.3. Convolutional Neural Networks

Convolutional Neural Network (CNN) models [26,27] were originally proposed for image
recognition problems, achieving human level performance in many cases. CNNs have great potential
to identify the complex patterns hidden in time series data. The advantage of the utilization of CNNs
for time series is that they can efficiently extract knowledge and learn an internal representation from
the raw time series data directly and they do not require special knowledge from the application
domain to filter input features [10].



Algorithms 2020, 13, 121 7 of 21

A typical CNN consists of two main components: In the first component, mathematical operations,
called convolution and pooling, are utilized to develop features of the input data while in the second
component, the generated features are used as input to a usually fully-connected neural network.

The convolutional layer constitutes the core of a CNN which systematically applies trained filters
to input data for generating feature maps. Convolution can be considered as applying and sliding a
one dimension (time) filter over the time series [28]. Moreover, since the output of a convolution is a
new filtered time series, the application of several convolutions implies the generation of a multivariate
times series whose dimension equals with the number of utilized filters in the layer. The rationale
behind this strategy is that the application of several convolution leads to the generation of multiple
discriminative features which usually improve the model’s performance. In practice, this kind of layer
is proven to be very efficient and stacking different convolutional layers allows deeper layers to learn
high-order or more abstract features and layers close to the input to learn low-level features.

Pooling layers were proposed to address the limitation that feature maps generated by the
convolutional layers, record the precise position of features in the input. These layers aggregate over
a sliding window over these feature maps, reducing their length, in order to attain some translation
invariance of the trained features. More analytically, the feature maps obtained from the previous
convolutional layer are pooled over temporal neighborhood separately by sum pooling function or by
max pooling function in order to developed a new set of pooled feature maps. Notice that the output
pooled feature maps constitute a filtered version of the features maps which are imported as inputs in
the pooling layer [28]. This implies that small translations of the inputs of the CNN, which are usually
detected by the convolutional layers, will become approximately invariant.

Finally, in addition to convolutional and pooling layers, some include batch normalization
layers [29] and dropout layers [30] in order to accelerate the training process and reduce
overfitting, respectively.

4. Ensemble Deep Learning Models

Ensemble learning has been proposed as an elegant solution to address the high variance of
individual forecasting models and reduce the generalization error [31–33]. The basic principle behind
any ensemble strategy is to weigh a number of models and combine their individual predictions for
improving the forecasting performance; while the key point for the effectiveness of the ensemble is that
its components should be characterized by accuracy and diversity in their predictions [34]. In general,
the combination of multiple models predictions adds a bias which in turn counters the variance of a
single trained model. Therefore, by reducing the variance in the predictions, the ensemble can perform
better than any single best model.

In the literature, several strategies were proposed to design and develop ensemble of
regression models. Next, we present three of the most efficient and widely employed strategies:
ensemble-averaging, bagging, and stacking.

4.1. Ensemble-Averaging of Deep Learning Models

Ensemble-averaging [35] (or averaging) is the simplest combination strategy for exploiting the
prediction of different regression models. It constitutes a commonly and widely utilized ensemble
strategy of individual trained models in which their predictions are treated equally. More specifically,
each forecasting model is individually trained and the ensemble-averaging strategy linearly combines
all predictions by averaging them to develop the output. Figure 1 illustrates a high-level schematic
representation of the ensemble-averaging of deep learning models.



Algorithms 2020, 13, 121 8 of 21

Training
set

Deep learning
model 3

Deep learning
model 2

Deep learning
model 1

Deep learning
model n

•
•
•

Averaging

Figure 1. Ensemble-averaging of deep learning models.

Ensemble-averaging is based on the philosophy that its component models will not usually
make the same error on new unseen data [36]. In this way, the ensemble model reduces the variance
in the prediction, which results in better predictions compared to a single model. The advantages
of this strategy are its simplicity of implementation and the exploitation of the diversity of errors
of its component models without requiring any additional training on large quantities of the
individual predictions.

4.2. Bagging Ensemble of Deep Learning Models

Bagging [33] is one the most widely used and successful ensemble strategies for improving the
forecasting performance of unstable models. Its basic principle is the development of more diverse
forecasting models by modifying the distribution of the training set based on a stochastic strategy.
More specifically, it applies the same learning algorithm on different bootstrap samples of the original
training set and the final output is produced via a simple averaging. An attractive property of the
bagging strategy is that it reduces variance while simultaneously retains the bias which assists in
avoiding overfitting [37,38]. Figure 2 demonstrates a high-level schematic representation of the bagging
ensemble of n deep learning models.

Training
set

Bootstrap
1

Bootstrap
2

Bootstrap
3

Bootstrap
n

•
•
•

Deep learning
model 2

Deep learning
model 1

Deep learning
model 3

Deep learning
model n

•
•
•

Averaging

Figure 2. Bagging ensemble of deep learning models.

It is worth mentioning that bagging strategy is significantly useful for dealing with large and
high-dimensional datasets where finding a single model which can exhibit good performance in one
step is impossible due to the complexity and scale of the prediction problem.



Algorithms 2020, 13, 121 9 of 21

4.3. Stacking Ensemble of Deep Learning Models

Stacked generalization or stacking [39] constitutes a more elegant and sophisticated approach for
combining the prediction of different learning models. The motivation of this approach is based on the
limitation of simple ensemble-average which is that each model is equally considered to the ensemble
prediction, regardless of how well it performed. Instead, stacking induces a higher-level model for
exploiting and combining the prediction of the ensemble’s component models. More specifically,
the models which comprise the ensemble (Level-0 models) are individually trained using the same
training set (Level-0 training set). Subsequently, a Level-1 training set is generated by the collected
outputs of the component classifiers.

This dataset is utilized to train a single Level-1 model (meta-model) which ultimately determines
how the outputs of the Level-0 models should be efficiently combined, to maximize the forecasting
performance of the ensemble. Figure 3 illustrates the stacking of deep learning models.

Training
set

Deep learning
model 3

Deep learning
model 2

Deep learning
model 1

Deep learning
model n

•
•
•

Meta-model

Level-0 Level−1

Figure 3. Stacking ensemble of deep learning models.

In general, stacked generalization works by deducing the biases of the individual learners with
respect to the training set [33]. This deduction is performed by the meta-model. In other words,
the meta-model is a special case of weighted-averaging, which utilizes the set of predictions as a
context and conditionally decides to weight the input predictions, potentially resulting in better
forecasting performance.

5. Numerical Experiments

In this section, we evaluate the performance of the three presented ensemble strategies which
utilize advanced deep learning models as component learners. The implementation code was written
in Python 3.4 while for all deep learning models Keras library [40] was utilized and Theano as back-end.

For the purpose of this research, we utilized data from 1 January 2018 to 31 August 2019 from
the hourly price of the cryptocurrencies BTC, ETH and XRP. For evaluation purposes, the data were
divided in training set and in testing set as in [7,11]. More specifically, the training set comprised
data from 1 January 2018 to 28 February 2019 (10,177 datapoints), covering a wide range of long
and short term trends while the testing set consisted of data from 1 March 2019 to 31 August 2019
(4415 datapoints) which ensured a substantial amount of unseen out-of-sample prices for testing.

Next, we concentrated on the experimental analysis to evaluate the presented ensemble
strategies using the advanced deep learning models CNN-LSTM and CNN-BiLSTM as base learners.
A detailed description of both component models is presented in Table 1. These models and their



Algorithms 2020, 13, 121 10 of 21

hyper-parameters were selected in previous research [7] after extensive experimentation, in which
they exhibited the best performance on the utilized datasets. Both component models were trained
for 50 epochs with Adaptive Moment Estimation (ADAM) algorithm [41] with a batch size equal to
512, using a mean-squared loss function. ADAM algorithm ensures that the learning steps, during the
training process, are scale invariant relative to the parameter gradients.

Table 1. Parameter specification of two base learners.

Model Description

CNN-LSTM Convolutional layer with 32 filters of size (2, ) and padding = “same”.
Convolutional layer with 64 filters of size (2, ) and padding = “same”.
Max pooling layer with size (2, )
LSTM layer with 70 units.
Fully connected layer with 16 neurons.
Output layer with 1 neuron.

CNN-BiLSTM Convolutional layer with 64 filters of size (2, ) and padding = “same”.
Convolutional layer with 128 filters of size (2, ) and padding = “same”.
Max pooling layer with size (2, ).
BiLSTM layer with 2× 70 units.
Fully connected layer with 16 neurons.
Output layer with 1 neuron.

The performance of all ensemble models was evaluated utilizing the performance metric:
Root Mean Square Error (RMSE). Additionally, the classification accuracy of all ensemble deep models
was measured, relative to the problem of predicting whether the cryptocurrency price would increase
or decrease on the next day. More analytically, by analyzing a number of previous hourly prices,
the model predicts the price on the following hour and also predicts if the price will increase or decrease,
with respect to current cryptocurrency price. For this binary classification problem, three performance
metrics were used: Accuracy (Acc), Area Under Curve (AUC) and F1-score (F1).

All ensemble models were evaluated using 7 and 11 component learners which reported the
best overall performance. Notice that any attempt to increase the number of classifiers resulted to no
improvement to the performance of each model. Moreover, stacking was evaluated using the most
widely used state-of-the-art algorithms [42] as meta-learners: Support Vector Regression (SVR) [43],
Linear Regression (LR) [44], k-Nearest Neighbor (kNN) [45] and Decision Tree Regression (DTR) [46].
For fairness and for performing an objective comparison, the hyper-parameters of all meta-learners
were selected in order to maximize their experimental performance and are briefly presented in Table 2.

Table 2. Parameter specification of state-of-art algorithms used as meta-learners.

Model Hyper-Parameters

DTR Criterion = ’mse’,
max depth = unlimited,
min samples split = 2.

LR No parameters specified.

SVR Kernel = RBF,
Regularization parameter C = 1.0,
gamma = 10−1.

kNN Number of neighbors = 10,
Euclidean distance.



Algorithms 2020, 13, 121 11 of 21

Summarizing, we evaluate the performance of the following ensemble models:

• “Averaging7” and “Averaging11” stand for ensemble-averaging model utilizing 7 and 11
component learners, respectively.

• “Bagging7” and “Bagging11” stand for bagging ensemble model utilizing 7 and 11 component
learners, respectively.

• “Stacking(DTR)
7 ” and “Stacking(DTR)

11 ” stand for stacking ensemble model utilizing 7 and 11
component learners, respectively and DTR model as meta-learner.

• “Stacking(LR)
7 ” and “Stacking(LR)

11 ” stand for stacking ensemble model utilizing 7 and 11 component
learners, respectively and LR model as meta-learner.

• “Stacking(SVR)
7 ” and “Stacking(SVR)

11 ” stand for stacking ensemble model utilizing 7 and 11
component learners, respectively and SVR as meta-learner.

• “Stacking(kNN)
7 ” and “Stacking(kNN)

11 ” stand for stacking ensemble model utilizing 7 and 11
component learners, respectively and kNN as meta-learner.

Tables 3 and 4 summarize the performance of all ensemble models using CNN-LSTM as base
learner for m = 4 and m = 9, respectively. Stacking using LR as meta-learner exhibited the best
regression performance, reporting the lowest RMSE score, for all cryptocurrencies. Notice that
stacking(LR)

7 and Stacking(LR)
11 reported the same performance, which implies that the increment

of component learners from 7 to 11 did not affect the regression performance of this ensemble
algorithm. In contrast, stacking(LR)

7 exhibited better classification performance than Stacking(LR)
11 ,

reporting higher accuracy, AUC and F1-score. Additionally, the stacking ensemble reported the worst
performance utilizing DTR and SVR as meta-learners among all ensemble models, also reporting worst
performance than CNN-LSTM model; while the best classification performance was reported using
kNN as meta-learner in almost all cases.

The average and bagging ensemble reported slightly better regression performance, compared to
the single model CNN-LSTM. In contrast, both ensembles presented the best classification performance,
considerably outperforming all other forecasting models, regarding all datasets. Moreover, the bagging
ensemble reported the highest accuracy, AUC and F1 in most cases, slightly outperforming the
average-ensemble model. Finally, it is worth noticing that both the bagging and average-ensemble did
not improve their performance when the number of component classifiers increased. for m = 4 while
for m = 9 a slightly improvement in their performance was noticed.

Table 3. Performance of ensemble models using convolutional neural network and long short-term
memory (CNN-LSTM) as base learner for m = 4.

Model BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-LSTM 0.0101 52.80% 0.521 0.530 0.0111 53.39% 0.533 0.525 0.0110 53.82% 0.510 0.530

Averaging7 0.0096 54.39% 0.543 0.536 0.0107 53.73% 0.539 0.536 0.0108 54.12% 0.552 0.536
Bagging7 0.0097 54.52% 0.549 0.545 0.0107 53.95% 0.541 0.530 0.0095 53.29% 0.560 0.483
Stacking(DTR)

7 0.0168 49.96% 0.510 0.498 0.0230 50.13% 0.506 0.497 0.0230 49.67% 0.530 0.492
Stacking(LR)

7 0.0085 52.57% 0.530 0.524 0.0093 52.44% 0.513 0.515 0.0095 52.32% 0.537 0.514
Stacking(SVR)

7 0.0128 49.82% 0.523 0.497 0.0145 51.24% 0.501 0.508 0.0146 51.27% 0.515 0.508
Stacking(kNN)

7 0.0113 52.64% 0.525 0.511 0.0126 52.85% 0.537 0.473 0.0101 52.87% 0.536 0.514

Averaging11 0.0096 54.16% 0.545 0.534 0.0107 53.77% 0.542 0.535 0.0107 54.12% 0.531 0.537
Bagging11 0.0098 54.31% 0.546 0.542 0.0107 53.95% 0.548 0.536 0.0094 54.32% 0.532 0.515
Stacking(DTR)

11 0.0169 49.66% 0.510 0.495 0.0224 50.42% 0.512 0.500 0.0229 50.63% 0.519 0.501
Stacking(LR)

11 0.0085 51.05% 0.529 0.475 0.0093 51.95% 0.514 0.514 0.0094 52.35% 0.529 0.512
Stacking(SVR)

11 0.0128 50.03% 0.520 0.499 0.0145 51.10% 0.510 0.506 0.0145 51.11% 0.511 0.506
Stacking(kNN)

11 0.0112 52.66% 0.526 0.511 0.0126 52.65% 0.538 0.481 0.0101 53.05% 0.530 0.512



Algorithms 2020, 13, 121 12 of 21

Table 4. Performance of ensemble models using CNN-LSTM as base learner for m = 9.

Model BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-LSTM 0.0124 51.19% 0.511 0.504 0.0140 53.49% 0.535 0.513 0.0140 53.43% 0.510 0.510

Averaging7 0.0122 54.12% 0.549 0.541 0.0138 53.86% 0.539 0.538 0.0138 53.94% 0.502 0.538
Bagging7 0.0123 54.29% 0.549 0.543 0.0132 54.05% 0.541 0.539 0.0093 52.97% 0.501 0.502
Stacking(DTR)

7 0.0213 50.57% 0.510 0.504 0.0280 51.58% 0.509 0.511 0.0279 51.87% 0.514 0.514
Stacking(LR)

7 0.0090 51.19% 0.530 0.503 0.0098 52.17% 0.525 0.503 0.0098 51.89% 0.524 0.506
Stacking(SVR)

7 0.0168 50.54% 0.523 0.503 0.0203 51.94% 0.515 0.513 0.0203 51.86% 0.518 0.512
Stacking(kNN)

7 0.0165 52.00% 0.525 0.509 0.0179 52.66% 0.526 0.487 0.0100 51.91% 0.521 0.522

Averaging11 0.0122 54.25% 0.545 0.542 0.0136 54.02% 0.542 0.540 0.0136 54.03% 0.501 0.539
Bagging11 0.0124 54.30% 0.555 0.542 0.0134 54.11% 0.541 0.540 0.0093 53.11% 0.502 0.509
Stacking(DTR)

11 0.0209 50.43% 0.510 0.502 0.0271 51.69% 0.510 0.512 0.0274 51.85% 0.519 0.512
Stacking(LR)

11 0.0087 50.99% 0.529 0.492 0.0095 52.43% 0.522 0.507 0.0096 52.11% 0.514 0.501
Stacking(SVR)

11 0.0165 50.66% 0.520 0.504 0.0202 51.85% 0.512 0.512 0.0202 51.82% 0.517 0.511
Stacking(kNN)

11 0.0165 52.13% 0.526 0.505 0.0179 52.19% 0.523 0.489 0.0100 52.49% 0.521 0.520

Tables 5 and 6 present the performance of all ensemble models utilizing CNN-BiLSTM as base
learner for m = 4 and m = 9, respectively. Firstly, it is worth noticing that stacking model using LR as
meta-learner exhibited the best regression performance, regarding to all cryptocurrencies. Stacking(LR)

7
and Stacking(LR)

11 presented almost identical RMSE score Moreover, stacking(LR)
7 presented slightly

higher accuracy, AUC and F1-score than stacking(LR)
11 , for ETH and XRP datasets, while for BTC dataset

Stacking(LR)
11 reported slightly better classification performance. This implies that the increment of

component learners from 7 to 11 did not considerably improved and affected the regression and
classification performance of the stacking ensemble algorithm. Stacking ensemble reported the worst
(highest) RMSE score utilizing DTR, SVR and kNN as meta-learners. It is also worth mentioning that it
exhibited the worst performance among all ensemble models and also worst than that of the single
model CNN-BiLSTM. However, stacking ensemble reported the highest classification performance
using kNN as meta-learner. Additionally, it presented slightly better classification performance using
DTR or SVR than LR as meta-learners for ETH and XRP datasets, while for BTC dataset it presented
better performance using LR as meta-learner as meta-learner.

Table 5. Performance of ensemble models using CNN and bi-directional LSTM (CNN-BiLSTM) as base
learner for m = 4.

Model BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-BiLSTM 0.0107 53.93% 0.528 0.522 0.0116 53.56% 0.525 0.521 0.0099 53.72% 0.519 0.484

Averaging7 0.0104 54.15% 0.548 0.537 0.0114 53.87% 0.530 0.536 0.0096 54.73% 0.555 0.532
Bagging7 0.0104 54.62% 0.549 0.544 0.0114 53.88% 0.532 0.529 0.0096 55.42% 0.557 0.520
Stacking(DTR)

7 0.0176 50.33% 0.498 0.503 0.0224 51.20% 0.501 0.509 0.0155 51.66% 0.510 0.515
Stacking(LR)

7 0.0085 51.67% 0.527 0.494 0.0095 52.81% 0.536 0.517 0.0093 51.04% 0.541 0.498
Stacking(SVR)

7 0.0085 51.67% 0.510 0.494 0.0159 51.99% 0.513 0.517 0.0118 51.14% 0.511 0.510
Stacking(kNN)

7 0.0112 52.18% 0.526 0.519 0.0126 54.15% 0.544 0.503 0.0101 52.56% 0.536 0.510

Averaging11 0.0105 54.41% 0.546 0.543 0.0114 53.83% 0.531 0.538 0.0095 55.55% 0.525 0.547
Bagging11 0.0104 54.66% 0.548 0.541 0.0113 54.07% 0.532 0.529 0.0096 55.64% 0.524 0.530
Stacking(DTR)

11 0.0178 50.22% 0.494 0.502 0.0226 51.11% 0.510 0.508 0.0157 51.61% 0.518 0.514
Stacking(LR)

11 0.0085 51.72% 0.527 0.499 0.0095 51.69% 0.533 0.492 0.0092 50.42% 0.545 0.496
Stacking(SVR)

11 0.0085 51.72% 0.512 0.499 0.0161 52.36% 0.512 0.521 0.0116 51.82% 0.512 0.517
Stacking(kNN)

11 0.0112 52.34% 0.521 0.504 0.0126 54.14% 0.542 0.492 0.0101 52.53% 0.529 0.509



Algorithms 2020, 13, 121 13 of 21

Table 6. Performance of ensemble models using convolutional neural network with CNN-BiLSTM as
base learner for m = 9.

Model BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-BiLSTM 0.0146 53.47% 0.529 0.526 0.0154 53.87% 0.531 0.529 0.0101 50.36% 0.506 0.394

Averaging7 0.0146 53.58% 0.547 0.535 0.0151 54.03% 0.540 0.539 0.0095 50.04% 0.537 0.428
Bagging7 0.0143 53.20% 0.541 0.528 0.0155 54.09% 0.540 0.539 0.0095 51.11% 0.540 0.417
Stacking(DTR)

7 0.0233 50.84% 0.521 0.507 0.0324 52.23% 0.522 0.517 0.0149 52.19% 0.519 0.521
Stacking(LR)

7 0.0091 52.30% 0.518 0.516 0.0105 52.26% 0.525 0.512 0.0093 50.10% 0.522 0.488
Stacking(SVR)

7 0.0109 52.30% 0.517 0.516 0.0235 52.10% 0.513 0.514 0.0112 51.28% 0.518 0.512
Stacking(kNN)

7 0.0166 52.00% 0.522 0.508 0.0142 51.91% 0.529 0.475 0.0101 52.50% 0.523 0.510

Averaging11 0.0144 53.53% 0.548 0.535 0.0151 54.02% 0.539 0.537 0.0093 50.22% 0.549 0.437
Bagging11 0.0143 53.32% 0.547 0.530 0.0155 54.20% 0.539 0.539 0.0093 51.15% 0.551 0.470
Stacking(DTR)

11 0.0235 50.76% 0.513 0.506 0.0305 52.41% 0.513 0.520 0.0152 51.72% 0.522 0.516
Stacking(LR)

11 0.0088 50.48% 0.527 0.489 0.0098 52.67% 0.524 0.515 0.0092 50.68% 0.529 0.505
Stacking(SVR)

11 0.0108 50.48% 0.513 0.489 0.0235 52.12% 0.516 0.514 0.0110 51.68% 0.517 0.516
Stacking(kNN)

11 0.0166 52.00% 0.526 0.496 0.0142 51.95% 0.517 0.475 0.0100 52.32% 0.526 0.505

Regarding the other two ensemble strategies, averaging and bagging, they exhibited slightly better
regression performance compared to the single CNN-BiLSTM model. Nevertheless, both averaging
and bagging reported the highest accuracy, AUC and F1-score, which implies that they presented
the best classification performance among all other models with bagging exhibiting slightly better
classification performance. Furthermore, it is also worth mentioning that both ensembles slightly
improved their performance in term of RMSE score and Accuracy, when the number of component
classifiers increased from 7 to 11.

In the follow-up, we provided a deeper insight classification performance of the forecasting
models by presenting the confusion matrices of averaging11, bagging11, stacking(LR)

7 and stacking(kNN)
11

for m = 4, which exhibited the best overall performance. The use of the confusion matrix provides a
compact and to the classification performance of each model, presenting complete information about
mislabeled classes. Notice that each row of a confusion matrix represents the instances in an actual class
while each column represents the instances in a predicted class. Additionally, both stacking ensembles
utilizing DTR and SVM as meta-learners were excluded from the rest of our experimental analysis, since
they presented the worst regression and classification performance, relative to all cryptocurrencies.

Tables 7–9 present the confusion matrices of the best identified ensemble models using
CNN-LSTM as base learner, regarding BTC, ETH and XRP datasets, respectively. The confusion
matrices for BTC and ETH revealed that stacking(LR)

7 is biased, since most of the instances were
misclassified as “Down”, meaning that this model was unable to identify possible hidden patterns
despite the fact that it exhibited the best regression performance. On the other hand, bagging11

exhibited a balanced prediction distribution between “Down” or “Up” predictions, presenting its
superiority over the rest forecasting models, followed by averaging11 and stacking(kNN)

11 . Regarding
XRP dataset, bagging11 and stacking(kNN)

11 presented the highest prediction accuracy and the best
trade-off between true positive and true negative rate, meaning that these models may have identified
some hidden patters.



Algorithms 2020, 13, 121 14 of 21

Table 7. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-LSTM as base model for Bitcoin (BTC) dataset.

Averaging11

Down Up

Down 1244 850

Up 1270 1050

Bagging11

Down Up

Down 1064 1030

Up 922 1398

Stacking(LR)
7

Down Up

Down 1537 557

Up 1562 758

Stacking(kNN)
11

Down Up

Down 1296 798

Up 1315 1005

Table 8. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-LSTM as base model for Etherium (ETH) dataset.

Averaging11

Down Up

Down 1365 885

Up 1208 955

Bagging11

Down Up

Down 1076 1174

Up 866 1297

Stacking(LR)
7

Down Up

Down 1666 584

Up 1593 570

Stacking(kNN)
11

Down Up

Down 1353 897

Up 1203 960

Table 9. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-LSTM as base model for Ripple (XRP) dataset.

Averaging11

Down Up

Down 1575 739

Up 1176 923

Bagging11

Down Up

Down 1314 1000

Up 984 1115

Stacking(LR)
7

Down Up

Down 1072 1242

Up 815 1284

Stacking(kNN)
11

Down Up

Down 1214 1100

Up 991 1108

Tables 10–12 present the confusion matrices of averaging11, bagging11, stacking(LR)
7 and

Stacking(kNN)
11 using CNN-BiLSTM as base learner, regarding BTC, ETH and XRP datasets, respectively.

The confusion matrices for BTC dataset demonstrated that both average11 and bagging11 presented
the best performance while stacking(LR)

7 was biased, since most of the instances were misclassified as
“Down”. Regarding ETH dataset, both average11 and bagging11 were considered biased since most
“Up” instances were misclassified as “Down”. In contrast, both stacking ensembles presented the best
performance, with stacking(kNN)

11 reporting slightly considerably better trade-off between sensitivity
and specificity. Regarding XRP dataset, bagging11 presented the highest prediction accuracy and the
best trade-off between true positive and true negative rate, closely followed by stacking(kNN)

11 .

Table 10. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-BiLSTM as base model for BTC dataset.

Averaging11

Down Up

Down 983 1111

Up 864 1456

Bagging11

Down Up

Down 1019 1075

Up 915 1405

Stacking(LR)
7

Down Up

Down 1518 576

Up 1569 751

Stacking(kNN)
11

Down Up

Down 1272 822

Up 1288 1032



Algorithms 2020, 13, 121 15 of 21

Table 11. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-BiLSTM as base model for ETH dataset.

Averaging11

Down Up

Down 1913 337

Up 1721 442

Bagging11

Down Up

Down 1837 413

Up 1631 532

Stacking(LR)
7

Down Up

Down 1322 928

Up 1199 964

Stacking(kNN)
11

Down Up

Down 1277 973

Up 1083 1080

Table 12. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-BiLSTM as base model for XRP dataset.

Averaging11

Down Up

Down 1518 796

Up 1146 953

Bagging11

Down Up

Down 1440 874

Up 1062 1037

Stacking(LR)
7

Down Up

Down 1124 1190

Up 831 1268

Stacking(kNN)
11

Down Up

Down 1221 1093

Up 998 1101

In the rest of this section, we evaluate the reliability of the best reported ensemble models by
examining if they have properly fitted the time series. In other words, we examine if the models’
residuals defined by

ε̂t = yt − ŷt

are identically distributed and asymptotically independent. It is worth noticing the residuals are
dedicated to evaluate whether the model has properly fitted the time series.

For this purpose, we utilize the AutoCorrelation Function (ACF) plot [47] which is obtained from
the linear correlation of each residual ε̂t to the others in different lags, ε̂t−1, ε̂t−2, . . . and illustrates
the intensity of the temporal autocorrelation. Notice that in case the forecasting model violates the
assumption of no autocorrelation in the errors implies that its predictions may be inefficient since there
is some additional information left over which should be accounted by the model.

Figures 4–6 present the ACF plots for BTC, ETH and XRP datasets, respectively. Notice that the
confident limits (blue dashed line) are constructed assuming that the residuals follow a Gaussian
probability distribution. It is worth noticing that averaging11 and bagging11 ensemble models violate
the assumption of no autocorrelation in the errors which suggests that their forecasts may be inefficient,
regarding BTC and ETH datasets. More specifically, the significant spikes at lags 1 and 2 imply that
there exists some additional information left over which should be accounted by the models. Regarding
XRP dataset, the ACF plot of average11 presents that the residuals have no autocorrelation; while
the ACF plot of bagging11 presents that there is a spike at lag 1, which violates the assumption of
no autocorrelation in the residuals. Both ACF plots of stacking ensemble are within 95% percent
confidence interval for all lags, regarding BTC and XRP datasets, which verifies that the residuals have
no autocorrelation. Regarding the ETH dataset, the ACF plot of stacking(LR)

7 reported a small spike at
lag 1, which reveals that there is some autocorrelation of the residuals but not particularly large; while
the ACF plot of stacking(kNN)

11 reveals that there exist small spikes at lags 1 and 2, implying that there is
some autocorrelation.



Algorithms 2020, 13, 121 16 of 21

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(a) Averaging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(b) Bagging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(c) Stacking(LR)
7

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(d) Stacking(kNN)
11

Figure 4. Autocorrelation of residuals for BTC dataset of ensemble models using CNN-LSTM as base learner.

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(a) Averaging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(b) Bagging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(c) Stacking(LR)
7

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(d) Stacking(kNN)
11

Figure 5. Autocorrelation of residuals for ETH dataset of ensemble models using CNN-LSTM as base learner.

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(a) Averaging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(b) Bagging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(c) Stacking(LR)
7

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(d) Stacking(kNN)
11

Figure 6. Auto-correlation of residuals for XRP dataset of ensemble models using CNN-LSTM as base learner.

Figures 7–9 present the ACF plots of averaging11, bagging11, stacking(LR)
7 and stacking(kNN)

11
ensembles utilizing CNN-BiLSTM as base learner for BTC, ETH and XRP datasets, respectively.
Both averaging11 and bagging11 ensemble models violate the assumption of no autocorrelation in
the errors, relative to all cryptocurrencies, implying that these models are not properly fitted the
time-series. In more detail, the significant spikes at lags 1 and 2 suggest that the residuals are not
identically distributed and asymptotically independent, for all datasets . The ACF plot of stacking(LR)

7
ensemble for BTC dataset verify that the residuals have no autocorrelation since are within 95% percent
confidence interval for all lags. In contrast, for ETH and XRP datasets the spikes at lags 1 and 2
illustrate that there is some autocorrelation of the residuals. Regarding the ACF plots of stacking(kNN)

11
present that there exists some autocorrelation in the residuals but not particularly large for BTC and
XRP datasets; while for ETH dataset, the significant spikes at lags 1 and 2 suggest that the model’s
prediction may be inefficient.

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(a) Averaging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(b) Bagging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(c) Stacking(LR)
7

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(d) Stacking(kNN)
11

Figure 7. Autocorrelation of residuals for BTC dataset of ensemble models using CNN-BiLSTM as base learner.



Algorithms 2020, 13, 121 17 of 21

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(a) Averaging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(b) Bagging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(c) Stacking(LR)
7

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(d) Stacking(kNN)
11

Figure 8. Autocorrelation of residuals for ETH dataset of ensemble models using CNN-BiLSTM as base learner.

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(a) Averaging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(b) Bagging11

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(c) Stacking(LR)
7

-0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

-C
o
rr

e
la

ti
o
n

0 2 4 6 8 10

Lag

(d) Stacking(kNN)
11

Figure 9. Autocorrelation of residuals for XRP dataset of ensemble models using CNN-BiLSTM as base learner.

6. Discussion

In this section, we perform a discussion regarding the proposed ensemble models,
the experimental results and the main finding of this work.

6.1. Discussion of Proposed Methodology

Cryptocurrency prediction is considered a very challenging forecasting problem, since the
historical prices follow a random walk process, characterized by large variations in the volatility,
although a few hidden patterns may probably exist [48,49]. Therefore, the investigation and the
development of a powerful forecasting model for assisting decision making and investment policies is
considered essential. In this work, we incorporated advanced deep learning models as base learners
into three of the most popular and widely used ensembles methods, namely averaging, bagging and
stacking for forecasting cryptocurrency hourly prices.

The motivation behind our approach is to exploit the advantages of ensemble learning and
advanced deep learning techniques. More specifically, we aim to exploit the effectiveness of ensemble
learning for reducing the bias or variance of error by exploiting multiple learners and the ability
of deep learning models to learn the internal representation of the cryptocurrency data. It is worth
mentioning that since the component deep learning learners are initialized with different weight states,
this leads to the development of deep learning models each of which focuses on different identified
patterns. Therefore, the combination of these learners via an ensemble learning strategy may lead to
stable and robust prediction model.

In general, deep learning neural networks are powerful prediction models in terms of accuracy,
but are usually unstable in sense that variations in their training set or in their weight initialization
may significantly affect their performance. Bagging strategy constitutes an effective way of building
efficient and stable prediction models, utilizing unstable and diverse base learners [50,51], aiming to
reduce variance and avoid overfitting. In other words, bagging stabilizes the unstable deep learning
base learners and exploits their prediction accuracy focusing on building an accurate and robust final
prediction model. However, the main problem of this approach is that since bagging averages the
predictions of all models, redundant and non-informative models may add too much noise on the final
prediction result and therefore, possible identified patterns, by some informative and valuable models,
may disappear.



Algorithms 2020, 13, 121 18 of 21

On the other hand, stacking ensemble learning utilizes a meta-learner in order to learn the
prediction behavior of the base learners, with respect to the final target output. Therefore, it is able
to identify the redundant and informative base models and “weight them” in a nonlinear and more
intelligent way in order to filter out useless and non-informative base models. As a result, the selection
of the meta-learner is of high significance for the effectiveness and efficiency of this ensemble strategy.

6.2. Discussion of Results

All compared ensemble models were evaluated considering both regression and classification
problems, namely for the prediction of the cryptocurrency price on the following hour (regression)
and also for the prediction if the price will increase or decrease on the following hour (classification).
Our experiments revealed that the incorporation of deep learning models into ensemble learning
framework improved the prediction accuracy in most cases, compared to a single deep learning model.

Bagging exhibited the best overall score in terms of classification accuracy, closely followed
by averaging and stacking(kNN); while stacking(LR) the best regression performance. The confusion
matrices revealed that stacking(LR) as base learner was actually biased, since most of the instances
were wrongly classified as “Down” while bagging and stacking(kNN) exhibited a balanced prediction
distribution between “Down” or “Up” predictions. It is worth noticing that since bagging can be
interpreted as a perturbation technique aiming at improving the robustness especially against outliers
and highly volatile prices [37]. The numerical experiments demonstrated that averaging ensemble
models trained on perturbed training dataset is a means to favor invariance to these perturbations
and better capture the directional movements of the presented random walk processes. However,
the ACF plots revealed that bagging ensemble models violate the assumption of no autocorrelation
in the residuals, which implies that their predictions may be inefficient. In contrast, the ACF plots of
stacking(kNN) revealed that the residuals have no or small (inconsiderable) autocorrelation. This is
probably due to fact that the use of a meta-learner, which is trained on the errors of the base learners,
is able to reduce the autocorrelation in the residuals and provide more reliable forecasts. Finally, it is
worth mentioning that the increment of component learners had little or no effect to the regression
performance of the ensemble algorithms, in most cases

Summarizing, stacking utilizing advanced deep learning base learner and kNN as meta-learner
may considered to be the best forecasting model for the problem of cryptocurrency price prediction and
movement, based on our experimental analysis. Nevertheless, further research has to be performed
in order to improve the prediction performance of our prediction framework by creating even more
innovative and sophisticated algorithmic models. Moreover, additional experiments with respect to
the trading-investment profit returns based on such prediction frameworks have to be also performed.

7. Conclusions

In this work, we explored the adoption of ensemble learning strategies with advanced deep
learning models for forecasting cryptocurrency price and movement, which constitutes the main
contribution of this research. The proposed ensemble models utilize state-of-the-art deep learning
models as component learners, which are based on combinations of LSTM, BiLSTM and convolutional
layers. An extensive and detailed experimental analysis was performed considering both classification
and regression performance evaluation of averaging, bagging, and stacking ensemble strategies.
Furthermore, the reliability and the efficiency of the predictions of each ensemble model was studied
by examining for autocorrelation of the residuals.

Our numerical experiments revealed that ensemble learning and deep learning may efficiently be
adapted to develop strong, stable, and reliable forecasting models. It is worth mentioning that due
to the sensitivity of various hyper-parameters of the proposed ensemble models and their high
complexity, it is possible that their prediction ability could be further improved by performing
additional optimized configuration and mostly feature engineering. Nevertheless, in many real-world
applications, the selection of the base learner as well as the specification of their number in an ensemble



Algorithms 2020, 13, 121 19 of 21

strategy constitute a significant choice in terms of prediction accuracy, reliability, and computation
time/cost. Actually, this fact acts as a limitation of our approach. The incorporation of deep learning
models (which are by nature computational inefficient) in an ensemble learning approach, would
lead the total training and prediction computation time to be considerably increased. Clearly, such an
ensemble model would be inefficient on real-time and dynamic applications tasks with high-frequency
inputs/outputs, compared to a single model. However, on low-frequency applications when the
objective is the accuracy and reliability, such a model could significantly shine.

Our future work is concentrated on the development of an accurate and reliable decision support
system for cryptocurrency forecasting enhanced with new performance metrics based on profits
and returns. Additionally, an interesting idea which is worth investigating in the future is that in
certain times of global instability, we experience a significant number of outliers in the prices of all
cryptocurrencies. To address this problem an intelligent system might be developed based on an
anomaly detection framework, utilizing unsupervised algorithms in order to “catch” outliers or other
rare signals which could indicate cryptocurrency instability.

Author Contributions: Supervision, P.P.; Validation, E.P.; Writing—review & editing, I.E.L. and S.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

List of Acronyms and Abbreviations

Acronym Description
BiLSTM Bi-directional Long Short-Term Memory
BRNN Bi-directional Recurrent Neural Network
BTC Bitcoin
CNN Convolutional Neural Network
DTR Decision Tree Regression
ETH Ethereum
F1 F1-score
kNN k-Nearest Neighbor
LR Linear Regression
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
SVR Support Vector Regression
RMSE Root Mean Square Error
XRP Ripple

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://git.dhimmel.
com/bitcoin-whitepaper/ (accessed on 20 February 2020).

2. De Luca, G.; Loperfido, N. A Skew-in-Mean GARCH Model for Financial Returns. In Skew-Elliptical
Distributions and Their Applications: A Journey Beyond Normality; Corazza, M., Pizzi, C., Eds.; CRC/Chapman
& Hall: Boca Raton, FL, USA, 2004; pp. 205–202.

3. De Luca, G.; Loperfido, N. Modelling multivariate skewness in financial returns: A SGARCH approach.
Eur. J. Financ. 2015, 21, 1113–1131. [CrossRef]

4. Weigend, A.S. Time Series Prediction: Forecasting the Future and Understanding the Past; Routledge: Abingdon,
UK, 2018.

5. Azoff, E.M. Neural Network Time Series Forecasting of Financial Markets; John Wiley & Sons, Inc.: Hoboken, NJ,
USA, 1994.

6. Oancea, B.; Ciucu, Ş.C. Time series forecasting using neural networks. arXiv 2014, arXiv:1401.1333.

https://git.dhimmel.com/bitcoin-whitepaper/
https://git.dhimmel.com/bitcoin-whitepaper/
http://dx.doi.org/10.1080/1351847X.2011.640342


Algorithms 2020, 13, 121 20 of 21

7. Pintelas, E.; Livieris, I.E.; Stavroyiannis, S.; Kotsilieris, T.; Pintelas, P. Fundamental Research Questions and
Proposals on Predicting Cryptocurrency Prices Using DNNs; Technical Report TR20-01; University of Patras:
Patras, Greece, 2020. Available online: https://nemertes.lis.upatras.gr/jspui/bitstream/10889/13296/1/
TR01-20.pdf (accessed on 20 February 2020).

8. Wen, Y.; Yuan, B. Use CNN-LSTM network to analyze secondary market data. In Proceedings of the
2nd International Conference on Innovation in Artificial Intelligence, Shanghai, China, 9–12 March 2018;
pp. 54–58.

9. Liu, S.; Zhang, C.; Ma, J. CNN-LSTM neural network model for quantitative strategy analysis in stock
markets. In International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany,
2017; pp. 198–206.

10. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN-LSTM model for gold price time-series forecasting.
Neural Comput. Appl. Available online: https://link.springer.com/article/10.1007/s00521-020-04867-x
(accessed on 20 February 2020). [CrossRef]

11. Pintelas, E.; Livieris, I.E.; Stavroyiannis, S.; Kotsilieris, T.; Pintelas, P. Investigating the problem of
cryptocurrency price prediction—A deep learning approach. In Proceedings of the 16th International
Conference on Artificial Intelligence Applications and Innovations, Neos Marmaras, Greece, 5–7 June 2020.

12. Yiying, W.; Yeze, Z. Cryptocurrency Price Analysis with Artificial Intelligence. In Proceedings of the
2019 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019;
pp. 97–101.

13. Nakano, M.; Takahashi, A.; Takahashi, S. Bitcoin technical trading with artificial neural network. Phys. A
Stat. Mech. Its Appl. 2018, 510, 587–609. [CrossRef]

14. McNally, S.; Roche, J.; Caton, S. Predicting the price of Bitcoin using Machine Learning. In Proceedings of
the 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP), Cambridge, UK, 21–23 March 2018; pp. 339–343.

15. Shintate, T.; Pichl, L. Trend prediction classification for high frequency bitcoin time series with deep learning.
J. Risk Financ. Manag. 2019, 12, 17. [CrossRef]

16. Miura, R.; Pichl, L.; Kaizoji, T. Artificial Neural Networks for Realized Volatility Prediction in Cryptocurrency
Time Series. In International Symposium on Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 165–172.

17. Ji, S.; Kim, J.; Im, H. A Comparative Study of Bitcoin Price Prediction Using Deep Learning. Mathematics
2019, 7, 898. [CrossRef]

18. Kumar, D.; Rath, S. Predicting the Trends of Price for Ethereum Using Deep Learning Techniques. In Artificial
Intelligence and Evolutionary Computations in Engineering Systems; Springer: Berlin/Heidelberg, Germany,
2020; pp. 103–114.

19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

20. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures.
Neural Comput. 2019, 31, 1235–1270. [CrossRef] [PubMed]

21. Zhang, K.; Chao, W.L.; Sha, F.; Grauman, K. Video summarization with long short-term memory. In European
Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 766–782.

22. Nowak, J.; Taspinar, A.; Scherer, R. LSTM recurrent neural networks for short text and sentiment classification.
In International Conference on Artificial Intelligence and Soft Computing; Springer: Berlin/Heidelberg, Germany,
2017; pp. 553–562.

23. Rahman, L.; Mohammed, N.; Al Azad, A.K. A new LSTM model by introducing biological cell state.
In Proceedings of the 2016 3rd International Conference on Electrical Engineering and Information
Communication Technology (ICEEICT), Dhaka, Bangladesh, 22–24 September 2016; pp. 1–6.

24. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681.
[CrossRef]

25. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

26. Lu, L.; Wang, X.; Carneiro, G.; Yang, L. Deep Learning and Convolutional Neural Networks for Medical Imaging
and Clinical Informatics; Springer: Berlin/Heidelberg, Germany, 2019.

https://nemertes.lis.upatras.gr/jspui/bitstream/10889/13296/1/TR01-20.pdf
https://nemertes.lis.upatras.gr/jspui/bitstream/10889/13296/1/TR01-20.pdf
https://link.springer.com/article/10.1007/s00521-020-04867-x
http://dx.doi.org/10.1007/s00521-020-04867-x
http://dx.doi.org/10.1016/j.physa.2018.07.017
http://dx.doi.org/10.3390/jrfm12010017
http://dx.doi.org/10.3390/math7100898
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://dx.doi.org/10.1109/78.650093


Algorithms 2020, 13, 121 21 of 21

27. Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review.
Neural Comput. 2017, 29, 2352–2449. [CrossRef] [PubMed]

28. Michelucci, U. Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection; Springer:
Berlin/Heidelberg, Germany, 2019.

29. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

30. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

31. Rokach, L. Ensemble Learning: Pattern Classification Using Ensemble Methods; World Scientific Publishing Co
Pte Ltd.: Singapore, 2019.

32. Lior, R. Ensemble Learning: Pattern Classification Using Ensemble Methods; World Scientific: Singapore, 2019;
Volume 85.

33. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012.
34. Bian, S.; Wang, W. On diversity and accuracy of homogeneous and heterogeneous ensembles. Int. J. Hybrid

Intell. Syst. 2007, 4, 103–128. [CrossRef]
35. Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012;

pp. 1–34.
36. Christiansen, B. Ensemble averaging and the curse of dimensionality. J. Clim. 2018, 31, 1587–1596. [CrossRef]
37. Grandvalet, Y. Bagging equalizes influence. Mach. Learn. 2004, 55, 251–270. [CrossRef]
38. Livieris, I.E.; Iliadis, L.; Pintelas, P. On ensemble techniques of weight-constrained neural networks.

Evol. Syst. 2020, 1–13. [CrossRef]
39. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
40. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 2015 International

Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
42. Wu, X.; Kumar, V. The Top Ten Algorithms in Data Mining; CRC Press: Boca Raton, FL, USA, 2009.
43. Deng, N.; Tian, Y.; Zhang, C. Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions;

Chapman and Hall/CRC: Boca Raton, FL, USA, 2012.
44. Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill Irwin:

New York, NY, USA, 2005; Volume 5.
45. Aha, D.W. Lazy learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
46. Breiman, L.; Friedman, J.; Olshen, R. Classification and Regression Trees; Routledge: Abingdon, UK, 2017.
47. Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2016.
48. Stavroyiannis, S. Can Bitcoin diversify significantly a portfolio? Int. J. Econ. Bus. Res. 2019, 18, 399–411.

[CrossRef]
49. Stavroyiannis, S. Value-at-Risk and Expected Shortfall for the major digital currencies. arXiv 2017,

arXiv:1708.09343.
50. Elisseeff, A.; Evgeniou, T.; Pontil, M. Stability of randomized learning algorithms. J. Mach. Learn. Res. 2005,

6, 55–79.
51. Kotsiantis, S.B. Bagging and boosting variants for handling classifications problems: A survey. Knowl. Eng. Rev.

2014, 29, 78–100. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/neco_a_00990
http://www.ncbi.nlm.nih.gov/pubmed/28599112
http://dx.doi.org/10.3233/HIS-2007-4204
http://dx.doi.org/10.1175/JCLI-D-17-0197.1
http://dx.doi.org/10.1023/B:MACH.0000027783.34431.42
http://dx.doi.org/10.1007/s12530-019-09324-2
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1504/IJEBR.2019.103093
http://dx.doi.org/10.1017/S0269888913000313
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Deep Learning in Cryptocurrency Forecasting: State-of-the-Art
	Advanced Deep Learning Techniques 
	Long Short-Term Memory Neural Networks
	Bi-Directional Recurrent Neural Networks
	Convolutional Neural Networks

	Ensemble Deep Learning Models
	Ensemble-Averaging of Deep Learning Models
	Bagging Ensemble of Deep Learning Models
	Stacking Ensemble of Deep Learning Models

	Numerical Experiments
	Discussion
	Discussion of Proposed Methodology
	Discussion of Results

	Conclusions
	References

