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Abstract: One of the most challenging aspects of medical modalities such as Computed Tomography
(CT) as well hybrid techniques such as CT/PET (Computed Tomography/Positron emission
tomography) and PET/MRI is finding a balance between examination time, radiation dose, and
image quality. The need for a dense sampling grid is associated with two major factors: image
resolution enhancement, which leads to a strengthening of human perception, and image features
interpretation. All these aspects make an unsupervised image processing much easier. The presented
algorithm employs super-resolution-reconstruction with high accuracy motion fields” estimation at
its core for Computed Tomography /Positron Emission Tomography (CT/PET) images enhancement.
The suggested method starts with processing compressively sensed input signals. This paper
shows that it is possible to achieve higher image resolution while keeping the same radiation dose.
The purpose of this paper is to propose a highly effective CT/PET image reconstruction strategy,
allowing for simultaneous resolution enhancing and scanning time minimisation. The algorithm
aims to overcome two major obstacles—image resolution limitation and algorithm reconstruction
time efficiency-by combining a highly-sparse Ridgelet analysis based sampling pattern as well as
PET signal sensing with super-resolution (SR) image enhancement. Due to the diverse nature of
Computed Tomography, the applied Ridgelet analysis arguing its usability turned out to be efficient
in reducing acquisition times in regard to maintaining satisfying scan quality. This paper presents a
super-resolution image enhancement algorithm designed for handling highly sensitively compressed
hybrid CT/PET scanners raw data. The presented technique allows for improving image resolution
while reducing motion artefacts and keeping scanning times at pretty low levels.

Keywords: CT; PET; super-resolution; compressed sensing

1. Introduction

Positron emission tomography-computed tomography (better known as PET-CT or PET/CT) is a
nuclear medicine procedure which fuses a positron emission tomography (PET) modality with an X-ray
based computed tomography (CT), to obtain sequential images from both devices during the same time
period, which are then merged into a dual diagnostic image. Therefore, functional imaging acquired
by PET, which illustrates the spatial distribution of metabolic or biochemical activity in the body
can be more accurately aligned or correlated with anatomic imaging achieved by CT scanning [1,2].
The 2D and 3D image reconstruction may be rendered as a function of a joint algorithm. PET-CT
has modernised medical modalities in many aspects, by adding accuracy of anatomic localisation
to functional imaging, which was not available for the PET imaging. For example, many medical
imaging techniques in cancer treatment, surgery planning systems, radiation treatment for cancer
have been under the influence of PET-CT availability has been increasingly abandoning conventional
PET devices and replacing them by PET-CT devices. The idea of combining PET with CT was
proposed in the early 1990s by David Townsend and Ronald Nutt. Furthermore, to inherent image
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alignment, the expected profit from a PET/CT hardware fusion was to use the CT images to utilise
the PET attenuation correction factors [1-3]. The very first prototype PET/CT turned out to be
functional in 1998, proposed by CTI PET Systems in Knoxville, TN, USA and clinically valued at
the University of Pittsburgh. The project delivered a single-slice spiral CT and a rotating ECAT
ART PET (a continuously rotating PET camera) procedure [2]. Other hybrid scanners have been
increasing their importance [4-6]. The spatial resolution, as well as its clarity, is a critical requirement
in a number of healthcare environments, including MRI, CT, and PET where studies suffer from a
lack of diagnostic data due to unusably distorted images. Medical imaging modalities are widely
characterised by low spatial resolution, contrast weakness, visual noise scattering, and blurring
caused by the complexity of body internal tissues, which all can cause difficulties in making a correct
medical diagnosis. Several different improvements are here described and claimed to be useful for
improving image quality while keeping scanning times at indeed low levels. The proposed algorithm
reduces artefacts caused by highly undersampled data, even in the presence of motion distortions.
The presented algorithm extends the well known Iterative Back Projection technique in several ways.
It nests the Bayesian MAP estimate of the noise level, globally deformable motion analysis as well as
blur kernel recognition and discrete optimisation at its core [7]. In order to be able to ensure that the
presented algorithm delivers great results, it combines efficient Adaptive Tomography Reconstruction
with Super-Resolution reconstruction. It yields an improved CT/PET images quality as well as
improved time complexity. Moreover, enhanced high-frequency components sampling improves
edge representation. The method could be directly implemented to CT/PET scanners without any
hardware tweaks or changes. Thus, it is clearly shown that the developed technique can provide
enhanced and sharper outputs. From obvious reasons, the sharper tissue boundaries lead to higher
chances to make a proper clinical diagnosis. This modality has financial aspects that need to be
considered. Therefore, whether the higher acquisition costs for CT/PET will be balanced in the
long-term still needs to be confirmed. The goal of this paper was to show the potential of combined
techniques for enhancing CT/PET images while maintaining short acquisition times. In accordance
with high public expectations, the presented algorithm can enhance image resolution without any
hardware adjustments. Besides the resolution trade-offs, this method is able to reduce motion artefacts.
Data from preliminary trials can also be valuable in providing background information useful in
reducing examination time. However, the motion estimation algorithm can significantly eliminate
diagnostic images” artefacts thus maximising the chance of correct diagnosis. Numerous medical
imaging procedures have been struggling with one of their most prominent drawbacks, i.e., long
examination times. Many algorithms for quickening of the MRI data collection have been subjects
of interest for many researchers [4,7,8]. One of the possible scenarios of what could be developed is
the change of phase encoding intervals in k-space filling [9-12]. Unfortunately, this aspect usually
leads to weakened image quality. Favourably, it can be overcome by applying the proposed k-space
sampling pattern [8]. Single-shot echo planar imaging (SS-EPI) turned out to be one of the most
frequently developed sampling schemes in DWI (Diffusion Weighted Imaging) area. However, despite
its undisputed importance, some features have remained a point of confusion and reasoned subject
of discourse.

The presented methodology has been confronted with several state-of-art super-resolution
enhancement algorithms such as Enhanced Deep Residual Networks for Single Image
Super-Resolution [13], Image super-resolution using very deep residual channel attention
Networks [14], as well as Residual dense network for image super-resolution exploiting the deep
convolutional neural networks [15]. In order to make the comparison more reliable, the goal was to train
the networks to map Low-Resolution (LR) CT and PET scans to ‘ground-truth” subimages” domains.

These methods relied on residual learning procedures and their improvements. They can be
further adapted to take advantage of using a modified optimisation relying on removing unnecessary
modules in conventional residual networks. The main idea of that algorithm is to use dynamic
upsampling filters and to derive a residual image. It simplifies the motion estimation procedures by
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avoiding explicit motion compensation procedures. Furthermore, increasing the size of the model was
recommended. This adjustment stabilises the learning step. Despite their importance in the medical
image processing field, these techniques are not suitable for such highly challenging environments
because of the need for reliable training sets. Moreover, with these kinds of methods, precision depends
on the accuracy of image registration. Because of this, numerous Super-Resolution frameworks
exploit optical flow-based procedures. It should be mentioned that public expectations regarding
the medical modalities are much higher than in the case of conventional video/image enhancement.
The method adapted in this paper is a severally verified globally optimal deformable registration
based super-resolution algorithm [16].

One of its main constraints is spatial resolution which produces difficulties in depicting minute
body structures. In the area of Computed tomography (CT), a serious concern is to reduce the radiation
dose without significantly degrading the diagnostic image quality. Compressed sensing (CS) allows
for the radiation dose reduction by reconstructing scans from a limited number of projections. In the
technique shown in this paper, the main goal is to enhance the CT/PET hybrid scanner’s image
resolution as well as its quality in terms of edge delineation, keeping acquisition time at a low level,
see Figures 1 and 2. In this work, the author suggests a new the CT/PET area associated technique,
which blends super-resolution [7,8] and motion correction with a robust sampling trajectory pattern.
The experimental results are promising and revealed the method’s true value. The main goal was to
enhance image resolution as well as its quality in terms of edge delineation while keeping acquisition
time at a pretty low level.
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Figure 1. The CT/PET inputs utilising their joint sparsity.
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Figure 2. The proposed CT/PET image enhancement algorithm.

2. CT/PET Joint Sparsity

Usually, despite quite dissimilar physical features utilised in the PET and CT, the reconstruction
procedure involves their projections side-by-side. It means that the scans are being restored in
isolated methods, but both can utilise the same image features and motion trajectory. However,
the reconstruction procedure may be simplified due to inherent objects’ similarities and important
common information being shared between them. This feature could be applied in combination
with other extracted structures to make motion artefacts smaller. Instead of separated reconstruction
steps, the joint sparsity method combines two sparsely sampled data sets allowing these structural
similarities to increase the image resolution and minimise the motion artefacts. The proposed algorithm
solves the following constrained cost function. In this equation, xCT and xPET promote their data sets’
sparsity by exploiting the Compressed Sensing. The joint sparsity is the most influential subject in the
use of structural information between PET and CT scans, and it can be expressed in the following way:

[X(X'ET)} N \/(X(xiCT))z + (x(xher))’ W
2

X(x%ET)

where xiCT and xb 1 are 3D image volumes, and y is a sparsifying transform.
In this way, the regularisation performed at each voxel could be expressed as follows:

«' = || x(input — CL1)| — [x(input — Pher) | ¢)

The regularisation parameters are employed to avoid using non-coherent CT and PET images’
features overlapping. The method proposed in this paper utilises joint sparsity, i.e., in CT’s and PET’s
domains, see Figure 1.
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3. Computed Tomography Imaging Speeding Up

Optimisation of Computed Tomography based on finding a balance between exposure times and
image quality has considerably developed and provides for faster and more accurate algorithms.
This issue is getting more attention due to its being important in increasing the risk of death
caused by cancer [17-19]. The most effective way to protect from radiation is to omit redundant
examinations steps. Nowadays, numerous researchers attempt to improve CT image quality
by applying various techniques, such as Iterative Reconstruction and Model Based Iterative
Reconstruction. Unfortunately, the issue of radiation doses still goes largely unaddressed. The author
in [7] presents an adaptive acquisition model, which turns out to be proficient in reducing dosage levels.
This procedure does not need any hardware modifications because it employs so-called two-step
adaptive acquisition techniques [20,21]. The idea of this algorithm is given below. It starts with
projecting the object using the lowest possible dosage levels. In this way, the CT image reconstruction
algorithm initial guess is calculated. The next step is to determine image features’ delineation. In this
step, the further line projections are incorporated sequentially. Finally, the method refines key image
features location until the convergence is reached. The convergence criterion is to obtain sufficient
image quality in the fewest possible projections. This algorithm takes advantage of using Ridgelets
based model, which is useful in classifying image edges in the multiscale modelling analysis [22].
The adapted CT image reconstruction algorithm objective is to derive the solution from the adaptive
Ridgelet approximation. In this work, the projection lines number are minimised while the angles
are kept untouched. The Adaptive Tomography Acquisition (ATA) [23] algorithm tends to adaptably
take the samples of the line projections associated with the object edges. At the start the image is not
reconstructed and the algorithm tries to reconstruct it. The Ridgelet transform (RT) has constrained
directional features. It only works for image lines singularities. The essence of RT is to convert
line singularities into point singularities using the projection slice theorem performed on the Radon
transform. The finite ridgelet transform (FRIT) consists of the two following operations: 1. Deriving
the Discrete Radon Transform, 2. Calculating a wavelet transform. The Finite Radon transform (FRAT)
is done in two stages: 1. Deriving the 2D Fast Fourier transform (FFT) of the image and (applying 1D
inverse Fourier Transform (iFFT) on Radon projection 2. Applying 1D wavelet transform to its output.
The ATA exploits the Ridgelet model. This method updating the Ridgelet coefficients tries to obtain
the only line projections that are associated with edge singularities and determined by the level of
multiscale image decomposition, see Figure 1.

4. Compressively Sensed CT/PET Signals

The shared objective of the main technique is to compress all the information coming from the
submodalities. In this work, the scientist guarantees that PET’s data volume could be compressed [3].
Radioactive substances that produce positrons are being multiplexed as often as possible to diminish
the readout channels’ numbers. Their output signals could be consolidated into a super-resolution
PET image. This structure part goes for consolidating the super-resolution and compressive sensing in
CT/PET hybrid scanners. The underlying detector turned out to have a sparse representation. Due to
this feature, sparse-sense could be utilised for developing new multiplexing patterns. One key aspect
of CS is generating relevant sensing matrices. Some various random procedures of generating random
matrices satisfying the restricted isometry property may be applied. The method of formulating
sensing matrices is a maximum likelihood framework. It has been proven [3] that the method of
generating sensed matrices prompt to lower reconstruction error in a mean square sense than any
other. The algorithm presented in this paper operates using a highly reduced number of channels
leading to discretised domains of space and time, respectively. In this way, collecting PET input
data are interpreted as compressively sensed PET signals. Every single readout could be interpreted
as a linearly weighted sum of the photodetector pixels with weights expressed as c; ; (see Figure 1).
The sensor number is reduced in accordance with 4:1 subsampling factors. Using MR-PET joint sparsity
as well as its common product features, the MR data sets based motion model parameters; we may
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apply them to improve the PET image. Technically, the same super-resolution procedure is used,
see Figure 2.

5. The Super-Resolution Algorithm vs. Image Registration Issues

High accuracy and deformable image registration are key factors in the very challenging
medical imaging field. The non-rigid registration algorithms prone to solving a highly non-convex
optimisation problem with millions of degrees of freedom. Mathematically, in its domain, this issue
is considered typically categorised to be a problem of continuous optimisation—being expressed
as a non-convex cost function, which is inclined to get stuck at to local minimums, which leads to
mlmage Super-Resolution registration issues [7,8]. Moreover, to make matters worse, the area of
medical imaging is associated with one of the most challenging application fields for motion artefacts
reduction [16]. Moreover, the deformable motion estimation is already nested at the core of the
presented iterative super-resolution algorithm. Furthermore, the technique takes into account the
blur kernel and noise estimate, see Figure 2. The application of this algorithm provides much lower
registration errors while compared to the other procedures even if large motion trajectory distortions
occur. The goal of the algorithm is to minimise the cost function consisting of the High-Resolution
(HR) input image I'yy, deformable image registration parameters {w;}, noise level {6;} as well blur
kernel B [16]. The algorithm starts with taking one image from a set of LR observations as its reference
input. The image registration, which is presented in this paper, is performed on a whole set of CT as
well as PET low-resolution observations:

N
Iy :argm'mGOHDBF”H—FZ’O ’ +gHVF’f_I + Z HDBwiF”H—F'Z’O
Y, i=—N,i#0

| ®)

Note that the F’Z’O represents the simulated reference initial guess related to n-th set of
compressively sensed CT/PET images, F'Z’j is the -th acquired LR image with regard to degradation
parameters, I is HR estimate, V is the gradient operator, [, is the n-th HR image estimate, D, B, w;
and g denote the down-sampling, blur kernel, motion parameters, additional degradation operator
individually. To allow a gradient optimisation to be doable, L1 norms are supposed to be replaced
with their differentiable approximations.

Input: set of Low-resolution input CT/PET.

1.  high-resolution estimate.

2. repeat until convergence |I7 — [°Pserved| ¢

a+Ng—1

BFNz

b. Calculate deformable image registration parameters and realign an image grid using them
Estimate blur kernel operator By = arg min 6y||AM,B, —T}|| + ||V By||

X

d. Improve the High-Resolution estimate I'},
e

a. Estimate noise parameters 0; =

0

Repeat steps a-d until convergence, see Figure 2

Output: high-resolution CT/PET image.

The algorithm minimises the cost function consisting of the High-Resolution CT/PET input image
GH, motion vectors fwig, noise level qi as well blur kernel B. The flowchart starts with considering
one image from a set of Low-Resolution observations as its reference input.

6. Evaluation

The proposed algorithm outputs were compared with four state-of-the-art algorithms: Non-Rigid
Multi-Modal 3D Medical Image Registration Based on Foveated Modality Independent Neighbourhood
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Descriptor, Enhanced Deep Residual Networks for Single Image Super-Resolution, Residual dense
network for image super-resolution, and Image super-resolution using very deep residual channel
attention networks. L1-loss function has been exploited to train the networks of the deep residual
nets. Neural net depth is of key element in neural network architectures, but deeper networks are
not easy to learn. The residual learning framework simplifies the learning of these kinds of nets,
and enables them to be significantly deeper providing enhanced performance in both visual and
non-visual tasks. These residual nets are much deeper than their plain counterparts, yet they need a
similar number of weighting parameters. To ensure clinical usability of these algorithms, the author
has run the networks and extended them to training based on imperfect target images derived from a
higher-resolution clinical scanner, thereby utilising the SR framework to define a mapping from an
LR scanner’s image domain to an HR scanner’s image domain. The goal of the trials was to evaluate
the performance of the compressively sensed super-resolution image reconstruction compared to the
native (the unmodified prototype) and naive (the ones that behave in a very simple way) algorithms.
The efficiency of the motion estimation (see Table 11), super-resolution (see Tables 4, 7, 9 and the usage
of the compressed sensing technology (see Tables 1-3, 5, 8 and 10) is evaluated in terms of image
quality and PSNR values. In all the tables, the worst and the best results have been highlighted. The
separate aim of the study was to emphasise the reliability of results obtained by processing realistic
digital phantoms. Analysing the relevancy of the models such as XCAT phantom considers both the
flexibility of numerical phantoms and the truthful nature of voxelized phantoms. The term ‘XCAT
phantom’ refers to the 4D extended cardiac-torso phantom for multimodality imaging research [24].

7. Results

In the experimental studies, several CT, PET, and CT/PET in vivo and phantom images have been
processed using different reconstruction algorithms. The term "phantom’ refers to a specially designed
object that is scanned or imaged in the field of medical modalities to evaluate, analyse, and tune the
performance of various imaging devices.

The employed realistic phantom produces slices/images exploiting some breathing surface
illustrating possible inhalation and exhalation-based disfigurements. Moreover, these models can
cover any arbitrary motion tumours’ motion trajectories. The internal organs” motion parameters are
imposed by quadratic polynomials. The second parts of the experimental studies were conducted on
noisy, blurred, motion artefacts affected Shepp-Logan and Zubal phantoms. In the experiment, various
number of projection lines and Fourier coefficient were tested. The in-plane motion performed on
the phantoms during the acquisition process was a simulated affine motion model. Additionally,
some elements of images have also been warped according to random values defined inside.
Additionally, to illustrate possible internal organ tissue blur, their motion artefacts were modelled using
simulated locally affine transformations. Then, the low-resolution images have been blurred using a
Gaussian blur kernel. In comparison, different reconstruction methods under different circumstances
were analysed. Figures 3-9 clearly proved the superiority of the super-resolution image reconstruction.
The fusion of the Adaptive Tomography Acquisition with SRR allowed improved image quality
while maintaining reasonable acquisition times. It is worth underlining that applying Adaptive
Tomography Acquisition (ATA) leads to data acquisition acceleration when compared to the different
methods. To analyse the presented super-resolution algorithm, various types of images were examined.
The first sets of images were standard test images. The high-resolution images have been artificially
degraded by predetermined factors. In this way, the resulting LR set of images contains local geometric
deformations. Later, framed images, prepared this way, were blurred, noised, and decimated. All
the trials were performed in MathWorks Matlab (Natick, MA, USA). The expectations related to the
method’s performance are high, mostly due to its potential advantages, i.e., obtaining high contrast
while keeping a great resolution. This work deals with combining CT/PET with compressed sensing
and super-resolution. It can be clearly seen that the obtained improvements have led to much better
sharpness, edge interpretations, and contrast. The compressively sensed Super-Resolution images have
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achieved the PSNR. The statistical studies were conducted using a t-student test to verify the hypothesis
that there was no significant difference in ratings for image quality between super-resolution using
sparse input and fully sampled ground truth images. The proposed method’s output images that
had been chosen more often turned out to have significantly higher image quality metric values
(assessed and confirmed by a radiologist), and better delineation of anatomic structures” details than
the images obtained using competitive image enhancement algorithms. The disparities in PSNRs were
also assessed utilising an exact Bowker symmetry test.

The accomplishments of motion correction were estimated by calculating the difference between
images with motion and the referencing images (without a motion distortion added) for each subject.
The consequence of shifts between data obtained with and without artificially added motion was also
estimated using paired t-tests. All the conducted statistical tests exposed that the improvement is
statistically significant. It is clearly detailed (see Tables 1-10) that the compression ratios highly affect
the PSNR values. Note that the motion correction algorithm affected the achieved metrics” values.
The algorithm has been tested with the use of CT/PET output data sets. Thus, two unique sets
were obtained. The first with all the channels active (as the reference) and one with eight equidistant
detectors shut down (subsampled, 12% of the channels have been removed from the datasets).
The subsampled sinogram has been divided into two unique segments, each with sparse representation
in their orthogonal domains. An iterative procedure was then used to reconstruct the PS sinogram
using a hybrid algorithm utilising the conjugate gradient method solving the set of equations and
blocked relaxations. In addition, the TV (total variation) is minimised for the first component to
turn it into a more advantageous piecewise smooth model. Finally, the two parts were included to
accomplish the sinogram, which was utilised to facet the native PS sinogram. This methodology can
conceivably be utilised to create PET scans with precise quantitation while decreasing the number
of readout channels. The examination has been directed for two unique kinds of information.
The objective of the preliminaries was to assess the performance of the compressively sensed SR
image reconstruction algorithm in direct battle against the native and naive algorithms. The further
goal was to assess MR sampling scheme worthiness. In this experiment in vivo, as well as phantom,
inputs have been analysed. Figures 3-9 expose obtained simulation results. The highest PSNR and the
lowest MAE (Mean Absolute Error) values have confirmed the robustness of the presented algorithm,
see Tables 1-4, 6, 7 and 9. In turn, Tables 5, 8 and 10 have shown that, using only 50 percent of the
samples, pretty high PSNR values have been achieved. For all the registration algorithms listed in
Table 11, the statistical analysis was evaluated using the mean and the standard deviation (std). The
Target to Registration Errors (TRE) values and the p-values for the t-test with the significance level
= 0.05 have been calculated, see Table 11. It has been shown that all the p-values are less than 0.002,
which means that there is a significant difference between the globally optimal deformable registration
method and its competitors.
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Figure 3. The Shepp-Logan phantom images based experiment results for the cases exposed in Table 1
rows numbers: 1, 2, 3. The bottom row refers to: Table 1 rows numbers: 4, 5, 6.

Figure 4. The Zubal phantom images based experiment results for the cases exposed in Table 2 rows
numbers: 1, 2, 3. The bottom row refers to: Table 2 rows numbers: 4, 5, 6.
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Figure 5. The XCAT phantom images based experiment results. The upper row: two CT scans with
simulated motion artefacts. The bottom row shows the super-resolution CT scan.

Figure 6. CT low-resolution vs. Super-Resolution Images. (A) LR input; (B) B-spline Cubic
interpolation; (C) Non-Rigid Multi-Modal 3D Medical Image Registration Based on Foveated Modality
Independent Neighbourhood Descriptor [25]; (D) Enhanced deep residual networks for single Image
Super-Resolution [13]; (E) Image SR using very deep residual channel attention networks [14];
(F) Residual dense network for image SR [15]; (G,H) the presented algorithm (the right one
exposes details). (The tests were performed using 4096 Projection lines/Coefficients and the ATA
reconstruction algorithm.)
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Figure 7. The performance of the presented algorithm for the data from Table 6. All the y-axes of the

bee swarm plots represent PSNR values [dB].

Figure 8. The performance of various super image reconstruction algorithms CT-in vivo trials

input images. From left to right: (A) LR input; (B) B-spline Cubic interpolation; (C) Non-Rigid
Multi-Modal 3D Medical Image Registration Based on Foveated Modality Independent Neighbourhood
Descriptor [25]; (D) Enhanced deep residual networks for single Image Super-Resolution [13]; (E) Image

super-resolution using very deep residual channel attention networks [14]]; (F) Residual dense network

for Image Super-Resolution [15]; (G) the presented algorithm.

Figure 9. An example of CT and FDG-PET data sets. From left to right: (A) LR input; (B) B-spline
Cubic interpolation; (C) Non-Rigid Multi-Modal 3D Medical Image Registration Based on Foveated
Modality Independent Neighbourhood Descriptor [25]; (D) Enhanced deep residual networks for

single Image Super-Resolution [13]; (E) Image super-resolution using very deep residual channel

attention networks [14]; (F) Residual dense network for Image Super-Resolution [15]; (G) the presented

algorithm. The 3rd and the 4th row: the cropped and zoomed scans.
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Table 1. The performance of different reconstruction algorithms for Shepp-Logan phantom.
Reconstruction Algorithm Projection Lines MC SRR PSNR MAE N SD t(100) p
[Coeff. No.] [dB]
ATA 4096 YES NO 2996 1422 100 0.03 0.383 0.551
ATA 4096 YES YES 3292 1201 100 0.02 -0.731 0.101
FBP 12,288 YES NO 2138 1755 100 0.02 —1.131 0.232
NAUF 4096 YES NO 2809 1644 100 0.03 —1.031 0.191
ATA 4096 NO NO 2736 1701 100 0.03 —1.231 0231
NAES 2048 YES NO 2718 1655 100 0.03 —1.332 0.186
Table 2. The performance of different reconstruction algorithms for Zubal phantom.
Reconstruction Algorithm Projection Lines MC SRR PSNR MAE N SD t(100) p
[Coeff. No.] [dB]
ATA 4096 YES NO 2996 1422 100 0.03 0383 0.551
ATA 4096 YES YES 3292 1201 100 0.02 -0.731 0.101
FBP 12,288 YES NO 2138 1755 100 0.02 -1.131 0.232
NAUF 4096 YES NO 2809 1644 100 0.03 —-1.031 0.191
ATA 4096 NO NO 2736 1701 100 0.03 —-1231 0.231
NAES 2048 YES NO 2718 1655 100 0.03 —1.332 0.186
Table 3. The performance of different reconstruction algorithms for XCAT phantom.
Reconstruction Algorithm Projection Lines MC SRR PSNR MAE N SD t(1000 p
[Coeff. No.] [dB]
ATA 4096 YES NO 3216 1425 100 0.04 0.024 0.500
ATA 4096 YES YES 3822 1251 100 0.02 —0.611 0.110
FBP 12,288 YES NO 2444 1366 100 0.02 —1115 0.184
NAUF 4096 YES NO 3112 1688 100 0.03 —1.022 0.199
ATA 4096 NO NO 3218 1661 100 0.03 —1.251 0.263
NAES 2048 YES NO 2542 1492 100 0.03 —1.387 0.136
Table 4. Statistical parameters of the model performance metrics for Figure 6.
Reconstruction Algorithm P[?;]R MAE N M SD t(99) p
LR input 26.07 1941 100 2607 0.04 0387 0.592
B-spline Cubic interpolation 2631 1842 100 2631 0.02 —0.721 0.361
Non-Rigid Multi-Modal 3D Medical Image Registration Based
on Foveated Modality Independent Neighbourhood Descriptor ~ 31.01 1631 100 31.01 0.02 -1.031 0.312
Enhanced dee.:p residual networks for single image 2844 1522 100 2844 003 —1.001 0201
super-resolution
Image. super-resolution using very deep residual chanel 3021 1466 100 3021 003 —1071 0232
attention networks
Residual dense network for image super-resolution 3144 1430 100 3144 003 —-1.112 0.206
The presented algorithm 3339 1202 100 3339 0.03 -—1211 0.129
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Table 5. The performance of the algorithm for the data from the Figure 6 at different Compressed
Sensing quality ratios *.

Compressed Sensing Quality *[%] PSNR[dB] MAE N M SD t(99) P

20 18.76 2143 100 1876 0.03 —1.490 0.139
40 25.62 20.01 100 25,62 0.03 —1.440 0.153
50 33.39 18.40 100 3339 0.03 —1.211 0.129
80 31.16 17.02 100 31.16 0.03 —1.692 0.094
100 35.19 13.01 100 3519 0.03 —1.692 0.094

* Compressed Sensing quality ratio refers to the remaining number of the input samples in comparison with
fully sampled scans, i.e., 60 means that 40% of the fully sampled scan samples was removed.

Table 6. The performance of different reconstruction algorithms for in-vivo brain image (Figure 6)
(MC—motion correction, HR—upscaling using Non-Rigid Multi-Modal 3D Medical Image Registration
Based Foveated Modality Independent Neighbourhood Descriptor).

Input CS[%] MC SRR PSNR[dB] MAE N M SD t(99) p

LR 50 NO NO 26.09 1922 100 26.09 0.03 —1.252 0.213
LR 50 YES NO 27.93 18.43 100 2793 0.03 -—-1.075 0.285
HR 50 YES NO 29.38 1659 100 29.38 0.03 —1.226 0.223
SR 50 YES YES 33.19 1421 100 3319 0.03 -—-1.692 0.129

Table 7. Statistical parameters of the model performance metrics for in vivo trials, see Figure 8.

Reconstruction Algorithm P[fll]\;]R MAE N M SD t(99) p
LR input 2601 1935 100 26.01 0.04 0387 0.591
B-spline Cubic interpolation 26.09 18438 100 26.09 0.02 -0.721 0.331

Non-Rigid Multi-Modal 3D Medical Image Registration Based
on Foveated Modality Independent Neighborhood Descriptor ~ 31.01 ~ 14.23 100 31.01 0.02 —-1.031 0.331

Enhanced deep residual networks for single image

- 2947 1499 100 2947 003 —1.001 0.266
super-resolution

Image super-resolution using very deep residual chanel
attention networks

Residual dense network for image super-resolution 29.01 1431 100 29.01 0.03 -—1.102 0.194
The presented algorithm 3542  11.01 100 3542 0.03 —1.201 0.109

28.55 14.81 100 2855 0.03 —1.071 0.219

Table 8. The performance of the presented algorithm for the data from the Figure 8 at different
Compressed Sensing quality ratios.

Compressed Sensing Quality *[%] PSNR[dB] MAE N M SD t(99) P

20 19.31 20.01 100 19.31 0.03 —-1.510 0.101
40 21.77 1934 100 2177 0.02 -1.014 0.321
50 35.42 11.01 100 3542 0.03 —-1.201 0.109
80 36.01 14.05 100 36.01 0.03 —-1.211 0.103
100 36.69 13.09 100 36.69 0.03 —-1310 0.109

* Compressed Sensing quality ratio refers to the remaining number of the input samples in comparison with
fully sampled scans, i.e., 60 means that 40% of the fully sampled scan samples was removed.
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Table 9. Statistical parameters of the model performance metrics for Figure 9.

Reconstruction Algorithm P[il]\;]R MAE N M SD t99 p
LR input 2111 2033 100 21.11 0.03 —1.282 0.193
B-spline Cubic interpolation 2426 1841 100 2426 0.03 —1451 0.142

Non-Rigid Multi-Modal 3D Medical Image Registration Based
on Foveated Modality Independent Neighborhood Descriptor ~ 33.22  16.83 100 33.22 0.03 -1.373 0.173

Enhanced deep residual networks for single image

. 31.03 1571 100 30.33 0.03 -—1.281 0.214
super-resolution

Image super-resolution using very deep residual chanel
attention networks

Residual dense network for image super-resolution 3244 1460 100 3244 0.03 -1.311 0213
The presented algorithm 3459 1337 100 3459 0.03 —1.284 0.102

3221 1462 100 3221 0.03 —1.282 0216

Table 10. The performance of the presented algorithm for the data from Figure 9 at different
Compressed Sensing quality ratios.

Compressed Sensing Quality *[%] PSNR[dB] MAE N M SD t(99) p

20 19.40 21.03 100 1940 0.03 —1.502 0.131
40 22.89 1944 100 2289 0.02 —-1.016 0.323
50 34.59 13.37 100 3459 0.03 —-1.284 0.102
80 36.21 1558 100 3621 0.03 —1.415 0.123
100 37.63 1321 100 3763 0.03 —1.420 0.103

* Compressed Sensing quality ratio refers to the remaining number of the input samples in comparison with
fully sampled scans, i.e., 60 means that 40% of the fully sampled scan samples was removed.

Table 11. The stats of several motion estimation procedures have been compared with the applied one.

TRE [Voxels ]

Registration Algorithm
Mean Std  p-Value

No registration applied 4.8 2.7  <0.002

Entropy images based SSD 2.5 0.7 <0.002

Non-rigid multi modal medical
image registration by combining 22 03  <0.002
L-BFGS-B with cat swarm optimisation

Modéhty independent neighborhood 18 01 <0.002
descriptor

Globally optimal deformable registration 1.6 01  <0.002

8. Discussion

In this paper, the algorithm for improving CT/PET hybrid scanner’s image resolution keeping
acquisition time at as low a level as possible is presented. The obtained results show an improved
spatial resolution and quality, see Figures 3-9. The procedure applied to lesions that are considered to
be potentially malignant or pre-malignant unveil a higher ability to detect them due to the improved
resolution and readability. Designing and developing of CT/PET scanners is still an open issue and
has been recognised as the grand challenge of the next few years. In this work, it has been proven that
the proposed super-resolution algorithm based on modifications made to a well-known Iterative Back
Projection scheme produces highly accurate results. The extensive studies confirmed that the algorithm
might be applied even if very challenging medical modalities are the subject of interest. This paper also
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shows the successful application of a super-resolution algorithm to enhance the resolution of CT as
well as PET images. The technology employs several state-of-the-art methodologies, such as a discrete
dense displacement sampling, a Bayesian probabilistic model shaping the blur kernel, image priors
as well as noise estimates. The constructed solution is nearly insensitive to in-plane motion artefacts
being able to successfully overcome noise and blurs kernel odds. Thus, it is clearly shown that the
developed procedure can provide enhanced and sharper images while keeping radiation levels at the
lowest possible levels. It is clearly detailed (see Tables 1-10) that the compression ratios highly affect
the PSNR and Mean Absolute Error (MAE) values. Moreover, the presented methodology argued
its value in making artefacts caused by undersampled data much lower, even under the influence of
motion blur. This paper reveals a very promising application of super-resolution of highly sensitively
compressed CT/PET signals.

It is clearly exposed (see Tables 1-10) that the Compressed Sensing quality ratios highly affect
the PSNR and MAE values. The average PSNR is calculated between the numerous methods outputs
and the ground truth images. Each simulation scenario was repeated 100 times in order to generate
statistically meaningful quality measures. Note that satisfying results were obtained at a compression
ratio equal to 50%, i.e., further decreasing the total number of input samples improves the PSNR slightly
(see Tables 5, 8, 10 and Figures 3-9). Data from preliminary trials can also be valuable in providing
background information useful in reducing examinations times. However, although the motion
estimation algorithm can significantly eliminate diagnostic images’ artefacts, which maximise the
chance of a correct diagnosis. Qualitative assessment of the neuroimages and chest scans of 10 different
patients showed the advantages of the applied algorithm. In the trials, the PET and the CT data of 10
oncological patients were simultaneously obtained on an integrated CT/PET scanner. The phantom
studies were conducted using 20 simulated patient brain PET data volumes with corresponding CT
scans. For quantitative measurement, the PSNR of each reconstruction procedure was also calculated.
The (18) F]fludeoxyglucose ([(18) FIFDG) as a tracer was employed. In this experiment in vivo, as well
as phantom, inputs have been analysed. Fully sampled CT/PET raw data were often used as the
ground truth reference, and were either obtained, or already were available in the case of CT/PET
reconstruction procedures.
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