
algorithms

Article

Improved Convergence Speed of a DCD-Based
Algorithm for Sparse Solutions

Zhi Quan * and Shuhua Lv

School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China; shuhualv@163.com
* Correspondence: iezquan@zzu.edu.cn

Received: 6 May 2020; Accepted: 26 May 2020; Published: 4 June 2020
����������
�������

Abstract: To solve a system of equations that needs few updates, such as sparse systems, the leading
dichotomous coordinate descent (DCD) algorithm is better than the cyclic DCD algorithm because
of its fast speed of convergence. In the case of sparse systems requiring a large number of updates,
the cyclic DCD algorithm converges faster and has a lower error level than the leading DCD algorithm.
However, the leading DCD algorithm has a faster convergence speed in the initial updates. In this
paper, we propose a combination of leading and cyclic DCD iterations, the leading-cyclic DCD
algorithm, to improve the convergence speed of the cyclic DCD algorithm. The proposed algorithm
involves two steps. First, by properly selecting the number of updates of the solution vector used in
the leading DCD algorithm, a solution is obtained from the leading DCD algorithm. Second, taking the
output of the leading DCD algorithm as the initial values, an improved soft output is generated by
the cyclic DCD algorithm with a large number of iterations. Numerical results demonstrate that
when the solution sparsity γ is in the interval [1/8, 6/8], the proposed leading-cyclic DCD algorithm
outperforms both the existing cyclic and leading DCD algorithms for all iterations.

Keywords: dichotomous coordinate descent; leading DCD; cyclic DCD; sparse systems

1. Introduction

With the development of information technology, the number of participated devices and
data transmission rate have substantially increased in recent years. Solving the problems in a
wide range of signal processing applications is equivalent to getting the solution of a linear least
squares (LS) problem [1]. These applications include adaptive antenna array applications [2],
multi-user detection [3], multiple-input multiple-output (MIMO) detection [4], echo cancellation [5],
equalization [6], and system identification [1,7–9]. If the channel information is known, zero forcing
(ZF) algorithm and minimum mean-square error (MMSE) algorithm are popular to be used in these
applications. They are simple to implement but require the operation of matrix inversion.

The complexity of matrix inversion requires O(U3) arithmetic operations, where U is system
size [10]. When the system size is large, the complexity of the matrix inversion is prohibitively high.
As a result, there are some techniques proposed to solve systems of equations without inverting
the matrix. Direct methods, for example Gaussian elimination, Cholesky factorization, and QR
decomposition attain a complexity of O(U3) [10,11]. Therefore, it is difficult for direct methods to
be implemented in real-time signal processing and hardware applications. Using these methods to
solve the linear equations of large sparse systems may be prohibitively expensive and are infeasible for
practical applications. Iterative methods, for example, the conjugate gradient method and the steepest
descent method could achieve fast convergence. In each iteration, they require O(U2) complexity.
Other iterative methods, for example, the Southwell’s relaxation [12], Jacobi [10] and Gauss-Seidel [10],
are coordinate descent approaches. At each iteration, they only require O(U) complexity but have a
slower convergence speed. The number of iterations performed decides the computational complexity

Algorithms 2020, 13, 136; doi:10.3390/a13060136 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-3474-9143
http://dx.doi.org/10.3390/a13060136
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/6/136?type=check_update&version=2

Algorithms 2020, 13, 136 2 of 13

of these techniques. Iterative methods can solve problems with sparse structures more efficiently
compared with direct methods [13]. Moreover, iterative methods have the potential to achieve a good
initial guess for the expected results, which can reduce the number of iterations required to obtain a
solution [14]. However, some iterative methods include the numerical operations of multiplying or
dividing, which are difficult for hardware implementation.

Prior research work investigates the dichotomous coordinate descent (DCD) algorithms that
use a reduced number of operations to solve systems of equations. DCD-based algorithms are well
known in many applications because the DCD algorithm avoids the operations of multiplying and
dividing, which are expensive to implement. In [15–17], by applying the DCD iterations, the numerical
complexity of affine projection algorithms for active noise control is reduced. In [18], DCD iterations
solve the recursive least squares (RLS) matrix inversion problem by using bit-shift. The DCD
algorithm [14,19] is a non-stationary iterative method based on stationary CD techniques. Only O(U)

additions or O(1) additions are required in each iteration [11]. The DCD algorithm, therefore, is a
good choice for real-time hardware implementations. The DCD algorithm variants, cyclic DCD
and leading DCD algorithm, were presented in [20]. When scenarios with sparse true solutions are
considered, such as multi-path channel estimation and detection of a multi-user system with several
unknown active users, the leading DCD algorithm converges faster than the cyclic DCD algorithm.
The cyclic DCD algorithm is ideal for solving systems of equations that require a large number of
iterations because it converges faster and has a lower error level than the leading DCD algorithm.
However, the leading DCD algorithm has a faster convergence rate than the cyclic DCD algorithm in
the initial iterations if the solution is not very sparse.

In this paper, we considered a combination of leading and cyclic DCD iterations and proposed
a leading-cyclic DCD algorithm for obtaining a sparse solution in systems requiring a large number
of updates. The idea is that the leading DCD algorithm uses a small number of iterations to obtain
the initial input for the cyclic DCD algorithm. The number of iterations used in the leading DCD
algorithm has been thoroughly investigated under different system matrix conditions and solution
sparsities. In the proposed algorithm, a range of the number of iterations is determined that will
produce an optimal number of updates for the leading DCD algorithm. The results show that the
proposed leading-cyclic DCD algorithm improves the convergence speed of the cyclic DCD algorithm
and lowers the steady-state level.

Notation: Boldface uppercase and boldface lowercase letters represent matrices and vectors
(e.g., R and Γ). Elements of matrix and vector are denoted as Rp,n and Γn, respectively. The n-th column
of R is denoted as R:,n. (·)T denotes a matrix transpose, and (·)H denotes the Hermitian transpose.

2. Preliminaries

We start by introducing the system model used in this work. We then discuss the DCD algorithms
used to solve the linear model.

2.1. System Model

The system linear model can be modeled as

Z = Ax, (1)

where A is a Q×U matrix, Z is a Q× 1 received vector, and x is a U × 1 unknown vector. We assume
that U < Q and the matrix and vectors are real-valued. In addition, K (K < U) elements of vector x are
non-zero. For example, x is a sparse vector, and the index set of non-zero values is not given. There are
many applications to solve problems with sparse true solutions. The multi-path communication
channels, concerning the uncertainty delay interval, several multi-path components can be very small.
The maximum likelihood (ML) estimation is usually applied to solve normal equations [21], to achieve
the sparse true solutions x0 in sparse multi-path channels. Multi-user detection can be considered

Algorithms 2020, 13, 136 3 of 13

to be another example when the number of active users K is less than the expected number of users
U [22]. Whether the matrix R = AHA can be pre-computed determines the different computational
complexity of sparse solution estimators. Calculation of the matrix R is complex for the algorithm.
The pre-computed matrix R leads to the low complexity of the algorithm. In this work, we assume
that matrix R is known. The vector of the signal is calculated as:

x = R−1β, (2)

where β = ATZ. It costs O(U3) complexity for computing the matrix inversion directly. The matrix
inversion computing becomes prohibitively high when the system size U increases. To avoid
such a high computational complexity, we can solve the normal Equation (1) by minimizing the
quadratic function:

J(x) = ‖β− Rx‖2
2 (3)

To solve (3), an iterative descent search method can be applied as a possible choice. The descent
search method updates the solution vector x̂(i) via x̂(i) = x̂(i−1) + σ(i)Λ(i) at each iteration i, where Λ(i)

is the update direction of the solution. The direction is designed to be non-orthogonal to the residual
vector Γ (Γ(i) = β− Rx̂(i)). When current x̂(i) is not the exact point, i.e., J(x̂(i+1)) < J(x̂(i)), it shows
that the descent search method converges to the original problem solution with descent objective
values in the convex area.

2.2. DCD Algorithms

The DCD algorithm is one of many iterative techniques for solving the linear LS problem [19].
There are Mb bits to represent the elements of the solution vector. The amplitude of the element is
limited to [−ζ, ζ]. The iterative search begins with the most significant bits of the solution x and ends
with the least significant bits updated. The execution is controlled by the step size σ (σ > 0). σ starts at
σ = ζ and decreases as σ→ σ/2 for less significant bits. DCD-based techniques usually use bit-shift
to replace the multiplication/division operations, which is attractive for hardware implementation.
The variants of the DCD algorithm: cyclic DCD algorithm and leading DCD algorithm, have different
properties and been applied to different applications. These algorithms are described below.

2.2.1. Cyclic DCD Algorithm

The cyclic DCD algorithm [20], which is described in Table 1, updates a solution vector x in
cyclic order (n = 1, 2, . . . , U). In each iteration, when an element of the solution vector is updated, we
call it a “successful” update. When σ updates, the algorithm executes the successful updates until
the elements in the residual vector Γcyclic are too small to meet the condition in step 3. Then, σ is
updated in step 1. The number of successful iterations p and the number of bits Mb are the essential
parameters of the algorithm. They determine the main computational complexity of the cyclic DCD
algorithm. The maximum number of successful iterations, Nucyclic , is predetermined. It can be used
as a stopping condition for the algorithm. For a given Nucyclic and Mb, the computational complexity
of the cyclic DCD algorithm is restricted to an upper limit U(2Nucyclic + Mb − 1) + Nucyclic additions.
However, the cyclic order update is not an efficient choice for solving a system of equations that needs
a few updates.

Algorithms 2020, 13, 136 4 of 13

Table 1. Cyclic DCD algorithm.

Step Input β, R, Mb, ζ, Nucyclic ; Output: x, Γcyclic Addition

Initialization: x = 0, Γcyclic = β, σ = ζ, p = 0

for m = 1, . . . , Mb

1 σ = σ/2

2 g = 0

for n = 1, . . . , U

3 if |Γcyclicn| > (σ/2)Rn,n

4 xn = xn + sign(Γcyclicn)σ 1

5 Γcyclic = Γcyclic − sign(Γcyclicn)σR:,n U

6 p = p + 1, g = 1

7 if p = Nucyclic , execution stops

8 if g = 1, repeat step 2

end for

complexity ≤ U(2Nucyclic + Mb − 1) + Nucyclic adds

2.2.2. Leading DCD Algorithm

A good method of index selection may speed up the convergence. The leading DCD
algorithm [20] is briefly described in Table 2. The index n in the leading DCD algorithm is
chosen via n = arg maxj=1,2,···U{|Γleading j|}. The (n-th) element in x corresponds to the (n-th)
element in the residual vector Γleading that has the largest absolute value. Given several iterations
Nuleading , the computational complexity of the leading DCD algorithm is restricted to an upper limit
(2U + 1)Nuleading + Mb additions.

Table 2. Leading DCD algorithm.

Step Input β, R, Mb, ζ, Nuleading ; output: x, Γleading Addition

Initialization: x = 0, Γleading = β, σ = ζ, m = 1

for p = 1, . . . , Nuleading

1 n = arg maxj=1,...,U{|Γleading j|}, goto step 4 U − 1

2 m = m + 1, σ = σ/2

3 if m > Mb, execution stops

4 if |Γleadingn| ≤ (σ/2)Rn,n, goto step 2 1

5 xn = xn + sign(Γleadingn)σ 1

6 Γleading = Γleading − sign(Γleadingn)σR:,n U

end for

complexity ≤ (2U + 1)Nuleading + Mb adds

2.2.3. Complexity Discussion

Table 1 shows that when Nucyclic is much larger than Mb, then the computational complexity
of the cyclic DCD is dominated by 2UNucyclic additions. When the Nucyclic value is small, then the
computational complexity is upper bounded by the term UMb.

Algorithms 2020, 13, 136 5 of 13

2.2.4. Numerical Results

In this section, numerical results show that cyclic and leading DCD algorithms deal with system
matrices R with different condition numbers. We consider real-valued systems here. The condition
number of the matrix R is attained by modifying the ratio between Q and U. Usually when U is closer
to Q, the matrix condition number is higher. For example, performing a highly loaded multi-user
detection is equivalent to solving a linear equation β = Rx, where β is the output vector of the
matched filter. x is a randomly generated U × 1 transmitted data vector whose elements are uniformly
distributed on [−1,+1].

Using the DCD algorithm to solve (1), an estimated solution x̂ is obtained. We determine the
misalignment between x̂ and x as

ε =
[x̂− x]T [x̂− x]

xTx
. (4)

The misalignments ε are averaged by 100 simulation trials and plotted (in decibels) against the
number of updates.

Figure 1 depicts the misalignments of the cyclic and leading DCD algorithms. A system matrix R
is designed with small condition numbers in the interval [2, 5]. It is seen that the cyclic DCD algorithm
has a slightly slower convergence than the leading DCD algorithm.

0 200 400 600 800

N
u
 (Number of updates)

-100

-80

-60

-40

-20

0

M
is

al
lig

ne
m

en
t (

dB
)

Leading DCD
Cyclic DCD

Figure 1. Misalignments of the DCD algorithms in the system with small condition numbers in the
range of [2, 5]; U = 64, Mb = 15, Q = 512.

Figure 2 depicts the misalignments of the cyclic and leading DCD algorithms in the system with
high condition numbers in the range of [300, 400]. It shows that the cyclic DCD algorithm has a faster
convergence than the leading DCD algorithm. Also, the convergence speed of the two DCD algorithms
is slower than that in Figure 1.

When we consider a scenario with a sparse true solution, the number of updates Nu is expected
to be reduced. Figures 3 and 4 display misalignments of the DCD algorithms in the case of a system
matrix with high condition numbers. It is seen that the solution is sparser, the convergence of the DCD
algorithm is faster.

From the results in Figures 3 and 4, we can see that in the case of K = 16, compared to the
non-sparse system, the number of iterations required by the leading DCD algorithm to attain a
misalignment of −50 dB is approximately reduced by a factor of 20. However, for the cyclic DCD
algorithm, the number of iterations reduction is not significant. The number of updates required
in the leading DCD algorithm is approximately reduced by a factor of 30 in the case of K = 8.
For the cyclic DCD algorithm, the number of iterations is approximately reduced by a factor of 1.5.
Therefore, the leading DCD algorithm is preferable for highly sparse scenarios because it could achieve
a significant reduction in the number of updates. When K = 32, we can see that the cyclic DCD

Algorithms 2020, 13, 136 6 of 13

algorithm has a lower steady-state misalignment; however, the leading DCD algorithm has a faster
convergence speed in the initial iterations. When K = 64 (non-sparse system), the cyclic DCD algorithm
has faster convergence and lower steady-state misalignment than the leading DCD algorithm.

0 0.5 1 1.5 2
N

u
 (Number of updates) 104

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

ne
m

en
t (

dB
)

Leading DCD
Cyclic DCD

Figure 2. Misalignments of the DCD algorithms in the system with high condition numbers in the
range of [300, 400]; U = 64, Mb = 15, Q = 75.

0 20 40 60 80 100
N

u
 (Number of updates)

-100

-80

-60

-40

-20

0

20

M
is

al
lig

ne
m

en
t (

dB
)

Leading DCD
Cyclic DCD

Cyclic DCD K=8

Leading DCD K=8

Leading DCD K=1

Cyclic DCD K=1

Figure 3. Misalignments of the DCD algorithms in the system with high condition numbers in the
range of [300, 400] and sparse solutions; U = 64, Mb = 15, Q = 75.

Figure 4. Misalignments of the DCD algorithms in the system with the high condition numbers in the
range of [300, 400] and sparse solutions; U = 64, Mb = 15, Q = 75.

Algorithms 2020, 13, 136 7 of 13

3. Proposed Leading-Cyclic DCD Algorithm

From the results above, we can see that the cyclic DCD algorithm is more suitable for solving a
non-sparse system with a large condition number. However, it is noted that when the percentage of
non-zero elements of the solution is approximately 50%, the leading DCD algorithm provides a faster
convergence in the initial updates. To further improve the convergence when the solution is not highly
sparse, we consider combining the leading and cyclic DCD algorithms and propose the leading-cyclic
DCD algorithm shown in Table 3.

Table 3. Leading-cyclic DCD algorithm.

Step Input β, R, Mb, ζ, Nu, Nuleading ; Output: x, Γ Addition

Initialization: x = 0, Γ = β, σ = ζ, mleading = 1

for p = 1, . . . , Nuleading

1 n = arg maxj=1,...,U{|Γj|} ⇒ goto step 4 U − 1

2 mleading = mleading + 1, σ = σ/2

3 if mleading > Mb, execution stops

4 if |Γn| ≤ (σ/2)Rn,n, goto step 2 1

5 xn = xn + sign(Γn)σ 1

6 Γ = Γ− sign(Γn)σR:,n

7 end for

8 for m = mleading − 1, . . . , Mb

9 σ = σ/2

10 g = 0

11 for n = 1, . . . , U

12 if |Γn| > (σ/2)Rn,n 1

13 xn = xn + sign(Γn)σ 1

14 Γ = Γ− sign(Γn)σR:,n U

15 p = p + 1, g = 1

16 if p = Nu, execution stops

17 if g = 1, repeat step 10

end for

complexity ≤ (2U + 1)Nu + (1−U)mleading
+(Mb − 1)U adds

The proposed algorithm involves two steps. In the first step, a data vector is obtained using the
leading DCD algorithm with a considerably smaller number of iterations Nuleading than in the standard
version of the leading DCD algorithm. In the second step, an improved soft output is generated by
applying the cyclic DCD algorithm with a large number of iterations Nu. The updated vectors of x and
Γ and the step size of σ obtained from the leading DCD algorithm are the initial values for the cyclic
DCD algorithm. There are two factors that determine the worst-case computational complexity of
the leading-cyclic DCD algorithm. The cyclic DCD algorithm starts at mleading − 1 bit for updating an
element of the solution. The upper computational complexity of the cyclic DCD algorithm is calculated
as follows. For the m-th bit, m = mleading − 1, 2, 3, · · · , Mb − 1 has (Nu − Nuleading) successful iterations.
That is, executing the initial (Mb − mleading) bits does not include a successful iteration and thus
requires (Mb − mleading)U additions. Among the U iterations (n = 1, 2, · · · , U), if there is only one
successful iteration, then calculating the last bit (m = Mb) requires U additions for the comparison and

Algorithms 2020, 13, 136 8 of 13

(U + 1) additions for updating the residual vector Γ and elements xn. In total, (Nu−Nuleading) successful
iterations require Nu − Nuleading(2U + 1) additions. The upper bound of computational complexity of
the cyclic DCD algorithm is {U[2(Nu − Nuleading) + (Mb −mleading)− 1] + (Nu − Nuleading)} additions.
The worst-case scenario for the complexity of the leading DCD algorithm occurs when the algorithm
uses all Nuleading updates. By using Nuleading iterations, the computational complexity of the leading
DCD algorithm is {(2U + 1)Nuleading + mleading} additions. Therefore, the computational complexity of
the leading-cyclic DCD algorithm has an upper limit of {(2U + 1)Nu + (1−U)mleading + (Mb − 1)U}
real-valued additions. In a practical situation, in each pass there should be several successful
updates, and the average complexity is close to 2UNu. Nucyclic is approximately equal to Nu;
therefore, the average complexity of the leading-cyclic DCD algorithm is close to that of the cyclic
DCD algorithm.

The selection of Nuleading varies based on the system matrix condition and the solution
sparsity. The leading-cyclic algorithm is evaluated by using different Nuleading values in the range
of [U(1− γ), Q + U]. Among these values of Nuleading , the one that allows the proposed algorithm to
achieve the fastest convergence to the steady-state level is chosen as the optimal Nuleading . Figure 5
shows the optimal Nuleading in the leading-cyclic DCD algorithm for matrices with different sparsities γ.

1/8 2/8 3/8 4/8 5/8 6/8
sparsity

101

102

103

O
pt

im
al

 N
u

le
ad

in
g

32×37 cond(R)=[300,400]
64×75 cond(R)=[300,400]
96×113 cond(R)=[300,400]
128×153 cond(R)=[300,400]
64×71 cond(R)=[500,600]
64×81 cond(R)=[100,200]

Figure 5. Optimal Nuleading vs. sparsity.

The misalignments compared to the number of successful iterations for large system matrices with
condition numbers (≥100) and sparse solutions are shown in Figures 6–11. By comparing the results
from Figures 6 and 7, we can see that the lower the condition number of the system matrix is, the faster
the convergence speed and the lower the steady-state level of these DCD algorithms. From these figures,
we can see that when γ ≤ 1/8, the leading DCD algorithm has a significantly faster convergence
speed and a lower steady-state misalignment than the cyclic DCD algorithm. The leading-cyclic DCD
algorithm has approximately the same steady-state level as the leading DCD algorithm. As γ increases,
the cyclic DCD algorithm gradually outperforms the leading DCD algorithm. The leading-cyclic
DCD algorithm with a given Nuleading (shown in Figure 5) has an increased convergence speed and a
lower steady-state misalignment compared to the leading DCD algorithm. When γ = 2/8 increases to
γ = 6/8, the leading-cyclic DCD algorithm exhibits an insignificantly increased convergence speed
compared to the cyclic DCD algorithm.

Figures 8–11 show the misalignments of the DCD algorithms with conditional numbers of the
system matrix in the interval [300, 400]. We can see that when ξ = Q/U increases, the convergence
speed of the DCD algorithms decreases.

Algorithms 2020, 13, 136 9 of 13

0 20 40 60 80 100
Nu (Number of updates)

-100

-80

-60

-40

-20

0
M

is
al

lig
n

em
en

t
(d

B
)

 =1/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-80

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =2/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =3/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =4/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-80

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =5/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-80

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =6/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

Figure 6. Misalignments of the DCD algorithms for different sparse solutions with the condition
numbers in the range of [100, 200] and sparse solutions; U = 64, Mb = 15, Q = 81, ξ = 1.2656.

0 20 40 60 80 100
Nu (Number of updates)

-100

-80

-60

-40

-20

0

M
is

al
lig

n
em

en
t

(d
B

)

 =1/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

10

M
is

al
lig

n
em

en
t

(d
B

)

 =2/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =3/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =4/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =5/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =6/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

Figure 7. Misalignments of the DCD algorithms for different sparse solutions with the condition
numbers in the range of [500, 600]; U = 64, Mb = 15, Q = 71, ξ = 1.109.

According to the numerical results above, we can see that the leading-cyclic DCD algorithm is an
effective approach for solving a sparse system with a large number of updates. For example, in code
division multiple access (CDMA)with a spreading factor Q, there are approximately half of the users
are active in the U user system. The columns of A are represented as spreading sequences. The matrix
R is represented as a correlation matrix of the spreading sequence.

Figure 12 shows the misalignments of the RLS algorithm and DCDleading−cyclic-RLS (forgetting
factor λ = 0.96, the length of the filter U = 16, and γ = 1/2). When system noise energy increases by
10 times between 1000 iterations and 1100 iterations, the DCDleading−cyclic-RLS maintains a low error
rate. The proposed algorithm-based RLS provides a lower error level and better tracking performance
than the RLS algorithm.

Algorithms 2020, 13, 136 10 of 13

0 200 400 600 800 1000 1200

Nu (Number of updates)

-80

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =1/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 500 1000 1500 2000 2500 3000 3500 4000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

10

M
is

al
lig

n
em

en
t

(d
B

)

 =2/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000
Nu (Number of updates)

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =3/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000
Nu (Number of updates)

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =4/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000
time(s)

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =5/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000 7000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =6/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

Figure 8. Misalignments of the DCD algorithms for different sparse solutions with the condition
numbers in the range of [300, 400]; U = 32, Mb = 15, Q = 37, ξ = 1.156.

0 50 100 150 200
Nu (Number of updates)

-100

-80

-60

-40

-20

0

20

M
is

al
lig

n
em

en
t

(d
B

)

 =1/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =2/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =3/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =4/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000 7000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =5/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =6/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

Figure 9. Misalignments of the DCD algorithms for different sparse solutions with the condition
numbers in the range of [300, 400]; U = 64, Mb = 15, Q = 75, ξ = 1.172.

0 50 100 150 200
Nu (Number of updates)

-100

-80

-60

-40

-20

0

20

M
is

al
lig

n
em

en
t

(d
B

)

 =1/8

Leading-Cyclic DCD
Leading DCD
Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

M
is

al
lig

n
em

en
t

(d
B

)

 =2/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
time(s)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =3/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =4/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =5/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =6/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

Figure 10. Misalignments of the DCD algorithms for different sparse solutions with the condition
numbers in the range of [300, 400]; U = 96, Mb = 15, Q = 113, ξ = 1.177.

Algorithms 2020, 13, 136 11 of 13

0 50 100 150 200
Nu (Number of updates)

-100

-80

-60

-40

-20

0

20
M

is
al

lig
n

em
en

t
(d

B
)

 =1/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 500 1000 1500
Nu (Number of updates)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =2/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
time(s)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =3/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =4/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =5/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

0 2000 4000 6000 8000 10000
Nu (Number of updates)

-70

-60

-50

-40

-30

-20

-10

0

M
is

al
lig

n
em

en
t

(d
B

)

 =6/8

Leading DCD
Cyclic DCD
Leading-Cyclic DCD

Figure 11. Misalignments of the DCD algorithms for different sparse solutions with the condition
numbers in the range of [300, 400]; U = 128, Mb = 15, Q = 153, ξ = 1.195.

0 200 400 600 800 1000 1200 1400 1600 1800

Iterations

-60

-50

-40

-30

-20

-10

0

E
rr

or
, d

B

RLS
DCD

leading-cyclic
-RLS

Figure 12. Misalignments of the DCDleading−cyclic-RLS and the RLS algorithm when there is an abrupt
change in the unknown system; λ = 0.96, U = 16, γ = 1/2.

4. Discussion

When γ increases, the convergence speed of the proposed algorithm (e.g., at the misalignment
−50 dB) decreases. The optimal Nuleading required for solving a system of equations varies depending
on the system size, the solution sparseness and the condition number of the system matrix. In this
work, we choose the value that allows the proposed algorithm to achieve the fastest convergence to the
steady-state level as the optimal Nuleading . The results show that the optimal Nuleading varies around Q
and approximately remains stable with different γ (except for in the case of 32× 37). The ratio between
Q and U in the case of 32× 37 is lower than those in the other cases with the same condition number
range, and the leading DCD algorithm might contribute fewer iterations in the proposed algorithm
to achieving the steady state when γ increases. Investigation of the general theory of induction for
choosing the proper Nuleading in the combined algorithm is left for future work.

Algorithms 2020, 13, 136 12 of 13

5. Conclusions

In this paper, we have demonstrated that the leading DCD algorithm and the cyclic DCD algorithm
are useful in different applications. In particular, we consider a scenario in which the sparsity of the
true solution is γ ∈ [1/8, 6/8]. We propose a leading-cyclic DCD algorithm that solves normal
equations with sparse solutions. The results show that the proposed leading-cyclic DCD algorithm
has an optimal Nuleading value in the range of [U(1− γ), Q + U] and exhibits improved convergence
compared to the cyclic DCD algorithm and the leading DCD algorithm. In addition, within the same
range of the system matrix condition number, the larger Q/U is, the slower the convergence of the
DCD algorithms.

Author Contributions: Conceptualization, Z.Q. and S.L.; methodology, Z.Q. and S.L.; software, Z.Q. and S.L.;
validation, Z.Q. and S.L.; formal analysis, Z.Q. and S.L.; investigation, Z.Q. and S.L.; resources, Z.Q. and S.L.;
data curation, Z.Q. and S.L.; writing—original draft preparation, Z.Q. and S.L.; writing–review and editing, Z.Q.
and S.L.; visualization, Z.Q. and S.L.; supervision, Z.Q.; project administration, Z.Q.; funding acquisition, Z.Q.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was founded by the National Natural Science Foundation of China by Grant No. U1604160
and the China Scholarship Council.

Acknowledgments: The authors would like to thank Jie Liu for his comments and the two anonymous reviewers
for their valuable suggestions.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 2001.
2. Dakulagi, V.; Bakhar, M. Advances in Smart Antenna Systems for Wireless Communication. Wirel. Pers.

Commun. 2000, 110, 931–957. [CrossRef]
3. Verdu, S. Multiuser Detection; Cambridge University Press: Cambridge, UK, 1998.
4. Albreem, M.A.; Juntti, M.; Shahabuddin, S. Massive MIMO detection techniques: A survey. IEEE Commun.

Surv. Tutor. 2019, 21, 3109–3132. [CrossRef]
5. Messini, M.; Djendi, M. A new adaptive filtering algorithm for stereophonic acoustic echo cancellation.

Appl. Acoust. 2019, 146, 345–354. [CrossRef]
6. Proakis, J.; Manolakis, D. Digital Signal Processing: Principles, Algorithms, and Applications, 2nd ed.; Macmillan:

New York, NY, USA, 1992.
7. Wen, H.; Yang, S.; Hong, Y.; Luo, H.A. Partial Update Adaptive Algorithm for Sparse System Identification.

IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 240–255. [CrossRef]
8. Yazdanpanah, H.; Diniz, P.S.R.; Lima, M.V.S. Feature Adaptive Filtering: Exploiting Hidden Sparsity.

IEEE Trans. Circuits Syst. Regul. Pap. Available online: http://www02.smt.ufrj.br/~diniz/papers/ri99.pdf
(accessed on 3 June 2020). [CrossRef]

9. Liu, J.; Grant, S.L. Proportionate Adaptive Filtering for Block-Sparse System Identification. IEEE/ACM Trans.
Audio Speech Lang. Process. 2016, 24, 623–630. [CrossRef]

10. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore,
MD, USA, 1996.

11. Liu, J. DCD Algorithm: Architectures, FPGA Implementations and Applications. Ph.D. Thesis, University of
York, York, UK, 2008.

12. Cryer, C.W. The solution of a quadratic programming problem using systematic overrelaxation. SIAM J.
Control 1971, 9, 385–392. [CrossRef]

13. Watkins, D.J. Fundamentals of Matrix Computations; Wiley: Hoboken, NJ, USA, 2002.
14. Quan, Z.; Tian, T. DCD-based branch and bound detector with reduced complexity for MIMO systems.

IEICE Trans. Commun. 2018, E101-B, 2230–2238. [CrossRef]
15. Albu, F. Efficient multichannel filtered-x affine projection algorithm for active noise control. Electron. Lett.

2006, 42, 421–423. [CrossRef]
16. Albu, F.; Bouchard, M.; Zakharov, Y. Pseudo Affine Projection Algorithms for Multichannel Active Noise

Control. IEEE Trans. Audio Speech Lang. Process. 2007, 15, 1044–1052. [CrossRef]

http://dx.doi.org/10.1007/s11277-019-06764-6
http://dx.doi.org/10.1109/COMST.2019.2935810
http://dx.doi.org/10.1016/j.apacoust.2018.11.033
http://dx.doi.org/10.1109/TASLP.2019.2949928
http://www02.smt.ufrj.br/~diniz/papers/ri99.pdf
http://dx.doi.org/10.1109/TCSI.2020.2976882
http://dx.doi.org/10.1109/TASLP.2015.2499602
http://dx.doi.org/10.1137/0309028
http://dx.doi.org/10.1587/transcom.2017EBP3336
http://dx.doi.org/10.1049/el:20063966
http://dx.doi.org/10.1109/TASL.2006.881677

Algorithms 2020, 13, 136 13 of 13

17. Zakharov, Y. Low complexity implementation of the affine projection algorithm. IEEE Signal Process. Lett.
2008, 15, 557–560. [CrossRef]

18. Zakharov, Y.; White, G.; Liu, J. Low complexity RLS algorithms using dichotomous coordinate descent
iterations. IEEE Trans. Signal Process. 2008, 56, 3150–3161. [CrossRef]

19. Zakharov, Y.V.; Tozer, T.C. Multiplication-free iterative algorithm for LS problem. Electron. Lett. 2004, 40,
567–569. [CrossRef]

20. Liu, J.; Zakharov, Y.V.; Weaver, B. Architecture and FPGA design of dichotomous coordinate descent
algorithms. IEEE Trans. Circuits Syst. Regul. Pap. 2009, 56, 2425–2438.

21. Cotter, S.F.; Rao, B.D. Sparse channel estimation via matching pursuit with application to equalization.
IEEE Trans. Commun. 2002, 50, 374–377. [CrossRef]

22. Wu, W.C.; Chen, K.C. Identification of active users in synchronous CDMA multiuser detection. IEEE J. Sel.
Areas Commun. 1998, 16, 1723–1735.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LSP.2008.2001111
http://dx.doi.org/10.1109/TSP.2008.917874
http://dx.doi.org/10.1049/el:20040353
http://dx.doi.org/10.1109/26.990897
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	System Model
	DCD Algorithms
	Cyclic DCD Algorithm
	Leading DCD Algorithm
	Complexity Discussion
	Numerical Results

	Proposed Leading-Cyclic DCD Algorithm
	Discussion
	Conclusions
	References

