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Abstract: A local convergence comparison is presented between two ninth order algorithms for
solving nonlinear equations. In earlier studies derivatives not appearing on the algorithms up to the
10th order were utilized to show convergence. Moreover, no error estimates, radius of convergence
or results on the uniqueness of the solution that can be computed were given. The novelty of our
study is that we address all these concerns by using only the first derivative which actually appears
on these algorithms. That is how to extend the applicability of these algorithms. Our technique
provides a direct comparison between these algorithms under the same set of convergence criteria.
This technique can be used on other algorithms. Numerical experiments are utilized to test the
convergence criteria.

Keywords: Banach space; high convergence order algorithms; semi-local convergence

1. Introduction

In this study, we consider the problem of finding a solution x∗ of the nonlinear equation

F(x) = 0, (1)

where F : D ⊂ B1 → B2 is a continuously differentiable nonlinear operator acting between the
Banach spaces B1 and B2, and D stands for an open non empty convex subset of B1. One would like
to obtain a solution x∗ of (1) in closed form. However, this can rarely be done. So most researchers
and practitioners develop iterative algorithms which converge to x∗. It is worth noticing that a
plethora of problems from diverse disciplines such as applied mathematics, mathematical biology,
chemistry, economics, physics, engineering and scientific computing reduce to solving an equation
like (1) [1–4]. Therefore, the study of these algorithms in the general setting of a Banach space is
important. At this generality we cannot use these algorithms to find solutions of multiplicity greater
than one, since we assume the invertibility of F′(x). There is an extensive literature on algorithms for
solving systems [1–24]. Our technique can be used to look at the local convergence of these algorithms
along the same lines. Algorithms (2) and (3) when (i.e, when B1 = B2 = Rj) cannot be used to solve
undetermined systems in this form. However, if these derivatives are replaced by Moore–Penrose
inverses (as in the case of Newton’s and other algorithms [1,3,4]), then these modified algorithms can
be used to solve undetermined systems too. A similar local convergence analysis can be carried out.
However we do not pursue this task here. We cannot discuss local versus global convergence in the
setting of a Banach space. However, we refer the reader to subdivision solvers that are global and
guarantee to find all solutions (when B1 = B2 = Rj) [2,3,5,6,18,20,24]. Then, using these ideas we can
make use of Algorithms (2) and (3) we do not pursue this here.
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In this paper we study efficient ninth order-algorithms studied in [23], defined for n = 1, 2, . . . , by

yn = xn − F′(xn)
−1F(xn)

zn = xn −
2
3
(A−1

n + F′(xn)
−1)F(xn)

vn = zn −
1
2
(4A−1

n + F′(xn))
−1)F(zn)

xn+1 = vn −
1
3
(A−1

n + F′(xn)
−1)F(vn) (2)

and

yn = xn − F′(xn)
−1F(xn)

zn = xn −
1
2
(F′(yn)

−1 + F′(xn)
−1)F(xn)

vn = zn −
1
2
(Bn + F′(xn))

−1)F(zn)

xn+1 = vn −
1
2
(Bn + F′(xn)

−1)F(vn), (3)

where An = 3F′(yn)− F′(xn), Bn = F′(yn)−1F′(xn)F′(yn)−1.
The analysis in [23] uses assumptions on the 10th order derivatives of F. However, the assumptions

on higher order derivatives reduce the applicability of Algorithms (2) and (3). For example:
Let B1 = B2 = R, D = [− 1

2 , 3
2 ]. Define f on D by

f (s) =

{
s3 log s2 + s5 − s4, s 6= 0

0, s = 0.

Then, we get x∗ = 1,
f ′(s) = 3s2 log s2 + 5s4 − 4s3 + 2s2,

f ′′(s) = 6s log s2 + 20s3 − 12s2 + 10s,

f ′′′(s) = 6 log s2 + 60s2 = 24s + 22,

and s∗ = 1. Obviously f ′′′(s) is not bounded on D. Hence, the convergence of Algorithms (2) and (3)
are not guaranteed by the analysis in [23].

We are looking for a ball centered at x∗ and of a certain radius such that if one chooses a starter x0

from inside this ball, then the convergence of the method to x∗ is guaranteed. That is we are interested
in the ball convergence of these methods. Moreover, we also obtain upper bounds on ‖xn − x∗‖,
radius of convergence and results on the uniqueness of x∗ not provided in [23]. Our technique can be
used to enlarge the applicability of other algorithms in a similar manner [1–24].

The rest of the paper is organized as follows. The convergence analysis of Algorithms (2) and (3)
are given in Section 2 and examples are given in Section 3.

2. Ball Convergence

We present the ball convergence of Algorithms (2) and (3) which are based on some real functions
and positive parameters. Let S = [0, ∞).

Suppose there exists a continuous and increasing function ω0 on S with values in itself satisfying
ω0(0) = 0 such that equation

ω0(s)− 1 = 0, (4)
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has a least positive zero denoted by r1. We verify the existence of solutions for some functions that
follow based on the Intermediate Value Theorem (IVT). Set S1 = [0, r1). Define functions g1, h1 on S1 as

g1(s) =

∫ 1
0 ω((1− τ)s)dτ

1−ω0(s)

and
h1(s) = g1(s)− 1,

where function ω on S1 is continuous and increasing with ω(0) = 0. We get h1(0) < 0 and h1(s) −→ ∞
with s −→ r−1 . Denote by R1 the least zero of equation h1(s) = 0 in (0, r1).

Suppose that equation
p(s)− 1 = 0 (5)

has a least positive zero denoted by rp, where p(s) = 1
2 (3ω0(g1(s)s) + ω0(s)) . Set r2 = min{r1, rp}

and S2 = [0, r2). Define functions g2 and h2 on S2 as

g2(s) = g1(s) +
(ω0(s) + ω0(g1(s)s))

∫ 1
0 ω1(τs)dτ

2(1−ω0(s))(1− p(s))

and
h2(s) = g2(s)− 1,

where ω1 is defined on S2 and is also continuous and increasing. We get again h2(0) = −1 and
h2(s) −→ ∞ as s −→ r−2 . Denote by R2 the least zero of equation h2(s) = 0 on (0, r2).

Suppose equation
ω0(g2(s)s)− 1 = 0 (6)

has a least positive zero denoted by r3. Set r4 = min{r2, r3} and S3 = [0, r4). Define functions g3 and
h3 on S3 as

g3(s) =

[
g1(g2(s)s) +

ω0(s) + ω0(g2(s)s)
(1−ω0(s))(1−ω0(g2(s)s))

+
(ω0(s) + ω0(g1(s)s))

∫ 1
0 ω1(τg2(s)s)dτ

(1−ω0(s))(1− p(s))

]
g2(s)

and
h3(s) = g3(s)− 1.

Then, we get h3(0) = −1 and h3(s) −→ ∞ as s −→ r−4 . Denote by R3 the least solution of equation
h3(s) = 0 in (0, r4).

Suppose that equation
ω0(g3(s)s)− 1 = 0 (7)

has a least positive zero denoted by r5. Set r6 = min{r4, r5} and S4 = [0, r6). Define functions g4 and
h4 on S4 as

g4(s) =

[
g1(g3(s)s) +

ω0(s) + ω0(g3(s)s)
(1−ω0(s))(1− p(s))

+
(ω0(s) + ω0(g1(s)s))

∫ 1
0 ω1(τg3(s)s)dτ

(1−ω0(s))(1− p(s))

]
g3(s)

and
h4(s) = g4(s)− 1.
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We have h4(0) = −1 and h4(s) −→ ∞ as s −→ r−6 . Denote by R4 the least solution of equation
h4(s) = 0 in (0, r6). Consider a radius of convergence R as given by

R = min{Ri}, i = 1, 2, 3, 4. (8)

By these definitions, we have for s ∈ [0, R)

0 ≤ ω0(s) < 1, (9)

0 ≤ ω0(g1(s)s) < 1, (10)

0 ≤ ω0(g2(s)s) < 1, (11)

0 ≤ ω0(g3(s)s) < 1 (12)

and
0 ≤ gi(s) < 1. (13)

Finally, define U(x, a) = {y ∈ B1 : ‖x− y‖ < a} and Ū(x, a) its closure. We shall use the notation
en = ‖xn − x∗‖, for all n = 0, 1, 2, . . . .

The conditions (A) shall be used.

(A1) F : D −→ B2 is continuously differentiable and there exists a simple solution x∗ of equation
F(x) = 0 with F′(x∗) being invertible.

(A2) There exists a continuous and increasing function ω0 from S into itself with ω0(0) = 0 such that
for all x ∈ D

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ω0(‖x− x∗‖).

Set D0 = D ∩U(x∗, r1).
(A3) There exist continuous and increasing functions ω from S1 into S with ω(0) = 0 such that for

each x, y ∈ D0

‖F′(x∗)−1(F′(y)− F′(x))‖ ≤ ω(‖y− x‖).

Set D1 = D ∩U(x∗, r2).
(A4) There exists a continuous function ω1 from S2 into S such that for all x ∈ D1

‖F′(x∗)−1F′(x)‖ ≤ ω1(‖x− x∗‖).

(A5) Ū(x∗, R) ⊂ D, where R is defined in (8), and r1, rp, r3, r5 exist.
(A6) There exists R∗ ≥ R such that ∫ 1

0
ω0(τR∗)dτ ≤ 1.

Set D2 = D ∩U(x∗, R∗).

Next, the local convergence result for algorithm (2) follows.

Theorem 1. Under the conditions (A) further consider choosing x0 ∈ U(x∗, R)− {x∗}. Then, sequence {xn}
exists, stays in U(x∗, R) with limn−→∞ xn = x∗. Moreover, the following estimates hold true

‖yn − x∗‖ ≤ g1(en)en ≤ en < R, (14)

‖zn − x∗‖ ≤ g2(en)en ≤ en, (15)

‖vn − x∗‖ ≤ g3(en)en ≤ en, (16)

and
‖xn+1 − x∗‖ ≤ g4(en)en ≤ en, (17)



Algorithms 2020, 13, 147 5 of 11

with “gm” functions are introduced earlier and R is defined by (8). Furthermore, x∗ is the only solution of
equation F(x) = 0 in the set D2 given in (A6).

Proof. Consider x ∈ U(x∗, R)− {x∗}. By (A1) and (A2)

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ω0(‖x− x∗‖) < ω0(R) ≤ 1,

so by a lemma of Banach on invertible operators [20] F′(x)−1 ∈ L(B2, B1) with

‖F′(x)−1F′(x∗)‖ ≤
1

1−ω0(‖x− x∗‖)
. (18)

Setting x = x0, we obtain from algorithm (2) (first sub-step for n = 0) that y0 exists. Then,
using Algorithm (2) (first substep for n = 0), (A1), (8), (A3), (18) and (13) (for m = 1)

‖y0 − x∗‖ = ‖x0 − x∗ − F′(x0)
−1F(x0)‖

≤ ‖F′(x0)
−1F′(x∗)‖‖

∫ 1

0
F′(x∗)−1(F′(x∗ + τ(x0 − x∗))− F′(x0))(x0 − x∗)dτ‖

≤
∫ 1

0 ω((1− τ)e0)dτe0

1−ω0(e0)

= g1(e0)e0 ≤ e0 < R, (19)

so y0 ∈ U(x∗, R) and (14) is true for n = 0. We must show A0 is invertible, so z0, v0 and x1 exist by
Algorithm (2) for n = 0. Indeed, we have by (A2) and (19)

‖(2F′(x∗))−1(3F′(y0)− F′(x∗)) + (F′(x∗)− F′(x0))‖

≤ 1
2

[
3‖F′(x∗)−1(F′(y0)− F′(x∗))‖

+ ‖F′(x∗)−1(F′(x0)− F′(x∗))‖
]

≤ 1
2
(ω0(e0) + 3ω0(‖y0 − x∗‖))

≤ 1
2
(ω0(e0) + 3ω0(g1(e0)e0)) = p(e0) ≤ p(R) < 1,

so A0 is invertible,

‖A−1
0 F′(x∗)‖ ≤

1
2(1− p(e0))

. (20)

Then, using the second sub-step of Algorithm (3), (8), (13) (for m = 2), (18) (for x = x0), (19)
and (20), we first have

z0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0) + (F′(x0)

−1 − 2
3

A−1
0 −

2
3

F′(x0)
−1)F(x0)

= x0 − x∗ − F′(x0)
−1F(x0) +

1
3

F′(x0)
−1(3F′(y0)− F′(x0)

−2F′(x0))A−1
0 F(x0)

= (x0 − x∗ − F′(x0)
−1F(x0)) + (F′(x0)

−1(F′(y0)− F′(x0))A−1
0 F(x0)).

So, we get by using also the triangle inequality

‖z0 − x∗‖ ≤
[

g1(e0) +
(ω0(‖y0 − x∗‖) + ω0(e0))

∫ 1
0 ω1(τe0)dτ

2(1−ω0(e0))(1− p(e0))

]
e0

= g2(e0)e0 ≤ e0, (21)
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so z0 ∈ U(x∗, R) and (15) is true for n = 0. By the third sub-step of algorithm (2) for n = 0, we write

v0 − x∗ = z0 − x∗ − F′(z0)
−1F(z0)

+[F′(z0)
−1 − 1

3
[4A−1

0 + F′(x0)
−1)]F(z0)

= z0 − x∗ − F′(z0)
−1F(z0) +

1
3
[3F′(z0)

−1 − F′(x0)
−1

−4(3F′(y0)− F′(x0))
−1]F(z0)

= z0 − x∗ − F′(z0)
−1F(z0) + (F′(z0)

−1(F′(x0)− F‘(z0))F′(x0)
−1

+2F′(x0)
−1(F′(y0)− F′(x0))A−1

0 )F′(x∗))F′(x∗)−1F(z0). (22)

Then, using (8), (13 (for m = 3), (18) (for x = z0), (19)–(22), and (22), we get

‖v0 − x∗‖ ≤
[

g1(‖z0 − x∗‖) +
(ω0(e0) + ω0(‖y0 − x∗‖))

∫ 1
0 ω1(τ‖z0 − x∗‖)dτ

(1−ω0(e0))(1− p(e0))

]
‖z0 − x∗‖

≤ g3(e0)e0 ≤ e0 < R, (23)

so v0 ∈ U(x∗, R) and (16) holds true for n = 0. Similarly, if we exchange the role of z0 with v0 we
first obtain

x1 − x∗ = v0 − x∗ − F′(v0)
−1F(v0) + [F′(v0)

−1(F′(x0)− F′(v0))

+2F′(x0)
−1(F′(y0)− F′(x0))A−1

0 ]F(v0).

So, we get that

‖x1 − x∗‖ ≤ [g1(‖v0 − x∗‖) +
ω0(e0) + ω0(‖v0 − x∗‖)

(1−ω0(e0))(1−ω0(‖v0 − x∗‖))

+
(ω0(e0) + ω0(‖y0 − x∗‖))

∫ 1
0 ω1(τ‖v0 − x∗‖)dτ

(1−ω0(e0))(1− p(e0))
]‖v0 − x∗‖

≤ g4(e0)e0 ≤ e0, (24)

so x1 ∈ U(x∗, R) and (17) is true for n = 0. Hence, estimates (14)–(17) are true for n = 0.
Suppose (14)–(17) are true for j = 0, 1, 2, . . . , n− 1, then by switching x0, y0, z0, v0, x1 by xj, yj, zj, vj, xj+1
in the previous estimates, we immediately obtain that these estimates hold for j = n, completing the
induction. Moreover, by the estimate

‖xn+1 − x∗‖ ≤ λe0 < R, (25)

with λ = g4(e0) ∈ [0, 1), we obtain limn−→∞ xn = x∗ and xn+1 ∈ U(x∗, R). Let u ∈ D2 with F(u) = 0.
Set G =

∫ 1
0 F′(u + τ(x∗ − u))dτ. In view of (A2) and (A6), we get

‖F′(x∗)−1(G− F′(x∗))‖ ≤
∫ 1

0
ω0((1− τ)‖x∗ − u‖)dτ ≤

∫ 1

0
ω0(τR∗)dτ < 1,

so from the invertiability of G and the estimate 0 = F(x∗) − F(u) = G(x∗ − u) we conclude that
x∗ = u.

In a similar way we provide the local convergence analysis for Algorithm (3). This time the
functions “g”, “h” are respectively, for ḡ1 = g1. h̄1 = h1, R̄1 = R,

ḡ2(s) = ḡ1(s) +
(ω0(s) + ω0(ḡ1(s)s))

∫ 1
0 ω1(τs)dτ

2(1−ω0(s))(1−ω0(ḡ1(s)s))
,
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h̄2(s) = ḡ2(s)− 1 (R̄2 solving h̄2(s) = 0),

ḡ3(s) = [ḡ1(ḡ2(s)s) +
1
2

c(s)
∫ 1

0
ω1(τḡ2(s)s)dτ]

ḡ2(s)
1−ω0(ḡ1(s)s)

,

h̄3(s) = ḡ3(s)− 1, (R̄3 solving h̄3(s) = 0),

where

c(s) =
1
2

[
ω0(s) + ω0(ḡ2(s)s)

1−ω0(ḡ2(s)s)
1

1−ω0(ḡ2(s)s)
((ω0(ḡ1(s)s) + ω0(ḡ2(s)s))

+
ω0(ḡ2(s)s)

1−ω0(ḡ1(s)s)
(ω0(ḡ1(s)s) + ω0(s))

)
1

1−ω0(ḡ1(s)s)

]
,

ḡ4(s) = [ḡ1(ḡ3)s)s) +
1
2

d(s)
∫ 1

0
ω1(τḡ3(s)s)dτ]ḡ3(s),

and
h̄4(s) = ḡ4(s)− 1,

where

d(s) =
1
2

[
ω0(s) + ω0(ḡ3(s)s)

1−ω0(ḡ3(s)s)
1

1−ω0(ḡ3(s)s)
(ω0(ḡ1(s)s) + ω0(ḡ3(s)s)

+
ω0(ḡ3(s)s)

1−ω0(ḡ1(s)s)
(ω0(ḡ1(s)s) + ω0(s))

1
1−ω0(ḡ1(s)s)

]
and R̄4, solving equation h̄4(s) = ḡ4(s)− 1. A radius of convergence R̄ is defined as in (8)

R̄ = min{R̄i}. (26)

Estimates (9)–(13) also hold with these changes. This time we are using the estimates

z0 − x∗ = [x0 − x∗ − F′(x0)
−1F(x0)

+[F′(x0)
−1 − 1

2
(F′(y0)

−1 + F′(x0)
−1)]F(x0)

= x0 − x∗ − F′(x0)
−1F)(x0)

+
1
2

F′(x0)
−1(F′(y0)− F′(x0))F′(y0)

−1F(x0),

so

‖z0 − x∗‖ ≤ (ḡ1(e0) +
(ω0(e0) + ω0(‖y0 − x∗‖))

∫ 1
0 ω1(τe0)dτ

2(1−ω0(e0))(1−ω0(‖y0 − x∗‖))
)e0

≤ ḡ2(e0)e0 ≤ e0 < R̄.

Moreover, we can write

v0 − x0 = z0 − x∗ − F′(z0)
−1F(z0) + [F′(z0)

−1 − 1
2

B0 −
1
2

F′(x0)
−1]F(z0)

= z0 − x∗ − F′(z0)
−1F(z0) +

1
2

C0F(z0),
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so

‖v0 − x∗‖ ≤ (ḡ1(‖z0 − x∗‖) +
1
2

c(e0))
∫ 1

0
ω1(τ‖z0 − x∗‖)dτḡ2(e0)

≤ ḡ3(e0)e0 ≤ e0.

Then, we can write

x1 − x∗ = v0 − x∗ − F′(v0)
−1F(v0) + D0F(v0),

so

‖x1 − x∗‖ ≤ [ḡ1(ḡ3(e0)e0) +
1
2

d(e0)
∫ 1

0
ω1(τḡ3(e0)e0)dτ]ḡ3(e0)e0

≤ ḡ4(e0)e0 ≤ e0,

where
C0 = F′(z0)

−1 − 1
2

F′(y0)
−1F′(x0)F′(y0)

−1 − 1
2

F′(x0)
−1 = b1 + b2,

b1 =
1
2
(F′(z0)

−1 − F′(x0)) =
1
2

F′(z0)
−1(F′(x0)− F′(z0))F′(x0)

−1,

b2 =
1
2

b3,

b3 = F′(z0)
−1 − F′(y0)

−1F′(x0)F′(y0)
−1

= F′(z0)
−1[I − F′(z0)F′(y0)

−1F′(x0)F′(y0)
−1]

= F′(z0)
−1(F′(y0)− F′(z0)F′(y0)

−1F′(x0))F′(y0)
−1,

F′(z0)
−1[F′(y0)− F′(z0) + F′(z0)− F′(z0)F′(y0)

−1F′(x0)]F′(y0)
−1

= F′(z0)
−1[F′(y0)− F′(z0) + F′(z0)(I − F′(y0)

−1F′(x0)]F′(y0)
−1

= F′(z0)
−1[(F′(y0)− F′(z0)) + F′(z0)F′(y0)

−1(F′(y0)− F′(x0))]F′(y0)
−1,

so

‖C0F′(x∗)‖ ≤ ‖F′(x∗)−1b1‖+ ‖F′(x∗)−1b2‖

≤ 1
2

[
ω0(e0) + ω0(‖z0 − x∗‖)

1−ω0(‖z0 − x∗‖)

+
1

1−ω0(‖z0 − x∗‖)
(ω0(‖y0 − x∗‖+ ω0(‖z0 − x∗‖)

+
ω0(‖z0 − x∗‖)

1−ω0(‖y0 − x∗‖)
(ω0(‖y0 − x∗‖) + ω0(e0)))

1
ω0(‖y0 − x∗‖)

= c0(e0)

and
D0 = F′(v0)

−1 − 1
2

F′(y0)
−1F′(x0)F′(y0)

−1 − 1
2

F′(x0)
−1
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(v0 is simply replacing z0 in the definition of C0), so

‖D0F′(x∗)‖ ≤
1
2

[
ω0(e0) + ω0(‖v0 − x∗‖)

1−ω0(‖v0 − x∗‖)

+
1

1−ω0(‖v0 − x∗‖)
(ω0(‖y0 − x∗‖) + ω0(‖v0 − x∗‖)

+
ω0(‖v0 − x∗‖)

1−ω0(‖y0 − x∗‖)
(ω0(‖y0 − x∗‖) + ω0(e0))

1
1−ω0(‖y0 − x∗‖)

≤ d0(e0).

Hence, with these changes, we present the local convergence analysis of method (3).

Theorem 2. Under the conditions (A) the conclusions of Theorem 1 hold but with R, gi, hi, replaces by
R̄, ḡi, h̄i, respectively.

Remark 1. We can compute [17] the computational order of convergence (COC) defined by

ξ = ln
(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln
(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence without resorting to the computation of higher
order derivatives appearing in the method or in the sufficient convergence criteria usually appearing in the Taylor
expansions for the proofs of those results.

3. Numerical Examples

Example 1. Let us consider a system of differential equations governing the motion of an object and given by

H′1(x) = ex, H′2(y) = (e− 1)y + 1, H′3(z) = 1

with initial conditions H1(0) = H2(0) = H3(0) = 0. Let H = (H1, H2, H3). Let B1 = B2 = R3, D =

Ū(0, 1), x∗ = (0, 0, 0)T . Define function H on D for w = (x, y, z)T by

H(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is defined by

H′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

Notice that using the (A) conditions, we get for x∗ = (0, 0, 0)T , ω0(s) = (e− 1)s, ω(s) = e
1

e−1 s, ω1(s) =
e

1
e−1 . The radii are

R1 = 0.38269191223238574472986783803208, R2 = 0.19249424357776143135190238808718,

R3 = 0.16097144932100204695046841152362, R4 = 0.1731041505859549911594541526938,

R̄2 = 0.23043767601276282652733584654925, R̄3 = 2.5823927758875733218246750766411,
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R̄4 = 0.2195161774302133161906880332026.

Example 2. Let B1 = B2 = C[0, 1], the space of continuous functions defined on [0, 1] be equipped with the
max norm. Let D = U(0, 1). Define function H on D by

H(ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ. (27)

We have that

H′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get x∗ = 0, so ω0(s) = 7.5s, ω(s) = 15s and ω1(s) = 2. Then the radii are

R1 = 0.066666666666666666666666666666667, R2 = 0.035324865589989970504625205194316,

R3 = 0.047263681322789477534662694324652, R4 = 0.021857976760806939464654163884916,

R̄2 = 1.1302558424873363485119170945836, R̄3 = 0.13819337319040553291316086870211,

R̄4 = 0.052052957742070200819473058118092.

Example 3. Returning back to the motivational example at the introduction of this study, we have for x∗ = 1,
ω0(s) = ω(s) = 96.6629073s and ω1(s) = 2. Then, the radii are

R1 = 0.0068968199414654552878434223828208, R2 = 0.00077090035103644658290300561986896,

R3 = 0.00012680765288154951706510453757204, R4 = 0.010244807279452188691903913309034,

R̄2 = 2.0195452298754390518809032073477, R̄3 = 0.044412236972383459243651770975703,

R̄4 = 1.9996509448227068883596757586929.
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