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Abstract: In this paper, we develop a novel computation model of Intuitionistic Fuzzy Values
with the usage of fuzzy negations and Archimedean copulas. This novel computation model’s
structure is based on the extension of the existing operations of intuitionistic fuzzy values with some
classes of fuzzy negations. Many properties of the proposed operations are investigated and proved.
Additionally, in this paper we introduce the concepts of intuitionistic fuzzy Archimedean copula
weighted arithmetic and geometric aggregation operators based on fuzzy negations, including a
further analysis of their properties. Finally, using a case study from an already published paper we
found that our method has many advantages.

Keywords: intuitionistic fuzzy sets; fuzzy negations; copula; intuitionistic fuzzy Archimedean copula
aggregation operators; multiple attribute decision making

1. Introduction

Atanassov [1] introduced the notion Intuitionistic Fuzzy Set (IFS), which generalizes the notion
of Fuzzy Set proposed by Zadeh [2]. Based on the fact that IFS is appropriate for cases dealing with
uncertainty and vagueness, many authors have applied them to decision making. In the case of
multiple attribute decision making the operational laws of Intuitionistic Fuzzy Values (IFVs) propose
an elementary and remarkable topic. Atanassov [1,3] introduced the basic operational laws and
presented some of their properties. Beliakov et al. [4] developed some operations by using additive
generators of the product t-norm. Zhao and Wei [5] proposed the intuitionistic fuzzy Einstein hybrid
aggregation operators. Atanassov, Pasi and Yager [6] contributed to the case of multi-criteria group
decision making, with the attributes being intuitionistic fuzzy numbers and the corresponding weights
being crisp numerical values; their method is applied in the context of public relations and mass
communication. Wang and Li [7] proposed the score function and the weighted score function
methods. Ouyang and Pedrycz [8] proposed a model for intuitionistic fuzzy multi- attributes decision
making that deals with the degrees of membership and nonmembership individually that is applied
in multiple criteria supplier selection problems. Tao et al. [9] gave an intuitionistic fuzzy copula
arithmetic aggregation operator in multi-attribute decision making. Liu and Li [10], extended power
Bonferroni mean to interval-valued intuitionistic fuzzy numbers and applied it to multiple attribute
group decision making in the evaluation of air quality. Seikh and Mandal [11], introduced intuitionistic
fuzzy Dombi weighted averaging operator, intuitionistic fuzzy Dombi hybrid averaging operator,
intuitionistic fuzzy Dombi weighted geometric operator, intuitionistic fuzzy Dombi ordered weighted
geometric operator and intuitionistic fuzzy Dombi hybrid geometric operator. Xian, Guo and Chai [12],
introduced an intuitionistic fuzzy linguistic-induced generalized ordered weighted averaging operator
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and made an application about taking targeted measures in poverty alleviation (TPA). Shi, Yang
and Xiao [13], introduced the intuitionistic fuzzy power geometric Heronian mean operator and the
weighted intuitionistic fuzzy power geometric Heronian mean operator. Zou, Chen and Fan [14],
introduced the improved intuitionistic fuzzy weighted geometric operator of intuitionistic fuzzy values.
For further contributions, references are provided [15–22].

Näther [23] states that copulas and t-norms often coincide. Nelsen [24] and Alsina et al. [25]
contributed to the introduction and application of copulas. Beliakov et al. [26], has set copulas as
conjunctive functions. In addition, the selection of the most suitable conjunctive function and how to
fit additive generators for Archimedean t-norms and Archimedean copulas is depicted in Näther [23].

The present paper aims to investigate the intuitionistic fuzzy copula aggregation operators,
with the combination of fuzzy negations, in order to develop multiple attribute decision making
methods for IFVs. To accomplish that, the construction of novel operations for IFVs is essential. As a
result, the combination of copulas and fuzzy negations [27] produces new operations, which allow
us to construct novel intuitionistic fuzzy Archimedean copula weighted arithmetic and geometric
aggregation operations with the usage of arithmetic and geometric means.

As a result, the remainder of the paper is organized as follows. Section 2 includes some basic
concepts of copula theory, fuzzy negations and intuitionistic fuzzy sets and also our development on
novel operations for IFVs with the combination of the above. The properties of the proposed operations
are investigated. In Section 3 we provide the new intuitionistic fuzzy Archimedean copula weighted
arithmetic and geometric aggregation operators, including a further analysis of their properties.
In Section 4 we provide an algorithm to accomplish the multiple attribute decision making procedure.
In Section 5 we provide a practical example to materialize the application of the proposed approach.
In the discussion section, the results of our work are explained thoroughly and are compared with
previous studies. In Section 7, we provide some concluding remarks and future research directions.

2. Preliminaries

This Section provides novel operations for IFVs, which are established through the concepts of
copula, co-copula, Archimedean copula and fuzzy negations.

Sklar [28] presented the concept of copula, as a mathematical tool to combine probability
distributions, framing the dependence structure within random variables with the usage of their CDFs.

Definition 1. [28] A 2-dimensional copula is a function with domain [0, 1] × [0, 1] and range [0, 1], grounded
and 2-increasing, i.e., satisfies the following boundary and monotonicity conditions:

1. C(x, 0) = C(0, y) = 0.
2. C(x, 1) = x, C(1, y) = y.
3. C(x1, y1) + C(x2, y2) −C(x1, y2) −C(x2, y1) ≥ 0.

where, x, y, x1, x2, y1, y2 ∈ [0, 1] and x1 ≤ x2, y1 ≤ y2.

Below, the definition of co-copula is given, according to Cherubini et al.’s [29] work:

Definition 2. [29] The co-copula of a copula is defined as:

C∗(x, y) = 1−C(1− x, 1− y) (1)

According to Nelsen [24] the co-copula is not a copula, but may be constructed by the usage of
a copula. Fréchet [30] and Hoeffding [31] introduced the Fréchet–Hoeffding [24] bounds of copulas
for any x, y ∈ [0, 1], max

{
x + y− 1, 0

}
≤ C(x, y) ≤ min

{
x, y

}
. At this point, the method follows the

definition of Archimedean copulas, which may be constructed with significant ease and ensure some
remarkable properties.
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Definition 3. [24] Let ϕ be a continuous, strictly decreasing function on [0, 1]→ [0,+∞] with ϕ(1) = 0 and
ϕ[−1] the pseudo-inverse of ϕ, which is defined as:

ϕ[−1](x) =
{ϕ−1(x), 0≤x≤ϕ(0),

0, ϕ(0)≤x≤+∞,
(2)

Then, C : [0, 1]2 → [0, 1] , C(x, y) = ϕ[−1](ϕ(x) + ϕ(y)) corresponds to the conditions of Definition 1,
hence C is a copula and C is called Archimedean copula.

In the case, where C is strictly increasing, ϕ(0) = +∞ and ϕ[−1] = ϕ−1, then C(x, y) = ϕ−1(ϕ(x) +
ϕ(y)). In that case ϕ is called strict generator and C is called strict Archimedean copula.

In Table 1, some Archimedean copulas are listed.

Table 1. In ref. [24] Archimedean Copulas.

Name ϕ(t) C(x,y) Parameter

Gumbel (− ln t)θ exp(−[(− ln x)θ + (− ln y)θ]
1
θ ) θ ≥ 1

Clayton t−θ − 1 (x−θ + y−θ − 1)−
1
θ θ > 0

Ali-Mikhail-Haq ln 1−θ(1−t)
t

xy
1−θ(1−x)(1−y) −1 ≤ θ < 1

Joe − ln[1− (1− t)θ] 1− [(1− x)θ + (1− y)θ − (1− x)θ(1− y)θ]
1
θ θ ≥ 1

The study of the applications of copulas in fuzzy sets is of great importance, given that specific
copulas are t-norms and specific co-copulas are t-conorms and vice versa. Moreover, Näther [23]
mentioned in his work that the combination of probabilistic information or fuzzy information hardly
matters. Below, the Atanassov’s [1] definition for Intuitionistic Fuzzy Sets is provided:

Definition 4. [1] Let X be a reference set, an Intuitionistic Fuzzy Set (IFS) A on X is defined as:

A =
{〈

x,µA(x), νA(x )
〉 ∣∣∣x ∈ X

}
, (3)

where, the functions µA(x) and νA(x) denote the degrees of membership and non-membership of the element
x ∈ X to the set A, respectively with:

0 ≤ µA(x) ≤ 1 , 0 ≤ νA(x) ≤ 1, 0 ≤ µA(x) + νA(x) ≤ 1 and πA(x) = 1−µA(x)− νA(x) is called degree
of indeterminacy of x to A. Additionally, α =

〈
µα, να

〉
is called Intuitionistic Fuzzy Value (IFV) and the set of

all IFVs isV.

Definition 5. [32] A decreasing function n : [0, 1]→ [0, 1] is called a fuzzy negation if n(0) = 1 and n(1) = 0.
A fuzzy negation n is called: Strict, if it is strictly decreasing and continuous and Strong, if it is an involution,
i.e., n(n(x)) = x,∀x ∈ [0, 1].

Table 2, proposes two parametric families of fuzzy negations:

Table 2. In ref. [32] Fuzzy Negations.

Name Fuzzy Negation Parameter

Sugeno class nλ(x) = 1−x
1+λx λ ∈ (−1,∞)

Yager class nλ(x) = (1− xλ)1/λ λ ∈ (0,∞)

Moreover, the operations of IFVs in Tao et al.’s [9] work, are being extended through the adaptation
of fuzzy negations.
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Definition 6. Let α =
〈
µα, να

〉
and β =

〈
µβ, νβ

〉
be two IFVs and k ≥ 0 a parameter.

1. Addition operation

α⊕C β =
〈
C∗λ(µα,µβ), C(να, νβ)

〉
=

〈
nλ(ϕ−1[ϕ(nλ(µα)) + ϕ(nλ(µβ))]) , ϕ−1[ϕ(να) + ϕ(νβ)]

〉
.

2. Multiplication operation

α⊗C β =
〈
C(µα,µβ), C∗λ(να, νβ)

〉
=

〈
ϕ−1[ϕ(µα) + ϕ(µβ)] , nλ(ϕ−1[ϕ(nλ(να)) + ϕ(nλ(νβ))])

〉
.

3. Scalar Multiplication operation

kα =
〈
nλ(ϕ−1[kϕ(nλ(µα))] ),ϕ−1[kϕ(να)]

〉
.

4. Power operation
αk =

〈
ϕ−1[kϕ(µα)], nλ(ϕ−1[kϕ(nλ(να))])

〉
.

By replacing the λ parameter with the appropriate value, the Tao et al.’s [9] operations of IFVs are
produced. Moreover, a further investigation is held for the properties of the proposed operations.

Theorem 1. Let α =
〈
µα, να

〉
and β =

〈
µβ, νβ

〉
be two IFVs and k ≥ 0 a real valued parameter. The novel

operations of IFVs are closed or their values are also IFVs, i.e., α⊕C β,α⊗C β, kα,αk
∈ V.

Proof of Theorem 1. We have µα ∈ [0, 1] and 0 ≤ nλ(µα) ≤ 1. Since ϕ is strictly decreasing then:

ϕ(1) ≤ ϕ(nλ(µα)) ≤ ϕ(0)⇔0 ≤ ϕ(nλ(µα)) ≤ +∞, (4)

Similarly, as µβ ∈ [0, 1] we get:
0 ≤ ϕ(nλ(µβ)) ≤ +∞, (5)

We add Equations (4) and (5) and we get:

0 ≤ ϕ(nλ(µα)) + ϕ(nλ(µβ)) ≤ +∞, (6)

Based on the fact that ϕ−1 is also strictly decreasing, we obtain:

ϕ−1(+∞) ≤ ϕ−1(ϕ(nλ(µα)) + ϕ(nλ(µβ))) ≤ ϕ−1(0)⇔

0 ≤ ϕ−1(ϕ(nλ(µα)) + ϕ(nλ(µβ))) ≤ 1⇔

0 ≤ nλ(ϕ−1(ϕ(nλ(µα)) + ϕ(nλ(µβ)))) ≤ 1⇔

0 ≤ C∗λ(µα,µβ) ≤ 1.

Morover, by Definition 1, as να, νβ ∈ [0, 1],

0 ≤ C(να, νβ) ≤ 1

holds.
In addition:

0 ≤ C∗λ(µα,µβ) + C(να, νβ) ≤ 1.

Thus, the result of the operation is:
α⊕C β ∈ V.
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As Equation (3) is concerned:

kα =
〈
nλ(ϕ−1[kϕ(nλ(µα))]) ,ϕ−1[kϕ(να)]

〉
For k = 1 we get:

α =
〈
nλ(ϕ−1[ϕ(nλ(µα))]) ,ϕ−1[ϕ(να)]

〉
⇔

α =
〈
nλ(nλ(µα)) , να

〉
⇔

α =
〈
µα , να

〉
,

that holds.
For k = 2 we get:

α⊕C α =
〈
nλ(ϕ−1[ϕ(nλ(µα)) + ϕ(nλ(µα))]), ϕ−1[ϕ(να) + ϕ(να)]

〉
⇔

α⊕C α =
〈
nλ(ϕ−1[2ϕ(nλ(µα))]), ϕ−1[2ϕ(να)]

〉
= 2α,

that holds.
We assume that for k = n holds. Then for k = n + 1:

kα = (n + 1)α = nα⊕C α =
〈
nλ[ϕ−1[nϕ(nλ(µα))]], ϕ−1[nϕ(να)]

〉
⊕C

〈
µα, να

〉
⇔

kα =
〈
nλ(ϕ−1[ϕ(nλ(nλ[ϕ−1[nϕ(nλ(µα))]]))])+ ϕ(nλ(µα)),ϕ−1(ϕ(ϕ−1(nϕ(να))) + ϕ(να))

〉
⇔

kα =
〈
nλ(ϕ−1[nϕ(nλ(µα))])+ ϕ(nλ(µα)),ϕ−1((n + 1)ϕ(να))

〉
⇔

kα =
〈
nλ(ϕ−1[(n + 1)ϕ(nλ(µα))]), ϕ−1((n + 1)ϕ(να))

〉
= (n + 1)α.

Hence, by mathematical induction the proof is complete. The proofs that the rest of the operations
belong to the set V are similar.

Next we investigate the properties of the proposed operations: �

Theorem 2. Let α =
〈
µα, να

〉
∈ V,β =

〈
µβ, νβ

〉
∈ V and real valued parameters k, k1, k2 ≥ 0, then:

1. α⊕C β = β⊕C α.
2. α⊗C β = β⊗C α.
3. k(α⊕C β) = kα⊕C kβ.

4. (α⊗C β)
k = αk

⊗C β
k.

5. k1α⊕C k2α = (k1 + k2)α.
6. αk1 ⊗C α

k2 = αk1+k2 .
7. nλ(α) ⊕C nλ(β) = nλ(α⊗C β).
8. nλ(α) ⊗C nλ(β) = nλ(α⊕C β).
9. knλ(α) = nλ(αk).

10. (nλ(α))
k = nλ(kα).

Proof of Theorem 2. The cases 1 and 2 are obvious, because of Archimedean copulas and the
corresponding co-copulas commutativity.
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In order to achieve the derivation of different operations for IFVs, the usage of generator functions
from Table 1 and of fuzzy negations from Table 2, is accomplished. Those operations are listed in Table 3:
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Table 3. Operations for intuitionistic fuzzy values (IFVs) via Sugeno Fuzzy Negation.

Name Operations Formulas

Gumbel Addition operation
〈

1−exp(−[(− ln( 1−µα
1+λµα

))
θ
+(− ln(

1−µβ
1+λµβ

))
θ

]

1
θ
)

1+λ exp(−[(− ln( 1−µα
1+λµα

))
θ
+(− ln(

1−µβ
1+λµβ

))
θ

]

1
θ
)

, exp(−[(− ln να)
θ + (− ln νβ)

θ]
1
θ )

〉

Multiplication operation
〈
exp(−[(− lnµα)

θ + (− lnµβ)
θ]

1
θ ),

1−exp(−[(− ln( 1−να
1+λνα

))
θ
+(− ln(

1−νβ
1+λνβ

))
θ

]

1
θ
)

1+λ exp(−[(− ln( 1−να
1+λνα

))
θ
+(− ln(

1−νβ
1+λνβ

))
θ

]

1
θ
)

〉

Scalar Multiplication operation
〈

1−exp(−[k(− ln( 1−µα
1+λµα

))
θ
]

1
θ
)

1+λ exp(−[k(− ln( 1−µα
1+λµα

))
θ
]

1
θ
)

, exp(−[k(− ln να)
θ]

1
θ )

〉

Power operation
〈
exp(−[k(− lnµα)

θ]
1
θ ),

1−exp(−[k(− ln( 1−να
1+λνα

))
θ
]

1
θ
)

1+λ exp(−[k(− ln( 1−να
1+λνα

))
θ
]

1
θ
)

〉

Clayton Addition operation
〈

1−(( 1−µα
1+λµα

)
−θ
+(

1−µβ
1+λµβ

)
−θ

−1)
−

1
θ

1+λ(( 1−µα
1+λµα

)
−θ
+(

1−µβ
1+λµβ

)
−θ

−1)
−

1
θ

, (να−θ + νβ−θ − 1)−
1
θ

〉

Multiplication operation
〈
(µα−θ + µβ−θ − 1)−

1
θ ,

1−(( 1−να
1+λνα

)
−θ
+(

1−νβ
1+λνβ

)
−θ

−1)
−

1
θ

1+λ(( 1−να
1+λνα

)
−θ
+(

1−νβ
1+λνβ

)
−θ

−1)
−

1
θ

〉

Scalar Multiplication operation
〈

1−(k( 1−µα
1+λµα

)
−θ
−1)

−
1
θ

1+λ(k( 1−µα
1+λµα

)
−θ
−1)

−
1
θ

, (kνα−θ − 1)−
1
θ

〉

Power operation
〈
(kµα−θ − 1)−

1
θ ,

1−(k( 1−να
1+λνα

)
−θ
−1)

−
1
θ

1+λ(k( 1−να
1+λνα

)
−θ
−1)

−
1
θ

〉
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Table 3. Cont.

Name Operations Formulas

Ali-Mikhail-Haq Addition operation
〈 1−

1−µα
1+λµα

1−µβ
1+λµβ

1−θ(1−
1−µα

1+λµα
)(1−

1−µβ
1+λµβ

)

1+λ(

1−µα
1+λµα

1−µβ
1+λµβ

1−θ(1−
1−µα

1+λµα
)(1−

1−µβ
1+λµβ

)

)

,
νανβ

1−θ(1−να)(1−νβ)

〉

Multiplication operation
〈

µαµβ
1−θ(1−µα)(1−µβ)

,

1−

1−να
1+λνα

1−νβ
1+λνβ

1−θ(1− 1−να
1+λνα

)(1−
1−νβ

1+λνβ
)

1+λ(

1−να
1+λνα

1−νβ
1+λνβ

1−θ(1− 1−να
1+λνα

)(1−
1−νβ

1+λνβ
)

)

〉

Scalar Multiplication operation
〈 1−

(
1−µα

1+λµα
)
k

1−θ(1−
1−µα

1+λµα
)
k

1+λ(
(

1−µα
1+λµα

)
k

1−θ(1−
1−µα

1+λµα
)
k )

, ναk

1−θ(1−να)
k

〉

Power operation
〈

ναk

1−θ(1−να)
k ,

1−
(

1−µα
1+λµα

)
k

1−θ(1−
1−µα

1+λµα
)
k

1+λ(
(

1−µα
1+λµα

)
k

1−θ(1−
1−µα

1+λµα
)
k )

〉

Joe Addition operation
〈

[(1− 1−µα
1+λµα

)
θ
+(1−

1−µβ
1+λµβ

)
θ

−(1− 1−µα
1+λµα

)
θ
(1−

1−µβ
1+λµβ

)
θ

]

1
θ

1+λ−λ[(1− 1−µα
1+λµα

)
θ
+(1−

1−µβ
1+λµβ

)
θ

−(1− 1−µα
1+λµα

)
θ
(1−

1−µβ
1+λµβ

)
θ

]

1
θ

, 1− [(1− να)
θ + (1− νβ)

θ
− (1− να)

θ(1− νβ)
θ]

1
θ

〉

Multiplication operation
〈
1− [(1− µα)

θ + (1− µβ)
θ
− (1− µα)

θ(1− µβ)
θ]

1
θ ,

[(1− 1−να
1+λνα

)
θ
+(1−

1−νβ
1+λνβ

)
θ

−(1− 1−να
1+λνα

)
θ
(1−

1−νβ
1+λνβ

)
θ

]

1
θ

1+λ−λ[(1− 1−να
1+λνα

)
θ
+(1−

1−νβ
1+λνβ

)
θ

−(1− 1−να
1+λνα

)
θ
(1−

1−νβ
1+λνβ

)
θ

]

1
θ

〉

Scalar Multiplication operation
〈

[k(1− 1−µα
1+λµα

)
θ
−((1− 1−µα

1+λµα
)
θ
)

k
]

1
θ

1+λ−λ[k(1− 1−µα
1+λµα

)
θ
−((1− 1−µα

1+λµα
)
θ
)

k
]

1
θ

, 1− [k(1− να)
θ
− ((1− να)

θ)
k
]

1
θ
〉

Power operation
〈
1− [k(1− µα)

θ
− ((1− µα)

θ)
k
]

1
θ

,
[k(1− 1−να

1+λνα
)
θ
−((1− 1−να

1+λνα
)
θ
)

k
]

1
θ

1+λ−λ[k(1− 1−να
1+λνα

)
θ
−((1− 1−να

1+λνα
)
θ
)

k
]

1
θ

〉



Algorithms 2020, 13, 154 9 of 18

In the following Section, we propose the development of intuitionistic fuzzy Archimedean copula
weighted arithmetic and geometric aggregation operators, which is achieved. Furthermore, the
properties of those extended aggregation operators are investigated.

3. Novel Intuitionistic Fuzzy Archimedean Copula Weighted Arithmetic and Geometric
Aggregation Operators

3.1. Intuitionistic Fuzzy Archimedean Copula Weighted Arithmetic Aggregation Operator

Definition 7. Let αi =
〈
µαi , ναi

〉
,i = 1, . . . , n, be a collection of IFVs and w = {w1, . . . , wn}

T be the weighting
vector of αi, with 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. An intuitionistic fuzzy Archimedean copula weighted

arithmetic aggregation (IFACWAAw) operator of dimension n is a mapping, IFACWAAw : Vn
→ V , according

to: IFACWAAw(α1, . . . ,αn) = ⊕C
n
i=1wiαi.

Based on the proposed addition and scalar multiplication operations of IFVs, the following
theorem is expressed.

Theorem 3. Let αi =
〈
µαi , ναi

〉
,i = 1, . . . , n, be a collection of IFVs and w = {w1, . . . , wn}

T be the associated
weighting vector, with 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. Then, the aggregated value, based on the IFACWAAw

operator, can be expressed as:

IFACWAAw(α1, . . . ,αn) =

〈
nλ(ϕ−1[

n∑
i=1

wiϕ(nλ(µαi))]), ϕ
−1[

n∑
i=1

wiϕ(ναi)]

〉

The value of IFACWAAw operator is also an IFV.

Proof of Theorem 3. For n = 1, we get:

IFACWAAw(α1) =
〈
nλ(ϕ−1[w1ϕ(nλ(µα1))]) ,ϕ−1[w1ϕ(να1)]

〉
But we have that w1 = 1, so we get:

IFACWAAw(α1) =
〈
nλ(ϕ−1[ϕ(nλ(µα1))]), ϕ

−1[ϕ(να1)]
〉
⇔

IFACWAAw(α1) =
〈
µα1 , να1

〉
⇔ IFACWAAw(α1) = α1,

as α1 ∈ V,IFACWAAw(α1) ∈ V.
Next, we suppose that for n = k it holds, so we calculate:

IFACWAAw(α1, . . . ,αk) =

〈
nλ(ϕ−1[

k∑
i=1

wiϕ(nλ(µαi))]), ϕ
−1[

k∑
i=1

wiϕ(ναi)]

〉
For n = k + 1, we get:

IFACWAAw(α1, . . . ,αk,αk+1) = ⊕C
k+1
i=1 wiαi = (⊕C

k
i=1wiαi) ⊕C (wk+1αk+1)

=

〈
nλ(ϕ−1[

k∑
i=1

wiϕ(nλ(µαi))]), ϕ
−1[

k∑
i=1

wiϕ(ναi)]

〉
⊕C

〈
nλ(ϕ−1[wk+1ϕ(nλ(µαk+1))]), ϕ

−1[wk+1ϕ(ναk+1)]
〉

=

〈
nλ(ϕ−1[ϕ(nλ(nλ(ϕ−1[

k∑
i=1

wiϕ(nλ(µαi))])))+ϕ(nλ(nλ(ϕ
−1[wk+1ϕ(nλ(µαk+1))])))]),
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ϕ−1[ϕ(ϕ−1[
k∑

i=1
wiϕ(ναi)]) + ϕ(ϕ−1[wk+1ϕ(ναk+1)])]

〉
=

〈
nλ(ϕ−1[

k∑
i=1

wiϕ(nλ(µαi))+wk+1ϕ(nλ(µαk+1))]),

ϕ−1[
k∑

i=1

wiϕ(ναi)])+wk+1ϕ(ναk+1)]
〉
=

〈
nλ(ϕ−1[

k+1∑
i=1

wiϕ(nλ(µαi)) ]),ϕ
−1[

k+1∑
i=1

wiϕ(ναi)]

〉
It holds, so as a result, by mathematical induction the proof is complete. �

Proposition 4. Let αi =
〈
µαi , ναi

〉
,i = 1, . . . , n, be a collection of IFVs and w = {w1, . . . , wn}

T be the associated
weighting vector, with 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. Then IFACWAAw operator is:

1. Idempotent, i.e., if
〈
µαi , ναi

〉
=

〈
µα, να

〉
, then: for i = 1, . . . , n, IFACWAAw(α1, . . . ,αn) = α.

2. Bounded, i.e., for i = 1, . . . , n, 〈0, 1〉 ≤ IFACWAAw(α1, . . . ,αn) ≤ 〈1, 0〉.

3. Commutative, i.e., for any permutation of αi =
〈
µαi , ναi

〉
, α f (i) =

〈
µα f (i)

, να f (i)

〉
, with i = 1, . . . , n,

where f : {1, 2, . . . , n} → {1, 2, . . . , n}, IFACWAAw(α1, . . . ,αn)= IFACWAAw(α f (1), . . . ,α f (n)).

Proof of Proposition 4. 1. IFACWAAw(α1, . . . ,αn) =

〈
nλ(ϕ−1[

n∑
i=1

wiϕ(nλ(µαi))]), ϕ
−1[

n∑
i=1

wiϕ(ναi)]

〉
.

As µαi = µα and ναi = να we get: IFACWAAw(α1, . . . ,αn) =〈
nλ(ϕ−1[

n∑
i=1

wiϕ(nλ(µα))]), ϕ−1[
n∑

i=1
wiϕ(να)]

〉
=

〈
nλ(ϕ−1[ϕ(nλ(µα))

n∑
i=1

wi]), ϕ−1[ϕ(να)
n∑

i=1
wi]

〉
=〈

nλ(ϕ−1[ϕ(nλ(µα))]), ϕ−1[ϕ(να)]
〉
=

〈
µα, να〉 = α.

The proofs of Equations (2) and (3) are obvious based on the properties of Archimedean copulas
and their corresponding co-copulas. �

3.2. Intuitionistic Fuzzy Archimedean Copula Weighted Geometric Aggregation Operator

Definition 8. Let αi =
〈
µαi , ναi

〉
, i = 1, . . . , n, be a collection of IFVs and w = {w1, . . . , wn}

Tbe the
weighting vector of αi, with 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. An intuitionistic fuzzy Archimedean copula weighted

geometric aggregation (IFACWGAw) operator of dimension n is a mapping, IFACWGAw : Vn
→ V , according

to: IFACWGAw(α1, . . . ,αn) = ⊗C
n
i=1αi

wi .

Based on the proposed multiplication and power operations of IFVs, the following theorem
is expressed.

Theorem 5. Let αi =
〈
µαi , ναi

〉
, i = 1, . . . , n, be a collection of IFVs and w = {w1, . . . , wn}

T be the associated
weighting vector, with 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. Then, the aggregated value, based on the IFACWGAw

operator, can be expressed as: IFACWGAw(α1, . . . ,αn) =

〈
ϕ−1[

n∑
i=1

wiϕ(µαi)], nλ(ϕ−1[
n∑

i=1
wiϕ(nλ(ναi))])

〉
.

The value of IFACWGAw operator is also an IFV.

Proof of Theorem 5. For n = 1, we get: IFACWGAw(α1) =
〈
ϕ−1[w1ϕ(µα1)], nλ(ϕ−1[w1ϕ(nλ(να1))])

〉
,

but we have that w1 = 1 so we get: IFACWGAw(α1) =
〈
ϕ−1[ϕ(µα1)], nλ(ϕ−1[ϕ(nλ(να1))])

〉
. As a result,

we have: IFACWGAw(α1) =
〈
µα1 , να1

〉
= α1. As α1 ∈ V,IFACWGAw(α1) ∈ V.

Next, suppose that for n = k it holds.
For n = k + 1 we calculate:

IFACWGAw(α1, . . . ,αk+1) = ⊗C
k+1
i=1 αi

wi = (⊗C
k
i=1αi

wi) ⊗C (αk+1
wk+1)

=

〈
ϕ−1[

k∑
i=1

wiϕ(µαi)], nλ(ϕ−1[
k∑

i=1
wiϕ(nλ(ναi))])

〉
⊗C

〈
ϕ−1[wk+1ϕ(µαk+1)], nλ(ϕ−1[wk+1ϕ(nλ(ναk+1))])

〉
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=

〈
ϕ−1[ϕ(ϕ−1[

k∑
i=1

wiϕ(µαi)]) + ϕ(ϕ−1[wk+1ϕ(µαk+1)])],nλ(ϕ
−1[ϕ(nλ(nλ(ϕ−1[

k∑
i=1

wiϕ(nλ(ναi))])))

+ϕ(nλ(nλ(ϕ−1[wk+1ϕ(nλ(ναk+1))])))])
〉
=

〈
ϕ−1[

k∑
i=1

wiϕ(µαi) + wk+1ϕ(µαk+1)], nλ(ϕ−1[
k∑

i=1
wiϕ(nλ(ναi)) + wk+1ϕ(nλ(ναk+1))])

〉

=

〈
ϕ−1[

k+1∑
i=1

wiϕ(µαi)], nλ(ϕ−1[
k+1∑
i=1

wiϕ(nλ(ναi))])

〉
It holds, so by mathematical induction the proof is complete. �

Remark 1. IFACWGAw operator possesses the same properties as IFACWAAw, such as idempotency, boundary
property and commutativity.

In order to depict some of the produced IFACWAAw and IFACWGAw operators we
use the proposed operators for IFVs as described in Table 3, which are expressed in the
Tables 4 and 5, respectively.

Table 4. Some Sugeno-Based Intuitionistic Fuzzy Archimedean Copula Weighted Arithmetic
Aggregation Operators.

Name IFACWAAw

Gumbel
〈 1−exp[[−

n∑
i=1

wi[− ln(
1−µαi

1+λµαi
)]
θ
]

1
θ
]

1+λ(exp[[−
n∑

i=1
wi[− ln(

1−µαi
1+λµαi

)]
θ
]

1
θ
])

, exp[[−
n∑

i=1
wi[− ln ναi ]

θ]

1
θ

]

〉

Clayton
〈 1−(

n∑
i=1

wi(
1−µαi

1+λµαi
)
−θ
)
−

1
θ

1+λ((
n∑

i=1
wi(

1−µαi
1+λµαi

)
−θ
)
−

1
θ
)

, (
n∑

i=1
wi(ναi )

−θ)
−

1
θ
〉

Ali-Mikhail-Haq
〈 1− 1−θ

n∏
i=1

(

1−θ(1−
1−µαi

1+λµαi
)

1−µαi
1+λµαi

)

wi

−θ

1+λ( 1−θ

n∏
i=1

(

1−θ(1−
1−µαi

1+λµαi
)

1−µαi
1+λµαi

)

wi

−θ

)
, 1−θ

n∏
i=1

(
1−θ(1−ναi )

ναi
)

wi
−θ

〉

Joe
〈 (1−

n∏
i=1

(1−(1−
1−µαi

1+λµαi
)
θ
)

wi
)

1/θ

1+λ(1−(1−
n∏

i=1
(1−(1−

1−µαi
1+λµαi

)
θ
)

wi
)

1/θ

)

, 1− (1−
n∏

i=1
(1− (1− ναi )

θ)
wi
)

1/θ〉

Table 5. Some Sugeno-Based Intuitionistic Fuzzy Archimedean Copula Weighted Geometric
Aggregation Operators.

Name IFACWGAw

Gumbel
〈
exp[[−

n∑
i=1

wi[− lnµαi ]
θ]

1
θ

] ,
1−exp[[−

n∑
i=1

wi[− ln(
1−ναi

1+λναi
)]
θ
]

1
θ
]

1+λ(exp[[−
n∑

i=1
wi[− ln(

1−ναi
1+λναi

)]
θ
]

1
θ
])

〉

Clayton
〈
(

n∑
i=1

wi(µαi )
−θ)
−

1
θ

,
1−(

n∑
i=1

wi(
1−ναi

1+λναi
)
−θ
)
−

1
θ

1+λ((
n∑

i=1
wi(

1−ναi
1+λναi

)
−θ
)
−

1
θ

〉

Ali-Mikhail-Haq
〈

1−θ
n∏

i=1
(

1−θ(1−µαi )
ναi

)
wi
−θ

,

1− 1−θ

n∏
i=1

(

1−θ(1−
1−ναi

1+λναi
)

1−ναi
1+λναi

)

wi

−θ

1+λ( 1−θ

n∏
i=1

(

1−θ(1−
1−ναi

1+λναi
)

1−ναi
1+λναi

)

wi

−θ

)

〉

Joe
〈
1− (1−

n∏
i=1

(1− (1− µαi )
θ)

wi
)

1/θ
,

(1−
n∏

i=1
(1−(1−

1−ναi
1+λναi

)
θ
)

wi
)

1/θ

1+λ(1−(1−
n∏

i=1
(1−(1−

1−ναi
1+λναi

)
θ
)

wi
)

1/θ

)

〉
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4. IFACWAAw and IFACWGAw Operators in MADM

In this section an algorithm for Multiple-Attribute Decision Making (MADM) with IFVs is
introduced. Let U = {u1, . . . , um} be the set of alternatives and C = {C1, . . . , Cn} be the set of attributes,

with a weighting vector w = {w1, . . . , wn}
T, with 0 ≤ wi ≤ 1 and

n∑
i=1

wi = 1. The intuitionistic fuzzy

decision matrix R = (< µi j, νi j >)m×n where αi j =< µi j, νi j >, with i = 1, . . . , m and j = 1, . . . , n represent
the degree that ui satisfies C j, such that µi j, νi j ∈ [0, 1], with µi j + νi j ≤ 1, i.e.,

R =


< µ11, ν11 > · · · < µ1n, ν1n >

...
. . .

...
< µm1, νm1 > · · · < µmn, νmn >

 (7)

In order to obtain the weighting vector of attributes, the modified maximizing deviations method
for MADM with intuitionistic fuzzy information [9] can be used. As MADM with intuitionistic fuzzy
information is a procedure to end up with the best alternative ui ∈ U,i = 1, . . . , m, the comparison of
IFVs is achieved by the following concept.

For any IFV α =
〈
µ, ν

〉
, Chen and Tan [33] proposed a score function s and Hong and Choi [34]

proposed an accuracy function h, i.e., s(α) = µα − να and h(α) = µα + να, respectively. The larger the
score is, the greater the IFV would be. In the case that the score function’s values for two IFVs are
equal; the accuracy function can provide more specific result. Xu and Yager [35], based on score and
accuracy functions, gave a total order for IFVs.

Based on the above and inspired by MADM model in [9], we derive the following algorithm.

Algorithm 1 Multiple Attribute Decision Making Model

BEGIN
1: Obtain the normalized intuitionistic fuzzy decision matrix, i.e.,
R = (< µi j, νi j >)m×n.
2: Determine the weighting vector of the attributes.
3: Aggregate the IFVs using the proposed IFACWAAw or IFACWGAw

operators.
4: Sort the options according to score function and accuracy function.
5: Select the best alternative, by ranking the values of αi,i = 1, . . . , m.
END

In order to demonstrate the proposed method, we provide the following numerical example,
which is adapted from Tao et al.’s [9] work, in order to compare their method with the present extension
of it.

5. A Practical Example for MADM with IFVs.

A research facility has arranged to purchase an electronic device. The people in charge, selected
the four most appropriate models for further consideration, after the market research. Those are
indicated as the four alternatives U = {u1, u2, u3, u4}. The evaluation of the alternatives is achieved by
the consideration of five attributes by the decision maker (DM). Those attributes are listed as follows:
the layout of the product (C1), the technical assistance (C2), the brand (C3), the price (C4) and the
quality of the product (C5).
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Step 1. The normalized intuitionistic fuzzy decision matrix can be obtained as follows:

R = (αi j)4×5 =


〈0.4, 0.3〉 〈0.5, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.6〉 〈0.6, 0.2〉
〈0.6, 0.1〉 〈0.4, 0.3〉 〈0.3, 0.5〉 〈0.6, 0.2〉 〈0.5, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.1〉 〈0.6, 0.2〉 〈0.7, 0.1〉 〈0.3, 0.6〉
〈0.6, 0.3〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.8, 0.2〉 〈0.5, 0.2〉

.
in which, the element

〈
µi j, νi j

〉
, with i = 1, . . . , 4 and j = 1, . . . , 5, represents the intuitionistic

membership and non-membership degree of the i-th alternative that satisfies the j-th attribute.
Step 2. In the present work, we use Tao et al.’s [9], modified maximizing deviations method, in order

to derive the five weightings of the attributes, and since the numerical example is the same
we get:w1 = 0.2162,w2 = 0.2703,w3 = 0.1892,w4 = 0.1081,w5 = 0.2162.

Step 3. The aggregated results are given by the usage of IFACWAAw and IFACWGAw operators and
are listed in Tables 6 and 7.

Step 4. The score function’s results for each alternative and for each type of IFACWAAw and
IFACWGAw operators are listed in Tables 8 and 9.

Step 5. The ranking of the alternatives is achieved and is depicted in Table 10.

Table 6. The aggregation results using intuitionistic fuzzy Archimedean copula weighted arithmetic
aggregation (IFACWAAw)

Alternatives
Gumbel
θ=1
λ=0.3

Clayton
θ=1
λ=0.3

Ali-Mikhail-Haq
θ=−1
λ=0.3

Joe
θ=1
λ=0.3

u1 〈0.5394, 0.2459〉 〈0.5560, 0.2337〉 〈0.5356, 0.2488〉 〈0.5394, 0.2459〉
u2 〈0.4777, 0.2494〉 〈0.4908, 0.2126〉 〈0.4736, 0.2544〉 〈0.4777, 0.2494〉
u3 〈0.5388, 0.2267〉 〈0.5556, 0.1776〉 〈0.5338, 0.2357〉 〈0.5388, 0.2267〉
u4 〈0.5444, 0.3020〉 〈0.5731, 0.2846〉 〈0.5395, 0.3056〉 〈0.5444, 0.3020〉

Table 7. The aggregation results using intuitionistic fuzzy Archimedean copula weighted geometric
aggregation (IFACWGAw)

Alternatives
Gumbel
θ=1
λ=0.3

Clayton
θ=1
λ=0.3

Ali-Mikhail-Haq
θ=−1
λ=0.3

Joe
θ=1
λ=0.3

u1 〈0.5156, 0.2762〉 〈0.5045, 0.2976〉 〈0.5197, 0.2693〉 〈0.5156, 0.2762〉
u2 〈0.4534, 0.2940〉 〈0.4387, 0.3097〉 〈0.4576, 0.2868〉 〈0.4534, 0.2940〉
u3 〈0.5049, 0.3176〉 〈0.4823, 0.3581〉 〈0.5113, 0.3012〉 〈0.5049, 0.3176〉
u4 〈0.5152, 0.3306〉 〈0.5045, 0.3443〉 〈0.5196, 0.3252〉 〈0.5152, 0.3306〉

Table 8. The score function’s results using IFACWAAw.

Alternatives
Gumbel
θ=1
λ=0.3

Clayton
θ=1
λ=0.3

Ali-Mikhail-Haq
θ=−1
λ=0.3

Joe
θ=1
λ=0.3

u1 0.2935 0.3223 0.2868 0.2935
u2 0.2283 0.2782 0.2192 0.2283
u3 0.3121 0.3780 0.2981 0.3121
u4 0.2424 0.2884 0.2339 0.2424
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Table 9. The score function’s results using IFACWGAw

Alternatives
Gumbel
θ=1
λ=0.3

Clayton
θ=1
λ=0.3

Ali-Mikhail-Haq
θ=−1
λ=0.3

Joe
θ=1
λ=0.3

u1 0.2394 0.2069 0.2504 0.2394
u2 0.1594 0.1290 0.1708 0.1594
u3 0.1873 0.1243 0.2101 0.1873
u4 0.1846 0.1602 0.1944 0.1846

Table 10. Ranking of the alternatives.

Type IFACWAAw IFACWGAw

Gumbel u3 > u1 > u4 > u2 u1 > u3 > u4 > u2
Clayton u3 > u1 > u4 > u2 u1 > u4 > u2 > u3

Ali-Mikhail-Haq u3 > u1 > u4 > u2 u1 > u3 > u4 > u2
Joe u3 > u1 > u4 > u2 u1 > u3 > u4 > u2

To illustrate the affection of λ parameter in the procedure as θ parameter is fixed to 1 (and –1 in
Ali-Mikhail-Haq case) we utilized the following graphs that are depicted in Figures 1 and 2 for the
IFACWAAw and in Figures 3 and 4 for the IFACWGAw.
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6. Discussion

The present paper establishes specific novel operational laws of IFVs, as the generalization of
the existing copula-based operational laws, with the contribution of fuzzy negations. Additionally,
the paper provides the extension of the proposed operations to the arithmetic mean and to the geometric
mean of IFVs.

First of all, the replacement of the λ parameter with the numerical value zero in Sugeno class, or
with the numerical value one in Yager class, in Definitions 6–8 and the corresponding tables (Tables 3–5),
provides us with the operation laws and the aggregation operators of Tao et al.’s [9] work. As a result,
the generalization of the existing operators by the proposed operational laws and the extension of the
existing aggregation operators are verified. More specifically, the extension of the existing aggregation
operators is based on the reform of the existing basic operational environment.

Regarding the provided practical example for MADM with IFVs, developed in order to point
out the advantages and the flexibility of the proposed algorithm, we may call forth the following
comparison with [9].

To continue with the ranking of the alternatives in [9], the usage of Gumbel-type aggregation
operator suggests the third alternative (u3) as the most adequate one. In addition, the Clayton-,
Ali-Mikhail-Haq- and Joe-type of aggregation operators provides the same alternative, respectively,
through the other three alternatives are developed with a different order. On the other hand, in our
approach, as Table 10 shows, there is no difference in the order of the four alternatives for each type of
aggregation operator and, as a result, the order problem is distinguished.

In addition, in Table 10, the order of the alternatives is provided, suggesting the usage of
IFACWGAw operators for each copula type, which represents a new best alternative. Specifically,
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Gumbel-, Ali-Mikhail-Haq- and Joe-type aggregation results demonstrate that the most adequate
alternative is u1 and u3 follows. The rest ranking remains the same with the IFACWAAw operators
ranking. However, in the case of Clayton-type IFACWGAw ranking in respect of the three alternatives
is totally different, through the first one remains u1 demonstrating the most adequate choice.
This perspective may be considered reasonable, given that the parameter λ does not affect, neither the
membership degree, nor the nonmembership degree in the aggregation process and this fact may be
observed in the Clayton-type score function’s plot.

Another remarkable fact about the proposed aggregation operators is that they provide two
parameters affecting (in most cases) the results, suggesting more choices and flexibility for the decision
makers. For the description of the affection of λ parameter, Figures 1–4 have been utilized, as θ
parameter is fixed to 1 (and -1 in the Ali-Mikhail-Haq case).

In Figure 1, apparently the Gumbel- and Clayton-type of IFACWAAw operators suggest distinct
score functions for each alternative, with u3 always representing the most adequate choice and u2 the
least adequate one. The same holds for the Joe- and Ali-Mikhail-Haq-type of IFACWAAw operators,
as it is depicted in Figure 2. In Figure 3, the Gumbel-type of IFACWGAw suggests u1 as the most
adequate choice and u2 the least adequate one, through alternatives u3 and u4 that meet a crossover
point. In Figure 4, we may observe that Joe-type of IFACWGAw proposes the same alternatives,
respectively, as the Gumbel-type approach, but also a crossover point for the alternatives u3 and u4.

7. Conclusions

The paper cited the generalization of copula-based operations of Intuitionistic Fuzzy Values
(IFVs) via fuzzy negations. Additionally, novel aggregation operators were produced from the new
operations of IFVs, with their properties being further investigated. As a result, an algorithm is
suggested, which may be utilized in Multiple Attribute Decision Making (MADM) processes.

The main advantage of our work is that the aggregation operators of IFVs provided in the
suggested algorithm are univariate parametric, therefore various intuitionistic fuzzy Archimedean
copula weighted arithmetic and geometric operators could be obtained, with each one potentially
being more appropriate for the decision makers. Combined with the most appropriate copula [23] for
each MADM case, more specified aggregator operators would be provided to express more accurately
a decision maker’s attitude.

In the future our aim is to combine the proposed operations with fuzzy negations via conic
sections [36], in order to produce modified families of aggregator operations of IFVs. Furthermore,
we are willing to adapt the proposed operations, following the appropriate transformation, in other
types of fuzzy sets, such as hesitant fuzzy sets [37], and unbalanced linguistic term sets [38] and
neutrosophic sets [39], in order to construct algorithms for multiple attribute decision making and
multiple attribute group decision making.
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