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Abstract: We consider a rather general problem of nonparametric estimation of an uncountable set
of probability density functions (p.d.f.’s) of the form: f (x; r), where r is a non-random real variable
and ranges from R1 to R2. We put emphasis on the algorithmic aspects of this problem, since they are
crucial for exploratory analysis of big data that are needed for the estimation. A specialized learning
algorithm, based on the 2D FFT, is proposed and tested on observations that allow for estimate p.d.f.’s
of a jet engine temperatures as a function of its rotation speed. We also derive theoretical results
concerning the convergence of the estimation procedure that contains hints on selecting parameters
of the estimation algorithm.
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1. Introduction

Consider a family f (x; r) of functions such that for every r ∈ [R1, R2] ⊂ R f (.; r) : R → R is a
probability density function (p.d.f.) on real line R, while non-random parameter r takes values from
a finite interval [R1, R2]. Assume that we have observations (κl , rl), l = 1, 2, . . . d at our disposal,
where for rl ∈ [R1, R2] observation κl is drawn at random according to p.d.f. f (x; rl), x ∈ R. Our aim
is to propose, under mild assumptions, a nonparametric estimator of the whole continuum set of
p.d.f.’s F = { f (.; r), r ∈ [R1, R2]}, assuming that the number of data d → ∞ and that rl’s cover
[R1, R2] more and more densely as d→ ∞. Later on, we shall refer to the above stated problem as the
F -estimation problem.

In this paper, we concentrate mainly on the algorithmic aspects of the F -estimation problem,
since it is computationally demanding. However, we also provide an outline of the proof that the
proposed learning algorithm is convergent in the integrated mean squared error (IMSE) sense.

Before providing motivating examples, we briefly indicate similarities, differences, and a
generality of this problem among other nonparametric estimation tasks that were considered from the
1950s [1–4]:

1. The F -estimation problem has certain similarities to the nonparametric estimation problem of a
bivariate p.d.f. Notice, however, the important difference, namely in our case r is a non-random
parameter. In other words, our sub-task is to select rl’s in an appropriate way (or to confine
ourselves to such an interval [R1, R2] which is covered densely by passive observations of pairs
(κl , rl), l = 1, 2, . . . d).

2. One can also notice a formal similarity of our problem and the problem of nonparametric
estimation of a non-stationary p.d.f. f (x; t), say that was introduced to the statistical literature
by Rutkowski (see [5–7] ) and continued in the papers on the concept drift tracking (see [8–10]).
There is, however, a fundamental difference between the time t and parameter r. Namely, time
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is not reversible and we usually do not have an opportunity to repeat observations at instants
preceding present t. On the contrary, in the F -estimation problem, we allow the next observation
to be done at rl+1 < rl . Furthermore, we allow also for repeated observations for the same value
of r.

3. The estimation of several p.d.f.’s was considered in [11], where it was pointed out that it is
a computationally demanding problem, because all of these densities should be estimated
simultaneously. However, the goal of this paper is quite different than ours. Namely, in [11],
the goal was to compare several densities that are not necessarily indexed by the same additional
parameter, which does not arise as a parameter of an estimator.

4. Denote by f̂ (.; r) nonparametric estimators of f (., r), r ∈ [R1, R2]. Having them at our disposal,
we immediately obtain nonparametric estimators of a regression function:

∫ ∞
−∞ x f̂ (x; r) dx with

r as the input variable.
5. Similarly, calculating the median of f̂ (.; r), we obtain an estimator of the median regression on r.

Analogously, estimators of other quantile regression functions can be obtained.
6. When we allow that x and/or r if f (x; r) are vectors, then the F -estimation problem covers

also multivariate density and regression estimation problems. In this paper, we do not follow
these generalizations, since even for univariate x and r we obtain computationally and data
demanding problem. On the other hand, we propose double orthogonal expansion as the
base for solving the F -estimation problem. Replacing orthogonal functions of x and r by their
multivariate counterparts, we obtain an estimator that formally covers also multivariate cases,
but it is still non-trivial to derive a computationally efficient algorithm and to establish its
asymptotic properties.

Below, we outline examples of possible applications of the F -estimation:

• The temperature of a jet engine x depends on the rotating speed r of its turbine and on many
other non controllable factors. It is relatively easy to collect a large number of observations (κl , rl),
l = 1, 2, . . . d from proper and improper operating conditions of the engine. For diagnostic
purposes, it is desirable to estimate the continuum set of p.d.f.s of the temperatures for rotating
speeds r ∈ [R1, R2]. This is our main motivating example that is discussed in detail in Section 7.1.

• Consider the fuel consumption x of a test exemplar of a new car model. The main impact on x
comes from the car speed r, but x also depends on the road surface, the type of tyres and many
other factors. It would be of interest for users to know the whole family F p.d.f.’s in addition to
the mean fuel consumption.

In a similar vain, it would be of interest to estimate F when x is the braking distance of a car
running at speed r.

• Cereal crops x depend on an amount r of a fertilizer applied to a unit area as well as on soil
valuation, weather conditions, etc. Estimating F would allow for selecting r which provides a
compromise between a high yield and its robustness against other conditions.

Taking into account a rapidly growing amount of available data and increasing computational
power, it would be desirable to extend many other examples of nonparametric regression applications
to estimating the whole F .

Our starting point for constructing an estimator for F is nonparametric estimation of p.d.f.’s by
orthogonal series estimators. We refer the reader to the classic results in this field [1,3,12–15]. We shall
need also some results on the influence of rounding errors on these estimators (see [16,17]).

The paper is organized as follows: the derivation of the algorithm is presented, a fast method of
computation is proposed. Subsequently, tests of synthetic data are preformed and the convergence of
the method is shown. Finally, a real world problem regarding jet turbine temperature is presented as
well as other possible applications. As an appendix, a detailed proof of convergence is given.
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2. Derivation of the Estimation Algorithm

Let us define (X(r), r) as a generic pair, where—for fixed r ∈ [R1, R2]—random variable (r.v.)
X(r) has p.d.f f (x; r). We use a semicolon ; in order to indicate that r is a non-random variable.
For simplicity of the exposition, we assume that X(r) have bounded supports, [S1, S2] ⊂ R say, which
is the same for every r ∈ [R1, R2]. Thus, the family F of p.d.f.’s is defined on [S1, S2] × [R1, R2].
We additionally assume that f is squared integrable, i.e., f (.; .) ∈ L2([S1, S2]× [R1, R2]).

2.1. Preparations—Orthogonal Expansion

Consider two orthogonal and normalized (orthonormal) sequences vk(x), x ∈ [S1, S2] k = 1, 2, . . .
and Tj(r), r ∈ [R1, R2], j = 1, 2, . . . that are complete in L2(S1, S2]) and L2([R1, R2]), respectively. Then,
f (x; r) can be represented by the series (convergent in L2[S1, S2]) with the following coefficients:

ak(r) =
∫ S2

S1

vk(x) f (x; r) dx, k = 1, 2, . . . (1)

Notice that ak(r)’s can be interpreted as follows:

ak(r) = Er [vk(X(r))] , (2)

where Er stands for the expectations with respect to random variable X(r), having p.d.f f (x; r).
Furthermore, each ak(r) can be represented by the series:

ak(r) =
∞

∑
j=1

αkjTj(r) (3)

with constant coefficients αkj, defined as follows:

αkj =
∫ R2

R1

ak(r) Tj(r)dr, k, j = 1, 2, . . . (4)

Series (3) is convergent in L2([R1, R2]). By back substitution, we obtain the following series
representation of f :

f (x; r) =
∞

∑
k=1

∞

∑
j=1

αkj vk(x) Tj(r) (5)

The series in (5), convergent in in L2([S1, S2]× [R1, R2]), forms a base for constructing estimators
for F . They differ in the way of estimating αkj’s and in the way of resolving the so called bias-variance
dilemma. The latter can be resolved by appropriate down-weighting αkj’s estimators. In this paper,
we confine ourselves to the simplest way of down-weighting, namely, to the truncation of the both
sums in a way described later on.

2.2. Intermediate Estimator

The simplest, from the computational point of view, estimator f̂ (x; r) for the family f (x; r), r ∈
[R1, R2], we obtain when we additionally assume that the observations of X(r)’s are made on an
equidistant grid ρ1 < ρ2 < . . . < ρM that splits [R1, R2] into non-overlapping intervals of the length
∆r > 0, which cover all [R1, R2] in such a way that R1 = ρ1 − ∆r/2 and R2 = ρM + ∆r/2. In this
section, we tentatively impose the restriction that only repeated, but independent and identically
distributed (i.i.d.) observations of X(ρm), m = 1, 2, . . . , M are available. In the asymptotic analysis
at the end of this paper, we shall assume that M grows to infinity with the number of observations d.
Then, also positions of ρm’s and ∆r will be changing, but we do not display this fact in the notations,
unless necessary.



Algorithms 2020, 13, 164 4 of 20

At each of ρm, m = 1, 2, . . . , M, nm > 0 observations (Xl(ρm), ρm), l = 1, 2, . . . , nm are made,
keeping the above-mentioned assumptions on mutual independence in force. Additionally, the mutual
independence of the following lists of r.v.’s is postulated:

{Xl(ρm), l = 1, 2, . . . , nm}, m = 1, 2, . . . , M (6)

Then, one can estimate αkj’s by

α̂kj = ∆r

M

∑
m=1

âk(ρm)Tj(ρm) (7)

where

âk(ρm) =
1

nm

nm

∑
l=1

vk(Xl(ρm)) (8)

Estimators (7) are justified by (4). Notice that in (7) the simplest quadrature formula is used for
approximating the integral

∫ R2
R1

. When an active experiment is applicable, then one can select ρm’s at
nodes of more advanced quadratures with weights, in the same spirit as in [17,18] for nonparametric
regression estimators, where the bias reduction was proved. In turn, estimators (8) are motivated by
replacing the expectations in (2) by the corresponding empirical means.

Truncating series (5) at K-th and J-th terms and substituting α̂kj instead of αkj, we obtain the
following estimator if the family f (x; r), r ∈ [R1, R2]

f̂ (x; r) =
K

∑
k=1

J

∑
j=1

α̂kj vk(x) Tj(r). (9)

Later on, K and J will depend on the number of observations, but it is not displayed,
unless necessary.

Estimator (9) is quite general in the sense that one can select (and mix) different orthonormal bases
vk’s and Tj’s. In particular, the trigonometric system, Legendre polynomials, Haar system, and other
orthogonal vawelets can be applied. The reduction of computational complexity of (9) is possible
when, for a given orthogonal system, its discrete and fast counterpart exists. We illustrate this idea
in the next section, by selecting vk’s and Tj’s as the trigonometric bases, applying discrete Fourier
transform (DFT) and the fast Fourier transform (FFT) as its fast implementation.

3. Efficient Learning Algorithm

Our aim in this section is to propose an algorithm for fast calculations of α̂kj’s in (9), using the FFT
method, which is necessary to learn a proper selection of K and J or a proper selection those of α̂kj’s
that are essentially different from zero.

3.1. Data Preprocessing

The FFT algorithm operates on data on a grid. Thus, our first step is to attach the set of raw

observations Dd
de f
= {(κl , rl), l = 1, 2, . . . d} to a grid.

We already have one axis of the grid, namely, points ρm, m = 1, 2, . . . , M. Define Bm, m =

1, 2, . . . , M in the following way. For j = 1, 2, . . . , d check:

xmj ∈ Bm iff ∃(κl , rl) ∈ Dd : rl ∈ [ρm − ∆r/2, ρm + ∆r/2), xmj = κl . (10)

Notice that the contents of each Bm’s depends on ∆r, but it is not displayed in the notation. Denote
by n̂m the cardinality of Bm. Clearly, we must have ∑M

m=1 n̂m = d. Informally, one can consider xmj,
j = 1, 2, . . . , n̂m in bin Bm as slightly distorted realizations of r.v.’s in (6).
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The second split of the grid goes along the x-axis. Denote by χ1 < χ2 < . . . χN , N > 1 equidistant
points such that for ∆x = χ2 − χ1 the intervals [χn − ∆x, χn + ∆x), n = 1, 2, . . . , N cover the support
[S1, S2] and S1 = χ1 − ∆x/2, SN = χN + ∆x/2.

Now, we are ready to define the number of observations qmn that are attached to each grid
point (χn, ρm). Namely, qmn is the number of observations xmn that are contained in bin Bm and
simultaneously take values in [χn − ∆x, χn + ∆x), n = 1, 2, . . . , N, m = 1, 2, . . . , M. Let us define
M× N matrix P with elements:

pmn = qmn

/ N

∑
l=1

qml , n = 1, 2, . . . , N, m = 1, 2, . . . , M. (11)

Clearly, pm. sum up to 1. Notice, however, that—strictly speaking— pm.’s are not histograms of
r.v.’s X(ρm)’s, since they are based on the observations contained in bins Bm. Nevertheless, we shall
later interpret them as such because – as ∆r → 0 – pm.’s converge to f (x; ρm), assuming that also
∆x → 0 in an appropriate way (see [13] for precise statements).

3.2. Fast Calculations and Smoothing

The crucial, mostly time-consuming step is smoothing preprocessed data contained in matrix P.
Therefore, it is expedient to apply 2D FFT in order to calculate the DFT of P:

G = FFT2D(P; M, N), (12)

where the resulting M× N matrix G has complex elements gmn, n = 1, 2, . . . , N, m = 1, 2, . . . , M
(see, e.g., [19] for the definition of 2D DFT and its implementation as 2D FFT).

Obviously, the inverse transform provides P = FFT−1
2D (G; M, N). Thus, in order to smooth P,

we have to remove high frequency components from matrix G, retaining only its, appropriately chosen,
K× J sub-matrix Ĝ, 1 < K < M, 1 < J < N and setting to zero other elements of G Instead of setting
zeros, one can apply at this stage so-called windowing, e.g., using the Hamming window that provides
a mild way of approaching zero.

Remark 1. The appropriate choice of K× J sub-matrix Ĝ, with elements ĝkj, means that we have to take into
account that the complex valued matrix G has the component corresponding to (0, 0) frequency, which is placed
as g11 (or gMN). Analogously, other components of G, corresponding to low frequencies, are placed at the
"corners" of this matrix. Hence, in order to cancel high frequencies, we have to reshape matrix G in order to have
(0, 0) frequency in its middle and other low frequencies nearby. Then, to put zeros at the positions corresponding
to high frequencies, select sub-matrix Ĝ and reshape it in the order reverse to that of the reshaping G. This last
step is necessary so as to obtain a smoothed version of the P matrix, which would be a K× J matrix.

Remark 2. It is crucial for further considerations to observe that α̂kj’s are directly calculable from ĝjk’s and
their conjugates by adding or subtracting their real and imaginary parts.

Remark 3. The choice of K, J or the choice of indexes k, j for which ˆalphakj is left as nonzero, is crucial for
proper functioning of the estimation algorithm, since their choice dictates the amount of smoothness of the
resulting surface. Below, we discuss possible ways of learning the algorithm to select them properly.

Although the F estimation problem differs from the one of estimating bi-variate p.d.f.’s, we may consider
the methods elaborated in this field as candidates that might be useful also here.

1. The cross-validation approach—see [20], where the asymptotic optimality of this method is proved for the
trigonometric and the Hermite series density estimators,
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2. The Kronmal and Tarter rule [21], which—in our case—reads as follows. For m = 1, 2, . . . M and
l = 1, 2, . . . N, check the following condition:

|gkl |2 > c
/

M N, (13)

where c > 0 is a preselected constant. According to derivations in [21], c = 1 , but in the same paper it is
advocated to use c = 0.5. From our simulation experiments, it follows that for moderate M and N c = 1.5
is appropriate, while, for larger M, N, even larger constants are better. If for gkl condition (13) holds, then
leave it in matrix G as a nonzero element. Otherwise, set gkl = 0 in this matrix. Set Ĝ = G. Notice that
in this case matrix Ĝ is of the same dimensions as G, but it has many zeros as its elements.

Selection of ∆r and ∆x (or equivalently M and N) as functions of the number of observations is
also very important for the proper estimation. We give some hints on their choice in the section before
last, where the asymptotic analysis is discussed.

The performance of Algorithm 1 is illustrated in the next section.

Algorithm 1 Estimation and learning algorithm.

Input: Raw observations (κl , rl), l = 1, 2, . . . , d.
Step 1: Select parameters M, N and c > 0 in (13).
Step 2: Perform data preprocessing, as described in Section 3.1, in order to obtain matrix P.
Step 3: Calculate matrix G = FFT2D(P; M, N).
Step 4: Select elements of matrix Ĝ either by selecting K and J, using cross-validation, or by the
Kronmal-Tarter rule.
Step 5: Calculate matrix P̂ = FFT−1

2D (P; K, J) when in Step 4 the cross-validation is used or as
P̂ = FFT−1

2D (P; M, N) when the Kronmal-Tarter rule is applied.
Output: P̂ is the output of the algorithm, if it suffices to have the estimates of f (x; r) on the grid. If one needs
the estimates of f (x; r) at intermediate points, then calculate α̂kl ’s from the corresponding elements of Ĝ
matrix (see Remark 2) and used them in (9).

4. Test on Synthetic Data

The first test can be made using synthetic data. These data are obtained from the family of
probability density functions:

fs(x; r) = N(
√

r,1.)(x), (14)

where N(µ,σ2) is normal distribution with mean µ = ri and variation σ2 = 1. The data are generated
with 200 points in ri = 0., 0.25, ..., 50. and 300 random points for each ri. Those data are binned in order
to obtain the matrix of probabilities (11) with size 200× 56.

The similarities between two p.d.f.’s can be calculated using distances which are defined in many
ways. Here, we would use Hellinger distance and Kullback–Leibler divergence.

For a specific r, the Hellinger distance is defined as follows:

H(r)2 =
1
2

∫ (√
fs(x; r)−

√
f̂ (x, r)

)2
dx (15)

Another integration along r is required in order to obtain distance for all r’s:

1
R2 − R1

∫ r2

r1

∫ ∞

−∞

(√
fs(x; r)−

√
f̂ (x, r)

)2
dx dr. (16)

The Kullback–Leibler divergence for a specific r can be defined as follows:

DKL =
∫

fs(x; r)(log fs(x; r)− log f̂ (x, r))dx. (17)
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Again, additional integration along r is required

1
R2 − R1

∫ r2

r1

fs(x; r)(log fs(x; r)− log f̂ (x, r))dx dr. (18)

Due to inherent randomness, the calculations were carried out 100 times. The results are presented
in Table 1. Observe that Kullback–Leibler divergence is not symmetric. Its symmetrized version
provides almost the same results as in Table 1.

Table 1. Result of distance calculation between synthetic data and reconstruction.

Method Mean Standard Deviation

Hellinger 0.00007 3.7× 10−6

Kullback–Leibler 0.00014 5.9× 10−6

The reconstruction using the presented algorithm can be seen in Figure 1.

Figure 1. A result for the synthetic problem.

5. Convergence of the Learning Procedure

In this section, we prove the convergence of the learning procedure in a simplified version similar
to that described in Section 2.2, but without the discretization with respect to r. Then, we shall discuss
additional conditions for the convergence of its discretized version.

Let X(r), X1(r), . . . , Xn be independent, identically distributed random variables with parameter
r, with p.d.f. f (., r) ∈ L2([R1, R2]), where—for simplicity—we assume that n is the same for each r.
Then, f has the representation

f (x, r) =
∞

∑
k=1

ak(r) vk(x), (19)

which is convergent in the L2([S1, S2]) norm, where

ak(r) =
∫ S2

S1

vk(x) f (x, r) dx = Er(vk(X(r))). (20)
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Then, we estimate ak(r)’s as follows:

âk(r) =
1
n

n

∑
i=1

vk(Xi(r)). (21)

Lemma 1. For every r ∈ [R1, R2] âk(r) is the unbiased estimator of ak(r).

Proof. Indeed,

Er(âk(r)) =
1
n

n

∑
i=1

Er[vk(Xi(r))] = ak(r). (22)

As an estimator of f (., r), we take the truncated version of (19):

f̃n(x, r) =
K(n)

∑
k=1

âk(r) vk(x), (23)

where the truncation point K depends on n. It may also depend on r, but, for the asymptotic analysis,
we take this simpler version.

The standard way of assessing the distance between f and its estimator f̃n is the mean integrated
squared error (MISE). Notice, however, that, in our case, the MISE additionally depends on r, which is
further denoted as MISE(r). Thus, in order to have a global error, we consider the integrated MISE(r)
that is defined as follows:

IMISEn =
∫ R2

R1

MISEn(r) dr. (24)

The MISE(r) is defined as follows:

MISEn(r) = Er

∫ S2

S1

[ f (x, r)− f̃n(x, r)]2dx, (25)

where the expectation w.r.t. f (., r) concerns all Xi(r)’s that are present in (23).
Using the orthonormality of vk’s, we obtain:

MISEn(r) = Er

∫ S2

S1

[
K(n)

∑
k=1

(ak(r)− âk(r))2 vk(x)−
∞

∑
k=K(n)+1

ak(r) vk(x)]2dx (26)

Continuing (26), we obtain for each r ∈ [R1, R2]:

MISEn(r) = Er

[
K(n)

∑
k=1

(ak(r)− âk(r))2

]
︸ ︷︷ ︸

Var(r, K(n))

+
∞

∑
k=K(n)+1

ak(r)2

︸ ︷︷ ︸
Bias2(r, K(n))

. (27)

It is known that that for squared integrable f we have: ∑∞
k=1 a2

k(r) < ∞. Thus, if K(n)→ ∞ when
n→ ∞, then for every r ∈ [R1, R2] we obtain:

Bias2(r, K(n)) =
∞

∑
k=K(n)+1

a2
k(r)→ 0 when n→ ∞. (28)

This result is not sufficient to prove the convergence of IMISEn to zero as n → ∞. To this end,
we need a stronger result, namely an upper bound on Bias2(r K(n)), which is independent of r.
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Lemma 2. Let us assume that ∂
∂ x f (x, r) exists and it is a continuous function of x in [S1, S2] for each

r ∈ [R1, R2]. Furthermore, there exists constant 0 < U < ∞, which does not depend on r, and such that

∀ x ∈ [S1, S2] ∀ r ∈ [R1, R2]
∣∣∣ ∂

∂ x
f (x, r)

∣∣∣ ≤ U. (29)

If K(n)→ ∞ when n→ ∞, then – for n sufficiently large we have:

∀ r ∈ [R1, R2] Bias2(r, K(n)) ≤ U2 (S2 − S1)
2

K(n)
. (30)

Proof. It is known that

|ak(r)| ≤ k−1
∫ S2

S1

∣∣∣ ∂

∂ x
f (x, r)

∣∣∣ dx ≤ k−1 U (S2 − S1). (31)

Thus, Bias2(r K(n)) ≤ U2 (S2 − S1)
2 ∑∞

k=K(n) k−2, which finishes the proof, since it is known that

for sufficiently large K(n) we have ∑∞
k=K(n) k−2 = K−1(n).

For evaluating the variance component, we use Lemma 1:

Var(K(n), r) =
K(n)

∑
k=1

Er[(ak(r)− âk(r))2] =
K(n)

∑
k=1

Er(âk(r)− Er âk(r))2︸ ︷︷ ︸
Varr(âk(r))

, (32)

where Varr(.) is the variance of an r.v. having the p.d.f. F(x, r).
Let us assume that the orthonormal and complete system vk’s is uniformly bounded, i.e., there

exists p being a non-negative integer and Cp such that

sup
x∈[S1, S2]

|vk(x)| ≤ Cp kp, k = 1, 2, . . . . (33)

Notice that (33) holds for the trigonometric system with p = 0

Lemma 3. If (33) holds, then

Varr(K(n), r) ≤ Cp
K2 p+1(n)

n
(34)

Proof. Xi(r)’s are i.i.d. and (33) holds. Thus,

Varr(âk(r)) =
1
n2

n

∑
i=1

Varr(vk(Xi(r))) =
1
n

Varr(vk(X1(r))) ≤
C2

p K2 p(n)
n

. (35)

Using this fact in (32) finishes the proof.

Notice that the bound in (34) does not depend on r.

Theorem 1. Let the assumptions of Lemmas 2 and 3 hold. If the sequence K(n) is selected in such a way that
the following conditions hold:

K(n)→ ∞ and
K2 p+1(n)

n
→ 0 as an→ ∞, (36)

then the estimation error IMISEn → 0 as n→ ∞.
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Proof. By Lemmas 2 and 3, we have uniform (in r) bounds for the variance and for the squared bias,
respectively. Thus,

MISEn(r) ≤ Cp
K2 p+1(n)

n
+

U2 (S2 − S1)
2

K(n)
. (37)

Hence,

IMISEn ≤ (R2 − R1)

[
Cp

K2 p+1(n)
n

+
U2 (S2 − S1)

2

K(n)

]
, (38)

which finishes the proof by applying (36).

Observe that for vk’s being the trigonometric system we have p = 0 and the r.h.s. of (38) is,
roughly, of the form: c1 K(n)/n + c2/K(n), c1 > 0, c2 > 0, which is minimized by K(n) = c3

√
n for a

certain constant c3 > 0. This implies that IMISEn = O(n−1/2).

6. Proposed Algorithm

Let us define (x(r), r) as a generic par that for fixed r has p.d.f f (x; r). We use semicolon ; in order
to indicate that r is a non-random variable.

Observations:

(Xi(ri), ri), i = 1, 2, . . . , n (39)

we admit that Xi(ri) and Xj(rj) are independent random variables even when ri = rj for i 6= j.
In general, r.v.’s in (39) are assumed to be mutually independent.

A family of p.d.f.’s is defined on [κ1, κ2] × [R1, R2] whre κ1 < κ2, R1 < R2 are real numbers.
For each r ∈ [R1, R2] f (x; r) is a p.d.f of a random variable X(r).

Consider two orthinormal sequences vk(x), x ∈ [κ1, κ2] k = 1, 2, . . . and Tj(r), r ∈ [R1, R2], j =
1, 2, . . . that are complete in L2([κ1, κ2]) and L2([R1, R2]), respectively. Then, f (x; r) can be represented
by the series (convergent in L2[κ1, κ2]

ak(r) =
∫ κ2

κ1

vk(x) f (x; r)dx, k = 1, 2, . . . (40)

Notice that ak(r)’s can be interpreted as

ak(r) = Ervk(X(r)), (41)

where Er stands for the expectations with respect to random variable X(r) with p.d.f f (x; r).
Furthermore, each ak(r) can be represented by the series:

ak(r) =
∞

∑
j=1

αkjTj(r) (42)

that is convergent in L2([R1, R2]) for constant coefficents αkj defined as

αkj =
∫ R2

R1

ak(r)Tj(r)dr, k, j = 1, 2, . . . (43)
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By the back substitution, we obtain the following series representation (in L2([κ1, κ2]× [R1, R2]))

f (x; r) =
∞

∑
k=1

∞

∑
j=1

αkjvk(x)Tj(r) (44)

The simplest from the computational point of view, estimator f̂ (x; r)or the family f (x; r), r ∈
[R1, R2] we obtain, when we additionally assume that the observations of X(r)’s are made on an
equidistant grid ρ1 < ρ2 < . . . < ρM that splits [R1, R2] into nonoverlapping intervals of the length
∆ > 0.

At each of ρm, m = 1, 2, . . . M, nm observations (Xk(ρm), ρm), l = 1, 2, . . . , nm are made, keeping
the above-mentioned assumptions on mutual independence in force.

Then, one can estimate αkj’s by

α̂kj = ∆
M

∑
m=1

âk(ρm)Tj(ρm) (45)

where

âk(ρm) =
1

nm

nm

∑
l=1

vk(xl(ρm)) (46)

Estimators (46) are justified by (42). Notice that in (46) the simplest quadrature formula is used
for approximating the integral

∫ R2
R1

. When an active experiment is applicable, then one can select ρm’s
at nodes of more advanced quadratures with weights, in the same spirit as in [17] for nonparameteric
regression estimators.

Truncating series (44) at K-th and J-t terms and substituting α̂kj instead of αkj, we obtain the
following estimator if the family f (x; r), r ∈ [R1, R2]

f̂ (x; r) =
K

∑
k=1

J

∑
j=1

α̂kjvk(x)Tj(r). (47)

If as Tj(r) a trigonometric series is used on [R1, R2], then α̂kj can be calculated using FFT.
In addition, vk can be trigonometric too.

7. Estimating Jet Engine Temperature Distributions

7.1. Subject Overview

A jet turbine is a well-known engine known for at least 90 years The typical application is that
of an aircraft power-plant, but also in some ground applications. The main examples are firefighting
and snow removal. In recent years, some companies have started to develop engines optimized for
thermal power rather than thrust.

In a very simplistic view (see Figure 2), an already running turbine has one input parameter that
is fuel flow. As outputs, we have its rotational speed (given in rpm—r) and temperature (in ◦C—T).
In ideal conditions, there should exist a simple relationship between T and r. Since many factors vary
and not all of them can be directly measured then we can think about this relationship as probability,
which puts us in the framework of the problem stated in the introduction.
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rpm
T

airflow

Fuel

Figure 2. Simplified schematics of turbine—parts important for current investigations.

7.2. Data Preparation

The orginal process data from the server have a form of JSON file of a database table. In this table,
we are interested only in two columns, namely the turbine rotation speed (in rpm) and the turbine
temperatue. Since the resulting temperature is dependent on many other factors, not all of them
measured or even known, we treat the value as a random variable X and the rotation speed as known
(so not random) r. The amount of relevant data are 71,268.

These two columns have to be changed into frequencies for each ri. Groups are formed on a
rectangular grid. An example of such a grid can be seen in Figure 3. The resulting number of samples
in each box of the grid is shown in Figure 4. They should be converted into frequencies by simple
divison. In order not to obscure the image, a 32 × 32 grid was used.

Figure 3. Data and 32 × 32 grid for frequencies.

As a result, we obtain a matrix containing the observations near points on the grid ρ1, . . . , ρm
f (X11, ρ1) f (X21, ρ1) . . . f (Xn1, ρ1)

f (X12, ρ2) f (X22, ρ1) . . . f (Xn2, ρ2)

. . . . . . . . . . . .
f (X1m, ρm) f (X2m, ρm) . . . f (Xnm, ρm)

 (48)
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Figure 4. Number of samples in the grid (reduced to 32 × 32 for display’s sake).

7.3. The Estimation Process

From the matrix obtained in the previous section, a two-dimensional Discrete Fourier Transform
is calculated using the FFT algorithm. The result is a matrix Fm n of equal size but containing complex
values. In literature regarding the Fourier transform, many properties can be found. A good example
is book [22]. We use symmetry and antisymmetry of the resulting matrix. General inversion of the
Fourier transform is defined in the following way:

f (i, j) =
1√

m · n

m

∑
k=0

n

∑
l=0

Fk,l exp(j
k · i
m
· l · j

n
) (49)

where j2 = −1.
Equation (49) is defined only for the original points of the matrix (48). The continuous surface can

be obtained by changing the therms i
m ∈ [0, 1], j

n ∈ [0, 1] into r
max ri

∈ [0, 1], T
max Ti

∈ [0, 1]. We cannot
guarantee that between grid points the result would be real. The sensible solution is to use the absolute
value of a possibly complex number.

We can ask the question of why use the FFT, if we reconstruct the same data again. The reason
is smoothing the result. The reconstruction can use only a selected part of the spectrum—obviously
lower frequencies. As mentioned before, they reside in the center of the matrix:

f (r, T) =

∣∣∣∣∣ 1√
m · n

m/2+K

∑
k=K

γk

n/2+L

∑
l=L

Fk,l exp(j
k · r
rmax

· l · T
Tmax

)

∣∣∣∣∣ , (50)

where γk is the correction factor necessary for compensating for the omitted data. Its values should be
selected so the reconstruction result is still p.d.f. and integrates to 1 . Obviously, the size of part of the
FFT matrix taken is 4 · K · L, the careful selection of K, L is crucial. When those numbers are too small
(see Figure 5), the result loses any resemblance to the original data (Figure 4). On the other hand, when
the numbers are too large, this gives a detailed reconstruction (Figure 6) with all unnecessary details.

The acceptable reconstruction in Figure 7 is made with K = 16 and L = 4. It is obvious that
smaller size means faster calculations.

The exact values can be obtained experimentally (as in this example) or by using some method
like the Kronmal–Tarter rule.

Another heuristic approach is to reduce the abount of the entry points (probabilities) f (X, ρ) by
removing perimeter data. The result of such an approach can be seen in Figure 8. The removal of
peripherial data results in reduction of over-fitting.
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Figure 5. Insufficient amount of Fourier-transformed data, the result is too smooth (2 × 2 in the left,
4 × 4 in the right).

Figure 6. Use of too much Fourier-transformed data (64 × 64 in the left) and full reconstruction (right).

Figure 7. Good selection of data for smoothing, 16 in r, 4 in T.
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Figure 8. Reduction of the primeter data in order to avoid over-fitting. Left: reconstruction based on
partial data, Right: resulting points.

8. Possible Applications

8.1. Process Simulation

The simulation is an important tool in both design and then subsequent maintenance of the
system, especially if physical device is cumbersome, costly, or dangerous to use. The obvious method
of simulating the engine temperature at specific rotational speed is to generate random numbers from
a distribution specific for that temperature. The simplest method is the so-called acceptance-rejection
method. In this method, a random number from distribution f (x) ∈ [a, b] is generated as follows
(in general using any dense random number generator, but typically uniform is used):

• generate random x ∈ [a, b],
• generate y ∈ [0, 1],
• if y > f (x) then go to 1, otherwise the result is x.

We can easily obtain distribution for a specific parameter r. Using the example from Section 7.1,
with r = 50,000 we obtain a distribution as in Figure 9.

If a random generation algorithm is used directly, the resulting process path would be highly
irregular and perceived as not real. To avoid this, a simple filter can be used

T̂i+1 = τ · T̃ + (1− τ)T̂i, (51)

where T̃ is the resulting new random number, T̂i+1 is the new process value, and T̂i is the old process
value. The result with parameter τ = 0.05 can be seen in Figure 10.

200 300 400 500 600
T

0.000

0.001

0.002

0.003

0.004

0.005

0.006

p

Figure 9. Probability for 50k rpm.
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380

400

420

T

Figure 10. A result of smoothed simulation for 50k rpm.

8.2. Process Diagnostics

From the resulting function f (r, T), for specific r, we can calculate expected the value of T̄ and also
some specified interval where α ∈ [0, 1] of realizations can be found—the equivalent of a confidence
interval. If this parameter α is selected carefully, we can discern whether the actual pair r, T form the
process in or outside it. Other similar diagnostic methods can be seen in [23,24].

9. Convergence of the Learning Procedure

In this section, we prove the convergence of the learning procedure in a simplified version similar
to that described in Section 2.2, but without the discretization with respect to r. Then, we shall discuss
additional conditions for the convergence of its discretized version.

Let X(r), X1(r), . . . , Xn be independent, identically distributed random variables with parameter
r, with p.d.f. f (., r) ∈ L2([R1, R2]), where—for simplicity—we assume that n is the same for each r.
Then, f has the representation

f (x, r) =
∞

∑
k=1

ak(r) vk(x), (52)

which is convergent in the L2([S1, S2]) norm, where

ak(r) =
∫ S2

S1

vk(x) f (x, r) dx = Er(vk(X(r))). (53)

Then, we estimate ak(r)’s as follows:

âk(r) =
1
n

n

∑
i=1

vk(Xi(r)). (54)

Lemma 4. For every r ∈ [R1, R2] âk(r) is the unbiased estimator of ak(r).

Proof. Indeed,

Er(âk(r)) =
1
n

n

∑
i=1

Er[vk(Xi(r))] = ak(r). (55)

As an estimator of f (., r), we take the truncated version of (52):

f̃n(x, r) =
K(n)

∑
k=1

âk(r) vk(x), (56)
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where the truncation point K depends on n. It may also depend on r, but, for the asymptotic analysis,
we take this simpler version.

The standard way of assessing the distance between f and its estimator f̃n is the mean integrated
squared error (MISE). Notice, however, that, in our case, the MISE additionally depends on r, which is
further denoted as MISE(r). Thus, in order to have a global error, we consider the integrated MISE(r),
which is defined as follows:

IMISEn =
∫ R2

R1

MISEn(r) dr. (57)

The MISE(r) is defined as follows:

MISEn(r) = Er

∫ S2

S1

[ f (x, r)− f̃n(x, r)]2dx, (58)

where the expectation w.r.t. f (., r) concerns all Xi(r)’s that are present in (56).
Using the orthonormality of vk’s, we obtain:

MISEn(r) = Er

∫ S2

S1

[
K(n)

∑
k=1

(ak(r)− âk(r))2 vk(x)−
∞

∑
k=K(n)+1

ak(r) vk(x)]2dx (59)

Continuing (59), we obtain for each r ∈ [R1, R2]:

MISEn(r) = Er

[
K(n)

∑
k=1

(ak(r)− âk(r))2

]
︸ ︷︷ ︸

Var(r, K(n))

+
∞

∑
k=K(n)+1

ak(r)2

︸ ︷︷ ︸
Bias2(r, K(n))

. (60)

It is known that that for squared integrable f we have: ∑∞
k=1 a2

k(r) < ∞. Thus, if K(n)→ ∞ when
n→ ∞, then for every r ∈ [R1, R2], we obtain:

Bias2(r, K(n)) =
∞

∑
k=K(n)+1

a2
k(r)→ 0 when n→ ∞. (61)

This result is not sufficient to prove the convergence of IMISEn to zero as n→ ∞. To this end, we
need a stronger result, namely an upper bound on Bias2(r K(n)), which is independent of r.

Lemma 5. Let us assume that ∂
∂ x f (x, r) exists and it is a continuous function of x in [S1, S2] for each

r ∈ [R1, R2]. Furthermore, there exists constant 0 < U < ∞, which does not depend on r, and such that

∀ x ∈ [S1, S2] ∀ r ∈ [R1, R2]
∣∣∣ ∂

∂ x
f (x, r)

∣∣∣ ≤ U. (62)

If K(n)→ ∞ when n→ ∞, then—for n sufficiently large, we have:

∀ r ∈ [R1, R2] Bias2(r, K(n)) ≤ U2 (S2 − S1)
2

K(n)
. (63)

Proof. It is known that

|ak(r)| ≤ k−1
∫ S2

S1

∣∣∣ ∂

∂ x
f (x, r)

∣∣∣ dx ≤ k−1 U (S2 − S1). (64)

Thus, Bias2(r K(n)) ≤ U2 (S2 − S1)
2 ∑∞

k=K(n) k−2, which finishes the proof, since it is known that

for sufficiently large K(n) we have ∑∞
k=K(n) k−2 = K−1(n).
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For evaluating the variance component, we use Lemma 1:

Var(K(n), r) =
K(n)

∑
k=1

Er[(ak(r)− âk(r))2] =
K(n)

∑
k=1

Er(âk(r)− Er âk(r))2︸ ︷︷ ︸
Varr(âk(r))

, (65)

where Varr(.) is the variance of a r.v. having the p.d.f. F(x, r).
Let us assume that the orthonormal and complete system vk’s is uniformly bounded, i.e., there

exists p being a nonnegative integer and Cp such that

sup
x∈[S1, S2]

|vk(x)| ≤ Cp kp, k = 1, 2, . . . . (66)

Notice that (66) holds for the trigonometric system with p = 0

Lemma 6. If (66) holds, then

Varr(K(n), r) ≤ Cp
K2 p+1(n)

n
(67)

Proof. Xi(r)’s are i.i.d. and (66) holds. Thus,

Varr(âk(r)) =
1
n2

n

∑
i=1

Varr(vk(Xi(r))) =
1
n

Varr(vk(X1(r))) ≤
C2

p K2 p(n)
n

. (68)

Using this fact in (65) finishes the proof.

Notice that the bound in (67) does not depend on r.

Theorem 2. Let the assumptions of Lemmas 5 and 6 hold. If the sequence K(n) is selected in such a way that
the following conditions hold:

K(n)→ ∞ and
K2 p+1(n)

n
→ 0 as an→ ∞, (69)

then the estimation error IMISEn → 0 as n→ ∞.

Proof. By Lemmas 2 and 6, we have uniform (in r) bounds for the variance and for the squared bias,
respectively. Thus,

MISEn(r) ≤ Cp
K2 p+1(n)

n
+

U2 (S2 − S1)
2

K(n)
. (70)

Hence,

IMISEn ≤ (R2 − R1)

[
Cp

K2 p+1(n)
n

+
U2 (S2 − S1)

2

K(n)

]
, (71)

which finishes the proof by applying (69).

Observe that for vk’s being the trigonometric system we have p = 0 and the r.h.s. of (71) is,
roughly, of the form: c1 K(n)/n + c2/K(n), c1 > 0, c2 > 0, which is minimized by K(n) = c3

√
n for a

certain constant c3 > 0. This implies that IMISEn = O(n−1/2). Notice that this rate is known (see [25])
to be the best possible when a bivariate, continuously differentiable regression function is estimated by
any nonparametric method.

However, this convergence rate was obtained under an idealized assumption that we have
observations of Xj(r)’s for each r. Further discussion of this topic is outside the scope of this paper.
We only mention that in [17] it was proved that orthogonal series estimators of p.d.f.’s retain consistency
under mild assumptions concerning grouped observations. In particular, in the notation of Section 3,
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bin width ∆x should depend on the number of observations d as follows: ∆x(d) → 0 as d → ∞, but
in such a way that ∆2

x(d) multiplied by the qube power of the number of spanning orthogonal terms
should also approach zero. One can expect that, for the trigonometric series, ∆r should also fulfill
similar conditions.

10. Conclusions

In this paper, a method for the estimation of families of density functions is presented along with
an efficient learning algorithm. It gives insight into the relation between probability density function
and external factors that influence it. The method was used in a real-world problem to simulate and
diagnose a jet turbine.

Additional, significant possible applications include the estimation of quality indexes for
decision-making and optimal control, especially for repetitive and/or spatially distributed processes
(see [26,27] for most recent contributions).

From the formal point of view, the method presented can easily be extended into a
multidimensional case. Namely, if r is multivariate r̄ = [r(1), r(2), . . . , r(d)], say, then it suffices
to replace orthogonal system Tj(r), j = 1, 2, . . . by the tensor product of Tj’s, i.e., by all possible
products of the following form:

Tj1(r
(1)) Tj2(r

(2)) · . . . · Tjd(r
(d)), (72)

where ji takes all the values in {1, 2, . . .}, i = 1, 2, . . . , d. As a consequence, one has to replace all
the sums over j by the multiple sums over ji’s. When Tji ’s form the trigonometric system, then one
can apply the multidimensional FFT algorithm. Clearly, a much larger number of observations is
also necessary for a reliable estimation, but a family of estimated p.d.f.’s f̂ (x, r̄) provides much more
information than a regression function of r̄.
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