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Abstract: For piecewise linear functions f : Rn ÞÑ R we show how their abs-linear representation
can be extended to yield simultaneously their decomposition into a convex qf and a concave part
pf , including a pair of generalized gradients qg P Rn Q pg. The latter satisfy strict chain rules and can
be computed in the reverse mode of algorithmic differentiation, at a small multiple of the cost of
evaluating f itself. It is shown how qf and pf can be expressed as a single maximum and a single
minimum of affine functions, respectively. The two subgradients qg and ´pg are then used to drive
DCA algorithms, where the (convex) inner problem can be solved in finitely many steps, e.g., by a
Simplex variant or the true steepest descent method. Using a reflection technique to update the
gradients of the concave part, one can ensure finite convergence to a local minimizer of f , provided
the Linear Independence Kink Qualification holds. For piecewise smooth objectives the approach can
be used as an inner method for successive piecewise linearization.

Keywords: DC function; abs-linearization; DCA

1. Introduction and Notation

There is a large class of functions f : Rn ÞÑ R that are called DC because they can be represented
as the difference of two convex functions, see for example [1,2]. This property can be exploited in
various ways, especially for (hopefully global) optimization. We find it notationally and conceptually
more convenient to express these functions as averages of a convex and a concave function such that

f pxq “ 1
2 p
qf pxq ` pf pxqq with qf pxq convex and pf pxq concave.

Throughout we will annotate the convex part by superscriptqand the concave part by superscriptp,
which seems rather intuitive since they remind us of the absolute value function and its negative.
Since we are mainly interested in piecewise linear functions we assume without much loss of generality
that the functions f and the convex and concave components are well defined and finite on all of the
Euclidean space Rn. Allowing both components to be infinite outside their proper domain would
obviously generate serious indeterminacies, i.e., NaNs in the numerical sense. As we will see later we
can in fact ensure in our setting that pointwise

pf pxq ď f pxq ď qf pxq for all x P Rn , (1)

which means that we actually obtain an inclusion in the sense of interval mathematics [3]. This is one
of the attractions of the averaging notation. We will therefore also refer to pf and qf as the concave and
convex bounds of f .
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Conditioning of the Decomposition

In parts of the literature the two convex functions qf and´pf are assumed to be nonnegative, which
has some theoretical advantages. In particular, see, e.g., [4], one obtains for the square h “ f 2 of a DC
function f the decomposition

h “ 1
4 p
qf ` pf q2 “ 1

2

 1
4 p
qf 2 ` pf 2q

looooomooooon

”ȟ

` 1
4 r´p

qf ´ pf q2s
loooooomoooooon

”ĥ

(

. (2)

The sign conditions of qf and pf are necessary to ensure that the three squares on the right hand
side are convex functions. Using the Apollonius identity f ¨ h “ 1

2 rp f ` hq2 ´ f 2 ´ h2s one may then
deduce in a constructive way that not only sums but also products of DC functions inherit this property.
In general, since the convex functions qf and ´pf have both supporting hyperplanes one can at least
theoretically always find positive coefficients α and β such that

qf pxq ` α` β}x}2 ě 0 ě pf pxq ´ α´ β}x}2 for x P Rn .

Then the average of these modified functions is still f and their respective convexity/concavity
properties are maintained. In fact, this kind of proximal shift can be used to show that any twice
Lipschitz continuously differentiable function is DC, which raises the suspicion that the property by
itself does not provide all that much exploitable structure from a numerical point of view. We believe
that for its use in practical algorithms one has to make sure or simply assume that the condition number

κpqf , pf q ” sup
xPRn

|qf pxq| ` |pf pxq|

|qf pxq ` pf pxq|
P r1,8s

is not too large. Otherwise, there is the danger that the value of f is effectively lost in the rounding
error of evaluating qf ` pf . For sufficiently large quadratic shifts of the nature specified above one
has κ„β. The danger of an excessive growth in κ seems akin to the successive widening in interval
calculations and similarly stems also from the lack of strict arithmetic rules. For example doubling f
and then subtracting it yields the successive decompositions

p2 f q ´ f “ pqf ` pf q ´ 1
2 p
qf ` pf q “ pqf ´ 1

2
pf q ` ppf ´ 1

2
qf q “ 1

2 rp2
qf ´ pf q ` p2pf ´ qf qs . (3)

If in Equation (3) by chance we had originally ´pf “ 1
2
qf ą 0 so that f “ 1

2
qf with the condition

number κpqf ,´0.5qf q “ 3 we would get after the doubling and subtraction the condition number
κp2.5qf ,´2qf q “ 9. So it is obviously important that the original algorithm avoids as much as possible
calculations that are ill-conditioned in that they even just partly compensate each other.

Throughout the paper we assume that the functions in question are evaluated by a computational
procedure that generates a sequence of intermediate scalars, which we denote generically by u, v and
w. The last one of these scalar variables is the dependent, which is usually denoted by f . All of them
are continuous functions u “ upxq of the vector x P Rn of independent variables. As customary in
mathematics we will often use the same symbol to identify a function and its dependent variable.
For the overall objective we will sometimes distinguish them and write y “ f pxq. For most of the paper
we assume that the intermediates are obtained from each other by affine operations or the absolute
value function so that the resulting upxq are all piecewise linear functions.

The paper is organized as follows. In the following Section 2 we develop rules for propagating the
convex/concave decomposition through a sequence of abs-linear operations applied to intermediate
quantities u. This can be done either directly on the pair of bounds pqu, puq or on their average u and their
halved distance δu “ 1

2 pqu´ puq. In Section 3 we organize such sequences into an abs-linear form for f
and then extend it to simultaneously yield the convex/concave decomposition. As a consequence of
this analysis we get a strengthened version of the classical max´min representation of piecewise linear
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functions, which reduces to the difference of two polyhedral parts in max- and min-form. In Section 4
we develop strict rules for propagating certain generalized gradient pairs pqg, pgq of pqu, puq exploiting
convexity and the cheap gradient principle [5]. In Section 5 we discuss the consequences for the DCA
when using limiting gradients pqg, pgq, solving the inner, linear optimization problem (LOP) exactly,
and ensuring optimality via polyhedral reflection. In Section 6 we demonstrate the new results on
the nonconvex and piecewise linear chained Rosenbrock version of Nesterov [6]. Section 7 contains
a summary and preliminary conclusion with outlook. In the Appendix A we give the details of the
necessary and sufficient optimality test from [7] in the present DC context.

2. Propagating Bounds and/or Radii

In Equation (3) we already assumed that doubling is done componentwise and that for a difference
v “ w´ u of DC functions w and u, one defines the convex and concave parts by

pw´ uq “ qw´ pu and {pw´ uq “ pw´ qu ,

respectively. This yields in particular for the negation

~p´uq “ ´pu and zp´uq “ ´qu . (4)

For piecewise linear functions we need neither the square formula Equation (2) nor the more
general decompositions for products. Therefore we will not insist on the sign conditions even though
they would be also maintained automatically by Equation (4) as well as the natural linear rules for the
convex and concave parts of the sum and the multiple of a DC function, namely

pw`uq “ p qw`quq and {pw`uq “ p pw` puq ,

~pc uq “ c qu and zpc uq “ c pu if c ě 0 ,

~pc uq “ c pu and zpc uq “ c qu if c ď 0 .

However, the sign conditions would force one to decompose simple affine functions
upxq “ aJx` β as

upxq “ maxp0, aJx` βq `minp0, aJx` βq ” 1
2 pqupxq ` pupxqq , (5)

which does not seem such a good idea from a computational point of view.
The key observation for this paper is that as is well known (see e.g., [8]), one can propagate the

absolute value operation according to the identity

|u| “ maxpu,´uq “ 1
2 maxpqu` pu,´qu´ puq

“ maxpqu,´puq ` 1
2 ppu´ quq

ðñ ||u| “ 2 maxpqu,´puq and x|u| “ pu´ qu . (6)

Here the equality in the second line can be verified by shifting the difference 1
2 ppu´ quq into the

two arguments of the max. Again we see that when applying the absolute value operation to an
already positive convex function u “ 1

2 qu ě 0 we get ||u| “ 2qu and x|u| “ ´qu so that the condition
number grows from κpqu, 0q “ 1 to κp2qu,´quq “ 3. In other words, we observe once more the danger
that both component functions drift apart. This looks a bit like simultaneous growth of numerator
and denominator in rational arithmetic, which can sometimes be limited through cancelations by
common integer factors. It is currently not clear when and how a similar compactification of a given
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convex/concave decomposition can be achieved. The corresponding rule for the maximum is similarly
easy derived, namely

maxpu, wq “ 1
2 maxpqu` pu, qw` pwq “ 1

2 pmaxpqu´ pw, qw´ puq ` ppu` pwqq .

When u and w as well as their decomposition are identical we arrive at the new decomposition u “
maxpu, uq “ 1

2 ppqu´ puq ` 2puq, which obviously represents again some deterioration in the conditioning.
While it was pointed out in [4] that the DC functions u “ 1

2 pqu` puq themselves form an algebra,
their decomposition pairs pqu, puq are not even an additive group, as only the zero p0, 0q has a negative
partner, i.e., an additive inverse. Naturally, the pairs pqu, puq form the Cartesian product between the
convex cone of convex functions and its negative, i.e., the cone of concave functions. The DC functions
are then the linear envelope of the two cones in some suitable space of locally Lipschitz continuous
functions. It is not clear whether this interpretation helps in some way, and in any case we are here
mainly concerned with piecewise linear functions.

Propagating the Center and Radius

Rather than propagating the pairs pqu, puq through an evaluation procedure as defined in [5] to
calculate the function value f pxq at a given point x, it might be simpler and better for numerical
stability to propagate the pair

u “ 1
2 pqu` puq ^ δu “ 1

2 pqu´ puq ðñ qu “ u` δu ^ pu “ u´ δu . (7)

This representation resembles the so-called central form in interval arithmetic [9] and we will
call therefore u the central value and δu the radius. In other words, u is just the normal piecewise
affine intermediate function and the δu is a convex distance function to the hopefully close convex and
concave part. Should the potential blow-up discussed above actually occur, this will only effect δu but
not the central value u itself. Moreover, at least theoretically one might decide to reduce δu from time
to time making sure of course that the corresponding qu and pu as defined in Equation (7) stay convex
and concave, respectively. The condition number now satisfies the bound

κpu` δu, u´ δuq “ sup
x

|u` δu| ` |u´ δu|
2|u|

“ sup
x

1
2

!ˇ

ˇ

ˇ
1`

δu
u

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
1´

δu
u

ˇ

ˇ

ˇ

)

ď 1` sup
x

ˇ

ˇ

ˇ

δu
u

ˇ

ˇ

ˇ
.

Recall here that all intermediate quantities u “ upxq are functions of the independent variable
vector x P Rn. Naturally, we will normally only evaluate the intermediate pairs u and δu at a few
iterates of whatever numerical calculation one performs involving f so that we can only sample
the ratio

ρupxq ” |δupxq{upxq|

pointwise, where the denominator is hopefully nonzero. We will also refer to this ratio as the relative
gap of the convex/concave decomposition at a certain evaluation point x. The arithmetic rules for
propagating radii of the central form in central convex/concave arithmetic are quite simple.

Lemma 1 (Propagation rules for central form). With c, d, x P R two constants and an independent variable
we have

v “ c` d x ùñ δv “ 0 ùñ ρv “ 0 if v ‰ 0

v “ u˘w ùñ δv “ δu` δw ùñ ρv ď |u|`|w|
|u˘w| maxpρu, ρwq

v “ c u ùñ δv “ |c| δu ùñ ρv “ ρu if c ‰ 0

v “ |u| ùñ δv “ |u| ` 2 δu ùñ ρv P r1, 1` 2ρus .

(8)
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Proof. The last rule follows from Equation (6) by

δp|u|q “ 1
2

´

||u| ´x|u|
¯

“ maxpqu,´puq ´ 1
2 ppu´ quq

“ maxpqu´ δu,´pu´ δuq ` 2 δu

“ maxpu,´uq ` 2 δu “ |u| ` 2 δu .

The first equation in Equation (8) means that for all quantities u that are affine functions of the
independent variables x the corresponding radius δu is zero so that qu “ u “ pu until we reach the first
absolute value. Notice that δv does indeed grow additively for the subtraction just like for the addition.
By induction it follows from the rules above for an inner product that

δ
´

m
ÿ

j“1

cjuj

¯

“

m
ÿ

j“1

|cj| δuj , (9)

where the cj P R are assumed to be constants. As we can see from the bounds in Lemma 1 the relative
gap can grow substantially whenever one performs an addition of values with opposite sign or applies
the absolute value operation. In contrast to interval arithmetic on smooth functions one sees that the
relative gap, though it may be zero or small initially immediately jumps above 1 when one hits the
first absolute value operation. This is not really surprising since the best concave lower bound on
upxq “ |x| itself is pupxq “ 0 so that δu “ |x|, qupxq “ 2|x| and thus ρupxq “ 1 constantly. On the positive
side one should notice that throughout we do not lose sight of the actual central values upxq, which can
be evaluated with full arithmetic precision. In any case we can think of neither ρ nor κ ď 1` ρ as small
numbers, but we must be content if they do not actually explode too rapidly. Therefore they will be
monitored throughout our numerical experiments.

Again we see that the computational effort is almost exactly doubled. The radii can be treated as
additional variables that occur only in linear operations and stay nonnegative throughout. Notice that
in contrast to the (nonlinear) interval case we do not loose any accuracy by propagating the central
form. It follows immediately by induction from Lemma 1 that any function evaluated by a evaluation
procedure that comprises a finite sequence of

• initializations to independent variables
• multiplications by constants
• additions or subtractions
• absolute value applications

is piecewise affine and continuous. We will call these operations and the resulting evaluation
procedure abs-linear. It is also easy to see that the absolute values | ¨ | can be replaced by the maximum
maxp¨, ¨q or the minimum minp¨, ¨q or the positive part function maxp0, ¨q or any combination of them,
since they can all be mutually expressed in terms of each other and some affine operations. Conversely,
it follows from the min-max representation established in [10] (Proposition 2.2.2) that any piecewise
affine function f can be evaluated by such an evaluation procedure. Consequently, by applying the
formulas Equations (4)–(6) one can propagate at the same time the convex and concave components
for all intermediate quantities. Alternatively, one can propagate the centered form according to the
rules given in Lemma 1. These rules are also piecewise affine so that we have a finite procedure
for simultaneously evaluating qu and pu or u and δu as piecewise linear functions. The combined
computation requires about 2–3 times as many arithmetic operations and twice as many memory
accesses. Of course due to the interdependence of the two components it is not possible to evaluate
just one of them without the other. As we will see the same is true for the generalized gradients to be
discussed later in Section 4.
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3. Forming and Extending the Abs-Linear Form

In practice all piecewise linear objectives can be evaluated by a sequence of abs-linear operations,
possibly after min and max have been rewritten as

minpu, wq “ 1
2 pu`w´ |u´w|q and maxpu, wq “ 1

2 pu`w` |u´w|q . (10)

Our only restriction is that the number s of intermediate scalar quantities, say zi, is fixed, which is
true for example in the max´min representation. Then we can immediately cast the procedure in
matrix-vector notation as follows:

Lemma 2 (Abs-Linear Form). Any continuous piecewise affine function f : x P Rn ÞÑ y P R can be
represented by

z “ c` Zx`Mz` L|z| ,

y “ d` aJx` bJz ,
(11)

where z P Rs, Z P Rsˆn, M, L P Rsˆs strictly lower triangular, d P R, a P Rn, b P Rs and |z| denotes the
componentwise modulus of the vector z.

It should be noted that the construction of this general abs-linear form requires no analysis
or computation whatsoever. However, especially for our purpose of generating a reasonably tight
DC decomposition, it is advantages to reduce the size of the abs-normal form by eliminating all
intermediates zj with j ă s for which |zj| never occurs on the right hand side. To this end we may
simply substitute the expression of zj given in the j-th row in all places where zj itself occurs on the
right hand side. The result is what we will call a reduced abs-normal form, where after renumbering,
all remaining zj with j ă s are switching variables in that |zj| occurs somewhere on the right hand
side. In other words, all but the last column of the reduced, strictly lower triangular matrix L are
nontrivial. Again, this reduction process is completely mechanical and does not require any nontrivial
analysis, other than looking up which columns of the original L were zero. The resulting reduced
system is smaller and probably denser, which might increase the computation effort for evaluating
f itself. However, in view of Equation (9) we must expect that for the reduced form the radii will
grow slower if we first accumulate linear coefficients and then take their absolute values. Hence we
will assume in the remainder of this paper that the abs-normal form for our objective f of interest
is reduced.

Based on the concept of abs-linearization introduced in [11], a slightly different version of a
(reduced) abs-normal form was already proposed in [12]. Now in the present paper, both z and y
depend directly on z via the matrix M and the vector b, but y does no longer depend directly on |z|.
All forms can be easily transformed into each other by elementary modifications. The intermediate
variables zi can be calculated successively for 1 ď i ď s by

zi “ ci ` Zix`Miz` Li|z| , (12)

where Zi, Mi and Li denote the ith rows of the corresponding matrix. By induction on i one sees
immediately that they are piecewise affine functions zi “ zipxq, and we may define for each x the
signature vector

σpxq “ psgnpzipxqqqi“1...s P t´1, 0, 1us .

Consequently we get the inverse images

Pσ ” tx P Rn : sgnpzpxqq “ σu for σ P t´1, 0, 1us , (13)
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which are relatively open polyhedra that form collectively a disjoint decomposition of Rn. The situation
for the second example of Nesterov is depicted in Figure 3 in the penultimate section. There are six
polyhedra of full dimension, seven polyhedra of co dimension 1 drawn in blue and two points,
which are polyhedra of dimension 0. The point p0,´1qwith signature p0,´1, 0q is stationary and the
point p1, 1qwith signature p1, 0, 0q is the minimizer as shown in [7]. The arrows indicate the path of our
reflection version of the DCA method as described in Section 5.

When σ is definite, i.e., has no zero components, which we will denote by 0 R σ, it follows from
the continuity of zpxq that Pσ has full dimension n unless it is empty. In degenerate situations this may
also be true for indefinite σ but then the closure of Pσ is equal to the extended closure

sPσ̃ ” tx P Rn : σpxq ă σ̃u Ą closepPσ̃q (14)

for some definite 0 R σ̃ ą σ. Here the (reflexive) partial ordering ă between the signature vectors
satisfies the equivalence

σ̊ ă σ ðñ σ̊iσi ď σ2
i for i “ 1 . . . s ðñ sPσ̊ Ă

sPσ

as shown in [13]. One can easily check that for any σ ą σ̊ there exists a unique signature

pσŹ σ̊qi “

#

σi if σ̊i ‰ 0

´σi if σ̊i “ 0
for i “ 1 . . . s (15)

We call σ̃ ” σ Ź σ̊ the reflection of σ at σ̊, which satisfies also σ̃ ą σ̊ and we have in fact
sPσ̃ X

sPσ “
sPσ̊. Hence the relation between σ and σ̃ is symmetric in that also σ “ σ̃Ź σ̊. Therefore

we will call pσ, σ̃q a complementary pair with respect to σ̊. In the very special case zi “ xi for
i “ 1 . . . n “ s ´ 1 the sPσ are orthants and their reflections at the origin t0u “ sP0 Ă Rn are their
geometric opposites sPσ̃ with σ̃ “ ´σ. Here one can see immediately that all edges, i.e., one-dimensional
polyhedra, have Cartesian signatures ˘ei for i “ 1 . . . n and belong to sPσ or sPσ̃ for any given σ.
Notice that x̊ is a local minimizer of a piecewise linear function if and and only if it is a local minimizer
along all edges of nonsmoothness emanating form it. Consequently, optimality of f restricted to a
complementary pair is equivalent to local optimality on Rn, not only in this special case, but whenever
the Linear Independence Kink Qualification (LIKQ) holds as introduced in [13] and defined in the
Appendix A. This observation is the basis of the implicit optimality condition verified by our DCA
variant Algorithm 1 through the use of reflections. The situation is depicted in Figure 3 where the
signatures p´1,´1,´1q and p1,´1, 1q as well as p1,´1, 1q and p1, 1,´1q form complementary pairs at
p0,´1q and p1, 1q, respectively. At both reflection points there are four emanating edges, which all
belong to one of the three polyhedra mentioned.

Applying the propagation rules from Lemma 1, one obtains with δx “ 0 P Rn the recursion

δz1 “ δpc1 ` Z1xq “ 0

δzi “ p|Mi| ` 2|Li|qδz` |Li||z| for i “ 2 . . . s ,

where the modulus is once more applied componentwise for vectors and matrices. Hence, we have
again in matrix vector notation

δz “ p|M| ` 2|L|qδz` |L||z| , (16)

which yields for δz the explicit expression

δz “ pI ´ |M| ´ 2|L|q´1|L||z| “
ν
ÿ

j“0

p|M| ` 2|L|qj |L||z| ě 0 . (17)
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Here, ν is the so-called switching depth of the abs-linear form of f , namely the largest ν P N
such that p|M| ` |L|qν ‰ 0, which is always less than s due to the strict lower triangularity of M and
L. The unit lower triangular pI ´ |M| ´ 2|L|q is an M-matrix [14], and interestingly enough does not
even depend on x but directly maps |z| “ |zpxq| to δz “ δzpxq. For the radius of the function itself,
the propagation rules from Lemma 1 then yield

δ f pxq “ δy “ |b|Jδz ě 0 . (18)

This nonnegativity implies the inclusion Equation (1) already mentioned in Section 1, i.e.:

Theorem 1 (Inclusion by convex/concave decomposition). For any piecewise affine function f in abs-linear
form, the construction defined in Section 2 yields a convex/concave inclusion

pf pxq ď f pxq ” 1
2 p
qf pxq ` pf pxqq ď qf pxq .

Moreover, the convex and the concave parts qf pxq and pf pxq have exactly the same switching structure as
f pxq in that they are affine on the same polyhedra Pσ defined in (13).

Proof. Equations (16) and (17) ensure that δ f pxq is nonnegative at all x P Rn such that

pf pxq “ f pxq ´ δ f pxq ď f pxq ď f pxq ` δ f pxq ď qf pxq .

It follows from Equation (17) that the radii δzipxq are like the |zipxq| piecewise linear with
the only nonsmoothness arising through the switching variables zpxq themselves. Obviously this
property is inherited by δ f pxq and the linear combinations qf pxq“ f pxq ` δ f pxq and pf pxq“ f pxq ´ δ f pxq,
which completes the proof.

Combining Equations (16) and (18) with the abs-linear form of the piecewise affine function f
and defining z̃ “ pz, δzq P R2s, one obtains for the calculation of f̃ pxq ” ỹ ” py, δyq the following
abs-linear form

z̃ “ c̃` Z̃x` M̃z̃` L̃|z̃| , (19)

ỹ “ d̃` ãJx` b̃Jz̃ (20)

with the vectors and matrices defined by

c̃“

«

c
0

ff

P R2s, Z̃“

«

Z
0

ff

P R2sˆn, M̃“

«

M 0
0 |M| ` 2|L|

ff

P R2sˆ2s,

L̃“

«

L 0
|L| 0

ff

P R2sˆ2s, d̃“

«

d
0

ff

P R2, ã“
”

a 0
ı

P Rnˆ2, b̃“

«

b 0
0 |b|

ff

P R2sˆ2.

Then, Equations (19) and (20) yield

«

z
δz

ff

“

«

c
0

ff

`

«

Z
0

ff

x`

«

M 0
0 |M| ` 2|L|

ff«

z
δz

ff

`

«

L 0
|L| 0

ff«

|z|
|δz|

ff

“

«

c` Zx`Mz` L|z|
p|M| ` 2|L|qδz` |L||z|

ff

«

y
δy

ff

“ d̃`ãJx`b̃Jz̃ “

«

d
0

ff

`

«

aJx
0

ff

`

«

b 0
0 |b|

ffJ«

z
δz

ff

“

«

d`aJx`bJz
|b|Jδz

ff

,

i.e., Equations (16) and (18). As can be seen, the matrices M̃ and L̃ have the required strictly lower
triangular form. Furthermore, it is easy to check, that the switching depth of the abs-linear form of f
carries over to the abs-linear form for f̃ in that also p|M̃|`|L̃|qν ‰ 0 “ p|M̃|`|L̃|qν`1. However, notice
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that this system is not reduced since the s radii are not switching variables, but globally nonnegative
anyhow. We can now obtain explicit expressions for the central values, radii, and bounds for a given
signature σ.

Corollary 1 (Explicit representation of the centered form). For any definite signature σ S 0 and all x P Pσ

we have with Σ “ diagpσq

zσpxq “ pI ´M´ LΣq´1pc` Zxq and |zσpxq| “ Σzσpxq ě 0 (21)

δzσpxq “ pI ´ |M| ´ 2|L|q´1|L|Σ pI ´M´ LΣq´1pc` Zxq ě 0 (22)

∇zσ “ pI ´M´ LΣq´1Z ùñ ∇σ f “ aJ` bJpI ´M´ LΣq´1Z (23)

∇ qfσ “ aJ`
”

bJ` |b|JpI ´ |M| ´ 2|L|q´1|L|Σ
ı

pI ´M´ LΣq´1Z (24)

∇ pfσ “ aJ`
”

bJ´ |b|JpI ´ |M| ´ 2|L|q´1|L|Σ
ı

pI ´M´ LΣq´1Z , (25)

where the restrictions of the functions and their gradients to Pσ are denoted by subscript σ. Notice that the
gradients are constant on these open polyhedra.

Proof. Equations (21) and (23) follow directly from Equation (12), the abs-linear form (11) and the
properties of Σ. Combining Equation (16) with (21) yields Equation (22). Since qf pxq“ f pxq ` δ f pxq
and pf pxq“ f pxq ´ δ f pxq, Equations (24) and (25) follow from the representation in abs-linear form and
Equation (23).

As one can see the computation of the gradient ∇ fσ requires the solution of one unit upper
triangular linear system and that of both ∇ qfσ and ∇ pfσ one more. Naturally, upper triangular systems
are solved by back substitution, which corresponds to the reverse mode of algorithmic differentiation
as described in the following section. Hence, the complexity for calculating the gradients is exactly
the same as that for calculating the functions, which can be obtained by one forward substitution for
fσ and an extra one for δ fσ and thus qfσ and pfσ. The given ∇ fσ,∇ qfσ and ∇ pfσ are proper gradients
in the interior of the full dimensional domains Pσ. For some or even many σ the inverse image Pσ

of the map x ÞÑ sgnpzpxqq may be empty, in which case the formulas in the corollary do not apply.
Checking the nonemptiness of Pσ for a given signature σ amounts to checking the consistency of a set
of linear inequalities, which costs the same as solving an LOP and is thus nontrivial. Expressions for
the generalized gradients at points in lower dimensional polyhedra are given in the following Section 4.
There it is also not required that the abs-linear normal form has been reduced, but one may consider
any given sequence of abs-linear operations.

The Two-Term Polyhedral Decomposition

It is well known ([15], Theorem 2.49) that all piecewise linear and globally convex or concave
functions can be represented as the maximum or the minimum of a finite collection of affine
functions, respectively. Hence, from the convex/concave decomposition we get the following drastic
simplification of the classical min-max representation given, e.g., in [10].

Corollary 2 (Additive max/min decomposition of PL functions). For every piecewise affine function
f : Rn ÞÑ R there exist k ě 0 affine functions αi`aJi x for i “ 1 . . . k and l ě 0 affine functions β j`bJj x for
j “ 1 . . . l such that at all x P Rn

f pxq “ max
i“1...k

pαi`aJi xq
looooooomooooooon

”
1
2
qf pxq

` min
j“1...l

pβ j`bJj xq
looooooomooooooon

”
1
2
pf pxq

(26)

where furthermore pf pxq ď f pxq ď qf pxq.
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The max-part of this representation is what is called a polyhedral function in the literature [15].
Since the min-part is correspondingly the negative of a polyhedral function we may also refer to
Equation (26) as a DP decomposition, i.e., the difference of two polyhedral functions.

We are not aware of a publication that gives a practical procedure for computing such a collection
of affine functions αi ` aJi x, i “ 1 . . . k, and β j ` bJj x, j “ 1 . . . l, for a given piecewise linear function
f . Of course the critical question is in which form the function f is specified. Here as throughout
our work we assume that it is given by a sequence of abs-linear operations. Then we can quite easily
compute for each intermediate variable v representations of the form

v “

m̄
ÿ

i“1

max
1ďjďki

pαij`aJij xq `
n̄
ÿ

i“1

min
1ďjďli

pβij`bJij xq (27)

“ max
jiPIi

1ďiďm̄

m̄
ÿ

i“1

pαiji`aJiji xq ` min
jiPJi

1ďiďn̄

n̄
ÿ

i“1

pβiji`bJiji xq . (28)

with index sets Ii “ t1, . . . , kiu, 1 ď i ď m̄, and Ji “ t1, . . . , liu, 1 ď i ď n̄, since one has to consider
all possibilities of selecting one affine function each from one of the m̄ max and n̄ min groups,
respectively. Obviously, (28) involves

śm
i“1 ki and

śn
i“1 `i affine function terms in contrast to the

first representation (27) which contains just
řm

i“1 ki and
řn

i“1 `i of them. Still the second version
conforms to the classical representation of convex and concave piecewise linear functions, which yields
the following result:

Corollary 3 (Explicit computation of the DP representation). For any piecewise linear function given as
abs-linear procedure one can explicitly compute the representation (26) by implementing the rules of Lemma 1.

Proof. We will consider the representations (27) from which (26) can be directly obtained in the
form (28). Firstly, the independent variables xj are linear functions of themselves with gradient a “ ej
and inhomogeneity α “ 0. Then for multiplications by a constant c ą 0 we have to scale all affine
functions by c. Secondly, addition requires appending the expansions of the two summands to each
other without any computation. Taking the negative requires switching the sign of all affine functions
and interchanging the max and min group. Finally, to propagate through the absolute values we have
to apply the rule (6), which means switching the signs in the min group, expressing it in terms of max
and merging it with the existing max group. Here merging means pairwise joining each polyhedral
term of the old max-group with each term in the switched min-group. Then the new min-group is the
old one plus the old max-group with its sign switched.

We see that taking the absolute value or, alternatively, maxima or minima generates the strongest
growth in the number of polyhedral terms and their size. It seems clear that this representation is
generally not very useful because the number of terms will likely blow up exponentially. This is not
surprising because we will need one affine function for each element of the polyhedral decompositions
of the domain of the max and min term. Typically, many of the affine terms will be redundant, i.e.,
could be removed without changing the values of the polyhedral terms. Unfortunately, identifying
those already requires solving primal or dual linear programming problems, see, e.g., [16]. It seems
highly doubtful that this would ever be worthwhile. Therefore, we will continue to advocate dealing
with piecewise linear functions in a convenient procedural abs-linear representation.

4. Computation of Generalized Gradients and Constructive Oracle Paradigm

For optimization by variants of the DCA algorithm [17] one needs generalized gradients of the
convex and the concave component. Normally, there are no strict rules for propagating generalized
gradients through nonsmooth evaluation procedures. However, exactly this is simply assumed in
the frequently invoked oracle paradigm, which states that at any point x P Rn the function value
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f pxq and an element g P B f pxq can be evaluated. We have argued in [18] that this is not at all a
reasonable assumption.

On the other hand, it is well understood that for the convex operations: Positive scaling, addition,
and taking the maximum the rules are strict and simple. Moreover, then the generalized gradient in
the sense of Clarke B qf pxq Ă Rn is actually a subdifferential in that all its elements define supporting
hyperplanes. Similarly B pf pxqmight be called a superdifferential in that the tangent planes bound the
concave part from above.

In other words, we have at all x P Rn and for all increments ∆x

qf px` ∆xq ě qf pxq ` qgJ∆x if qg P B qf pxq

and
pf px` ∆xq ď pf pxq ` pgJ∆x if pg P B pf pxq ,

which imply for qg P B qf pxq and pg P B pf pxq that

pf px`∆xq` qf pxq`qgJ∆x ď 2 f px` ∆xq ď qf px`∆xq` pf pxq`pgJ∆x , (29)

where the lower bound on the left is a concave function and the upper bound is convex, both with
respect to ∆x. Notice that the generalized superdifferential B pf being the negative of the subdifferential
of ´pf is also a convex set.

Now the key question is how we can calculate a suitable pair of generalized gradients pqg, pgq P
B qf pxqˆB pf pxq. As we noted above the convex part and the negative of the concave part only undergo
convex operations so that for v “ c u

Bqv “

$

’

’

&

’

’

%

c Bqu if c ą 0

0 if c “ 0

c Bpu if c ă 0

and Bpv “

$

’

’

&

’

’

%

c Bpu if c ą 0

0 if c “ 0

c Bqu if c ă 0

(30)

and for v “ u`w
Bqv “ Bqu`B qw and Bpv “ Bpu`B pw . (31)

Finally, for v “ |u|we find by Equation (6) that Bpv “ Bpu´ Bqu as well as

1
2Bqv “ Bmaxpqu,´puq “

$

’

’

&

’

’

%

B qu if u ą 0

convtBquY p´Bpuqu if u “ 0 ,

´Bpu if u ă 0

(32)

where we have used that u “ 1
2 pqu` puq in Equation (32). The sign of the arguments u of the absolute

value function are of great importance, because they determine the switching structure. For this reason,
we formulated the cases in terms of u rather than in the convex/concave components. The operator
convt¨u denotes taking the convex hull or envelope of a given usually closed set. It is important
to state that within an abs-linear representation the multipliers c will stay constant independent of
the argument x, even if they were originally computed as partial derivatives by an abs-linearization
process and thus subject to round-off error. In particular their sign will remain fixed throughout
whatever algorithmic calculation we perform involving the piecewise linear function f . So, actually
the case c“0 could be eliminated by dropping this term completely and just initializing the left hand
side v to zero.
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Because we have set identities we can propagate generalized gradient pairs p∇qu,∇puq P BquˆBpu
and perform the indicated algebraic operations on them, starting with the Cartesian basis vectors

∇qxj “ ∇pxj “ ∇xj “ ej since qxj “ pxj “ xj for j “ 1 . . . n .

The result of this propagation is guaranteed to be an element of B qfˆB pf . Recall that in the merely
Lipschitz continuous case generalized gradients cannot be propagated with certainty since for example
the difference v “ w´ u generates a proper inclusion Bv Ă Bw´ Bu. In that vein we must emphasize
that the average 1

2 p∇ qf `∇ pf q need not be a generalized gradient of f “ 1
2 p
qf ` pf q as demonstrated by

the possibility that pf “ ´qf algebraically but we happen to calculate different generalized gradients
of qf and ´pf at a particular point x. In fact, if one could show that B f “ 1

2 pB
qf ` B pf q one would have

verified the oracle paradigm, whose use we consider unjustified in practice. Instead, we can formulate
another corollary for sufficiently piecewise smooth functions.

Definition 1. For any d P N, the set of functions f : Rn ÞÑ R, y “ f pxq, defined by an abs-normal form

z “ Fpx, z, |z|q ,

y “ ϕpx, zq,

with F P CdpRn`s`sq and ϕ P CdpRn`sq, is denoted by Cd
abspR

nq.

Once more, this definition differs slightly from the one given in [7] in that y depends only on z
and not on |z| in order to match the abs-linear form used here. Then one can show the following result:

Corollary 4 (Constructive Oracle Paradigm). For any function f P C2
abspR

nq and a given point x there exist
a convex polyhedral function |∆ f px; ∆xq and a concave polyhedral function x∆ f px; ∆xq such that

f px` ∆xq ´ f pxq “ 1
2

´

|∆ f px; ∆xq ` x∆ f px; ∆xq
¯

`Op}∆x}2q

Moreover, both terms and their generalized gradients at ∆x “ 0 or anywhere else can be computed with the
same order of complexity as f itself.

Proof. In [11], we show that

f px` ∆xq ´ f pxq “ ∆ f px; ∆xq `Op}∆x}2q ,

where ∆ f px; ∆xq is a piecewise linearization of f developed at x and evaluated at ∆x. Applying
the convex/concave decomposition of Theorem 1, one obtains immediately the assertion with a
convex polyhedral function |∆ f px; ∆xq and a concave polyhedral function x∆ f px; ∆xq evaluated at ∆x.
The complexity results follow from the propagation rules derived so far.

We had hoped that it would be possible to use this approximate decomposition into polyhedral
parts to construct at least locally an exact decomposition of a general function f P Cd

abspR
nq into a

convex and compact part. The natural idea seems to add a sufficiently large quadratic term β}∆x}2 to

f px` ∆xq ´ f pxq ´ 1
2
x∆ f px; ∆xq “ 1

2
|∆ f px; ∆xq `Op}∆x}2q

such that it would become convex. Then the same term could be subtracted from x∆ f px; ∆xqmaintaining
its concavity. Unfortunately, the following simple example shows that this is not possible.
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Example 1 (Half pipe). The function

f : R2 ÞÑ R, f px1, x2q “ maxpx2
2 ´maxpx1, 0q, 0q (33)

“

$

’

&

’

%

x2
2 if x1 ď 0

x2
2 ´ x1 if 0 ď x1 ď x2

2
0 if 0 ď x2

2 ď x1

,

in the class C8abspR
nq is certainly nonconvex as shown in Figure 1. As already observed in [19] this generally

nonsmooth function is actually Fréchet differentiable at the origin x “ 0 with a vanishing gradient ∇ f p0q “ 0.
Hence, we have f p∆xq “ Op}∆x}2q and may simply choose constantly |∆ f p0; ∆xq ” 0 ” x∆ f p0; ∆xq. However,
neither by adding β}∆x}2 nor any other smooth function to f p∆xq can we eliminate the downward facing kink
along the vertical axis ∆x1 “ 0. In fact, it is not clear whether this example has any DC decomposition at all.

2

0

x
2

-22

1

x
1

0

-1

0

4

2

-2

ϕ
(.
)

Figure 1. Half pipe example as defined in Equation (33).

Applying the Reverse Mode for Accumulating Generalized Gradients

Whenever gradients are propagated forward through a smooth evaluation procedure, i.e.,
for functions in C2pRnq, they are uniquely defined as affine combinations of each other, starting from
Cartesian basis vectors for the components of x. Given only the coefficients of the affine combinations
one can propagate corresponding adjoint values, or impact factors backwards, to obtain the gradient
of a single dependent with respect to all independents at a small multiple of the operations needed
to evaluate the dependent variable by itself. This cheap gradient result is a fundamental principle
of computational mathematics, which is widely applied under various names, for example discrete
adjoints, back propagation, and reverse mode differentiation. For a historical review see [20] and for a
detailed description using similar notation to the current paper see our book [5]. For good reasons,
there has been little attention to the reverse mode in the context of nonsmooth analysis, where one can
at best obtain subgradients. The main obstacle is again that the forward propagation rules are only
sharp when all elementary operations maintain convexity, which is by the way the only constructive
way of verifying convexity for a given evaluation procedure. While general affine combinations and
the absolute value are themselves convex functions, they do not maintain convexity when applied to a
convex argument.

The last equation of Lemma 1 shows that one cannot directly propagate a subgradient of the
convex radius functions δu because there is a reference to v “ |u| itself, which does not maintain
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convexity except when it is redundant due to its argument having a constant sign. However, it follows
from the identity δu “ 1

2 pqu´ puq that for all intermediates u

∇qu P Bqu^∇pu P Bpu ùñ 1
2 p∇qu´∇puq P Bδu .

Hence one can get affine lower bounds of the radii, although one would probably prefer upper
bounds to limit the discrepancy between the convex and concave parts. When v “ |u| and u “ 0 we
may choose according to Equation (32) any convex combination

1
2∇qv “ p1´ µq∇qu´ µ∇pu for 0 ď µ ď 1 . (34)

It is tempting but not necessarily a good idea to always choose the weight µ equal to 1
2

for simplicity.
Before discussing the reasons for this at the end of this subsection, let us note that from the

values of the constants c, the intermediate values u, and the chosen weights µ it is clear how the next
generalized gradient pair p∇qv,∇pvq is computed as a linear combination of the generalized gradients
of the inputs for each operation, possibly with a switch in their roles. That means after only evaluating
the function f itself, not even the bounds qf and pf , we can compute a pair of generalized gradients in
B qfˆB pf using the reverse mode of algorithmic differentiation, which goes back to at least [21] though
not under that name. The complexity of this computation will be independent of the number of
variables and relative to the complexity of the function f itself. All the operations are relatively benign,
namely scaling by constants, interchanges and additions and subtractions. After all the reverse mode
is just a reorganization of the linear algebra in the forward propagation of gradients. Hence, it appears
that we can be comparatively optimistic regarding the numerical stability of this process.

To be specific we will indicate the (scalar) adjoint value of all intermediates qu and pu as usual by
s

qu P R and s

pu P R. They are all initialized to zero except for either sqy “ 1 or spy “ 1. Then at the end of the
reverse sweep, the vectors psxjq

n
j“1 represent either∇qy or∇py, respectively. For computational efficiency

one may propagate both adjoint components simultaneously, so that one computes with sextuplets
consisting of qu, pu and their adjoints with respect to qy and py. In any case we have the following adjoint
operations. For v “ u`w

p sqw, spwq `“ psqv, spvq and psqu, spuq `“ psqv, spvq ,

for v “ c u

psqu, spuq `“

$

’

’

&

’

’

%

c psqv, spvq if c ą 0

p0, 0q if c “ 0

c pspv, sqvq if c ă 0

,

and finally for v “ |u|

psqu, spuq `“

$

’

’

&

’

’

%

p2sqv´ s

pv, spvq if u ą 0

p´spv` 2p1´ µqsqv, spv´ 2µsqvq if u “ 0

p´spv, spv´ 2sqvq if u ă 0

. (35)

Of course, the update for the critical case u “ 0 of the absolute value is just the convex combination
for the two cases u ą 0 and u ă 0 weighted by µ. Due to round-off errors it is very unlikely that
the critical case u“0 ever occurs in floating point arithmetic. Once more, the sign of the arguments
u of the absolute value function are of great importance, because they determine on which faces of
the polyhedral functions qf and pf the current argument x is located. In some situations one prefers a
gradient that is limiting in that it actually occurs as a proper gradient on one of the adjacent smooth
pieces. For example, if we had simply f pxq “ v “ |x| for x P R and chose µ “ 1

2 we would get
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qv “ 2|x|, pv “ 0 and find by Equation (34) that ∇qv “ 2p 1
2 ´

1
2 q “ 0 at x “ qx “ px “ 0. This is not a

limiting gradient of qv since Bqv “ r´2, 2s, whose interior contains the particular generalized gradient 0.

5. Exploiting the Convex/concave Decomposion for the DC Algorithm

In order to minimize the decomposed objective function f we may use the DCA algorithm [17]
which is given in its basic form using our notation by

Choose x0 P Rn

For k “ 0, 1, 2, . . .
Calculate gk P ´B

` 1
2
pf
˘

pxkq

Calculate xk`1 P B
` 1

2
qf
˘˚
pgkq

where
` 1

2
qf
˘˚ denotes the Fenchel conjugate of

` 1
2
qf
˘

. For a convex function h : Rn ÞÑ R one has

w P Bh˚pyq ô w P argmin
xPRn

thpxq ´ yJxu,

see [15], Chapter 11. Hence, the classic DCA reduces in our Euclidean scenario to a simple recurrence

xk`1 P argmin
xPRn

!

qf pxq ` pgJk x
)

for some pgk P B
pf pxkq . (36)

The objective function on the left hand side is a constantly shifted convex polyhedral upper bound
on 2 f pxq since

qf pxq ` pgJk x “ 2 f pxq ´
´

pf pxq ´ pgJk x
¯

ě 2 f pxq ´ pf pxkq ` pgJk xk . (37)

It follows from Equation (29) and xk`1 being a minimizer that

f pxk`1q ď 1
2

´

qf pxk`1q `
pf pxkq ` pgJk pxk`1 ´ xkq

¯

ď 1
2

´

qf pxkq `
pf pxkq

¯

“ f pxkq .

Now, since (36) is an LOP, an exact solution xk`1 can be found in finitely many steps, for example
by a variant of the Simplex method. Moreover, we can then assume that xk`1 is one of finitely many
vertex points of the epigraph of qf . At these vertex points, f itself attains a finite number of bounded
values. Provided f itself is bounded below, we can conclude that for any choice of the pgk P B

pfσpkq the
resulting function values f pxkq can only be reduced finitely often so that f pxkq “ f pxk´1q and w.l.o.g.
xk “ xk´1 eventually. We then choose the next pgk “ ∇ pfσpkq with σpkq “ σpk´1q Ź σpxkq as the reflection
of σpk´1q at σpxkq as defined in (15). If then again f pxk`1q “ f pxkq it follows from Corollary A2 that xk is
a local minimizer of f and we may terminate the optimization run. Hence we obtain the DCA variant
listed in Algorithm 1, which is guaranteed to reach local optimality under LIKQ. It is well defined
even without this property and we conjecture that otherwise the final iterate is still a stationary point
of f . The path of the algorithm on the example discussed in Section 5 is sketched in Figure 3. It reaches
the stationary point p0,´1q where σ “ p0,´1, 0q from within the polyhedron with the signature
p´1,´1,´1q and then continues after the reflection p1,´1, 1q “ p´1,´1,´1q Ź p0,´1, 0q. From within
that polyhedron the inner loop reaches the point p1, 1q with signature p1, 0, 0q, whose minimality is
established after a search in the polyhedron sPp1,1,´1q.

If the function f pxq is unbounded below, so will be one of the inner convex problems and
the convex minimizer should produce a ray of infinite descent instead of the next iterate xk`1.
This exceptional scenario will not be explicitly considered in the remainder of the paper. The reflection
operation is designed to facilitate further descent or establish local optimality. It is discussed in the
context of general optimality conditions in the following subsection.
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Algorithm 1 Reflection DCA

Require: x0 P Rn,
1: Set f´1 “ 8 and Evaluate f0 “ f px0q

2: for k “ 0, 1, . . . do
3: if fk ă fk´1 then Ź Normal iteration with function reduction
4: Choose 0 R σ ą σpxkq Ź Here different heuristics may be applied
5: Compute pgk “ ∇ pfσ Ź Apply formula of Corollary 1
6: else Ź The starting point was already optimal
7: Reflect σ̃ “ σŹ σpxkq Ź The symbol Ź is defined in Equation (15).
8: Update pgk “ ∇ pfσ̃

9: end if
10: Calculate xk`1 P argmin

!

qf pxq ` pgJk x
ˇ

ˇ

ˇ
x P Rn

)

Ź Apply any LOP finite solver
11: Set fk`1 “ f pxk`1q

12: if fk`1 “ fk “ fk´1 then Ź Local optimality established
13: Stop
14: end if
15: end for

5.1. Checking Optimality Conditions

Stationarity of xk happens when the convex function qf pxq ` pgJk x is minimal at xk so that for all
large k

0 P B qf pxkq ` pgk ðñ pgk P B
pf pxkq X p´B

qf pxkqq ‰ H . (38)

The nonemptiness condition on the right hand side is known as criticality of the DC decomposition
at xk, which is necessary but not sufficient even for local optimality of f pxq at xk. To ensure the latter
one has to verify that all pgk P B

pf pxkq satisfy the criticality condition (38) so that

B pf pxkq Ă ´B qf pxkq ðñ BL
pf pxkq Ă ´B qf pxkq . (39)

The left inclusion is a well known local minimality condition [22], which is already sufficient
in the piecewise linear case. The right inclusion is equivalent to the left one due to the convexity of
B qf pxkq.

If qf and pf were unrelated convex and concave polyhedral functions, one would normally consider
it extremely unlikely that pf were nonsmooth at any one of the finitely many vertices of the polyhedral
domain decomposition of qf . For instance when pf is smooth at xk we find that B pf pxkq “ tpgku is
a singleton so that criticality according to Equation (38) is already sufficient for local minimality
according to Equation (39). As we have seen in Theorem 1 the two parts have exactly the same
switching structure. That means they are nonsmooth on the same skeleton of lower dimensional
polyhedra. Hence, neither BL

qf pxkq nor BL
pf pxkqwill be singletons at minimizing vertices of the upper

bound so that checking the validity of Equation (39) appears to be a combinatorial task at first sight.
However, provided the Linear Independence Kink Qualification (LIKQ) defined in [7] is satisfied

at the candidate minimizer xk, the minimality can be tested with cubic complexity even in case of
a dense abs-linear form. Moreover, if the test fails one can easily calculate a descent direction d.
The details of the optimality test in our context including the calculation of a descent direction are
given in the Appendix A. They differ slightly from the ones in [7]. Rather than applying the optimality
test Proposition A1 explicitly, one can use its Corollary A2 stating that if x̊ with σ̊ “ σpx̊q is a local
minimizer of the restriction of f to a polyhedron sPσ with definite σ ą σ̊ then it is a local minimizer of
the unrestricted f if and only if it also minimizes the restriction of f to sPσ̃ with the reflection σ̃ “ σŹ σ̊.
The latter condition must be true if x̊ also minimizes f pxq `∇ pfσ̃, which can be checked by solving that
convex problem. If that test fails the optimization can continue.
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5.2. Proximal Rather Than Global

By some authors the DCA algorithm has been credited with being able to reach global minimizers
with a higher probability than other algorithms. There is really no justification for this optimism in
the light of the following observation. Suppose the objective f pxq “ 1

2 p
qf pxq ` pf pxqq has an isolated

local minimizer x˚. Then there exists an ε ą 0 such that the level set tx P Rn : f pxq ď f px˚q ` εu has a
bounded connected component containing x˚, say Lε. Now suppose DCA is started from any point
x0 P Lε. Since f0pxq ” 1

2 p
qf pxq ` pf px0q ` pgpx0q

Jpx ´ x0qq is by Equation (37) a convex upper bound
on f pxq its level set t f0pxq ď f px0quwill be contained in Lε. Hence any step from x0 that reduces the
upper bound f0pxqmust stay in the same component, so there is absolutely no chance to move away
from the catchment Lε of x0 towards another local minimizer of f , whether global or not. In fact, by
adding the convex term

1
2

´

pf px0q ` pgpx0q
Jpx´ x0q ´

pf pxq
¯

ě 0 ,

which vanishes at x0, to the actual objective f pxq one performs a kind of regularization, like in the
proximal point method. This means the step is actually held back compared to a larger step that might
be taken by a method that only requires the reduction of f pxq itself.

Hence we may interpret DCA as a proximal point method where the proximal term is defined
as an affinely shifted negative of the concave part. Since in general the norm and the coefficient
defining the proximal term may be quite hard to select, this way of defining it may make a lot of sense.
However, it is certainly not global optimization. Notice that in this argument we have used neither the
polyhedrality nor the inclusion property. So it applies to a general DC decomposition on Euclidean
space. Another conclusion from the "holding back" observation is that it is probably not worthwhile to
minimize the upper bound very carefully. One might rather readjust the shift pgJx after a few or even
just one iteration.

6. Nesterov’s Piecewise Linear Example

According to [6], Nesterov suggested three Rosenbrock-like test functions for nonsmooth optimization.
One of them given by

f pxq “ 1
4 |x1 ´ 1| `

n´1
ÿ

i“1

|xi`1 ´ 2|xi| ` 1| (40)

is nonconvex and piecewise linear. It is shown in [6] that this function has 2n´1 Clarke stationary
points only one of which is a local and thus the global minimizer. Numerical studies showed that
optimization algorithms tend to be trapped at one of the stationary points making it an interesting
test problem. We have demonstrated in [23] that using an active signature strategy one can guarantee
convergence to the unique minimizer from any starting point albeit using in the worst case 2n iterations
as all stationary points are visited. Let us first write the problem in the new abs-linear form.

Defining the s “ 2 n switching variables

zi “ Fipx, |z|q “ xi for 1 ď i ă n, zn “ Fnpx, |z|q “ x1 ´ 1,

and

zn`i “ Fn`ipx, |z|q “ xi`1 ´ 2 |zi| ` 1 for 1 ď i ă n, zs “
1
4 |zn| `

n´1
ÿ

i“1

|zn`i|



Algorithms 2020, 13, 166 18 of 25

the resulting objective function is then simply identical to y “ f pxq “ zs. With the vectors and matrices

cJ “ p0,´1, eJn´1, 0q P Rpn´1q`1`pn´1q`1, Z “

»

—

—

—

–

In´1 0
In´1 0

0 1
0 0

fi

ffi

ffi

ffi

fl

P Rsˆpn´1q`1 ,

M “ 0 , L “

»

—

—

—

–

0 0 0 0
0 0 0 0

´2 In´1 0 0 0
0 1

4 eJn´1 0

fi

ffi

ffi

ffi

fl

P Rsˆpn´1q`1`pn´1q`1 , d “ 0 P R,

a “ 0 , bJ “ p0, ¨ ¨ ¨ , 0, 1q P Rp2n´1q`1 ,

where Z and L have different row partitions, one obtains an abs-linear form (11) of f . Here, Ik denotes
the identity matrix of dimension k, eJ “ p1, ¨ ¨ ¨ , 1q P Rk the vector containing only ones and the symbol
0 pads with zeros to achieve the specified dimensions. One can easily check that |L|2 ‰ 0 “ |L|3,
hence this example has switching depth ν “ 2. The geometry of the situation is depicted in Figure 3,
which was already briefly discussed in Sections 3 and 5.

Since the corresponding extended abs-linear form for f̃ “ py, δyq does not provide any new insight
we do not state it here. Directly in terms of the original equations we obtain for the radii

δzi “ 0 for 1 ď i ď n, δzn`i “ 2|zi| “ 2|xi| for 1 ď i ă n (41)

and

δ f “ δzs “ 1
4 |zn| `

n´1
ÿ

i“1

p|zn`i| ` 2δzn`iq

“ 1
4 |x1 ´ 1| `

n´1
ÿ

i“1

p|xi`1 ´ 2 |xi| ` 1| ` 4|xi|q . (42)

Thus, from Equation (7) we get the convex and concave part explicitly as

qzi “ zi “ pzi for 1 ď i ď n ,

qzn`i “ xi`1 ` 1

pzn`i “ xi`1 ´ 4|zi| ` 1 “ xi`1 ´ 4|xi| ` 1

+

for 1 ď i ă n

and most importantly

qf “ zs ` δzs “
1
2 |x1 ´ 1| ` 2

n´1
ÿ

i“1

`
ˇ

ˇxi`1 ´ 2 |xi| ` 1
ˇ

ˇ` 2|xi|
˘

pf “ zs ´ δzs “ ´ 4
n´1
ÿ

i“1

|xi| .

Clearly pf is a concave function and to check the convexity of qf we note that

ˇ

ˇxi`1 ´ 2 |xi| ` 1
ˇ

ˇ` 2|xi| “
ˇ

ˇ2 |xi| ´ 1´ xi`1
ˇ

ˇ`
`

2|xi| ´ 1´ xi`1
˘

` xi`1 ` 1

“ 1` xi`1 ` 2 max
`

0, 2|xi| ´ xi`1 ´ 1
˘

. (43)

The last expression is the sum of an affine function and the positive part of the sum of the
absolute value and an affine function, which must therefore also be convex. The corresponding term in
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Equation (42) is the same with the convex function 2|xi| added, so that δ f is also convex in agreement
with the general theory. Finally, one verifies easily that

pf ď f “ 1
2 p
qf ` pf q ď qf ,

which is the whole idea of the decomposition. It would seem that the automatic decomposition by
propagation through the abs-linear procedure yields a rather tight result. The function f as well as
the lower and upper bound given by the convex/concave decomposition are illustrated on the left
hand side of Figure 2. Notice that the switching structure is indeed identical for all three as stated in
Theorem 1. On the right hand side of Figure 2, the difference 2δ f between the upper, convex and lower,
concave bound is shown, which is indeed convex.

Figure 2. Nesterov–Rosenbrock test function polyhedral inclusion for n “ 2.

It is worthwhile to look at the condition number of the decomposition, namely we get the
following trivial bound

κpqf , pf q “ sup
xPRn

1
2 |x1 ´ 1| ` 2

řn´1
i“1

´
ˇ

ˇ

ˇ
xi`1 ´ 2 |xi| ` 1

ˇ

ˇ

ˇ
` 4|xi

ˇ

ˇ

ˇ
q

1
2 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1|

“ 1` sup
xPRn

8
řn´1

i“1 |xi|

1
4 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1|

“ 8 .

The disappointing right hand side value follows from the fact that at the well known unique
global optimizer x˚ “ p1, 1, . . . , 1q P Rn the numerator is zero and the denominator positive. However,
elsewhere, we can bound the conditioning as follows.

Lemma 3. In case of the example (40) there is a constant c P R such that

κpqf pxq, pf pxqq ď 1`
c

minp}x´ x˚}, 3q
. (44)

Proof. Since the denominator is piecewise linear and vanishes only at the minimizer x˚ there must be
a constant c0 ą 0 such that for }x´ x˚}8 ď 3

8
řn´1

i“1 |xi|

1
4 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1|

ď
8
řn´1

i“1 |xi|

c0}x´ x˚}8
ď

8pn´ 1q}x}8
c0}x´ x˚}8

ď
32pn´ 1q

c0}x´ x˚}8
,

which takes the value 32pn´ 1q{p3c0q on the boundary. On the other hand we get for }x}8 ě 2 and
thus in particular }x´ x˚}8 ě 3

8
řn´1

i“1 |xi|

1
4 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1|

ď
4pn´ 1q}x}8

max1ďiăn |2|xi| ´ xi`1 ´ 1|
ď

4pn´ 1q
2´ 1´ 1{2

ď 8pn´ 1q .
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Assuming without loss of generality that c0 ď 4{3 we can combine the two bounds to obtain the
assertion with c ” 32pn´ 1q{c0.

Hence, we see the condition number κpqf pxq, pf pxqq is nicely bounded and the decomposition should
work as long as our optimization algorithm has not yet reached its goal x˚. It is verified in the
companion article [24], that the DCA exploiting the observations made in this paper reaches the global
minimizer in finitely many steps. It was already shown in [7] that the LIKQ condition is satisfied
everywhere and that the optimality test singles out the unique minimizer correctly. In Figure 3,
the arrows indicate the path of our reflection version of the DCA method as described in Section 5.

σ = (−1,−1,−1)

(−1,−1, 1)
σ =

(1,−1, 1)
σ = σ =

(1, 1, 1)

σ =
(1, 1,−1)

σ =
(1,−1,−1)

x1

−1 0 1

−1

0

1

x2

Figure 3. Signatures and reflection-based DCA for Nesterov–Rosenbrock variant (40) with n “ 2.

7. Summary, Conclusions and Outlook

In this paper the following new results were achieved

• For every piecewise linear function f given as an abs-linear evaluation procedure, rules for
simultaneously evaluating its representation as the average of a concave lower bound pf and a
convex upper bound qf are derived.

• The two bounds can be constructively expressed as a single maximum and minimum of affine
functions, which drastically simplifies the classical min´max representation. Due to its likely
combinatorial complexity we do not recommend this form for practical calculations.

• For the two bounds qf and pf , generalized gradients qg and pg can be propagated forward or
reverse through the convex or concave operations that define them. The gradients are not unique
but guaranteed to yield supporting hyperplanes and thus provide a verified version of the
oracle paradigm.

• The DCA algorithm can be implemented such that a local minimizer is reached in finitely
many iterations, provided the Linear Independence Kink Qualification (LIKQ) is satisfied. It is
conjectured that without this assumption the algorithm still converges in finitely many steps to a
Clarke stationary point. Details on this can be found in the companion paper [24].

These results are illustrated on the piecewise linear Rosenbrock variant of Nesterov.
On a theoretical level it would be gratifying and possibly provide additional insight, to prove

the result of Corollary A3 directly using the explicit representations of the generalized differentials of
the convex and concave part given in Corollary 1. Moreover, it remains to be explored what happens
when LIKQ is not satisfied. We have conjectured in [25] that just verifying the weaker Mangasarian
Fromovitz Kink Qualification (MFKQ) represents an NP hard task. Possibly, there are other weaker
conditions that can be cheaply verified and facilitate the testing for at least local optimality.
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Global optimality can be characterized theoretically in terms of ε´subgradients, albeit with ε

arbitrarily large [26]. There is the possibility that the alternative definition of ε-gradients given in [18]
might allow one to constructively check for global optimality. It does not really seem clear how these
global optimality conditions can be used to derive corresponding algorithms.

The implementation of the DCA algorithm can be optimized in various ways. Notice that for
applying the Simplex method in standard form, one could use for the representation as DC function
the max-part in the more economical representation Equation (27) introducing m̄ additional variables,
rather than the potentially combinatorial Equation (28) to assemble the constraint matrix. In any case it
seems doubtful that solving each sub problem to completion is a good idea, especially as the resulting
step in the outer iteration is probably much too small anyhow. Therefore, the generalized gradient of
the concave part, which defines the inner problem, should probably be updated much more frequently.
Moreover, the inner solver might be an SQOP type active signature method or a matrix free gradient
method with momentum term, as is used in machine learning, notwithstanding the nonsmoothness of
the objective. Various options in that range will be discussed and tested in the companion article [24].

Finally, one should always keep in mind that the task of minimizing a piecewise linear function
will most likely occur as an inner problem in the optimization of a piecewise smooth and nonlinear
function. As we have shown in [27] the local piecewise linear model problem can be obtained easily by
a slight generalization of automatic or algorithmic differentiation, e.g., ADOL-C [28] and Tapenade [29].
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Appendix A. Polynomial Optimality Test Based on Abs-Linear Form

As illustrated for the Nesterov test function, it may be advantageous to use intermediate variables
zi that are not arguments of the absolute value themselves. For simplicity, we assume that these
switching variables that do not impose nonsmoothness are located in the last components of z and that
only the s̃ ď s components z1, . . . zs̃ are arguments of the absolute value. Let us abbreviate the current
iterate xk with x̊ ” xk and denote the corresponding switching vector by z̊ “ zpx̊q, the signature vector
σ̊ “ sgnpz̊q and the active index set by α ” ti ď s̃ : σ̊i “ 0u with cardinality m ” |α| ď s̃. Consequently,
there are exactly 2m definite signatures by σ ą σ̊ and the same number of limiting gradients for the
three generalized differentials B qf , B pf , and B f .

For all x P Pσ̊, the signature σ̊ is constant and we can use Corollary 1 to define the smooth function

zσ̊pxq “ pI ´M´ LΣ̊q´1pc` Zxq “ c̊` Z̊x , (A1)

where we have pulled out the unit lower triangular factor pI ´M´ LΣ̊q such that

Z̊ “ pI ´M´ LΣ̊q´1Z and c̊ “ pI ´M´ LΣ̊q´1c .

For x « x̊ to be contained in the extended closure sPσ̊ as defined in Equation (14), it must satisfy
the m linear equations

Pαzpxq “ 0 P Rm for Pα “ peJi qiPα P Rmˆs̃

with ei denoting the ith unit vector in Rs̃. Thus it is necessary and sufficient for sPσ̊ to be a polyhedron of
dimension n´m that the Jacobian PαZ̊ P Rmˆn has full row rank m. This rank condition was introduced
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as LIKQ in [7] and obviously requires that no more than n switches are active at x̊. As discussed in [7],
for the point x̊ to be a local minimizer of f it is necessary that it solves the trunk problem

min aJx` bJz s.t. |Σ̊|z´ c̊´ Z̊x “ 0 .

Here |Σ̊| P Rs̃ˆs̃ is the projection onto the s̃´m vector components whose indices do not belong
to α so the equality constraint combines (A1) and the constraint Pαz “ 0. Now we get from KKT theory
or equivalently LOP duality that x̊ is a minimizer on Pα if and only if for some Lagrange multiplier
vector λ P Rs̃

aJ “ ´λJZ̊ and bJ “ λJ|Σ̊| . (A2)

Since I “ |Σ̊| ` PJα Pα we derive that

λJpI ´ |Σ̊|qZ̊ “ λJα PαZ̊ “ ´aJ´ bJZ̊ . (A3)

where λα ” Pαλ. This is a generally overdetermined system of n equations in the m components of
λα. If it is solvable the full multiplier vector λ “ PJα λα ` |Σ̊|b is immediately available. Because of the
assumed full rank of the Jacobian PαZ̊ we have m ď n, and if x̊ is a vertex in that m“n the tangential
stationarity condition (A3) is automatically satisfied.

Now it is necessary and sufficient for local minimality that x̊ is also a minimizer of f on all
polyhedra sPσ with definite σ ą σ̊. Any such σ ą σ̊ can be written as σ “ σ̊` γ with γ P t´1, 0, 1us̃

structurally orthogonal to σ̊ such that for Γ “ diagpγqwe have the matrix equations

Σ “ Σ̊` Γ and Σ̊ Γ “ 0 “ |Σ̊| Γ .

Then we can express the zpxq “ zσpxq for x P Pσ as

zσpxq “ zσ̊`γpxq “ pI ´M´ LΣ̊´ LΓq´1pc` Zxq

“ pI ´ L̊Γq´1pc̊` Z̊xq ,

with L̊ ” pI ´M´ LΣ̊q´1L . Now x̊ must be the minimizer of f on sPσ, i.e., solve the problem

min aJx` bJz s.t. pI ´ L̊Γqz “ c̊` Z̊x, PαΓz ě 0 P Rm . (A4)

Notice that the inequalities are only imposed on the sign constraints that are active at x̊ since the
strict inequalities are maintained in a neighborhood of x̊ due to the continuity of zpxq. Then we get
again from KKT theory or equivalently LOP duality that still aJ“´λJZ̊ and for a second multiplier
vector 0 ď µ P Rm the equalities

aJ “ ´λJZ̊ and bJ “ λJpI ´ L̊Γq ` µJPαΓ . (A5)

Multiplying from the right by the projection |Σ̊|we find that the conditions (A2) and (A3) must
still hold so that λ remains exactly the same. Moreover, multiplying from the right by ΓPJα we get with
PαPJα “ Im and ΓΓ “ PJα Pα after some rearrangement the inequality

pλ´ bqJΓPJα “ λJ L̊PJα ´ µJ ď λJ L̊PJα . (A6)

Now the key observation is that this condition is linear in Γ and is strongest for the choice
γi “ sgnpλi ´ biq for i P α yielding the inequalities

|λi ´ bi| ď eJi L̊Jλ for i P α . (A7)
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In other words, x̊ is a solution of the branch problems (A4) if and only if it is for the worst case
where γi “ sgnpλi´ biq for i P α. When coincidentally λi “ bi we can define γi arbitrarily. Note that the
complementarity condition µJPαzpx̊q “ 0 associated with Equation (A4) is automatically satisfied at x̊
for any µ, since Pα z̊ “ 0 by definition of the active index set α. These observations yield immediately:

Proposition A1 (Necessary and sufficient minimality condition). Assume LIKQ holds in that PαZ̊ has
full row rank m “ |α|. Then the point x̊ is a local minimizer of f if and only if we have tangential stationarity in
that a` Z̊Jb belongs to the range of Z̊JPJα and normal growth holds in that |Pαpλ´ bq| ď Pα L̊Jλ .

The verification that LIKQ holds and subsequently the test whether tangential stationarity is
satisfied can be based on a QR decomposition of the active Jacobian PαZ̊ P Rmˆn. The main expense
here is the calculation of Z̊ itself, which requires one forward substitution on pI ´M´ LΣ̊q for each of
n columns of Z and hence at most ns2{2 fused multiply adds. Very likely this effort will already be
made by any kind of active set method for reaching the candidate point x̊. Once the multiplier vector λ

is obtained the remaining test (A7) for normal growth is almost for free so that we have a polynomial
minimality criterion provided LIKQ holds. Otherwise one may assume a weaker generalization of the
Mangasarian Fromovitz constrained qualification called MFKQ in [25]. However, we have conjectured
in [19] that verifying MFKQ is probably already NP-hard.

Corollary A1 (Descent direction in the nonoptimal case). Suppose that LIKQ holds. If tangential
stationarity is violated there exits some direction d P Rn such that PαZ̊d “ 0 but paJ` bJZ̊qd ă 0, which
implies descent in that f px̊` τdq ă f px̊q for τ Á 0. If tangential stationarity holds but normal growth fails
there exists at least one i P α with |λi ´ bi| ą eJi L̊Jλ. Defining γ “ sgnpλi ´ biqei P Rs̃, any d satisfying
PαpI ´ L̊Γq´1Z̊d “ Pαγ is a descent direction.

Proof. In the first case it is clear that x̊` τd P Pσ̊ for τ Á 0 since the components of zpx̊` τdq with
indices in α stay zero and the others vary only slightly. Then the directional derivative of f p.q at x̊ in
direction τd is given by

τaJd` τbJZ̊d “ τpaJd` bJZ̊dq ă 0 ,

which proves the first assertion. Otherwise, λ is well defined and we can choose i P α with |λi ´ bi| ą

eJi L̊Jλ. Setting γ “ γiei with γi “ sgnpλi ´ biqei, one obtains for d with PαpI ´ L̊Γq´1Z̊d “ γ that
x̊` τd P Pσ̊`γ for τ Á 0. On that polyhedron the Lagrange multiplier vector µ is also well defined by
Equation (A6) but we have

µi “ eJi L̊Jλ´ pλi ´ biqγi “ eJi L̊Jλ´ |λi ´ bi| ă 0 .

Then we get the directional derivative of f p.q at x̊ in direction τd

τaJd` τbJpI ´ L̊Γq´1Z̊d “ τp´λJZ̊d` λJZ̊d` µJPJα ΓpI ´ L̊Γq´1Z̊dq

“ τµiγ
2
i ă 0 ,

where we have used identity (A5). Hence we have again descent, which completes the proof.

Corollary A2 (Optimality via Reflection). Suppose an x̊ where LIKQ holds has been reached by minimizing
qf pxq ` pgJx with pg “ ∇ pfσ for 0 R σ ą σ̊. Then x̊ is a local minimizer of f on Rn if and only if it is also a
minimizer of qf pxq `∇ pf Jσ̃ x with σ̃ “ σŹ σ̊ as defined in (15).

Proof. By assumption x̊ solves one of the branch problems of f itself. Hence we must have tangential
stationarity (A5) with the corresponding Γ “ diagpγq for γ “ σ´ σ̊. Since σ̃´ σ̊ “ ´γ we conclude
from (A6) that

pλ´ bqJΓPJα ď λJ L̊PJα ě pλ´ bqJp´ΓqPJα “ ´pλ´ bqJΓPJα
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which implies that
ˇ

ˇ

ˇ
pλ´ bqJPJα

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
pλ´ bqJΓPJα

ˇ

ˇ

ˇ
ď λJ L̊PJα . (A8)

Hence both tangential stationarity and normal growth are satisfied, which completes the proof by
Proposition A1 as the converse implication is trivial .

The key conclusion is that if an x̊ is the solution of two complementary convex problems it must
be locally optimal in the full dimensional space Rn. Hence one can establish local optimality just using
the preferred convex solver. If this test fails one naturally obtains descent to function values below
f px̊q until eventually a local minimizer is found.

Appendix A.1. Equivalence to DC Optimality Condition

Using the explicit expressions given in Lemma 1 we find that (see [18])

BLf px̊q“
ď

0“γJσ̊

!

aJ` bJpI ´ L̊Γq´1Z̊
)

, (A9)

where γ ranges over all complements of σ̊ such that σ̊`γ P t´1, 1us is definite. Similarly we obtain with

b̃J ” |b|JpI ´ |M| ´ 2|L|q´1|L| ě 0 P Rs

the limiting differentials of the convex and the concave part as

BL
qf px̊q “

ď

0“γJσ̊

!

aJ` pbJ` b̃JΣ̊` b̃JΓqpI ´ L̊Γq´1Z̊
)

, (A10)

BL
pf px̊q “

ď

0“γJσ̊

!

aJ` pbJ´ b̃JΣ̊´ b̃JΓqpI ´ L̊Γq´1Z̊
)

. (A11)

Hence we have an explicit representation for the limiting gradients of f as well as its convex and
concave part qf and pf at x̊. It is easy to see that the minimality condition (A5) requires a to be in the
range of Z̊J so that we have again aJ“ ´λJZ̊ yielding

BL
qf px̊q “

ď

0“γJσ̊

!

pbJ´ λJ ` λJ L̊Γ` b̃JΣ̊` b̃JΓqpI ´ L̊Γq´1Z̊
)

, (A12)

BL
pf px̊q “

ď

0“γJσ̊

!

pbJ´ λJ ` λJ L̊Γ´ b̃JΣ̊´ b̃JΓqpI ´ L̊Γq´1Z̊
)

. (A13)

We had hoped to be able to derive directly from these expressions that normal growth implies
the condition (39), but we have so far not been able to do so. However, we can indirectly derive the
following equivalence.

Corollary A3 (First order minimality condition). Under LIKQ the limiting differential BL
pf px̊q is contained

in the convex hull of ´BL
qf px̊q if and only if tangential stationarity and normal growth condition hold according

to Proposition A1.

References

1. Joki, K.; Bagirov, A.; Karmitsa, N.; Mäkelä, M. A proximal bundle method for nonsmooth DC optimization
utilizing nonconvex cutting planes. J. Glob. Optim. 2017, 68, 501–535. [CrossRef]

2. Tuy, H. DC optimization: Theory, methods and algorithms. In Handbook of Global Optimization; Springer:
Boston, MA, USA, 1995; pp. 149–216.

3. Rump, S. Fast and parallel interval arithmetic. BIT 1999, 39, 534–554. [CrossRef]
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