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Abstract: Most supervised person re-identification methods show their excellent performance,
but using labeled datasets is very expensive, which limits its application in practical scenarios.
To solve the scalability problem, we propose a Cross-camera Erased Feature Learning (CEFL)
framework for unsupervised person re-identification that learns discriminative features from image
appearances without manual annotations, where both of the cross-camera global image appearance
and the local details are explored. Specifically, for the global appearance, in order to bridge the gap
between images with the same identities under different cameras, we generate style-transferred images.
The network is trained to classify the original images, the style-transferred images and the negative
samples. To learn the partial details of the images, we generate erased images and train the network
to pull the similar erased images together and push the dissimilar ones away. In addition, we joint
learn the discriminative global and local information to learn a more robust model. Global and erased
features are used together in feature learning which are successful conjunction of BFENet. A large
number of experiments show the superiority of CEFL in unsupervised pedestrian re-identification.

Keywords: unsupervised; cross camera; feature discriminative learning; person re-identification

1. Introduction

Person re-identification (re-ID) is a key technology in urban monitoring, which is used in public
places to find the target pedestrian in video or images taken by different cameras [1]. In the past
decades, most person re-identification methods have focused on distance metric learning methods [2–4]
and feature learning methods [5,6]. Especially in recent years, deep learning methods [1,7–11] have
been widely used for person re-identification. However, most current person re-identification methods
require tremendous amount of labeled images, which is very difficult and expensive. And it also limits
the scalability and usability in practical application scenarios.

To relieve the scalability problem, some unsupervised methods are proposed. To obtain supervised
signals, these methods usually adopt unsupervised clustering [12–15] or generative adversarial
networks [7,9] to augment datasets. Another branch of unsupervised learning methods [1,7–11]
learn the discriminative pedestrian information from source datasets with labeled pedestrian images.
However, due to the absence of supervision signal, the target dataset is still not fully explored, and the
performances of these methods are thus not satisfying.

Without the annotation from the target dataset, we aim to design auxiliary task from the raw
images to give supervision signal. Since there are no ground truth labels, we generate images with
certain identity in unsupervised manners. To deal with the global appearance of images, Camstyle [16]
is adopted, with which for each training sample, images of other camera style are generated. On the one
hand, the generated images maintain the same identity information that could be viewed as positive

Algorithms 2020, 13, 193; doi:10.3390/a13080193 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/13/8/193?type=check_update&version=1
http://dx.doi.org/10.3390/a13080193
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 193 2 of 12

samples. On the other hand, there are huge gaps between images of different cameras. Training one
image with multiple camera style benefits the cross-camera matching and enhances the robustness
of the model. To dig into the local details of images, we generated random erased images as the
positive samples. As shown in Figure 1, comparing with the global appearance, the partial images
of the same identity look more similar. Since the partial images are more robust to changes in pose,
lighting, and perspective, the similarity between partial features are adopted to train the model in the
unsupervised manner.
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With the generated images and the designed auxiliary tasks, we propose a Cross-camera Erased
Feature Learning (CEFL) framework for unsupervised person re-identification. The framework can be
divided into three parts: cross-camera global feature learning, erased partial feature learning, and joint
global and partial feature learning. Specifically, to learn the global features, the intra-class gaps are
minimized while the inter-class gaps are maximized in the global feature space. To define positive
samples and negative samples and learn more discriminative features across cameras, generated
images of different camera styles are utilized. To learn the partial features, a Batch Feature Erase
Network (BFENet) is used to randomly erase a part of the feature maps in the same batch to force the
network to learn local details of pedestrian pictures. The framework is learned to pull the similar
erased feature vectors together and push away the dissimilar features. To strengthen the model and
get more robust feature, we also learn the global and partial appearance jointly. We take the erased
features as positive samples and determine negative samples in mini-batch image set to form a triplet
for pedestrian feature determination learning.

The main contributions of our work are as follows:

• We use generated images to reduce the gap between cameras. Generated images can provide
additional supervision information for unsupervised person re-identification.

• We use BEFNet to generate erased images so that the network can learn the features of local
detail. At the same time, the similarity calculation between erased parts is more accurate and
more suitable for unsupervised person re-identification.

• We join to learn global and erased parts to improve the robustness of CEFL. Global and erased
features are used together in feature learning which are successful conjunction of BFENet.

• We evaluated EFDL on two large datasets: Market-1501 [6] and Duke-MTMC [17]. Experiments
show that our method is superior to existing unsupervised person re-identification methods.
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2. Related Work

Supervised person re-identification. Most of existing methods are proposed to deal with supervised
person re-identification, such as distance measures learning, subspaces learning [2–4], and deep learning
methods [18,19]. With the rapid development of deep learning, feature learning by deep networks has
become a common practice in person re-identification. Li et al. [20] combined deep siamese network
architecture with pedestrian human body feature learning for the first time and achieved higher
performance. Proposed methods also improved the performance of deep person re-identification.
Xiao et al. [21] improved the generalization of different pedestrian scenes by using Domain Guided
Dropout method. Part-based methods [19,22] achieve the most advanced performance. In part-based
methods, the input feature map is divided into a fixed number of bands, and feature vectors are
aggregated from these bands. BFE model [23] get better results than part-based model in supervised
person re-identification. However, supervised person re-identification methods rely on a large amount
of manually labeled datasets which is time-consuming and labor-intensive. It also limit the practicability
and applicability of supervised methods. In this paper, BFE network is applied to unsupervised person
re-identification, which strengthens the classification ability of our model.

Unsupervised person re-identification. There are few effective methods have been used in
unlabeled datasets. Features of manual annotation [5,24,25] are still insufficient for guaranteeing
visually invariant features. The performance of manually labeled features in unsupervised pedestrian
re-identification is weak. Recently. some methods achieved better results extracting features [26–28]
or finding base labels [29–31] in unlabeled datasets. An unsupervised asymmetric distance metric
learning method is proposed and it is based on asymmetric K-means clustering method [30,31].
Lin et al. [32] uses the clustering method for completely unsupervised person re-identification.
However, the pseudo-labels of person images obtained through clustering may assign the same
pseudo-labels to similar images with different identities, which improving the difficulty of classifying
pedestrians. Cross-domain transfer learning methods [1,7,8,10,11] are proposed for unsupervised
person re-identification, and the performance of the model on the target dataset is improved by using
other labeled dataset. Wei et al. [7] use GAN to reduce the gap between different datasets. Bak et al. [1]
propose an adaptive technology that uses synthetic data to identify person. Yu et al. [33] used auxiliary
datasets to generate auxiliary references for unsupervised person re-identification. However, the gap
between pedestrian pictures in different datasets is really large, and the robustness of transfer learning
still needs to be improved. Yang et al. [34] develops the PatchNet network to learn discriminative
features at patch level and shows superior performance. However, these similar patches may be
extracted from different pedestrian identities, which is still difficult to distinguish potential identity
information. In our model, we partially occluding pedestrian images and the remaining feature
information can still belong to the same pedestrian. In addition, dataset generated in Camstyle is
directly used as positive sample for calculation, so that the operation is more direct and convenient.

3. Materials and Methods

In this section, our Cross-camera Erased Feature Learning (CEFL) framework is introduced in
detail. As shown in Figure 2, our method contains three components: cross-camera global feature
learning, erased partial feature learning, and joint global and partial feature learning. We develop three
loss functions, so that CEFL can learn more distinguishing features in unlabeled dataset. The main
structure of CEFL is introduced in Section 3.1. Cross-camera global feature learning is introduced in
Section 3.2. Erased partial feature learning is introduced in Section 3.3. Joint global and partial feature
learning is introduced in Section 3.4.
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Figure 2. The structure of our unsupervised Cross-camera Erased Feature Learning (CEFL) network.
In the three branches from top to bottom, we used three different components and loss functions.
Features is classified by minimizing intra-class gaps while maximizing inter-class gaps in cross-camera
global feature learning. Similar erased feature vectors are pulled together and dissimilar features are
pushed away in erased partial feature learning. Global features and erased features are used together
in joint global and partial feature learning.

3.1. Network Structure

In this paper, we propose a new unsupervised Cross-camera Erased Feature Learning (CEFL)
framework. The model framework is shown in Figure 2. CEFL model learns and uses features
in different datasets to mine discriminative features on unlabeled datasets. CEFL aims to learn
commonality and distinguishing features of different datasets through three branches, and combines
three loss functions to provide feature differentiation guidance on unlabeled datasets.

CEFL network is divided into cross-camera global feature learning, erased partial feature learning,
and joint global and partial feature learning. CEFL is pre-trained on other labeled datasets and learns
common features of different datasets through pre-training process. In order to make the network
mine more distinguishing features in unlabeled datasets, we add three different loss functions to three
network branches, respectively. We add a quadruple loss function to discriminate pedestrians in
cross-camera global feature learning. There are no identity labels used to form positive and negative
samples in unsupervised datasets. Then we propose to aggregate features in mini-batch, calculate their
similarity distances and sort to mine negative samples. We use image generated from Camstyle [17] to
be an alternative positive sample. We use and apply the Batch Feature Erasure Network (BFENet) [23]
in erased partial feature learning. BFENet consists of a global branch and a feature erasing branch.
In BFE network, all images in the same batch are cropped in a consistent way. All the units inside
the erased area are zeroed out. We also propose loss function to make similar erased features closer,
while pushing away dissimilar erased features. Then we combine global features and erased features
in joint global and partial feature learning. We use triple loss function to provide guidance for global
features and erased features this network branch.

3.2. Cross-Camera Global Feature Learning

In supervised person re-identification method, the distance between pictures with same identity is
usually minimized, and the distance between pictures of different identity is maximized. But there is no
identity information in unsupervised person re-identification. In order to obtain more accurate category
information, we classify features by minimizing intra-class gaps while maximizing inter-class gaps
in feature space of the whole image. We use circular sorting to mine negative samples in mini-batch,
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and use different styles of pictures generated by Camstyle network as positive samples. On this basis,
we propose a corresponding quadruple loss function. In this section, we will guide the cross-camera
global feature learning branch to mine discriminative information on unlabeled datasets.

Selection of negative samples: We determine negative samples in mini-batch image set. If there
are two pedestrian images with same identity in mini-batch, they are most likely to be the nearest
neighbors to each other. In the same way, if two samples in a mini-batch are not nearest neighbors of
each other, they may have different identities. Based on this concept, we add a circular sort to determine
negative samples from a mini-batch set. Given a mini-batch of M global sample features [Si]

M
i=1,

ranking result of each global feature si are generated based on pairwise similarity measure method.
And Euclidean distance metric is used to calculate the similarity between two global features. A ranking
list Li of si is obtained by sorting the obtained similarity measurement results. Then, we traverse the
sorted list Li in turn. For each negative sample candidate of global features s j ∈ Li, Euclidean distance
measurement method is also used to calculate the sorted list of s j. If si is not the top- t nearest neighbor
of s j, it is considered that s j is a negative sample of si. We choose the first and second feature of ranking
list Li as negative sample candidates in cross-camera global feature learning. And we select the first
global feature of ranking list Li as a negative sample in joint global and partial feature learning.

Selection of positive samples: Since the probability of finding two images with same identity is
really low in a mini-batch set, we directly use the pedestrian images generated in Camstyle [34] as
the positive samples. By adopting Camstyle [34], for each original training image, images with styles
of other cameras are generated. As shown in Figure 3, these generated images maintain the original
identity information while benefit the cross-camera feature learning. The loss function of global feature
learning is defined as follows:

LG = max
{∣∣∣∣∣∣si − pi

∣∣∣∣∣∣2−∣∣∣∣∣∣si − n1i
∣∣∣∣∣∣2 + g1, 0

}
+ max

{∣∣∣∣∣∣si − pi
∣∣∣∣∣∣2−∣∣∣∣∣∣n1i − n2i

∣∣∣∣∣∣2 + g2, 0
}

(1)

where pi is the positive sample feature replaced by the generated image, n1i and n2i are negative
sample features. g1 and g2 are threshold parameters, where g1 = 0.2, g2 = 0.1. We choose the first
and second feature of ranking list Li as negative sample candidates n1i, n2i, respectively.

Algorithms 2020, 13, x FOR PEER REVIEW 5 of 13 

On this basis, we propose a corresponding quadruple loss function. In this section, we will guide the 
cross-camera global feature learning branch to mine discriminative information on unlabeled 
datasets. 

Selection of negative samples: We determine negative samples in mini-batch image set. If there 
are two pedestrian images with same identity in mini-batch, they are most likely to be the nearest 
neighbors to each other. In the same way, if two samples in a mini-batch are not nearest neighbors of 
each other, they may have different identities. Based on this concept, we add a circular sort to 
determine negative samples from a mini-batch set. Given a mini-batch of M  global sample features 

[ ]MiiS 1= , ranking result of each global feature is are generated based on pairwise similarity measure 
method. And Euclidean distance metric is used to calculate the similarity between two global features. 
A ranking list iL  of is  is obtained by sorting the obtained similarity measurement results. Then, 

we traverse the sorted list iL  in turn. For each negative sample candidate of global features ij Ls ∈ , 

Euclidean distance measurement method is also used to calculate the sorted list of js . If is is not the 

top- t  nearest neighbor of js , it is considered that js is a negative sample of is . We choose the first 

and second feature of ranking list iL  as negative sample candidates in cross-camera global feature 

learning. And we select the first global feature of ranking list iL  as a negative sample in joint global 
and partial feature learning. 

Selection of positive samples: Since the probability of finding two images with same identity is 
really low in a mini-batch set, we directly use the pedestrian images generated in Camstyle [34] as 
the positive samples. By adopting Camstyle [34], for each original training image, images with styles 
of other cameras are generated. As shown in Figure 3, these generated images maintain the original 
identity information while benefit the cross-camera feature learning. The loss function of global 
feature learning is defined as follows: 

{ } { }2 2 2 2max || || || 1 || g1 0 max || || || 1 2 || 2 0G i i i i i i i iL s p s n s p n n g= − − − + + − − − +， ，  (1) 

where ip  is the positive sample feature replaced by the generated image, in1 and in2  are negative 
sample features. 1g and 2g  are threshold parameters, where 2.01 =g , 1.02 =g . We choose the 

first and second feature of ranking list iL  as negative sample candidates in1 , in2 , respectively. 

 
Figure 3. Examples of images generated by Camstyle. 

Discussion: It is very unlikely that pedestrian images in mini-batch have same identity, when a 
part of the images is randomly sampled from a large number of pedestrian images. Then we can 
know that it is even less likely that both negative samples belong to the same person. At the same 
time, we use circular sorting mechanism to select the first and second global feature of the ranking 

Figure 3. Examples of images generated by Camstyle.

Discussion: It is very unlikely that pedestrian images in mini-batch have same identity, when a
part of the images is randomly sampled from a large number of pedestrian images. Then we can
know that it is even less likely that both negative samples belong to the same person. At the same
time, we use circular sorting mechanism to select the first and second global feature of the ranking list.
In this way, we determine that the identities of these two negative samples are different. The second
term of this loss function is to learn absolute distance between positive and negative samples. This loss
function can help model learn better representations.



Algorithms 2020, 13, 193 6 of 12

3.3. Erased Partial Feature Learning

Images of the same pedestrian under different cameras may look different in global appearance,
since they have different camera views, lightings, etc. However, since they are of the same pedestrian,
their local details could be similar. Therefore, for each training sample, we erase a part of the pedestrian
image and train the model to learn from the retained partial image. In BFDL branch, batch feature eraser
(BFE) network is proposed to randomly erase a part of feature maps in each mini-batch. In supervised
person re-identification learning method, elements of same classes are closer in the feature space
and farther away from different classes to enhance the discrimination of elements [35,36]. In CEFL,
we propose to draw similar erased features closer while pushing dissimilarity erased features away in
the feature space, as shown in Figure 4.
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The erased features are extracted by BFE network, as shown in Figure 2. Then we need to compare
each unlabeled erased feature with other features to find similar features, which is difficult to handle
in mini-batch optimization of deep learning. Therefore, we used erased feature memory bank [36]
to store these erased features. At the same time, erased feature memory bank is updated during the
training process. Function of the erased feature memory bank is as follows:

F j,e =

(1−r)×F j,e−1+r×F j,e,e>0,

F j,e, e = 0,
(2)

F j,e =
{
F j

}N

j=1
(3)

where N is the number of images in the training dataset,e is the training epoch, and r is the updating
rate of F j,e, F j,e is the latest erased feature extracted by BFE. e = 0 means the erased feature memory
bank is in initial state. The erased feature memory bank is updated in batches during the training phase.

Then the erased features are extracted and normalized by the subsequent network layer, as shown
in Figure 2. For each erased feature, the loss function is defined as follows:

LB = − log

∑
F j∈Ki

e−
1
2 ||bi−F j ||

2
2∑N

j=1, j,i e−
1
2 ||bi−F j ||

2
2

(4)

where Ki is the nearest-neighbor feature set: k features closest to feature bi(Euclidean distance) in the
erased feature memory bank. By minimizing the loss function LB, EFDL can bring the feature Ki that
similar to the feature bi closer, while pushing the dissimilar feature

{
F
∣∣∣F j < Ki

}
away.
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3.4. Joint Global and Partial Feature Learning

Joint global and partial feature learning is used to learn more robust features which can make the
model generate similar embeddings for both the original image and the erased partial image. For each
original global image, we regard the erased feature bi as positive sample, and select the first global
feature of ranking list Li as a negative sample ni. For the extracted global feature si, the loss function is
defined as follows:

LJ = max
{∣∣∣∣∣∣si − bi

∣∣∣∣∣∣2−∣∣∣∣∣∣si − ni
∣∣∣∣∣∣2 + g1, 0

}
(5)

To summarize, the loss objective of our CEFL framework is formulated by:

L = LG + LB + LJ (6)

4. Results

4.1. Datasets and Evaluation Protocol

In order to evaluate the performance of the CEFL model, here we evaluate two datasets in the
experiments, i.e., Market-1501 [6] and DukeMTMC-reID [17]. The Market-1501 [6] dataset includes
1501 identities captured by six cameras and 32,668 detected pedestrian rectangles under six camera
viewpoints. In this dataset, each pedestrian contains at least two camera viewpoints. The training
set is consisted of 751 identities and each identity include 17.2 training data in average. The test set
is composed of 19,732 images of 750 identities. The pedestrian detection rectangle in the gallery is
detected by DPM. Here, we use mean Average Precision (mAP) to evaluate person re-identification
algorithms. The DukeMTMC-reID [17] dataset consists 36,411 images of 1404 identities. With those
images collected by eight cameras. And each image is sampled every 120 frames from the video.
This dataset is composed of 16,552 training images, 2228 query images and 17,661 gallery images.
Half of the identities is randomly sampled as training sets while the others as test sets. DukeMTMC-reID
offers human labeled bounding boxes.

For each query image, we calculate the Euclidean distance between query image and pedestrian
image in gallery. Then we arrange them in descending order according to the Euclidean distance,
and use the Cumulative Match Characteristic (CMC) curve to show the performance. In terms of
performance measurement, we use the Rank-1 accuracy and the mean Average Precision (mAp).

4.2. Implementation Details

We pre-trained ResNet50 on the MSMT17 [7] dataset. The input pedestrian images are resized to
384 × 128. Batch size is set to 40 and learning rate is set to le-3. In GFDL branch, we generated one
positive sample and two negative sample for each image, t is set to 10. In BFDL branch, r is set to 0.1,
and k is set to 25. The entire training process is terminated in 60 epochs.

4.3. Comparison with the State-of-the-Art

CEFL is experimented on Market-1501 [6] and DukeMTMC-reID [17], and experimental results
are compared with other unsupervised person re-identification methods. Comparison results are
shown in the following tables: Table 1 shows the comparison results on the Market-1501 [6] dataset,
and Table 2 shows the comparison results on the DukeMTMC-reID [17] dataset.
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Table 1. Comparison with existing methods on Market1501.

Method
Market1501

Rank-1 Rank-5 Rank-10 mAP

LOMO [5] 27.2 41.6 49.1 8.0
BoW [6] 35.8 52.4 60.3 14.8

UMDL [10] 34.5 52.6 59.6 12.4

PUL [29] 45.5 60.7 66.7 20.5
CAMEL [30] 54.5 − − 26.3

DECAMEL [31] 60.2 76.0 81.1 32.4

PTGAN [7] 38.6 − 66.1 −

SPGAN+LMP [9] 57.7 75.8 82.4 26.7
TJ-AIDJ [8] 58.2 74.8 81.1 26.5
HHL [11] 62.2 78.8 84.0 31.4
BUC [32] 66.2 79.6 84.5 38.3
MAR [33] 67.7 81.9 − 40.0
PAUL [34] 68.5 82.4 87.4 40.1

EFDL (Ours) 74.4 85.5 88.9 47.6

Table 2. Comparison with existing methods on DukeMTMC-reID.

Method
DukeMTMC

Rank-1 Rank-5 Rank-10 mAP

LOMO [5] 12.3 21.3 26.6 4.8
BoW [6] 17.1 28.8 34.9 8.3

UMDL [10] 18.5 31.4 37.6 7.3

PUL [29] 30.0 43.4 48.5 16.4

PTGAN [7] 27.4 − 50.7 −

SPGAN+LMP [9] 46.4 62.3 68.0 26.2
TJ-AIDJ [8] 44.3 59.6 65.0 23.0
HHL [11] 46.9 61.0 66.7 27.2
BUC [32] 47.4 62.6 68.4 27.5
MAR [33] 67.1 79.8 − 48.0
PAUL [34] 72.0 82.7 86.0 53.2

EFDL (Ours) 73.1 83.7 86.9 55.4

Compared with manual labeling methods (LOMO [5], BoW [6], and UMDL [10]), performance
of our method is beyond these methods. This is because CEFL model can learn robust features.
Our proposed method outperforms clustering-based methods (PUL [29], CAMEL [30], DECAMEL [31],
and BUC [32]) significantly on both datasets. Clustering-based methods mainly identify pedestrians
by assigning the same pseudo-labels to similar pedestrian images. But these similar pedestrian images
may have different identities, which affects the discrimination of pedestrians. Other details in the erased
feature map are used for matching, in CEFL, which strengthens the ability of feature discrimination.

Compared with transfer learning methods (PTGAN [7], SPGAN + LMP [9], TJ-AIDJ [8], HHL [11],
MAR [33], and PAUL [34]), our proposed method outperforms these methods. Due to the large gap
between different datasets, it is still difficult to apply the model to the target domain. The CEFL model
performs feature discrimination learning by extracting the global features and the erased features.
Then the similarity measurement method can strengthen the generalization ability between different
unlabeled datasets.
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4.4. Experimental Details Analysis

The effect of the parameters t in loss function LG. We perform experiments on two datasets
(Market-1501 and DukeMTMC-reID), and used Rank-1 accuracy as the evaluation index. If the value
of t is too small, CEFL may choose a negative sample which has the same identity of the query image.
The wrong selection of negative sample can reduce the classification ability of CEFL. The performance
of the model can be reduced if the value of t is too large, as shown in Figure 5. Setting appropriate
values is more helpful to find negative samples with different identity. Experiments show that the
CEFL network performance better than others when t is set to 10, as shown in Figure 5.
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The effect of the parameters k in loss function LB. We perform experiments on two datasets
(Market-1501 and DukeMTMC-reID), and used Rank-1 accuracy as the evaluation index. The value
of k means that there are k erased features are regarded as similar features of the target pedestrian
features. If the value of k is too large, features with different ID may be judged into the same class,
which resulting in performance degradation. Similarly, if the value of k is too small, CEFL may lose
some similar features. Losing similar features is not conducive to the subsequent process of CEFL
network. In CEFL, we set different values of k to judge the influence of the parameters k. Experiments
on two dataset show that the CEFL performance better than others when the value of k is set to 25,
as shown in Figure 6.
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In order to further explore the impact of CEFL, we evaluate the effects of three network components
on two classic datasets respectively. Experiments on two dataset show that the CEFL performance
better when the three network branches work together, as shown in Table 3. We test Cross-camera
global feature Learning (CL) and Erased partial feature Learning (EL), as shown in Table 3. GL classifies
features by minimizing intra-class gaps while maximizing inter-class gaps in global feature space. In EL
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similar erased feature vectors are pulled together and dissimilar features are pushed away. The result
of ‘GL+EL’ is clearly better than ‘CL’ or ‘EL’ on both datasets. This is because combining ‘GL’ and
‘EL’ can provide more effective learning guidance to the network. The result of CEFL shows the best
performance on two datasets. This is because joint global and partial feature learning can combine
global features and erased features together.

Table 3. Components analysis of CEFL.

Branch Market-1501 (mAP) DukeMTMC (mAP)

CL 20.2 18.8
EL 23.5 32.3

CL+EL 39.7 48.2

CEFL 47.6 55.4

5. Conclusions

This paper proposes an unsupervised Cross-camera Erased Feature Learning (CEFL) model
and proves the effectiveness of CEFL in unsupervised person re-identification. At the same time,
three feature learning loss functions are upgraded and used to provide effective guidance of CEFL.
These loss functions can help strengthen the feature discrimination ability of CEFL. In this article.
CEFL is divided into three components: cross-camera global feature learning, erased partial feature
learning and joint global and partial feature learning. Three components can learn features of unlabeled
dataset. Cross-camera global feature learning is designed to minimize the gap between similar global
features and maximize the gap between different global features. BFENet is added to help CEFL learn
more details of features by erasing part feature map. And a loss function is proposed to draw closer
to similar features and push away dissimilar features in erased partial feature learning. Joint branch
connects erased features with global features and improves a loss function to learn discriminant
features on unlabeled dataset. A large number of experiments show the effectiveness of CEFL in
unsupervised person re-identification.
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