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Abstract: In the reconciliation problem, we are given two phylogenetic trees. A species tree represents
the evolutionary history of a group of species, and a gene tree represents the history of a family of
related genes within these species. A reconciliation maps nodes of the gene tree to the corresponding
points of the species tree, and thus helps to interpret the gene family history. In this paper, we study
the case when both trees are unrooted and their edge lengths are known exactly. The goal is to root
them and to find a reconciliation that agrees with the edge lengths. We show a linear-time algorithm
for finding the set of all possible root locations, which is a significant improvement compared to the
previous O(N3 log N) algorithm.

Keywords: reconciliation; phylogeny; gene tree

1. Introduction

Reconciliation of gene trees and species trees is a computational problem arising in evolutionary
biology that has been studied since 1979 [1]. Here, we concentrate on a variant proposed by
Ma et al. [2,3], called isometric reconciliation. We provide a linear-time algorithm for reconciling
two unrooted trees, which is a significant improvement over the previous O(N3 log N) algorithm [4].

A species tree represents an evolutionary history of a group of species. Present-day species are
typically placed in the leaves, and internal nodes correspond to speciation events. Speciation is
a process in which individuals of a single species separate into two groups that further
evolve independently.

A gene tree represents an evolutionary history of a group of related genes from several
species. In the simplest scenario, each individual has a single copy of a particular gene, and these
genes are propagated along the species tree, yielding the gene tree identical to the species tree.
However, during evolution, a gene can be lost (deleted), and it can also become duplicated,
whereupon a particular species and its descendants have multiple copies of the gene. After a series
of such duplication and deletion events, the gene tree and the species tree will differ. In a gene tree,
the leaves represent copies of the gene in the present-day species and the internal nodes represent
speciations and duplications. Lost gene copies are not represented in gene trees.

The goal of reconciliation is to map nodes of a gene tree to the corresponding points in a species
tree that represent the same points in the evolutionary history. This mapping helps to distinguish
whether a node of a gene tree corresponds to a speciation or a duplication and to estimate the number
of deletions (see an example in Figure 1).

Note that gene trees and species trees representing evolutionary histories are rooted, with the
root representing the last common ancestor of all the leaves. However, trees are in practice constructed
from DNA or protein sequences, and many commonly used methods are unable to determine the root
location, so instead provide only an unrooted version of the tree [5].
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Figure 1. An example of a reconciliation of a gene tree and a species tree. Leaves of the gene tree are
labeled by the species of origin; for example, b1 and b2 are genes from species b. In the history implied
by the reconciliation, there was originally a single copy of the gene, which underwent speciation
corresponding to nodes q and r and was passed without change to species c. On the other lineage,
the gene was first duplicated (node u), and then underwent speciation in node x, followed by one loss in
each of the new lineages. As a result, species a had only one copy of the gene. Finally, the gene was again
duplicated on the edge leading to b (node v). Note that if u was mapped to node x by the reconciliation,
there would be only a single duplication (node v) and no losses in the corresponding history.

In the isometric reconciliation, both trees have known edge lengths and the reconciliation has
to obey these lengths (see an example in Figure 2). The problem was introduced by Ma et al. [2,3],
who provided a polynomial-time algorithm for reconciling an unrooted gene tree with a rooted species
tree. Brejová et al. [4] have provided a corrected and improved version of this algorithm, which runs
in O(N log N) time, where N is the total number of nodes in the two trees combined. The authors also
provided algorithms for several variants of the problem, including an O(N5 log N)-time algorithm
to compute all reconciliations of two unrooted trees. In this paper, we improve this running time to
O(N) for gene trees with node degrees bounded by O(1) (typically, unrooted phylogenetic trees have
internal nodes of degree three). To achieve this time, we only output pairs of valid root locations in the
two trees instead of full reconciliations. Given any pair of such root locations, the full reconciliation
can be computed in O(N log N) time by a simple algorithm given by Brejová et al. [4]. If the earlier
algorithm [4] is modified to output only root locations, it still runs in O(N3 log N) time; thus the
algorithm presented here is a significant improvement.

We also characterize the set of possible root locations, proving that it always forms a connected
subgraph of the species tree and that the distances between different root locations in the species tree
and their counterparts in the gene tree are preserved.

Finally, note that the problem of gene tree and species tree reconciliation was also studied in other
settings [6]. The most traditional is the parsimony setting that uses unweighted trees and seeks a
reconciliation minimizing the number of inferred duplications and deletions. This problem can be
solved in linear time for two rooted trees [7,8]. For unrooted gene trees, it is possible to find all optimal
root locations in linear time [9]. Rooting an unrooted species tree using a set of unrooted gene trees was
also considered [10]. Edge lengths were used in the context of probabilistic models of gene duplication
and deletion [11–13] and in models allowing horizontal transfer of genes between species [14,15].
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Figure 2. An example of an isometric reconciliation of two unrooted trees. On the left, the input gene
tree G and species tree S are shown, both unrooted. On the right is one possible solution, consisting
of rooted trees GO and SO and a mapping between them. The species tree is rooted on edge {x, c} at
distance 4 from c. Once the root of S is fixed, the rest of the solution is given uniquely. All possible
roots in S are located on the edge {x, c} in distances from 0 to 5 from c. Note that in our algorithm,
we preprocess tree S to have two leaves b1 and b2 instead of leaf b, so that the leaves of G and S are in
one-to-one correspondence (see Sections 2.1 and 2.8).

In the rest of this section, we introduce necessary notation and formally define the isometric
reconciliation problem. In Section 2, we describe our algorithm and supporting proofs, including the
characterization of the solution set. We provide further discussion of our results and several open
problems in Section 3.

1.1. Notation

A gene tree will be in the rest of the text denoted G, species tree S. Nodes of G are usually denoted
as u and v, nodes of S as x and y, the root of G as q, the root of S as r and leaves in both trees as a and b.

A point in a tree is one of its nodes or a point inside an edge where this edge can be subdivided
by a new node. By dT(u, v), we denote the distance between points u and v in tree T. For a tree T with
nodes u and v and real value α, such that 0 ≤ α ≤ dT(u, v), let T(u, v, α) denote the point located at
distance α from node u on the path connecting points u and v. By lcaT(u, v), we denote the lowest
common ancestor of u and v in a rooted tree T.

Let {u, v} be an edge in an unrooted tree T. By sub(T, u, v) we will denote a rooted subtree of T
obtained by removing edge {u, v} from T, taking the resulting connected component containing u
and rooting it in u. A tree with m edges thus has 2m rooted subtrees. In rooted trees, we will consider
subtrees in the conventional sense, consisting of a node and all its descendants.

For a tree T, let L(T) be the set of its leaves and V(T) the set of its nodes. For a tree T and a set of
leaves A, let TA denote the subtree of T induced by A and all paths connecting pairs of leaves from A.
In particular, we will often consider the subtree GL(T) for some rooted subtree T of S; this is the part of
G that naturally corresponds to subtree T of S.

1.2. Definition of Reconciliation

Consider a rooted or unrooted tree G (the input gene tree), rooted or unrooted tree S (the input
species tree) and input mapping µ : L(G) → L(S), which gives for each gene its species of origin.
Both trees have edges weighted by non-negative weights. An isometric reconciliation of the triple
(G, S, µ) is a triple (GO, SO, Φ), where GO and SO are weighted rooted trees and Φ is a mapping from
V(GO) to V(SO) such that the following holds:
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• The output gene tree GO is either G, if G is rooted, or a rooted version of G obtained by subdividing
some edge and rooting the tree in this newly created node.

• The output species tree SO is obtained from S by rooting it if S is unrooted and optionally
subdividing some edges by additional nodes and also optionally adding a new path leading from
above to the original root of S.

• Mapping Φ agrees with input mapping µ on all leaves.
• Mapping Φ preserves the ancestor/descendant relationships and the distances between ancestors

and descendants. For each u and v such that u is a parent of v in GO, we have that Φ(u) is an
ancestor of Φ(v) and dSO(Φ(u), Φ(v)) = dGO(u, v).

• Nodes are not added to SO and GO unnecessarily. For each node x which was added to SO except
for the root, there is some node u from GO such that Φ(u) = x. The edges incident to x have
strictly positive weights.

Note that when subdividing a weighted edge {u, v}, we divide the original edge length between
the new edges so that the distance of u and v remains the same. The new nodes added to the output
species tree SO represent duplication events; the path above the root of S corresponds to ancient
duplications happening before the first speciation represented in the species tree. Figure 3 shows an
example of an isometric reconciliation where the root of GO maps above the original root of SO. A more
detailed discussion of the isometric reconciliation model can be found in the article by Brejová et al. [4].

G
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Figure 3. An example of two unrooted trees and their isometric reconciliation, in which the root of
GO is mapped to a point above the original root of S. Both input trees consist of only a single edge;
the length of the edge is greater in G. Tree S can be rooted in any point, while the corresponding roots
of G form an interval of length d1 in the middle of the edge. Valid roots are highlighted in yellow.

For algorithmic simplicity, we allow rooting trees only in points located on edges, not in the
original nodes. To root a tree in an existing node u, we choose one of the edges incident to u and
subdivide it by a new node in the distance 0 from u. This is the only exception where we are allowed
to create new edges of zero length.

In this paper, we do not compute the full reconciliation which includes mapping Φ and new nodes
added to the input trees. Instead, we output all pairs of valid roots in the two trees, that is, pairs of
points in G and S such that when the trees are rooted in these points, they can be reconciled. If desired,
the full reconciliation can be easily computed for any particular pair of valid roots in O(N log N) time.
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As we will see in Section 2.7, valid roots in S form a set of intervals of points on individual
edges; for edge {x, y} in S we can express such an interval as the set of points S(x, y, α) for α ∈ [α1, α2].
For some edges, the set of valid roots can be empty, and for some it may contain only a single point.
For each non-empty interval, we also have the corresponding interval of valid roots on some edge
{u, v} in G; this interval thus has the form G(u, v, β) for β ∈ [β1, β2].

2. Algorithm

In this section, we describe our linear-time algorithm. A proof-of-concept implementation of this
algorithm is available at https://github.com/fmfi-compbio/unrooted-reconciliation.

The previous work shows that for rooted species tree S and unrooted gene tree G, there is at most
one root location in G so that the trees can be reconciled [2,4]. The key idea of our algorithm is to take
individual rooted subtrees of an unrooted tree S and to compute for each the unique location of the
root in the corresponding part of G (Section 2.4).

In the second phase of the algorithm (Section 2.5), we consider each edge of S as a possible root
location and combine information from the two rooted subtrees at its endpoints to obtain an interval
of positions along this edge where the root can be placed.

To keep the running time linear, our computation in the first two phases of the algorithm does not
check all requirements of an isometric reconciliation; the final check in the third phase either validates
or rejects all preliminary solutions (Section 2.6).

Finally, in the fourth phase, we compute for each root location in S its exact corresponding root
location in G (Section 2.7).

2.1. Assumptions and Preprocessing

In the core of our algorithm, we make the following assumptions.

1. The input trees G and S have the same set of leaves, and the input mapping µ is implicitly
represented by leaf equality.

2. All internal nodes of tree S have degree three; S may have zero-length edges.
3. The degrees of all internal nodes of tree G are at least three and are bounded from above by some

constant c; all edges of G have strictly positive lengths.

Of these assumptions, the first one may seem unrealistic, because reconciliation is typically
performed on gene families where individual species have multiple copies, and thus the input mapping
µ is a many-to-one mapping. However, we will show in Section 2.8 that this condition can be satisfied
for any input trees by simple preprocessing.

The remaining conditions are satisfied for typical fully resolved phylogenetic trees with strictly
positive edge lengths, but we also show how to handle a more general class of trees in preprocessing.
The only serious obstacles are high-degree nodes either in the original G or resulting from contracting
zero-length edges during preprocessing. Our algorithm works for high-degree nodes in G, but the
running time becomes O(N3).

In the rest of the paper, we assume that any trees G and S satisfy the requirements outlined in this
section. The algorithm works for unrooted input trees, but some claims will consider rooted species
trees which occur in the algorithm as subproblems.

2.2. Tree Primitives

In our algorithm, we use the following algorithmic building blocks, whose efficient
implementation is explained in Section 2.8. We work with points in the trees represented as T(u, v, α)

for some nodes u and v in tree T and distance α such that 0 ≤ α ≤ dT(u, v). The following statements
assume that O(N)-time preprocessing is done on each input tree T ∈ {G, S}.

• Given two points u and v in tree T, we can compute their distance dT(u, v) in O(1) time.

https://github.com/fmfi-compbio/unrooted-reconciliation
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• Given three points u, v and w in a tree with strictly positive edge lengths, we can determine if v is
located on the path connecting u and w in O(1) time; we denote this predicate betweenG(u, v, w).

• Given two points p1 = T(u1, v1, α1), and p2 = T(u2, v2, α2) in tree T where u1, u2, v1, v2

are nodes of T, we can represent point p = T(p1, p2, β) in the form p = T(w1, w2, γ) where
w1, w2 ∈ {u1, v1, u2, v2}, and this representation can be computed in O(1) time.

• Given tree T with m edges, we can list all its 2m rooted subtrees so that if node w is a child of
u in a subtree sub(T, u, v); then subtree sub(T, w, u) occurs in the list before subtree sub(T, u, v).
We call this ordering bottom-up order of the rooted subtrees, and it can be computed in O(N)

time. If we process rooted subtrees in the bottom-up order, all subtrees of each rooted subtree T′

are processed before T′ itself.

2.3. Potential Rooting of a Gene Tree

In the first phase of our algorithm, we process all rooted subtrees of the species tree S and compute
potential rootings of the corresponding parts of G, as defined in the next definition.

Definition 1. Let S be a rooted species tree with root r and G an unrooted gene tree with the same set of leaves.
A potential rooting of G with respect to S is a pair (q, h) where q is a point in G and h is a real value such that
for any leaf a ∈ L(S) = L(G) we have

dG(q, a) = h + dS(r, a).

The intuition behind this definition is that in the reconciliation of S with G, point q is the new root
of G, and it maps to distance h above node r. In an isometric reconciliation, we always have h ≥ 0,
but here we allow negative values of h to keep the algorithm simple; negative values of h are ruled out
in a later phase of the algorithm. In the rest of this section, we prove a series of claims characterizing
potential rootings. Although Definition 1 and the following claims are formulated for rooted tree S,
we will eventually apply them to rooted subtrees T of an unrooted tree S, and to keep the set of leaves
the same, we will restrict G to GL(T).

Claim 1. Let S be a rooted species tree with root r and G an unrooted gene tree. Then there is at most
one potential rooting of G with respect to S. More precisely, if (q1, h1) and (q2, h2) are potential rootings,
then h1 = h2 and dG(q1, q2) = 0.

Proof. Let (q1, h1), (q2, h2) be two potential rootings. If dG(q1, q2) = 0, then both h1 and h2 must be
equal to dG(q1, a)− dS(r, a), where r is the root of S, and a is an arbitrary leaf from L(S).

Therefore, let us assume that dG(q1, q2) > 0. Consider the forest obtained by removing the path
connecting q1 and q2 from G. For i ∈ {1, 2}, let us denote by ai an arbitrary leaf of G contained in the
component of this forest containing qi. Due to the choice of leaf a1, the path from a1 to q2 in G goes
through q1, and thus we obtain the following equations:

h2 + dS(r, a1) = dG(q2, a1) = dG(q1, a1) + dG(q1, q2) = h1 + dS(r, a1) + dG(q1, q2),

h2 − h1 = dG(q1, q2).

Symmetrically, for a2 we have

h1 + dS(x, a2) = dG(q1, a2) = dG(q2, a2) + dG(q1, q2) = h2 + dS(x, a2) + dG(q1, q2),

h2 − h1 = −dG(q1, q2),

which is a contradiction, implying that indeed dG(q1, q2) = 0.
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Claim 2. Let S be a rooted species tree with root r and G an unrooted gene tree. Let S′ be a subtree of S with
root r′. Let (q, h) be a potential rooting of G with respect to S. Then GL(S′) has a potential rooting (q′, h′) with
respect to S′, where q′ is the point of GL(S′) closest to q (distance measured by dG). In particular, if q is inside
GL(S′), then q′ = q. Value h′ is defined by the following equation:

h′ = h− dG(q, q′) + dS(r, r′). (1)

Proof. Let q′ be the point of GL(S′) closest to q, and let h′ be the value defined by Equation (1).
Then for any leaf a of S′ the path from a to q must lead through q′, and thus we have dG(q, a) =

dG(q′, a) + dG(q, q′). Similarly, dS(r, a) = dS(r′, a) + dS(r, r′). By combining these two equations,
the equation dG(q, a) = h + dS(r, a) implied by the potential rooting (q, h) and Equation (1), we obtain

dG(q′, a) = dG(q, a)− dG(q, q′)

= h + dS(r, a)− dG(q, q′)

= h′ + dG(q, q′)− dS(r, r′) + dS(r, a)− dG(q, q′)

= h′ − dS(r, r′) + dS(r, a)

= h′ − dS(r, r′) + dS(r′, a) + dS(r, r′)

= h′ + dS(r′, a)

Thus we have proved that (q′, h′) is the potential rooting, as required.

The following two claims help us to compute potential rootings.

Claim 3. Let both S and G contain only a single node x. The potential rooting of G with respect to S is (x, 0).

Claim 4. Let S be a rooted species tree with root r, which is an internal node with two children r1 and r2, and let
G be an unrooted gene tree. Let S1 and S2 be subtrees of S rooted at r1 and r2. Let us assume that GL(S1)

and
GL(S2)

have potential rootings (q1, h1), (q2, h2) (both rootings exist). Then the pair (q, h) is a potential rooting
of G if and only if the following three conditions are satisfied.

1. h = (dG(q1, q2)− dS(r1, r2) + h1 + h2)/2.
2. q = G(q1, q2, β), where β = h + dS(r1, r)− h1 and 0 ≤ β ≤ dG(q1, q2).
3. Let π be the path in G between q1 and q2. For each i ∈ {1, 2} either qi = q or π is completely outside

GL(Si)
except for its endpoint qi.

Proof. Let G1 = GL(S1)
and G2 = GL(S2)

. Tree G consists of G1 and G2 and possibly the path π

connecting these two trees in G.
First, let us prove that if (q, h) is a potential rooting, it satisfies the three conditions. Let us start

with Condition 3 for some i ∈ {1, 2}. If q = qi, the condition is automatically satisfied. Otherwise,
we can use Claim 2 to observe that qi must be the point from GL(Si)

closest to q, implying that the path
from q to qi is outside GL(Si)

except for qi. This discussion also implies that q is on the path from q1 to
q2, as needed in Condition 2.

Next, we use Equation (1) from Claim 2, which gives us the value of h expressed as

h = hi + dG(q, qi)− dS(r, ri) (2)

for each of the subtrees Si. We obtain the desired value of β from Condition 2 directly from Equation (2)
for S1, noting that β = dG(q1, q). Finally, using Equation (2) for S2 and noting that dG(q, q2) =

dG(q1, q2)− β, we obtain Condition 1.
To prove that the three conditions imply potential rooting, we first prove that Conditions 1 and

2 imply dG(q, qi) = h + dS(r, ri)− hi for each i ∈ {1, 2}. This equation clearly holds for i = 1 from
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Condition 2 as β = dG(q1, q). Therefore, let us consider dG(q, q2). From definition of q in Condition 2,
we see that dG(q, q2) = dG(q1, q2)− β. Then we use definitions of β and h from Conditions 1 and 2,
the fact that dS(r1, r2) = dS(r, r1) + dS(r, r2) and simple manipulations to get

dG(q, q2) = dG(q1, q2)− h− dS(r1, r) + h1 (3)

= dG(q1, q2)−
dG(q1, q2)− dS(r1, r2) + h1 + h2

2
− dS(r1, r) + h1 (4)

=
dG(q1, q2) + dS(r1, r2) + h1 − h2

2
− dS(r1, r)− dS(r, r2) + dS(r, r2) (5)

=
dG(q1, q2)− dS(r1, r2) + h1 + h2

2
+ dS(r, r2)− h2 (6)

= h + dS(r, r2)− h2. (7)

Now consider any leaf a ∈ L(S). We need to prove that dG(q, a) = h + dS(r, a). Let i be the index
such that a belongs to L(Si). Thanks to Condition 3, we have that dG(q, a) = dG(q, qi) + dG(qi, a).
Since (qi, hi) is a potential rooting of Gi, we have that dG(qi, a) = hi + dS(ri, a). Finally, since a ∈ L(si),
we have dS(r, a) = dS(r, ri) + dS(ri, a). These three observations yield the desired equality

dG(q, a) = hi + dS(ri, a)+ = hi + dS(ri, a) = h + dS(r, a).

2.4. Computation of Potential Rootings

In the first phase of the algorithm, we will compute potential rootings of all rooted subtrees of S.
Claim 3 gives the potential rooting of a subtree with one leaf, and Claim 4 allows us to compute the
potential rooting of a bigger subtree from rootings of its two subtrees.

Let T be a rooted subtree of S. The point q in a potential rooting (q, h) of GL(T) will be represented
in the algorithm as G(a, b, α) for some leaves a and b and distance α. We will also keep a set of
representative leaves for each subtree with a potential rooting (q, h). The size of this set will be the
same as the degree of q in GL(T). For each edge {q, u} incident to q in GL(T), the set will contain a leaf a
such that betweenG(q, u, a) is true; that is, the path from q to a uses edge {q, u}. Note that if q is not a
node of G, but rather a point inside some edge e, we will assume that G was modified by subdividing
e in this point, and thus the degree of q is two, and it has two incident edges.

The algorithm processes each rooted subtree T of S in the bottom-up order. As a special case,
if GL(T) consists only of leaf a, the rooting will be represented as (q, 0), where q = G(a, a, 0), and the
representative set is {a}.

Consider now rooted subtree T with two rooted subtrees S1, S2 as in Claim 4; we will also use
other notation from the claim. The rooting for subtree T is computed from already known rootings of
S1 and S2 as follows.

• Compute h using Condition 1 of Claim 4. This requires computing dG(q1, q2), where q1 and q2 are
represented as q1 = G(a1, b1, α1) and q2 = G(a2, b2, α2) for some leaves a1, b1, a2, b2. This distance
computation is one of our tree primitives (see Sections 2.2 and 2.8).

• Compute β from Condition 2; check that 0 ≤ β ≤ dG(q1, q2). Then represent point q = G(q1, q2, β)

in the form G(a, b, α) where a, b ∈ {a1, b1, a2, b2}. This computation is also one of our primitives.
• To check Condition 3, we use the sets of representative leaves A1 = {a1, . . . , ag} and A2 =

{b1, . . . , bh} for q1 and q2, respectively. We also build the set A for q (see Figure 4).

If q1 = q2, Condition 3 is satisfied, and q = q1 = q2. To build the set A, we start with the union of
A1 and A2. This clearly covers all outgoing edges from q belonging to GL(T), but some of them
may be covered twice, if they are shared between GL(S1)

and GL(S2)
. Thus, if for some ai ∈ A1 and

bj ∈ A2 we have that betweenG(ai, q, bj) is false, either ai or bj is excluded from A.
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Now let us assume that q 6= qi for some i ∈ {1, 2}; let j be the other index from {1, 2}. We need
to check that the edge (qi, u) leaving from qi towards q and qj does not belong to GL(Si)

. This is
achieved by checking that for each leaf a ∈ Ai the predicate betweenG(a, qi, qj) is true (see Figure 5).
If neither q1 nor q2 equal q, this check is repeated for both values of i.

To build the set A for q, we consider two cases: if q is one of the endpoints of the path between q1

and q2, say q = q1, then we start with set A1 and add to it one leaf from A2 as a representative of
the edge leaving from q1 towards q2.

Finally, if q is inside the path connecting q1 and q2, its degree in GL(T) will be two and the set A
will consist of one arbitrarily chosen leaf from each A1 and A2.

A straightforward implementation of this step takes O(|A1| · |A2|) if q1 = q2 and O(|A1|+ |A2|)
if q1 6= q2. If the degree of each node of G is O(1), the running time of this step is also O(1).

q = q1 = q2

a1 a2 b1 a3 b2

A = {a1, a2, a3, b1}

q = q1

a1 a2 a3

q2

b1 b2

A = {a1, a2, a3, b1}

q1 q2q

a1 a2 a3 b1 b2

A = {a1, b1}

Figure 4. Construction of representative set A for q from representative sets A1 = {a1, . . . , ag} and
A2 = {b1, . . . , bh}. The algorithm in the text considers three different cases depicted from left to right.
Construction of set A involves some arbitrary choices; for example, in the first case, a3 can be replaced
in A by b2.

qi u qj

a ∈ Ai

qi u qj

a ∈ Ai

Figure 5. Illustration of the algorithm for checking Condition 3 when q 6= qi. We need to check that the
path connecting qi and qj is outside GL(Si) except for qi. For each leaf a from the representative set Ai

of qi, we check that betweenG(a, qi, qj) is true. Left: betweenG(a, qi, qj) is true; right: betweenG(a, qi, qj)

is false, u ∈ GL(Si).

If the degrees of all nodes of G are O(1), the overall running time for computing potential rootings
of all 2m subtrees is O(m).

2.5. Potential Roots of an Unrooted Species Tree

Once we have potential rootings computed for all rooted subtrees of an unrooted tree S, we can
consider potential roots of S, defined as follows.

Definition 2. Let G and S be unrooted. A point r in S is called a potential root of S if there exists some potential
rooting (q, u) of G with respect to S rooted at r.

For each edge {x1, x2} of S, consider rooting tree S at the point r = S(x1, x2, α) for 0 ≤ α ≤
dS(x1, x2). This yields a rooted tree S′α on which we can apply Claim 4, using precomputed potential
rootings (q1, h1) and (q2, h2) for the two subtrees S1 and S2 of S rooted at x1 and x2. Using this claim,
we can compute for which values of α we obtain a potential rooting of G with respect to S′α.
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In particular, Condition 1 of Claim 4 specifies the value of h which does not depend on the
unknown distance α = dS(x, r). Condition 2 specifies the position q of the root in G, but for this
position to be valid, value of β = h − h1 + α must be from the specified interval. This translates
to interval [h1 − h, h1 − h + dG(q1, q2)] for α. Possible values of α also must be within edge {x1, x2},
and thus we take an intersection of two intervals, yielding the following interval of possible values:

α ∈ [max(0, h1 − h), min(dS(x1, x2), h1 − h + dG(q1, q2))].

Note that this interval might be empty, signifying that no potential rooting exists, or it might
contain only a single value of α.

Finally, to satisfy Condition 3 of Claim 4 for i ∈ {1, 2}, we consider two cases. If the path π

connecting q1 and q2 lies outside of GL(Gi)
except for the endpoints, we can place point q anywhere

on this path without violating this condition. However, if some portion of this path is inside GL(Gi)

for some i ∈ {1, 2}, we have to place q to qi, restricting possible values of β to a single value (0 or
dG(q1, q2), depending on i), and thus α is also restricted to a single value or potentially to an empty set.
Condition 3 has to be satisfied for both values of i ∈ {1, 2}.

To algorithmically check whether π is outside of GL(Gi)
, we again use the set Ai of representative

leaves for qi. For each leaf a ∈ Ai, we evaluate the predicate betweenG(a, qi, qj), where j is the index
from {1, 2} different from i. If the predicate is true for all representative leaves, the path is outside.

The result of this phase of the algorithm is for every edge {x1, x2} of S an interval of potential roots
of S which yield potential rootings of G. The location of the root q is given in the form G(a, b, f (α))
where α is the distance of the root of S from node x1 and f is a function of the form f (α) = α + d,
where d = h− h1 as discussed above.

2.6. Checking Distances

In the third phase of the algorithm, we are given a set of potential roots, and we need to verify
whether they correspond to actual reconciliations. We do so based on comparing distances between
pairs of selected leaves in trees S and G, as explained in the following two claims.

Note that the definition of isometric reconciliation requires that distances between a node of G
and its descendants and ancestors are preserved by the mapping. However, for other pairs of nodes,
the distance in G can be greater than the distance of the corresponding points in S. For example,
in Figure 2 leaves a1 and b1 of G are at distance 8, but the corresponding leaves a and b from S have a
distance of only 4. Next we show that the distances in G cannot be smaller than distances in S.

Claim 5. Let (GO, SO, Φ) be an isometric reconciliation of a triple (G, S, µ), where trees S and G can be either
rooted or unrooted. Then for each two nodes u and v from G, we have dG(u, v) ≥ dS(Φ(u), Φ(v)).

Proof. Note that the definition of isometric reconciliation implies that if u is an ancestor of v in G;
then Φ(u) is an ancestor of Φ(v) and dGO(u, v) = dSO(Φ(u), Φ(v)). Additionally, note that for any
nodes u and v of G we have dG(u, v) = dGO(u, v), and similarly, the distances remain preserved
between S and SO.

Let w = lcaGO(u, v) and x = lcaSO(Φ(u), Φ(v)). Note that Φ(w) must be an ancestor of x,
because it is an ancestor of both Φ(u) and Φ(v).

dG(u, v) = dGO(w, u) + dGO(w, v)

= dSO(Φ(w), Φ(u)) + dSO(Φ(w), Φ(v))

≥ dSO(x, Φ(u)) + dSO(x, Φ(v))

= dSO(Φ(u), Φ(v))

= dS(Φ(u), Φ(v))
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Given a rooted tree T, let `T be the mapping which maps each node x of T to the smallest leaf in
the subtree of T rooted at x under some fixed complete order on the set L(T).

Claim 6. Let S be a rooted tree and G an unrooted tree. Trees S and G can be reconciled if and only if the
following two conditions hold:

• There is a potential rooting (q, h) of G (let G′ be G rooted in q)
• For each two nodes v1 and v2 which are in G′ children of the same node we have

dG′(`G′(v1), `G′(v2)) ≥ dS(`G′(v1), `G′(v2)). (8)

Note that Equation (8) uses the assumption that the leaves are shared between G, G′ and S.

Proof. If the reconciliation (GO, SO, Φ) exists, we can obtain the potential rooting (q, h) by taking the
root of GO as q and setting h = dSO(Φ(q), r) where r is the root of tree S. Inequality (8) is implied by
Claim 5.

Let us now assume the existence of a potential rooting (q, h) satisfying the two conditions. We will
root tree G in q and construct the mapping Φ as follows. Node q is mapped to the point located in
distance h above the root of S; let us call this point r and denote tree S extended with r as S′. Each node
v of the rooted G′ is then mapped to Φ(v) = S′(r, `G′(v), dG′(q, v)). First of all, we need to prove that
this mapping exists, in particular that dG′(q, v) ≤ dS′(r, `G′(v)). This is true because the definition of a
potential rooting implies that dS′(r, `G′(v)) = dG′(q, `G′(v)), and since the path from q to `G′(v) passes
through v, we have the desired inequality. Note that the leaves of G′ are correctly mapped by Φ to
their counterparts in S′.

Next we prove that if v is an ancestor of w in G′ and Φ(v) is an ancestor of Φ(w) in S′,
then dG(v, w) = dS(Φ(v), Φ(w)). Based on the ancestor relationships, the path from w to q
passes through v and the path from Φ(w) to r passes through Φ(v), and therefore, dG′(w, q) =

dG′(w, v) + dG′(v, q) and dS′(Φ(w), r) = dS′(Φ(w), Φ(v)) + dS′(Φ(v), r). Based on the definition of Φ,
dG′(w, q) = dS′(Φ(w), r) and dG′(v, q) = dS′(Φ(v), r). These equations imply the desired result.

Finally, we need to prove that if v is the parent of w in G′ then Φ(v) is an ancestor of Φ(w) in S′.
Let aw = `G′(w) and av = `G′(v). If aw = av, both Φ(v) and Φ(w) are on the path from r to aw, and by
comparing their distances from the root, we see that Φ(v) must be an ancestor of Φ(w).

If aw 6= av, let w′ be the child of v on the path to av. Then `G′(w′) = av, and w and w′ are
two children of the same node of G′. Therefore, we can apply Inequality (8) to obtain dG′(av, aw) ≥
dS′(av, aw). Note that v = lcaG′(av, aw) and thus dG′(av, aw) = dG′(av, q) + dG′(aw, q) − 2dG′(q, v).
Similarly in S′, let x = lcaS′(av, aw); then dS′(av, aw) = dS′(av, r) + dS′(aw, r)− 2dS′(r, x). By combining
these three facts, we get the inequality dG′(v, q) ≤ dS′(x, r). As Φ(q) = r and r is an ancestor of Φ(v),
we have that dG′(v, q) = dS′(Φ(v), r). Therefore, we see that the depth of Φ(v) in S′ is smaller or equal
to the depth of x. Both x and Φ(v) are ancestors of av, which implies that Φ(v) must be an ancestor
of x (which includes the possibility that Φ(v) = x). This in turn implies that Φ(v) must be also an
ancestor of aw. Again, since both Φ(v) and Φ(w) are ancestors of aw and Φ(w) is in a greater depth
than Φ(v), it must be a descendant of Φ(v).

Claim 5 shows that given unrooted input trees G and S, we can check any pair of leaves a and b
and if dG(a, b) < dS(a, b), then no reconciliation of these trees exists. Claim 6 shows that for a fixed
potential root in S, it is sufficient to check distances between O(N) pairs of leaves to verify that the
potential rooting corresponds to a valid reconciliation.

However, we would like to verify all potential roots of S in O(N) total time. For every rooted
subtree sub(G, v, u) of G, we can find its smallest leaf; this leaf will correspond to `G′(v) for all rooted
versions G′ of G in which this rooted subtree appears as one of the subtrees. These smallest leaves can
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be easily computed in O(N) using the bottom-up ordering of rooted subtrees of G. Then, given any
node u of G, we take all pairs of its neighbors v1 and v2, take the smallest leaves a1 and a2 in the
subtrees sub(G, v1, u) and sub(G, v2, u) and check whether dG(a1, a2) ≥ dS(a1, a2). Provided that tree
G has at least one internal node, these checks cover all pairs of leaves `G′(v1) and `G′(v2) from Claim 6
that can occur for any root location in S. If any of these checks is negative, we reject all potential roots
of S (using Claim 5); if all checks are positive, then all potential roots of S are valid (using Claim 6).
Note that the case of tree G without an internal node is trivial, as it then has at most two leaves. If the
degrees of all nodes in G are O(1), the computation can be done in O(N) time.

2.7. Final Output and Possible Solution Sets

This section has two goals. First, we want to characterize the set of possible solutions of the
isometric reconciliation for two unrooted trees, which is of theoretical interest. We also need the results
proved here to efficiently transform the output of our algorithm to its final form. We will characterize
sets of potential roots, but these results also apply to the final valid roots, as according to the previous
section, either all potential roots are valid or none are.

We start with a generalized version of Claim 2, which can be proved in the same way as the
original claim.

Claim 7. Let S be a rooted species tree with root r and G an unrooted gene tree. Let A be a subset of leaves,
and consider trees SA and GA induced by leaves from A and all paths connecting them. Let r′ be the root of SA,
that is, the lowest common ancestor in S of all leaves in A. Let (q, h) be a potential rooting of G with respect to
S. Then GA has a potential rooting (q′, h′) with respect to SA, where q′ is the point of GA closest to q (distance
measured by dG). Value h′ is defined by the following equation:

h′ = h− dG(q, q′) + dS(r, r′). (9)

In particular, if r belongs to SA then r′ = r and if in addition q belongs to GA, then also q′ = q and h′ = h.

Before stating our core observation characterizing the set of potential solutions of the problem in
Claim 9, we will add one more technical claim.

Claim 8. Consider points r1 and r2 in unrooted S and q1 and q2 in unrooted G and values h1 and h2 such that
(q1, h1) is a potential rooting of G with respect to S rooted in r1 and (q2, h2) is a potential rooting with respect
to S rooted in r2. Let a be any leaf, let x be the point on the path between r1 and r2 closest to leaf a under dS,
and let u be the point on the path between q1 and q2 closest to a under dG. Then

dG(u, q1)− dS(x, r1) = (dG(q1, q2)− dS(r1, r2) + h1 − h2)/2.

In particular, if h1 = h2 and dG(q1, q2) = dS(r1, r2), then dG(u, q1) = dS(x, r1).

Note that we will later show that conditions h1 = h2 and dG(q1, q2) = dS(r1, r2) are always
satisfied, and thus dG(u, q1) = dS(x, r1).

Proof. From the definition of a potential rooting, we get dG(a, q1) − dS(a, r1) − h1 = dG(a, q2) −
dS(a, r2)− h2 = 0. By splitting individual distances at points x and u, we get dG(a, q1) = dG(a, u) +
dG(u, q1), dG(a, q2) = dG(a, u) + dG(u, q2) = dG(a, u) + (dG(q1, q2)− dG(u, q1)) and similarly for tree
S. By combining these equations, we get the desired claim.

Claim 9. Let G and S be unrooted trees. Let R be the set of potential roots of S. Let r1 and r2 be two points
from R, and let r3 be some point on the path connecting r1 and r2 in S. For i ∈ {1, 2, 3}, let S(i) be S rooted
in ri, and let (qi, hi) be the potential rooting of G with respect to S(i) (if it exists). Then the following four
statements hold:
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1. dS(r1, r2) = dG(q1, q2);
2. h1 = h2;
3. r3 ∈ R and thus the potential rooting (q3, h3) exists;
4. q3 is on the path between q1 and q2.

Proof. If both r1 and r2 belong to the same edge of S, all four statements are implied by the discussion
in Section 2.5, where it is proved that the set of potential rootings for a single edge is either empty or it
is an interval of points on this edge. These points all share the same value of h and their counterparts
form an interval on some path in G of the same length as the interval in S.

Consider now the case when r1 and r2 are not on the same edge. Let x1, . . . , xz be the path in S
such that r1 is on the edge {x1, x2}, and r2 is on the edge {xz−1, xz} (refer to Figure 6). All leaves can
be partitioned into three classes: let A1 be the set of leaves a such that betweenS(a, x1, xz) is true, A2 be
the set of leaves such that betweenS(a, xz, x1) is true and B be the remaining leaves. Let A = A1 ∪ A2.

A1

x1 r1 x2

B1 B2

x3 r3

B3 Bk

xz−1 r2 xz

A2

Figure 6. The path containing r1, r2 and r3 in tree S. Leaves are partitioned into sets A1, A2 and B,
where B is in the figure represented by the union B1 ∪ B2 ∪ · · · ∪ Bk.

Consider now trees SA and GA. Nodes x2, . . . , xz−1 all have degree two in SA, and thus we can
replace path x1, . . . , xz by a single edge in SA. We can apply Claim 7 to S(1) and S(2) to see that points
r1 and r2 must be potential roots in SA as well (see Figure 7). Since r1 and r2 are on a single edge in SA,
all four statements of this claim hold for r1, r2 and r3 in trees GA and SA. Let (q′i, h′i) be the potential

rooting of GA with respect to S(i)
A for i ∈ {1, 2, 3}. We thus have that (q′3, h′3) exists as a potential

rooting of GA with respect to S(3); it is located on the path between q′1 and q′2, dS(r1, r2) = dG(q′1, q′2),
and h′1 = h′2. From now on we will denote the common value h′1 = h′2 as h. We also have that h′3 = h
because r1, r2 and r3 are all on the same edge of SA.

h′
1

A1

A2

r1

x1

xz

r3
r2

A1

A2

q′1

Figure 7. Tree S(i)
A (left) and tree GA with potential rooting (q′1, h′1) (right).
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Next we prove that q1 = q′1 and q2 = q′2. According to Claim 7, q′1 is the closest point in GA to
q1. Consider now the path from q1 to q′2, and note that q′2 is in GA. The point where this path first
enters GA must be q1. Symmetrically, q′2 must be on the path from q2 to q′1. This implies that the points
q1, q′1, q′2, q2 are on a single path in G in this order, although some adjacent points may coincide. Let us
now assume that q1 6= q′1, and thus q1 is not in GA. Then there must be a leaf b ∈ B such that q1 is on
the path from b to q′1. For i ∈ {1, 2} we have that h = h′i = hi − dG(qi, q′i) by Claim 7. Since ri ∈ R,
we have dG(b, qi) = dS(b, ri) + hi. Combining these two facts, we get

dG(b, qi) = dS(b, ri) + h + dG(qi, q′i). (10)

In addition,

dG(b, q2) = dG(b, q1) + dG(q1, q′1) + dG(q′1, q′2) + dG(q′2, q2) (11)

= (dS(b, r1) + h + dG(q1, q′1)) + dG(q1, q′1) + dS(r1, r2) + dG(q′2, q2). (12)

By combining the right-hand side of Equation (10) for i = 2 and the right-hand side of
Equation (12), we get

dS(b, r2)− (dS(b, r1) + dS(r1, r2)) = 2dG(q1, q′1).

The left-hand side of this equation is at most 0 due to triangle inequality, and therefore,
the right-hand side must be zero, which is a contradiction with our assumption that q1 is not in
GA. Therefore, we have that q1 = q′1 and analogously q2 = q′2. This implies (via Claim 7) that
h1 = h2 = h, completing the proof of Statements 1 and 2 in the general case for the original trees G
and S.

Finally, we need to prove Statements 3 and 4 for original trees G and S. We have proved that
(q′3, h′3) is a potential rooting of GA with respect to S(3)

A and that h′3 = h. We will prove that (q′3, h) is
also a potential rooting of G with respect to S(3). Consider a leaf a. If a ∈ A, then we already know
from GA that dG(q′3, a) = dS(r3, a) + h.

We still need prove the same equality for a ∈ B. Consider points u and x as in Claim 8; the claim
implies that dS(x, r1) = dG(u, q1). Point x may be located either between r1 and r3 or between r3 and
r2. We will assume the latter; the former is proved analogously by switching the roles of r1 and r2.
Point u is then located between q3 and q2, as thanks to Claim 8, the distances along paths from r1 to r2

and from q1 to q2 are preserved. Finally, we obtain

dS(a, r3) = dS(a, r1)− dS(r1, r2)

= dG(a, q1)− h− dG(q1, q′3)

= dG(a, q′3)− h.

The previous claim broadly characterizes the full set of solutions; the next one observes a useful
property of solutions located on a single edge of S.

Claim 10. Let G and S be unrooted trees. Let {x, y} be an edge in S and let [α1, α2] be an interval such that
every point S(x, y, α) for α ∈ [α1, α2] is a potential root of S. Then there is an edge {u, v} in G and interval
[β1, β2] such that when we root S in the potential root S(x, y, α) for α ∈ [α1, α2], its corresponding potential
rooting (q, h) has the form q = G(u, v, β) for β ∈ [β1, β2].

Proof. Our discussion in Section 2.5 implies that potential rootings of G corresponding to a single
edge of S form an interval on some path, that is, they can be expressed as G(a, b, β). It remains to
prove that the interval of possible values of β is within one edge of G. This is implied by Claim 8,
where as r1 and r2, we use the endpoints S(x, y, α1) and S(x, y, α2), and as q1 and q2 the endpoints in
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the corresponding interval in S. Since the path between r1 and r2 is within a single edge of S, point x
for any leaf will be either r1 or r2. This implies that point u will be either q1 or q2. As a result, there is
no node on the path between q1 and q2, where the paths to other leaves branch out. As tree G has all
internal nodes of degree at least 3, q1 and q2 must be located on a single edge.

Claims 9 and 10 are important for the final part of our algorithm, in which we transform the
solution to the final form. As we have seen in the proof of Claim 10, the potential roots of G for a single
edge of S are specified within an interval on some path. Thanks to Claim 10, we know that they are
in fact located on a single edge. Our goal is now to algorithmically find this edge {u, v} in G and the
interval [β1, β2]. To keep the running time O(N), we want to avoid doing such computation for each
edge of S individually. Instead, we use the connected nature of the set of solutions in both S and G
implied by Claim 9. We traverse tree S by a depth-first search, and the first time we encounter an edge
with a non-empty set of potential roots, we find the corresponding edge in G; even a naive O(N)-time
search is sufficient. Each time we encounter another edge {x, y} of S with a non-empty solution set,
we have already seen some adjacent edge {x, z} with a solution. The potential root of G corresponding
to rooting S in the shared vertex x is some point p, which we have already found, and thus we need
to search for appropriate edge {u, v} only among the edges incident to p. Since the node degree in
G is bounded by O(1), this can be done in O(1) time. To check if a candidate edge {u′, v′} is the one
containing points of the form G(a, b, α), we need to verify betweenG(a, u′, b), betweenG(a, v′, b) and to
compare dG(a, u) and dG(a, v) to the desired range of α.

2.8. Further Algorithmic Details

In this section, we provide further details on the input preprocessing and tree primitives from
Sections 2.1 and 2.2.

First, we need to preprocess our trees so that they have the same set of leaves. Definition of
reconciliation allows multiple leaves a1, . . . , ak of G to correspond to a single leaf a of S (this corresponds
to multiple copies of a gene in a single species). In that case, we add new leaves a1, . . . , ak to S,
all connected to node a by edges of zero length. Each leaf ai of G will naturally correspond to leaf ai of
S. If, on the other hand, some leaf of S does not occur in G, it can be deleted from S. Leaves of G with
no corresponding leaf of S are not considered in the reconciliation problem. Thus these changes will
satisfy Assumption 1 from Section 2.1.

Assumption 2 can be achieved by replacing nodes of higher degree in S with binary subtrees
connected by zero-length edges. A node of degree two in both S and G can be bypassed by an edge
connecting its two neighbors. The condition on non-zero lengths in G (Assumption 3) can be achieved
by contracting edges of zero length. However, if some leaf a is connected to its neighbor in G by an
edge of length 0, contracting this edge would remove the leaf. Therefore, we can instead lengthen the
edge to a by some constant, and then also lengthen the edge leading to a in S by the same amount.

It is easy to see that all these transformations leave the set of solutions practically unchanged;
any reconciliation in the preprocessed trees can be easily mapped back to the original trees and
vice versa. The only exceptions are reconciliations that root the modified trees on edges added or
extended in the preprocessing phase. Such rootings have no counterpart in the original trees and can
be simply omitted from the final output.

Now let us consider efficient implementation of the tree primitives from Section 2.2 for each tree
T ∈ {G, S}. In the precomputation phase, we root the tree T in an arbitrary node. On the resulting
rooted tree, we precompute data structures allowing O(1) computation of lcaT ; this precomputation
can be done in O(N) time [16,17]. We also store the distance to the root in each node; let us denote
this value for node u as d[u]. Then the distance between nodes u and v is d[u] + d[v]− 2d[lcaT(u, v)],
which can be computed in constant time.

However, we also need to be able to compute distances between points of the form p1 =

T(u1, v1, α1) and p2 = T(u2, v2, α2). Our technique for this computation is to synchronize these
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points, that is, to express them both in the form pi = T(w1, w2, βi), where w1, w2 ∈ {u1, v1, u2, v2}.
Once the points are synchronized on a single path between w1 and w2, their distance is simply |β1− β2|.

To synchronize the points, we first consider the path between u1 and v1 and node u2. The path
from u1 to u2 diverges from the path from u1 to v1 at some node x1. We can compute the distance
dT(u1, x1) as (dT(u1, v1) + dT(u1, u2)− dT(v1, u2))/2; this is well known from the neighbor joining
algorithm [18]. Our next goal is to express p1 in the form T(u2, y1, γ1) for some node y1 ∈ {u1, v1}.
If α1 ≤ dT(u1, x1), p1 is located on the shared portion of the two paths considered above and thus
p1 = T(u2, u1, dT(u1, u2)− α1). Otherwise, p1 is located after the path from u1 to v1 passing through
x1, and thus p1 = T(u2, v1, γ1), where γ1 = dT(u2, v1)− dT(u1, v1) + α1. To obtain this expression for
γ1, observe that dT(v1, p1) = dT(u1, v1)− α1 and γ1 = dT(u2, p1) = dT(u2, v1)− dT(v1, p1).

Now we have both points specified in the form pi = T(u2, yi, γi), where y2 = v2 and γ2 = α2.
We now consider the node x2 where paths from u2 to y1 and from u2 to y2 diverge. Again, we can
compute dT(u2, x2) as above. If at least one of p1 and p2 is closer to u2 than x2, then both points lie on
a path from u2 to one of the yi and can be synchronized easily. Otherwise, they are synchronized on
the path from y1 to y2 using similar distance transformations as above. Since the synchronization is
only a simple case analysis, it can be easily computed in O(1) time, and thus we are able to compute
distances between any two points in O(1) time.

The next primitive is to take two points p1 and p2 of the form pi = T(ui, vi, αi) and to express
point p = T(p1, p2, β) in the form p = T(w1, w2, γ) where w1, w2 ∈ {u1, v1, u2, v2}. This is also easily
achieved by synchronization. Once we have both p1 and p2 expressed on the same path between some
w1 and w2, we easily determine the necessary distance γ of the new point p from w1, since we know
the distance of p1 from w1 and distance of p from p1. Again, this works in O(1) time.

Distance computations can be also used to evaluate predicate betweenT(u, v, w). In the absence
of zero-length edges, this predicate is satisfied if and only if dT(u, w) = dT(u, v) + dT(v, w). In our
algorithm, this predicate is used only for tree G, which is assumed to have strictly positive edge lengths.

Finally, we need to provide a bottom-up ordering of all rooted subtrees of a tree T. This is
computed by two tree traversals. Note that the tree is for technical reasons rooted in an arbitrary node.

First, we do a post-order traversal of the tree. After exploring node u and its subtrees, we output
subtree sub(T, u, v), where v is the parent of u in the current rooting. If u is a root, we skip this
output. This traversal lists for each edge one of the two subtrees corresponding to the removal of this
edge—namely, the one rooted in the node, which is lower in the auxiliary rooting. The second traversal
proceeds in the pre-order fashion. After reaching node u from its parent v, it outputs sub(T, v, u),
and afterwards it recursively traverses children of u.

3. Conclusions

In this paper, we have shown how to compute valid root locations for isometric reconciliation of
two unrooted trees in linear time, assuming that the gene tree does not have nodes with very high
degrees, which is typically true for phylogenetic trees. Nonetheless, linear-time algorithm for trees
with arbitrary degrees is an interesting open question. Full reconciliation can be easily computed for
any selected root location discovered by our algorithm. However, root locations themselves might be
of interest; indeed rooting unrooted trees is one of the motivations for performing reconciliation [9,10].

Note that in practical applications, we might have one species tree and multiple gene trees,
each for a different gene family. Our algorithm can reconcile each gene tree separately with the species
tree, and then we can choose a root location in S that agrees with the highest number of gene trees.
This in turn implies root locations in these gene trees.

The earlier algorithm for isometric reconciliation of unrooted trees [4] finds all distinct
reconciliations in O(N5 log N) time; the high running time is partially caused by the potentially
high number of such reconciliations. Perhaps some observations from the present paper can be used to
provide a tighter upper bound and thus a more efficient algorithm for completely listing all solutions.
In practice, it might be more desirable to find algorithms for efficiently computing various statistics
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over the set of all solutions, such as the minimum and maximum numbers of duplication events
occurring on a particular edge of a species tree.

Unlike classical parsimony-based reconciliation approaches, isometric reconciliation uses edge
length information. However, edge lengths computed by phylogeny reconstruction methods are not
exact, and thus an extension of this algorithm taking into account edge length uncertainty would
be desirable.

In this paper, we also characterize the set of all solutions, showing that they form connected
subgraphs in both trees. This is similar to the plateau property defined for parsimony-based
reconciliation of an unrooted gene tree with a rooted species tree [9,19].
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