
algorithms

Article

Simulated Annealing with Exploratory Sensing for
Global Optimization

Majid Almarashi 1, Wael Deabes 2,3 , Hesham H. Amin 2,4 and Abdel-Rahman Hedar 2,5,*
1 Department of Computer Sciences and Artificial Intelligence, College of Computer Sciences and

Engineering, University of Jeddah, Jeddah 21589, Saudi Arabia; malmaraashi@uj.edu.sa
2 Department of Computer Science in Jamoum, Umm Al-Qura University, Makkah 25371, Saudi Arabia;

wadeabes@uqu.edu.sa (W.D.); hhabuelhasan@uqu.edu.sa (H.H.A.)
3 Computers and Systems Engineering Department, Mansoura University, Mansoura 35516, Egypt
4 Department of Electrical Engineering, Computer Systems Department, Faculty of Engineering,

Aswan University, Aswan 81542, Egypt
5 Department of Computer Science, Faculty of Computers & Information, Assiut University,

Assiut 71526, Egypt
* Correspondence: ahahmed@uqu.edu.sa or hedar@aun.edu.eg; Tel.: +966-55-0086-411 or +20-10-0070-4940

Received: 23 July 2020; Accepted: 10 September 2020; Published: 12 September 2020
����������
�������

Abstract: Simulated annealing is a well-known search algorithm used with success history in many
search problems. However, the random walk of the simulated annealing does not benefit from
the memory of visited states, causing excessive random search with no diversification history.
Unlike memory-based search algorithms such as the tabu search, the search in simulated annealing
is dependent on the choice of the initial temperature to explore the search space, which has little
indications of how much exploration has been carried out. The lack of exploration eye can affect the
quality of the found solutions while the nature of the search in simulated annealing is mainly local.
In this work, a methodology of two phases using an automatic diversification and intensification based
on memory and sensing tools is proposed. The proposed method is called Simulated Annealing with
Exploratory Sensing. The computational experiments show the efficiency of the proposed method in
ensuring a good exploration while finding good solutions within a similar number of iterations.

Keywords: simulated annealing; exploration; intensification; sensing search; search memory

1. Introduction

Metaheuristics work on finding fast and acceptable solutions for complex problems by trial and
error methods. The problem complexity prevents pursuing every possible solution; therefore, the goal
is to acquire a satisfactory and feasible solution within a suitable time. Theoretically, there is no
guarantee to find the best solutions, and it is not recognized whether the algorithm will converge
or not. Hence, design an efficient and practical algorithm that can mostly find a high-quality solution
within a suitable time is crucial. In the past four decades, many applications and studies have applied
Metaheuristics algorithms. tabu search (TS) [1], simulated annealing (SA) [2], genetic algorithms
(GAs) [3], and other plentiful numbers of metaheuristics algorithms which have attracted much
attention compared to each other.

Generally, most of the well-known metaheuristics techniques are memory-less algorithms.
Memory-less means that there is no idea about the history of previously found solutions.
Thus, based on memory usage, metaheuristics can be classified into algorithms with memory and
memory-less ones. The absence of memory in metaheuristics leads to the loss of the information
gained in previous iterations. Thus, in many cases, this leads to re-visiting the already visited areas

Algorithms 2020, 13, 230; doi:10.3390/a13090230 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-1814-2643
https://orcid.org/0000-0002-4462-7070
https://orcid.org/0000-0002-9936-5987
http://dx.doi.org/10.3390/a13090230
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/9/230?type=check_update&version=2

Algorithms 2020, 13, 230 2 of 26

in the search region. It is clear that without a history/memory, a new search would be done in those
areas with a chance of repeating the old solution. Thus, the time consumption cost will be high. On the
other hand, using memory to build a history for “some” recent solutions in the already visited areas
will save the computations’ time. However, few pieces of metaheuristics research employed memory
in their methods. Therefore, in the advanced metaheuristics, memory should be considered one of the
fundamental elements of an efficient metaheuristic. In [4], a recent review of the memory usage and its
effect on the performance of the main swarm intelligence metaheuristics. The investigation has been
performed for memory, memory-less metaheuristics, and memory characteristics, especially in swarm
intelligence metaheuristics. It has been investigated and shown that memory usage is essential to
increase the effectiveness of metaheuristics by taking advantage of their previous successful histories.

Simulated annealing (SA) is a well-known search algorithm used successfully in many search
and optimization problems. Typically, the random walk of SA does not benefit from the memory
of visited states, which can cause excessive random search and redundant behavior, especially with
weak configurations of the SA. Moreover, unlike memory-based search algorithms such as tabu search,
the search in SA is dependent on the choice of the initial settings to explore the search space and finding
an acceptable solution. At the same time, there are limited indications of how much exploration has
been carried out. Also, the lack of exploration eye can affect the quality of the final solutions and
the termination time, which causes practitioners to use more extended cooling and substantial initial
temperatures and increase the number of iterations, especially when the minimum cost is unknown.

A few studies use different ways to overcome these issues. For example, in [5], a hybrid
simulated annealing with solutions memory elements to solve university course timetable problems has
been proposed. A memory-based methodology that redirects the search to return to unaccepted visited
solutions when trapped in local minima has been used to escape from local minima. Authors in [6]
proposed a hybrid algorithm that integrates different heuristics features, including using three
types of memories, one long-term memory, two short-term memories, and an evolution-based
diversification approach. In [7], a memory-based simulated annealing (MSA) algorithm is proposed
for the fixed-outline floor planning of blocks. MSA implements a memory pool to keep some historical
best solutions during the search. Moreover, MSA uses a real-time monitoring strategy to check whether
a solution has been trapped in a local optimum. Moreover, as a solution for the slow convergence
problem, an Adaptive simulated annealing genetic algorithm (ASAGA) based on a mutative scale
chaos optimization strategy is proposed in [8]. The algorithm can benefit from the parallel searching
structure of the GA and the probabilistic jumping property of the SA, besides implementing an
adaptive crossover and mutation operators. The results proved finding the global one more quickly.
In [9], an enhanced simulated annealing algorithm was developed by integrating “directional search”
and “memory” capabilities. The algorithm performance is improved by directing the search based
on a better understanding of the configuration space’s current neighborhood. A Tabu Search with
memory concept and an enhanced annealing method is tested and improved the convergence rate
and quality. A multi-objective simulated annealing (MOSA) and an adaptive memory procedure
(MOAMP) is proposed in [10]. These algorithms are tested by finding a set of non-dominated
solutions of hybrid flow shop scheduling problems concerning both objectives of total setup time
and cost. Without memory, the simulated annealing is time-consuming and has difficulty controlling
the temperature and transition number. In [11], an annealing framework with a learning memory
is implemented. That proposed framework showed reasonable confidence in the solution quality.
Moreover, there are several attempts to improve the SA performance through hybridization with
different metaheuristics [12–14], or thought invoking restart strategies [15–17].

On the other hand, several alternative nature-inspired optimization algorithms have been proposed
to deal with general global optimization problems, such as genetic algorithms [18–20], evolution
strategies [21,22], evolutionary programming [23,24], tabu search [25], memetic algorithms [26–28],
differential evolution [29–32], particle swarm optimization [33–37], scatter search [38,39], ant colony
optimization [40–42], artificial bee colony [43,44], variable neighborhood search [45,46], and hybrid

Algorithms 2020, 13, 230 3 of 26

approaches [47–52]. Besides these well-known techniques, other new methods which recently proposed
including multi-verse optimizer [53], fuzzy adaptive teaching [54], whale optimization algorithm [55],
wolf preying behavior [56], and drone squadron optimization [57].

In this paper, we propose a two-phase methodology using automatic diversification and
intensification based on memory and sensing tools in this work. Actually, one of the challenging
issues in two phases hybrid algorithms is the timing of the switch between the diversification-oriented
algorithm and the local-oriented search algorithm leading to the need for incorporating diversity
measures [51]. Therefore, an efficient metaheuristic approach for finding a global optimum of
optimization problems is presented to achieve a wide and deep search. The proposed method is
called simulated annealing with exploratory sensing (SAES) that integrates different features of
several well-known heuristics. The proposed algorithm’s core is a simulated annealing module that is
integrated with exploration and diversification schemes to enhance the search process using adaptive
search memories. In particular, a Gene Matrix (GM) concept [58,59] is constructed to sample the
search space, guide the search process, and to accelerate the method termination. The GM is used as a
diversification tool to record a history of space’s visited partitions. New solutions will be created in the
non-visited partitions; therefore, the search process is directed to visit individuals in these partitions
during the diversification process. After having the GM matrix filled with ones giving an indicator
of visiting most partitions, an intensification process starts. More intensification as a local search in
its region will be carried out from the best-found solution. Finally, a faster local search is applied
to help the SA algorithm quickly target optimal solutions. This could improve the search process
outputs since the SA-based algorithm is known to be reel around optimal solutions in the final stages
of the search. Numerical results of the proposed SAES method verify that the designed procedures
and memory elements are efficient, and the proposed methods are competitive with some other types
of benchmark methods.

In the rest of this paper, we discuss the related works of the SA module and the concept of
sensing search memory in Section 2. Then, our proposed method SAES with sensing memories and
operations is presented in Section 3. The numerical simulations are presented and discussed in Section 4.
Finally, Section 5 shows concluding remarks.

2. Simulated Annealing and Sensing Memory

In this section, the structure of the simulated annealing algorithm is sketched, and the main
concept of the sensing search memory is highlighted.

2.1. Simulated Annealing Algorithm

Annealing theory is based on condensed matter physics, where particles in a physical system
control the behaviors of the annealing process [2]. Simulated annealing implements the Metropolis
algorithm to emulate metal annealing in metallurgy, where heating and controlled cooling reshape
the metal particles. Controlling the metal temperature carefully by increasing it to higher values
and decreasing it arranges the particles to minimize the system energy. The standard SA algorithm
is a successful randomized local search algorithm for finding minima or near minima solutions
of optimization problems [60]. It is a particularly valuable tool for solving high dimensionality
problems [61]. Although the SA method can find solutions for extensive range problems, its main
drawback is the high computational time [60].

Let s be the current state and alternative states in its neighborhood N(s). One state s′ ∈ N(s) is
selected, and the difference between the current state cost and the selected state energy is computed as
D = f (s′)− f (s). Metropolis criterion is used to choose s′ as the current state in two cases:

• If D <= 0, means the new state has a smaller or equal cost, then s′ is chosen as the current state
as down-hills is always accepted.

• If D > 0, and the probability of accepting s′ is larger than a random value Rnd such that e−D/T >

Rnd then s′ is chosen as the current state where T is a control parameter known as Temperature.

Algorithms 2020, 13, 230 4 of 26

This parameter is gradually decreased during the search process, making the algorithm greedier
as the probability of accepting uphill moves decreases over time. Moreover, Rnd is a randomly
generated number, where 0 < Rnd < 1. Accepting uphill moves is important for the algorithm to
avoid being stuck in local minima.

In the last case where D > 0 and the probability is lower than the random value e−d/T <= Rnd,
no moves are accepted, and the current state s continues to be the current solution. When starting with
a large cooling parameter, large deterioration can be accepted. Then, as the temperature decreases,
only small deterioration are accepted until the temperature approaches zero when no deterioration is
accepted. Therefore, adequate temperature scheduling is essential to optimize the search. SA can be
implemented to find the closest possible optimal value within a finite time where the cooling schedule
can be specified by four components [60]:

• Initial value of temperature.
• A function to decrease temperature value gradually.
• A final temperature value.
• The length of each homogeneous Markov chains. A Markov chain is a sequence of trials where

the trial outcome’s probability only depends on the previous trial outcome. It is classified as
homogeneous when the transition probabilities do not depend on the trial number [62].

The success of SA depends on how good the choice of its parameters. For instance, the algorithm
can be stuck in a local minimum when choosing small initial temperatures since the exploration process
must be carried during the first stages. On the other hand, a significant temperature could cause
the convergence to be very slow. The same effect can be obtained when applying an inappropriate
cooling schedule. Also, adjusting the neighborhood range for SA is essential in continuous optimization
problems [63]. All inputs should not have the same step sizes, but these steps should be selected
according to their effects on the objective function [64]. The authors in [65] proposed a method to
identify the step size during the annealing process, which begins at significant steps and gradually
decreases them. The initial temperature can also be chosen within the standard deviation of the
mean cost of several moves [66]. When finite Markov chains are used to model SA mathematically,
the temperature is reduced once for each Markov chain. In contrast, each chain’s length should be
related to the size of the neighborhood in the problem [60].

2.2. Sensing Search Memory

An adaptive data storage called the sensing search memories is constructed to collect the search
data to boost the search process. There are various types of sensing search memories, such as Gene
Matrix (GM) and Landmarks Matrix (LM) [22,23,58,59]. These memories can be invoked by collecting
data and solution features from different and diverse search space regions. The following GM, as a
sensing search memory, is applied in this research.

2.2.1. Gene Matrix (GM)

The GM sensing search memory collects data and features from different and diverse search space
regions. The GM memory is invoked to assess the exploration process during the search. The search
methods use different coding representations of individuals, which applies every solution x in the
search domain to comprise n variables or genes. Specifically, in the GM, each variable range is divided
into m sub-range. Then, each sub-range of the i-th gene is associated with the entry of the i-th row of
the gene matrix. Therefore, the GM memory is initially an n×m zero matrix. Then it is converted to
ones whenever the corresponding sub-ranges are visited during the search process.

The update process of the GM entries from 0 to 1 is controlled with a parameter α to ensure that
each sub-range is visited at least αm times. As an example of the GM, Figure 1 shows a 2-dimension GM
with α = 0.25. The range of each gene in this example is split into 8 sub-ranges. Two GM are defined;

Algorithms 2020, 13, 230 5 of 26

a simple GM which requires only one visit to update its entities from 0 to 1, and the advanced GM0.25

that requires at least αm(= 2) visits to update its entities. Therefore, both of the GM and GM0.25 have
zero entities at the third and eighth sub-ranges of gene x1 since no individual has been generated in
these sub-ranges. However, entry (1, 1) in GM0.25 is equal to 0 as there exists only one individual in
the third sub-range. The entry (1, 1) can be updated to 1 if one extra individual has been generated in
the consequent generations.

Figure 1. An example of the Gene Matrix in R2.

The GM is an indicator of an advanced exploration process when there is no zero elements in the
GM, and the search process can be terminated. Consequently, the GM is used to provide the search
process with reasonable termination criteria. Furthermore, diverse solutions will be afforded to the
search space, as will be explained later.

3. Simulated Annealing with Exploratory Sensing (SAES) Algorithm

The objective of the proposed work is to increase the probability of finding a global optimum by
using a memory-based mechanism. The GM works as a sensing search memory where the visited
partitions are recorded to ensure the exploration of the search space. The search walker is then enforced
to attend non-visited partitions after several iterations (Markov chains) while keeping a record of
several best solutions found, as shown in the flowchart in Figure 2. Also, the search is carried out in
two phases:

1. The exploration phase. This stage has several iterations within several Markov chains and aims
to explore the constrained search space within the lower and upper limits of the solutions’ values
without affecting the way of how SA works in each Markov chain. Instead of starting the new
Markov chain from the last accepted state, applying the GM directs the search to visit solutions in
non-visited partitions of the search space. The cooling schedules and the acceptance criteria are
not affected by applying the GM, while the temperature is changed in each Markov chain ones.
Therefore, in each Markov chain, an intensification process is carried out in the new partition of
the search space, while the search is keeping records of the best-found solutions.

The adjustment of the SA settings should explore the search space in the first phase. Extensive
exploration is maintained in our proposed method by a diversification index. The diversification
index is a ratio of the number of visited partitions to the number of all partitions in the GM,
and it is measured after each Markov chain. For instance, this phase can be ended when
the diversification index reaches a pre-defined ratio γ of the partitions have been visited.
The numerical experiments shown later indicate that the appropriate value for the parameter
γ is 0.9, and this means visiting a percentage greater than 90% of the GM partitions. Another

Algorithms 2020, 13, 230 6 of 26

parameter called a diversification threshold δ is applied to control the direction to un-visited
partitions of the search space and this is called diversification sensing. This parameter is a smaller
anticipated value of the diversification index. For example, the diversification threshold value
δ = 0.04, means that when the search in one Markov chain has not changed the diversification
value by this threshold, the diversification process will be called to move to new search partitions.
Otherwise, the diversification process is not used as the search is achieving good diversification
using the escaping mechanism.

2. The intensification phase. After reaching a specified level of diversification where most of the
searching partitions were visited, the search is directed to start from the best-found state to do a
more local search in that region. Although the diversification is supposed to be achieved mainly
in the first phase using the GM, it is essential to ensure that the initial temperature is wisely
chosen to avoid getting trapped in local minima earlier at the start of this phase. We choose to use
a static cooling schedule that allows sufficient temperature after ending the exploration phase.
The search is ended when reaching the maximum iteration, which equals the number of Markov
chains multiplied by each Markov chain’s length.

Figure 2. Flowchart of the proposed methodology.

Algorithms 2020, 13, 230 7 of 26

After the two leading search phases are accomplished, a faster local search is called to refine the
best solution obtained so far. This could improve the SA algorithm output since this algorithm is
known to be reel around optimal solutions in the final stages of the search [67,68]. It is worth noting
that the two phases are executed sequentially and not overlapping together to maintain the main
structure of the SA algorithm, especially the cooling scheduling. This is also so that the proposed
algorithm does not lose the convergence behavior recognized in the standard SA algorithm.

The components of the proposed algorithm are presented and explained in the following subsections.

3.1. Neighborhood Representation

The neighborhood representation is defined by moving one or more of these parameters to one
or more directions randomly by a defined move class, e.g., by adding a defined step size to one or
more of the current parameter’s values to a specific direction. One move class is randomly choosing
neighboring solutions for a current solution by generating new solutions based on the current solution.
This generation process uses a multivariate normal distribution with step sizes equal to the square
root of the temperature and uniformly random direction. This choice is known as a typical choice
for generating new solutions in SA as noted by [69]. In addition, the initial temperature is set as the
standard deviation of different random moves, as presented by [66], this leads to a temperature value
related to the size of inputs. Therefore, this is a good choice when testing tens of different problems
with different scales to avoid the problem of small or large step sizes that can badly affect the search
convergence. Each time a new solution is generated, the boundary conditions are checked, and new
bounded values are generated when needed. Then, the cost of the new state is evaluated.

3.2. Initial Solution

Simulated annealing requires an initial solution. Typically, the SA performance highly dependents
on the initial solution settings, especially with relatively small temperatures or fast cooling schedules.
Alternatively, our methodology is not affected by the initial solution values as the diversification
process should overcome the initial settings traps. Specifically, the quality of the initial solution
does not affect the quality of the obtained solutions due to the proposed diversification mechanism
that redirects the search after each Markov chain of iterations into new areas rather than digging in
promising areas. Actually, the proposed methodology concerns with increasing intelligent coverage of
the visited solutions and exploiting search memory through the proposed diversification. Therefore,
a random initial solution is selected in implementing the SAES method.

3.3. Objective Function

The objective function is defined for each benchmark function, as shown in Appendices A and B.
In general, we concern with the following global optimization problem:

min
x∈X

f (x), (1)

where f is a real-valued function defined on search space X ⊆ Rn.

3.4. Initial Temperature Settings

Setting appropriate initial temperature and cooling schedule is crucial for having an efficient
SA method. The initial temperature is set as the standard deviation of 100 random moves, as presented
by [66].

3.4.1. Cooling Schedule

An appropriate cooling schedule is important for the success of the SA algorithm as fast cooling
can cause the algorithm to become stuck in a local minimum, and slow cooling can make the

Algorithms 2020, 13, 230 8 of 26

convergence very slow. A suitable static or dynamic cooling rate will help the SA converge to a
global minimum and avoid getting stuck in a local minimum. We choose the static cooling schedule:

Ti+1 = Ti ×ω, (2)

where ω is a static cooling rate. Setting ω close to 1 allows more exploration for the search space,
while smaller setting values allow greedier search and might not explore the whole search space
inside each Markov chain. Normally, practitioners use a static cooling rate ω between 0.8–0.99 [60].
The cooling schedule used is based on Boltzmann annealing by updating each iteration’s current
temperature based on the initial temperature T0 and the current iteration number ki = 0.95.

3.5. Markov Chains Configurations

When using Markov chains to model the SA iterations mathematically, the temperature is reduced
once for each Markov chain. The number of Markov chains chosen for this experiment is 60 chains,
which we think is enough for this study. The length of each chain should be related to the size of
the neighborhood in the problem [60]. Our case’s neighborhood size is the number of all optimized
parameters involved in the optimization process multiplied by 40.

3.6. The Diversification and Intensification Settings

A matrix of search space partitions called Gene Matrix GM is used. The SA algorithm uses the
real-coding representation of individuals, which applies individual x in the search space to comprise
n variables or genes. Every gene’s scope is split into m sub-ranges to check the diversity of the
gene values. At that point, a solution counter matrix C of size n×m is built, in which term cij stands
for the number of produced solutions such that gene i lies in the sub-range j, where i = 1, . . . , n,
and j = 1, . . . , m. In the initialization stage, the GM is built to be a n×m zero matrix in which every
entry of the i-th raw indicates a sub-range of the i-th gene. During the search phase, the GM zero
values will be flipped to ones when new values are created in corresponding sub-ranges. The GM
is an indicator of an advanced exploration process when there is no zero entry in the GM, and the
search process can be terminated. Consequently, GM is used to provide the search process with
reasonable termination criteria. The diversification threshold is chosen to be 0.04, where diversification
is not called if the algorithm achieved diversification improvement upper than this threshold in the
exploration phase. Diversification stops when stopping criteria is observed by one of two conditions.
The first is when reaching the diversification index of 0.9, which implies >= 90% of the number
of partitions have been visited. The second case when finishing 30% of the number of Markov
chain iterations.

3.7. Stopping Criterion

Typical stopping criteria of the SA includes stopping at small objective function values, stopping at
lower temperature values, stopping after sufficient iterations or Markov chains, and stopping when
the changes of energy in the objective function are sufficiently small. The choice of stopping criterion
is difficult as the optimal objective function is unknown in many cases [70]. When using any stopping
criteria, the objective of the two phases might be watched in which the diversification and the
intensification objectives should be achieved. To get good results, we have chosen to stop the search
after a certain number of Markov chains represent 30% of the number of all Markov chains.

3.8. The SAES Algorithm

Based on the previously explained components, the whole structure of the SAES method and the
sequence of its steps are illustrated in Algorithm 1.

Algorithms 2020, 13, 230 9 of 26

Algorithm 1 SAES

1: Set the cooling schedule parameters: initial temperature Tmax, cooling rate ω ∈ [0.8, 0.99], and Markov chain l.

2: Set T = Tmax, generate an initial solution x, and initialize the GM and xbest.
3: Evaluate the objective function f (x).
4: repeat
5: repeat
6: Generate a trial solution y in the neighborhood of x.
7: Evaluate the objective function f (y).
8: The trial solution y is accepted with probability p = min{1, e−∆ f /T}, where ∆ f = f (y)− f (x).
9: If y is accepted, then set x = y.

10: Update the GM and xbest.
11: until Markov chain is achieved.
12: Update temperature T.
13: if the diversification index is not increased at least by δ then
14: Generate a new diverse solution x using the GM, and update the GM and xbest.
15: end if
16: until the termination criterion of the diversification phase is met.
17: Set x = xbest.
18: repeat
19: repeat
20: Generate a trial solution y in the neighborhood of x.
21: Evaluate the objective function f (y).
22: The trial solution y is accepted with probability p = min{1, e−∆ f /T}, where ∆ f = f (y)− f (x).
23: If y is accepted, then set x = y.
24: Update the GM and xbest.
25: until Markov chain is achieved.
26: Update temperature T.
27: until the termination criterion of the intensification phase is met.
28: Apply local search to improve xbest.

4. Numerical Simulation

In the section, the implementation setting and experimental results are discussed. The proposed
algorithm is programmed using MATLAB. The parameter setting and performance analysis of the
SAES are first investigated before presenting the results and comparisons.

4.1. Test Functions

Two classes of benchmark test functions have been used in the experimental results to discuss
the efficiency of the proposed methods. The first class of benchmark functions contains 25 classical
test functions f1– f25 [71]. Those functions definitions are given in Appendix A. The other class of
benchmark functions contains 25 hard test functions h1–h25 [72,73] which are known as CEC2005 test
functions and described in Appendix B.

4.2. Parameter Setting and Configuration

The parameters values used in SAES algorithm are set based on the typical setting in the literature,
or determined through our preliminary numerical experiments, as shown in Table 1. Based on the
configuration of the SAES control parameters, there are three SA-based versions:

• The SAES without the diversification phase and final intensification, which is the standard
annealing algorithm and denoted by the SA method.

• The SAES without the final intensification, which is denoted by SAESw.
• The complete SAES method.

Algorithms 2020, 13, 230 10 of 26

In Table 1, there are two groups of parameters. The first one in the common parameter setting,
which is used in all versions of the proposed method. The other group of parameters is used in the
SAESw and SAES versions, except the final intensification budget is only used in the later version.

Table 1. The main settings for the SA and SAES methods.

Common Settings Used by Both Methods
No. of variables (n) As described in functions definitions (Appendices A and B).
Lower bound of each variable As described in functions definitions (Appendices A and B).
Upper bound of each variable As described in functions definitions (Appendices A and B).
No. of Markov chains (M) 60
Length of each Markov chain (l) 40n
Maximum no. of iterations M× l = 2400 n.
Initial solution Random moves.
Initial temperature The standard deviation of 100 random moves based on [66].
Cooling schedule Ti+1 = Ti ×ω, where ω = 0.95.
Termination criteria Reaching the maximum iterations number.
No. of independent runs for each function 30

SAES configurations
No of the GM partitions 10n
Diversification index No. of visited partitions/No. of all partitions.
Diversification threshold (δ) 0.04
Diversification stopping criteria Diversification index >= 0.9, i.e., γ = 0.9, or

reaching 30% of the number of Markov chain iterations.
Final intensification budget 500 n function evaluations.

Based on the parameter values shown in Table 1, the cost of the objective function evaluations
used in the SAES method can be computed as:

• Function evaluations in the initialization: 100 function evaluations.
• Function evaluations in the diversification phase: MD × (40n + 1), where MD is the number of

Markov chains in the diversification phase, which is at maximum 18.
• Function evaluations in the diversification phase: 40n× (60−MD).
• Function evaluations in the final intensification: at maximum 500n.

Therefore, the total number of function evaluations used by the SAES method is bounded by
(2900n + 118) functions evaluations. Likewise, it can be concluded that these numbers in the SA and
SAESw versions are bounded by (2400n + 100) and (2400n + 118), respectively.

The local search method used in the final intensification is consists of applying the MATLAB
functions “fminsearch.m” and “fminunc.m” starting from the best solutions obtained in the previous
search stages. Specifically, the function “fminsearch.m” is first called with the half of the local search
budget, then the other MATLAB function is called to improve the output of the first one with the same
budget as recommended in [74,75].

4.3. Statistical Tests

The non-parametric Wilcoxon rank-sum method [76–80] is used for determining the statistical
differences between the comparative methods. The following statistical terms are used:

• The positive and negative ranks:

R+ = ∑
di>0

rank(di) +
1
2 ∑

di=0
rank(di),

R− = ∑
di<0

rank(di) +
1
2 ∑

di=0
rank(di).

Algorithms 2020, 13, 230 11 of 26

where di is the difference between the ranks of the corresponding results of the compared
methods, and

• the p-value.

Besides these statistical measures, we add the measure “No. of Beats”, which contains
two numbers. The first number is related to how often the first method has better results than
the other method. Although the other number indicates the number of times, the second method has
prevailed over the first method.

4.4. Results and Discussion

The proposed method was applied to 50 benchmark problems shown with their details in
Appendices A and B. The results of the proposed SA versions are compared to each other to analyze
their performance. Moreover, the SAES results are also compared to those of other benchmark methods
to assess the proposed method’s efficiency.

In the first experiment, the SA, SAESw, and SAES methods are reported in Tables 2 and 3 which
include the averages and minima of the best solutions obtained by each method using the classical
and hard test functions, respectively. The numbers of variables in classical functions f1 − f13 and all
hard functions are set equal to 30 in this experiment. The numbers of variables in f24 and f25 are 100.
The other functions have different numbers of variables, as shown in Appendix A. These results are
recorded using 25 independent runs. The average errors between the obtained solutions shown in
Tables 2 and 3, and the global optima are reported in Table 4. Moreover, the averages of the processing
time used by each method are illustrated in Figures 3 and 4 using the classical and hard test functions,
respectively. All these results are statistical analyzed in Table 5 and 6. In general, the results are
improved according to the complication of the algorithm. Therefore, the results of the SAESw method
are better than those of the SA method and the results of the SAES is better than those of the other two
methods as shown in Tables 2–4. This proves the efficiency of the main two additive components of the
diversification phase and the final intensification. The processing time varies according to the problem
dimension and the sophistication of the objective function formula, as shown in Figures 3 and 4.
The statistical measures in Tables 5 and 6 indicate the following conclusion:

• There are no significant differences between the obtained errors in the SA and SAESw methods,
although the latter method could beat the first method in almost all used test functions.

• The SAES is significantly better than the other two methods in terms of obtaining better errors.
• The processing time of the SAES method is slightly longer than that of the SA and SAESw

methods with no significant differences between all methods processing times except in the hard
test functions.

As a final note on analyzing the SAES performance in terms of its ability to reach optimal solutions,
this has been studied using the relative error gap in the following formula:

RE =
| f̂ − f ∗|

max{1, | f ∗|} ,

where f ∗ is the exact global solution, and f̂ the average solution obtained by the SAES method.
The method could reach the global solutions within a RE gap of 10−3 for 8 of the classical test functions
and 3 of the hard test functions. If we consider a RE gap of 1, the SAES hits the vicinity of the global
solutions for 11 of the classical test functions and 11 of the hard test functions. The standard SA fails to
reach near global solutions for any of the classical functions or the hard functions considering the RE
gap of 10−3 or even of 1.

Algorithms 2020, 13, 230 12 of 26

Table 2. Average and minimum objective function values obtained by the SA methods using the
classical test functions.

Test SA SAESw SAES
Functions Average Minimum Average Minimum Average Minimum

f1 1.863× 103 1.240× 103 1.733× 103 1.229× 103 1.127× 10−10 10064× 10−15

f2 5.672× 10 4.562× 10 5.837× 10 3.997× 10 1.248× 10−3 1.721× 10−5

f3 2.926× 104 1.727× 104 2.977× 104 1.851× 104 5.939× 10−9 1.013× 10−9

f4 2.643× 10 1.223× 10 2.700× 10 1.655× 10 1.073× 10 1.520× 10−1

f5 2.372× 106 1.344× 106 2.162× 106 1.020× 106 1.276 1.252× 10−9

f6 1.850× 103 1.365× 103 1.773× 103 1.215× 103 1.727× 103 1.188× 103

f7 1.190× 10 8.176 1.192× 10 4.290 1.095× 10 3.775
f8 −8.018× 103 −9.170× 103 −8.019× 103 −9.511× 103 −8.540× 103 −1.042× 104

f9 2.033× 102 1.312× 102 1.933× 102 1.339× 102 1.276× 102 7.462× 10
f10 1.928× 10 1.552× 10 1.945× 10 1.885× 10 1.939× 10 1.901× 101

f11 3.389× 102 2.199× 102 3.197× 102 1.924× 102 1.217× 10−11 1.101× 10−12

f12 1.077× 10 6.796 1.187× 10 8.348 3.357× 10−1 6.422× 10−11

f13 1.986× 10 1.656× 10 1.939× 10 1.632× 10 1.065 1.728× 10−10

f14 1.253× 10 9.980× 10−1 1.181× 10 9.980× 10−1 1.356× 10 1.992
f15 4.665× 10−3 7.102× 10−4 4.547× 10−3 1.215× 10−3 6.003× 10−4 3.075× 10−4

f16 −1.013 −1.031 −1.013 −1.031 −1.032 −1.032
f17 4.047× 10−1 3.984× 10−1 4.059× 10−1 3.979× 10−1 3.979× 10−1 3.979× 10−1

f18 3.627 3.019 3.469 3.001 3.000 3.000
f19 −3.860 −3.863 −3.860 −3.863 −3.863 −3.863
f20 −3.225 −3.306 −3.233 −3.307 −3.256 −3.322
f21 −7.121 −9.787 −6.164 −9.890 −6.407 −1.015× 10
f22 −5.984 −9.888 −7.072 −1.004× 10 −7.428 −1.040× 10
f23 −6.187 −1.010× 10 −7.070 −1.019× 10 −6.976 −1.054× 10
f24 −5.014× 10 −5.549× 10 −4.978× 10 −5.925× 10 −6.946× 10 −7.515× 10
f25 −3.850× 10 −4.335× 10 −3.854× 10 −4.099× 10 −6.665× 10 −6.957× 10

0 5 10 15 20 25 30 35 40

Processing Time (in seconds)

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
10

f
11

f
12

f
13

f
14

f
15

f
16

f
17

f
18

f
19

f
20

f
21

f
22

f
23

f
24

f
25

F
u

n
c
ti

o
n

s

SA

SAES
w

SAES

Figure 3. Averages of processing time in seconds using the classical test functions.

Algorithms 2020, 13, 230 13 of 26

Table 3. Average and minimum objective function values obtained by the SA methods using the hard
test functions with n = 30.

Test SA SAESw SAES
Functions Average Minimum Average Minimum Average Minimum

h1 1.825× 103 8.849× 102 1.676× 103 1.119× 103 −4.500× 102 −4.500× 102

h2 4.186× 104 2.008× 104 3.956× 104 1.605× 104 −4.500× 102 −4.500× 102

h3 2.752× 108 1.497× 108 2.760× 108 1.496× 108 −4.492× 102 −4.500× 102

h4 2.623× 108 1.407× 108 2.528× 108 8.310× 107 −4.490× 102 −4.500× 102

h5 2.953× 103 1.973× 103 3.046× 103 1.764× 103 2.141× 103 1.591× 103

h6 6.962× 109 5.680× 109 7.345× 109 4.651× 109 1.252× 103 4.149× 102

h7 4.778× 103 4.677× 103 4.857× 103 4.729× 103 −1.800× 102 −1.800× 102

h8 −1.191× 102 −1.197× 102 −1.193× 102 −1.197× 102 −1.200× 102 −1.200× 102

h9 −1.426× 102 −2.040× 102 −1.418× 102 −1.835× 102 −2.367× 102 −2.653× 102

h10 −3.391× 10 −1.030× 102 −4.723× 10 −9.091× 10 −2.138× 102 −2.424× 102

h11 1.115× 102 1.047× 102 1.115× 102 1.062× 102 1.090× 102 1.074× 102

h12 8.561× 105 5.749× 105 7.785× 105 5.632× 105 1.178× 103 −4.600× 102

h13 −6.918× 10 −8.684× 10 −7.536× 10 −8.641× 10 −1.052× 102 −1.135× 102

h14 −2.855× 102 −2.864× 102 −2.859× 102 −2.864× 102 −2.852× 102 −2.856× 102

h15 7.099× 102 4.954× 102 6.972× 102 5.765× 102 5.963× 102 5.200× 102

h16 4.047× 102 3.436× 102 3.541× 102 3.271× 102 2.518× 102 2.299× 102

h17 4.720× 102 4.038× 102 4.875× 102 3.985× 102 4.750× 102 4.111× 102

h18 1.024× 103 9.901× 102 1.018× 103 9.789× 102 9.615× 102 8.689× 102

h19 1.021× 103 9.761× 102 1.014× 103 9.880× 102 1.001× 103 9.708× 102

h20 1.019× 103 9.827× 102 1.015× 103 9.779× 102 9.688× 102 8.566× 102

h21 1.653× 103 1.613× 103 1.654× 103 1.596× 103 1.620× 103 1.590× 103

h22 1.660× 103 1.518× 103 1.658× 103 1.544× 103 1.588× 103 1.557× 103

h23 1.661× 103 1.605× 103 1.657× 103 1.548× 103 1.649× 103 1.637× 103

h24 1.531× 103 7.074× 102 1.490× 103 1.371× 103 1.452× 103 1.391× 103

h25 1.577× 103 1.397× 103 1.568× 103 1.482× 103 1.549× 103 1.460× 103

Table 4. Average errors of the results in Tables 2 and 3 using the classical and hard test functions.

Test Test
Functions SA SAESw SAES Functions SA SAESw SAES

f1 1.863× 103 1.733× 103 1.127× 10−10 h1 2.275× 103 2.126× 103 1.501× 10−11

f2 5.672× 10 5.837× 10 1.248× 10−3 h2 4.231× 104 4.001× 104 6.427× 10−8

f3 2.926× 104 2.977× 104 5.939× 10−9 h3 2.752× 108 2.760× 108 8.071× 10−1

f4 2.643× 10 2.700× 10 1.073× 10 h4 2.623× 108 2.528× 108 1.021
f5 2.372× 106 2.162× 106 1.276 h5 3.263× 103 3.356× 103 2.451× 103

f6 1.850× 103 1.773× 103 1.727× 103 h6 6.962× 109 7.345× 109 8.622× 102

f7 1.190× 10 1.192× 10 1.095× 10 h7 4.958× 103 5.037× 103 1.920× 10−2

f8 4.552× 103 4.551× 103 4.029× 103 h8 2.090× 10 2.070× 10 2.000× 10
f9 2.033× 102 1.933× 102 1.276× 102 h9 1.874× 102 1.882× 102 9.333× 10
f10 1.928× 10 1.945× 10 1.939× 10 h10 2.961× 102 2.828× 102 1.162× 102

f11 3.389× 102 3.197× 102 1.217× 10−11 h11 2.150× 10 2.153× 10 1.903× 10
f12 1.077× 10 1.187× 10 3.357× 10−1 h12 8.566× 105 7.789× 105 1.638× 103

f13 1.986× 10 1.939× 10 1.065 h13 6.082× 10 5.464× 10 2.475× 10
f14 1.153× 10 1.081× 10 1.257× 10 h14 1.450× 10 1.410× 10 1.477× 10
f15 4.290× 10−3 4.172× 10−3 2.253× 10−4 h15 5.899× 102 5.772× 102 4.763× 102

f16 1.860× 10−2 1.860× 10−2 0.000 h16 2.847× 102 2.341× 102 1.318× 102

f17 6.813× 10−3 8.013× 10−3 3.578× 10−7 h17 3.520× 102 3.675× 102 3.550× 102

f18 6.270× 10−1 4.694× 10−1 6.600× 10−12 h18 1.014× 103 1.008× 103 9.515× 102

f19 2.780× 10−3 2.780× 10−3 2.133× 10−7 h19 1.011× 103 1.004× 103 9.907× 102

f20 9.737× 10−2 8.902× 10−2 6.676× 10−2 h20 1.009× 103 1.005× 103 9.588× 102

f21 3.032 3.989 3.746 h21 1.293× 103 1.294× 103 1.260× 103

f22 4.419 3.331 2.975 h22 1.300× 103 1.298× 103 1.228× 103

f23 4.349 3.466 3.561 h23 1.301× 103 1.297× 103 1.289× 103

f24 4.914× 10 4.949× 10 2.982× 10 h24 1.271× 103 1.230× 103 1.192× 103

f25 3.983× 10 3.979× 10 1.168× 10 h25 1.317× 103 1.308× 103 1.289× 103

Algorithms 2020, 13, 230 14 of 26

0 50 100 150 200 250 300 350 400 450 500

Processing Time (in seconds)

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
8

h
9

h
10

h
11

h
12

h
13

h
14

h
15

h
16

h
17

h
18

h
19

h
20

h
21

h
22

h
23

h
24

h
25

F
u

n
c

ti
o

n
s

SA

SAES
w

SAES

Figure 4. Averages of processing time in seconds using the hard test functions.

Table 5. Wilcoxon rank-sum test for the results of SA methods using the classical test functions.

Criterion Compared Methods No. of Beats R+ R− p-Value Best Method

Average Errors SA SAESw 9/14 205.5 119.5 0.9536 –
SA SAES 3/22 300 25 0.0062 SAES
SAESw SAES 2/23 306 19 0.0066 SAES

Minimum Errors SA SAESw 7/15 222 103 0.8996 –
SA SAES 3/22 303 22 0.0025 SAES
SAESw SAES 3/22 304 21 0.0026 SAES

Processing Time SA SAESw 9/9 177 174 1.0000 –
SA SAES 26/0 0 351 0.6018 –
SAESw SAES 26/0 0 351 0.6341 –

Table 6. Wilcoxon rank-sum test for the results of SA methods using the hard test functions.

Criterion Compared Methods No. of Beats R+ R− p-Value Best Method

Average Errors SA SAESw 8/17 215 110 0.8614 –
SA SAES 2/23 320 5 0.0049 SAES
SAESw SAES 1/24 324 1 0.0049 SAES

Minimum Errors SA SAESw 12/12 187.5 137.5 0.9459 –
SA SAES 8/17 259 66 0.0036 SAES
SAESw SAES 6/19 288 37 0.0030 SAES

Processing Time SA SAESw 21/4 23.5 301.5 0.7636 –
SA SAES 24/1 1 324 0.0052 SA
SAESw SAES 24/1 1 324 0.0052 SAESw

In the second experiment, we investigate the diversification index’s performance and how it
could help the SA-based algorithms gain better performance. The average values of this index are
reported in Figures 5 and 6 over 25 independent runs using the classical and hard test functions,
respectively, with the same conditions stated in the first experiment. In most of the used test

Algorithms 2020, 13, 230 15 of 26

functions, the diversification phase could help the SA-based algorithms explore the search space
more broadly. Figures 7 and 8 show examples of the progress of the best solution and diversification
index improvements over generations. This shows how the diversification phase has improved the
quality of obtained solutions by an SA-based method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Diversification Indices

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
10

f
11

f
12

f
13

f
14

f
15

f
16

f
17

f
18

f
19

f
20

f
21

f
22

f
23

f
24

f
25

F
u

n
c
ti

o
n

s

SA

SAES

Figure 5. Diversification indices of classical test functions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Diversification Indices

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
10

f
11

f
12

f
13

f
14

f
15

f
16

f
17

f
18

f
19

f
20

f
21

f
22

f
23

f
24

f
25

F
u

n
c
ti

o
n

s

SA

SAES

Figure 6. Diversification indices of classical hard functions.

In the last experiment, we compare the proposed SAES with the other state-of-the-art methods
abbreviated as follows, where 14 of comparative methods are used.

• BLX-GL50 [81]: Hybrid real-coded genetic algorithms with female and male differentiation.
• BLX-MA [82]: Adaptive local search parameters for real-coded memetic algorithms.
• COEVO [83]: Real-parameter optimization using the mutation step co-evolution.
• DE [84]: Real-parameter optimization with differential evolution.
• DMS-L-PSO [85]: Dynamic multi-swarm particle swarm optimizer with local search.

Algorithms 2020, 13, 230 16 of 26

• EDA [86]: A simple continuous estimated distribution algorithm.
• IPOP-CMA-ES [87]: Restart with increasing population size Covariance Matrix Adaptation

Evolution Strategy (CMA-ES).
• LR-CMA-ES [88]: Local restart CMA-ES.
• K-PCX [89]: A population-based, steady-state procedure for real-parameter optimization.
• L-SaDE [90]: Self-adaptive differential evolution algorithm.
• SPC-PNX [91]: Scaled probabilistic crowding genetic algorithm with parent centric normal crossover.
• cHS [92]: Cellular harmony search algorithm.
• HC [93]: Hill climbing.
• βHC [94]: β-Hill climbing.

0 10 20 30 40 50 60

Iterations

20

40

60

80

100

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

SA

SAES

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

D
iv

e
rs

if
ic

a
ti

o
n

 I
n

d
ic

e
s

f
4

SA

SAES

0 10 20 30 40 50 60

Iterations

10

15

20

25

30

35

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

SA

SAES

0 10 20 30 40 50 60
0.42

0.44

0.46

0.48

0.5

0.52

0.54

D
iv

e
rs

if
ic

a
ti

o
n

 I
n

d
ic

e
s

f
12

SA

SAES

Figure 7. Examples of the SA and SAES diversification performance using classical test functions.

0 10 20 30 40 50 60

Iterations

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

10
4

SA

SAES

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
iv

e
rs

if
ic

a
ti

o
n

 I
n

d
ic

e
s

h
7

SA

SAES

0 10 20 30 40 50 60

Iterations

-285.4

-285.3

-285.2

-285.1

-285

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

SA

SAES

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

D
iv

e
rs

if
ic

a
ti

o
n

 I
n

d
ic

e
s

h
14

SA

SAES

Figure 8. Examples of the SA and SAES diversification performance using hard test functions.

Algorithms 2020, 13, 230 17 of 26

The results of the benchmark mentioned above methods are reported in Table 7 along with the
SAES results using the hard test functions with n = 10. The results of the compared methods are
taken from reference [94] with termination criteria of reaching 100,000 function evaluations while the
SAES method only spends at maximum 29,118 function evaluations. The statistical measures of these
results are reported in Table 8. The proposed method could beat all the compared methods in terms
of function evaluations. Moreover, it shows promising competitive performance in obtaining better
solutions compared with other methods used in comparisons.

Table 7. Average errors obtained by the proposed method and the compared benchmark methods
using the hard test functions with n = 10.

h BLX-GLS50 BLX-MA CoEVO DE DMS-L-PSO EDA IPOP-CMA-ES K-PCX
h1 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9

h2 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9

h3 5.00× 102 4.77× 104 1.00× 10−9 1.94× 10−6 1.00× 10−9 2.12× 10 1.00× 10−9 4.15× 10−1

h4 1.00× 10−9 2.00× 10−8 1.00× 10−9 1.00× 10−9 1.89× 10−3 1.00× 10−9 1.00× 10−9 7.94× 10−7

h5 1.00× 10−9 2.12× 10−2 2.13 1.00× 10−9 1.14× 10−6 1.00× 10−9 1.00× 10−9 4.85× 10
h6 1.00× 10−9 1.49 1.25× 10 1.59× 10−1 6.89× 10−6 4.18× 10−2 1.00× 10−9 4.78× 10−1

h7 1.17× 10−2 1.97× 10−1 3.71× 10−2 1.46× 10−1 4.52× 10−2 4.20× 10−1 1.00× 10−9 2.31× 10−1

h8 2.04× 10 2.02× 10 2.03× 10 2.04× 10 2.00× 10 2.03× 10 2.00× 10 2.00× 10
h9 1.15 4.38× 10−1 1.92× 10 9.55× 10−1 1.00× 10−9 5.42 2.39× 10−1 1.19× 10−1

h10 4.97 5.64 2.68× 10 1.25× 10 3.62 5.29 7.96× 10−2 2.39× 10−1

h11 2.33 4.56 9.03 8.47× 10−1 4.62 3.94 9.34× 10−1 6.65
h12 4.07× 102 7.43× 10 6.05× 102 3.17× 10 2.40 4.42× 102 2.93× 10 1.49× 102

h13 7.50× 10−1 7.74× 10−1 1.14 9.77× 10−1 3.69× 10−1 1.84 6.96× 10−1 6.53× 10−1

h14 2.17 2.03 3.71 3.45 2.36 2.63 3.01 2.35
h15 4.00× 102 2.70× 102 2.94× 102 2.59× 102 4.85 3.65× 102 2.28× 102 5.10× 102

h16 9.35× 10 1.02× 102 1.77× 102 1.13× 102 9.48× 10 1.44× 102 9.13× 10 9.59× 10
h17 1.09× 102 1.27× 102 2.12× 102 1.15× 102 1.10× 102 1.57× 102 1.23× 102 9.73× 10
h18 4.20× 102 8.03× 102 9.02× 102 4.00× 102 7.61× 102 4.83× 102 3.32× 102 7.52× 102

h19 4.49× 102 7.63× 102 8.45× 102 4.20× 102 7.14× 102 5.64× 102 3.26× 102 7.51× 102

h20 4.46× 102 8.00× 102 8.63× 102 4.60× 102 8.22× 102 6.52× 102 3.00× 102 8.13× 102

h21 6.89× 102 7.22× 102 6.35× 102 4.92× 102 5.36× 102 4.84× 102 5.00× 102 1.05× 103

h22 7.59× 102 6.71× 102 7.79× 102 7.18× 102 6.92× 102 7.71× 102 7.29× 102 6.59× 102

h23 6.39× 102 9.27× 102 8.35× 102 5.72× 102 7.30× 102 6.41× 102 5.59× 102 1.06× 103

h24 2.00× 102 2.24× 102 3.14× 102 2.00× 102 2.24× 102 2.00× 102 2.00× 102 4.06× 102

h25 4.04× 102 3.96× 102 2.57× 102 9.23× 102 3.66× 102 3.73× 102 3.74× 102 4.06× 102

h LR-CMA-ES L-SADE SPC-PNX cHS HC βHC SAES
h1 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.02× 10−12

h2 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 1.00× 10−9 7.03× 10−9

h3 1.00× 10−9 1.67× 10−5 1.08× 105 1.49× 107 2.11× 104 2.22× 104 4.13× 10−4

h4 1.76× 106 1.42× 10−5 1.00× 10−9 4.66× 103 1.50× 104 4.87× 10−3 4.14× 10−4

h5 1.00× 10−9 1.23× 10−2 1.00× 10−9 1.33× 104 5.51× 103 2.51× 102 8.87× 10
h6 1.00× 10−9 1.20× 10−8 1.89× 10 5.84× 107 6.65× 10 4.07× 10 5.31× 10−7

h7 1.00× 10−9 1.99× 10−2 8.26× 10−2 7.85× 10 6.82× 10 4.73× 10−1 1.93
h8 2.00× 10 2.00× 10 2.10× 10 2.03× 10 2.01× 10 2.00× 10 2.00× 10
h9 4.49× 10 1.00× 10−9 4.02 2.69× 10 1.14× 102 1.00× 10−9 1.99× 10
h10 4.08× 10 4.97 7.30 6.17× 10 2.77× 102 2.09× 10 2.67× 10
h11 3.65 4.89 1.91 9.74 8.31 5.50 3.39
h12 2.09× 102 4.50× 10−7 2.60× 102 1.28× 104 2.37× 102 1.77× 102 4.19
h13 4.94× 10−1 2.20× 10−1 8.38× 10−1 3.90 5.08× 10−1 3.09× 10−1 2.13
h14 4.01 2.92 3.05 3.97 4.84 2.93 4.79
h15 2.11× 102 3.20× 10 2.54× 102 3.48× 102 9.40× 102 1.14× 102 1.86× 102

h16 1.05× 102 1.01× 102 1.10× 102 2.73× 102 1.06× 103 1.58× 102 1.38× 102

h17 5.49× 102 1.14× 102 1.19× 102 2.89× 102 7.89× 102 1.62× 102 1.92× 102

h18 4.97× 102 7.19× 102 4.40× 102 8.85× 102 1.39× 103 6.56× 102 6.86× 102

h19 5.16× 102 7.05× 102 3.80× 102 1.09× 103 1.48× 103 7.79× 102 5.24× 102

h20 4.42× 102 7.13× 102 4.40× 102 1.08× 103 1.51× 103 6.57× 102 6.15× 102

h21 4.04× 102 4.64× 102 6.80× 102 1.09× 103 1.67× 103 6.40× 102 5.00× 102

h22 7.40× 102 7.35× 102 7.49× 102 9.00× 102 2.23× 103 7.66× 102 9.29× 102

h23 7.91× 102 6.64× 102 5.76× 102 1.30× 103 1.69× 103 6.60× 102 5.61× 102

h24 8.65× 102 2.00× 102 2.00× 102 1.06× 103 1.65× 103 2.62× 102 2.00× 102

h25 4.42× 102 3.76× 102 4.06× 102 8.84× 102 1.87× 103 2.60× 102 2.92× 102

Algorithms 2020, 13, 230 18 of 26

Table 8. Wilcoxon rank-sum test for the compared results in Table 7.

Criterion Compared Methods No. of Beats R+ R− p-Value Best Method

Average Errors BLX-GLS50 SAES 16/8 133.5 191.5 0.9458 –
BLX-MA SAES 11/14 209 116 0.7415 –
CoEVO SAES 10/15 232 93 0.6344 –
DE SAES 17/7 88.5 236.5 0.5935 –
DMS-L-PSO SAES 13/11 151.5 173.5 0.5802 –
EDA SAES 12/12 169.5 155.5 1.0000 –
IPOP-CMA-ES SAES 18/4 59 266 0.3361 –
K-PCX SAES 11/13 205.5 119.5 0.8537 –
LR-CMA-ES SAES 13/11 176.5 148.5 0.7634 –
L-SADE SAES 16/7 113.5 211.5 0.5605 –
SPC-PNX SAES 15/9 133 192 0.9304 –
cHS SAES 3/22 311 14 0.0055 SAES
HC SAES 2/23 318 7 0.0034 SAES
βHC SAES 11/13 205.5 119.5 0.4788 –

Function Evaluations All methods SAES 0/25 325 0 2.77E–12 SAES

5. Conclusions

A two-phase approach using automated diversification and intensification based on memory
and sensing methods is suggested to enhance the SA methodology. The proposed mechanisms could
enhance SA with an exploration eye that guides the search process to have better solutions. Moreover,
the random walk of the standard SA algorithm has been modified to benefit from the memory of visited
states and diversification history. Finally, an advanced local search can help the SA algorithm quickly
target optimal solutions in the later search stages. The numerical experiments show the efficiency of
the proposed method in ensuring good discovery and finding better solutions.

Author Contributions: conceptualization, A.-R.H., H.H.A., M.A., and W.D.; methodology, A.-R.H., W.D., H.H.A.
and M.A.; programming and implementation, A.-R.H., W.D. and M.A.; writing—original draft preparation,
A.-R.H., W.D., H.H.A. and M.A.; writing—review and editing, A.-R.H., W.D., H.H.A., and M.A.; funding
acquisition, A.-R.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Plan for Science, Technology, and Innovation (MAARIFAH)–King
Abdulaziz City for Science and Technology–the Kingdom of Saudi Arabia, award number (13-INF544-10).

Acknowledgments: The authors would like to thank King Abdulaziz City for Science and Technology—the
Kingdom of Saudi Arabia, for supporting the project number (13-INF544-10).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Classical Test Functions

Appendix A.1. Sphere Function (f1)

Definition A1. f1(x) = ∑n
i=1 x2

i .

Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f1(x∗) = 0.

Appendix A.2. Schwefel Function (f2)

Definition A2. f2(x) = ∑n
i=1 |xi|+ Πn

i=1|xi|.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f2(x∗) = 0.

Algorithms 2020, 13, 230 19 of 26

Appendix A.3. Schwefel Function (f3)

Definition A3. f3(x) = ∑n
i=1(∑

i
j=1 xj)

2.

Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f3(x∗) = 0.

Appendix A.4. Schwefel Function (f4)

Definition A4. f4(x) = maxi=1,...n{|xi|}.

Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f4(x∗) = 0.

Appendix A.5. Rosenbrock Function (f5)

Definition A5. f5(x) = ∑n−1
i=1

[
100

(
x2

i − xi+1
)2

+ (xi − 1)2
]

.

Search space: −30 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f5(x∗) = 0.

Appendix A.6. Step Function (f6)

Definition A6. f6(x) = ∑n
i=1(bxi + 0.5c)2.

Search space: −100 ≤ xi ≤ 100, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f6(x∗) = 0.

Appendix A.7. Quadratic Function with Noise (f7)

Definition A7. f7(x) = ∑n
i=1 ix4

i + random[0, 1).

Search space: −1.28 ≤ xi ≤ 1.28, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f7(x∗) = 0.

Appendix A.8. Schwefel Functions (f8)

Definition A8. f8(x) = −∑n
i=1

(
xi sin

√
|xi|
)

.

Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (420.9687, . . . , 420.9687), f8(x∗) = −418.9829n.

Appendix A.9. Rastrigin Function (f9)

Definition A9. f9(x) = 10n + ∑n
i=1
(

x2
i − 10 cos (2πxi)

)
.

Search space: −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f9(x∗) = 0.

Appendix A.10. Ackley Function (f10)

Definition A10. f10(x) = 20 + e− 20e−
1
5

√
1
n ∑n

i=1 x2
i − e

1
n ∑n

i=1 cos(2πxi).

Search space: −32 ≤ xi ≤ 32, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); f10(x∗) = 0.

Algorithms 2020, 13, 230 20 of 26

Appendix A.11. Griewank Function (f11)

Definition A11. f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1.

Search space: −600 ≤ xi ≤ 600, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f11(x∗) = 0.

Appendix A.12. Levy Functions (f12, f13)

Definition A12. f12(x) = π
n {10 sin2(πy1) + ∑n−1

i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+ (yn − 1)2}

+ ∑n
i=1 u(xi, 10, 100, 4), yi = 1 + xi−1

4 , i = 1, . . . , n.
f13(x) = 1

10{sin2(3πx1) + ∑n−1
i=1

[
(xi − 1)2(1 + sin2(3πxi + 1))

]
+ (xn − 1)2(1 + sin2(2πxn))

+ ∑n
i=1 u(xi, 5, 100, 4),

u(xi, a, k, m) =

k(xi − a)m, xi > a;
0, −a ≤ xi ≤ a;
k(−xi − a)m, xi < a.

Search space: −50 ≤ xi ≤ 50, i = 1, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f12(x∗) = f13(x∗) = 0.

Appendix A.13. Shekel Foxholes Function (f14)

Definition A13. f14(x) =
[

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−Aij)6

]−1
,

A =

[
−32 −16 0 16 33 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

]
.

Search space: −65.536 ≤ xi ≤ 65.536, i = 1, 2.
Global minimum: x∗ = (−32,−32); f14(x∗) = 0.998.

Appendix A.14. Kowalik Function (f15)

Definition A14. f15(x) = ∑11
i=1

[
ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2
,

a = (0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246),
b = (4, 2, 1, 1

2 , 1
4 , 1

6 , 1
8 , 1

10 , 1
12 , 1

14 , 1
16) .

Search space: −5 ≤ xi ≤ 5, i = 1, . . . , 4.
Global minimum: x∗ ≈ (0.1928, 0.1908, 0.1231, 0.1358), f15(x∗) ≈ 0.000375.

Appendix A.15. Hump Function (f16)

Definition A15. f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2.

Search space: −5 ≤ xi ≤ 5, i = 1, 2.
Global minima: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126); f16(x∗) = 0.

Appendix A.16. Branin RCOS Function (f17)

Definition A16. f17(x) = (x2 − 5
4π2 x2

1 +
5
π x1 − 6)2 + 10(1− 1

8π) cos(x1) + 10.

Search space: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.
Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475); f17(x∗) = 0.397887.

Algorithms 2020, 13, 230 21 of 26

Appendix A.17. Goldstein & Price Function (f18)

Definition A17. f18(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 13x2
1 − 14x2 + 6x1x2 + 3x2

2))

∗ (30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 − 48x2 − 36x1x2 + 27x2
2)).

Search space: −2 ≤ xi ≤ 2, i = 1, 2.
Global minimum: x∗ = (0,−1); f18(x∗) = 3.

Appendix A.18. Hartmann Function (f19)

Definition A18. f19(x) = −∑4
i=1 αi exp

[
−∑3

j=1 Aij
(
xj − Pij

)2
]

,

α = [1, 1.2, 3, 3.2]T , A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

, P = 10−4

6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .

Search space: 0 ≤ xi ≤ 1, i = 1, 2, 3.
Global minimum: x∗ = (0.114614, 0.555649, 0.852547); f19(x∗) = −3.86278.

Appendix A.19. Hartmann Function (f20)

Definition A19. f20(x) = −∑4
i=1 αi exp

[
−∑6

j=1 Bij
(
xj −Qij

)2
]

,

α = [1, 1.2, 3, 3.2]T , B =

10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

,

Q = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

.

Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6.
Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
f20(x∗) = −3.32237.

Appendix A.20. Shekel Functions (f21, f22, f23)

Definition A20. f21(x) = S4,5(x), f22(x) = S4,7(x), f23(x) = S4,10(x),

where S4,m(x) = −∑m
j=1

[
∑4

i=1
(

xi − Cij
)2

+ β j

]−1
, m = 5, 7, 10,

β = 1
10 [1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T , C =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

.

Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4.
Global minimum: x∗ = (4, 4, 4, 4);
f21(x∗) = −10.1532,
f22(x∗) = −10.4029,
f23(x∗) = −10.5364.

Appendix A.21. Function (f24)

Definition A21. f24(x) = −∑n
i=1 sin(xi) sin20(

ix2
i

π).

Algorithms 2020, 13, 230 22 of 26

Search space: 0 ≤ xi ≤ π, i = 1, . . . , n.
Global minimum: f24(x∗) = −99.2784.

Appendix A.22. Function (f25)

Definition A22. f25(x) = 1
n ∑n

i=1(x4
i − 16x2

i + 5xi).

Search space: −5 ≤ xi ≤ 5, i = 1, . . . , n.
Global minimum: f25(x∗) = −78.33236.

Appendix B. Hard Test Functions

For the hard test functions h1-h17, their global minima and the bounds on the variables are listed
in Table A1. For more details about these functions, the reader is referred to [72].

Table A1. Benchmark hard functions

h Function Name Bounds Global Minimum

h1 Shifted Sphere [−100,100] −450
h2 Shifted Schwefel’s 1.2 [−100,100] −450
h3 Shifted rotated high conditioned elliptic [−100,100] −450
h4 Shifted Schwefel’s 1.2 with noise in fitness [−100,100] −450
h5 Schwefel’s 2.6 with global optimum on bounds [−100,100] −310
h6 Shifted Rosenbrock’s [−100,100] 390
h7 Shifted rotated Griewank’s without bounds [0,600] −180
h8 Shifted rotated Ackley’s with global optimum on bounds [−32,32] −140
h9 Shifted Rastrigin’s [−5,5] −330
h10 Shifted rotated Rastrigin’s [−5,5] −330
h11 Shifted rotated Weierstrass [−0.5,0.5] 90
h12 Schwefel’s 2.13 [−100,100] −460
h13 Expanded extended Griewank’s + Rosenbrock’s [−3,1] −130
h14 Expanded rotated extended Scaffe’s [−100,100] −300
h15 Hybrid composition 1 [−5,5] 120
h16 Rotated hybrid comp. [−5,5] 120
h17 Rotated hybrid comp. Fn 1 with noise in fitness [−5,5] 120
h18 Rotated hybrid composition function [−5, 5] 10
h19 Rotated hybrid composition function with narrow basin global optimum [−5, 5] 10
h20 Rotated hybrid composition function with global optimum on the bounds [−5, 5] 10
h21 Rotated hybrid composition function [−5, 5] 360
h22 Rotated hybrid composition function with high condition number matrix [−5, 5] 360
h23 Non-Continuous rotated hybrid composition function [−5, 5] 360
h24 Rotated hybrid composition function [−5, 5] 260
h25 Rotated hybrid composition function without bounds [2, 5] 260

References

1. Glover, F.; Laguna, M. Tabu Search; Kluwer Academic Publishers: Boston, MA, USA, 1997.
2. Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated annealing, 1983. Science 1983, 220, 671–680.

[CrossRef] [PubMed]
3. Goldenberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley: Reading,

MA, USA, 1989.
4. Yasear, S.A.; Ku-Mahamud, K.R. Taxonomy of Memory Usage in Swarm Intelligence-Based Metaheuristics.

Baghdad Sci. J. 2019, 16, 445–452.
5. Tarawneh, H.; Ayob, M.; Ahmad, Z. A hybrid Simulated Annealing with Solutions Memory for

Curriculum-based Course Timetabling Problem. J. Appl. Sci. 2013, 13, 262–269. [CrossRef]
6. Azizi, N.; Zolfaghari, S.; Liang, M. Hybrid simulated annealing with memory: An evolution-based

diversification approach. Int. J. Prod. Res. 2010, 48, 5455–5480. [CrossRef]
7. Zou, D.; Wang, G.G.; Sangaiah, A.K.; Kong, X. A memory-based simulated annealing algorithm and a new

auxiliary function for the fixed-outline floorplanning with soft blocks. J. Ambient. Intell. Humaniz. Comput.
2017, 1–12. [CrossRef]

http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.3923/jas.2013.262.269
http://dx.doi.org/10.1080/00207540903055685
http://dx.doi.org/10.1007/s12652-017-0661-7

Algorithms 2020, 13, 230 23 of 26

8. Gao, H.; Feng, B.; Zhu, L. Adaptive SAGA based on mutative scale chaos optimization strategy. In Proceedings
of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005;
IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 517–520.

9. Skaggs, R.; Mays, L.; Vail, L. Simulated annealing with memory and directional search for ground water
remediation design. J. Am. Water Resour. Assoc. 2001, 37, 853–866. [CrossRef]

10. Mohammadi, H.; Sahraeian, R. Bi-objective simulated annealing and adaptive memory procedure approaches
to solve a hybrid flow shop scheduling problem with unrelated parallel machines. In Proceedings of the
2012 IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong,
China, 10–13 October 2012; pp. 528–532. [CrossRef]

11. Lo, C.C.; Hsu, C.C. An annealing framework with learning memory. IEEE Trans. Syst. Man, Cybern. Part A
Syst. Hum. 1998, 28, 648–661.

12. Javidrad, F.; Nazari, M. A new hybrid particle swarm and simulated annealing stochastic optimization
method. Appl. Soft Comput. 2017, 60, 634–654. [CrossRef]

13. Assad, A.; Deep, K. A Hybrid Harmony search and Simulated Annealing algorithm for continuous
optimization. Inf. Sci. 2018, 450, 246–266. [CrossRef]

14. Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature
selection. Neurocomputing 2017, 260, 302–312. [CrossRef]

15. Vincent, F.Y.; Redi, A.P.; Hidayat, Y.A.; Wibowo, O.J. A simulated annealing heuristic for the hybrid vehicle
routing problem. Appl. Soft Comput. 2017, 53, 119–132.

16. Li, Z.; Tang, Q.; Zhang, L. Minimizing energy consumption and cycle time in two-sided robotic assembly
line systems using restarted simulated annealing algorithm. J. Clean. Prod. 2016, 135, 508–522. [CrossRef]

17. Yu, V.; Iswari, T.; Normasari, N.; Asih, A.; Ting, H. Simulated annealing with restart strategy for the blood
pickup routing problem. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol,
UK, 2018; Volume 337, p. 012007.

18. Hedar, A.R.; Fukushima, M. Minimizing multimodal functions by simplex coding genetic algorithm.
Optim. Methods Softw. 2003, 18, 265–282. [CrossRef]

19. Li, Y.; Zeng, X. Multi-population co-genetic algorithm with double chain-like agents structure for parallel
global numerical optimization. Appl. Intell. 2010, 32, 292–310. [CrossRef]

20. Sawyerr, B.A.; Ali, M.M.; Adewumi, A.O. A comparative study of some real-coded genetic algorithms for
unconstrained global optimization. Optim. Methods Softw. 2011, 26, 945–970. [CrossRef]

21. Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–102.

22. Hedar, A.R.; Fukushima, M. Evolution strategies learned with automatic termination criteria. In Proceedings
of the SCIS-ISIS, Tokyo, Japan, 20–24 September 2006; J-STAGE: Tokyo, Japan, 2006; pp. 1126–1134.

23. Hedar, A.R.; Fukushima, M. Directed evolutionary programming: Towards an improved performance of
evolutionary programming. In Proceedings of the 2006 IEEE International Conference on Evolutionary
Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1521–1528.

24. Lee, C.Y.; Yao, X. Evolutionary programming using mutations based on the Lévy probability distribution.
Evol. Comput. IEEE Trans. 2004, 8, 1–13. [CrossRef]

25. Hedar, A.R.; Fukushima, M. Tabu search directed by direct search methods for nonlinear global optimization.
Eur. J. Oper. Res. 2006, 170, 329–349. [CrossRef]

26. Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. Real-coded memetic algorithms with crossover
hill-climbing. Evol. Comput. 2004, 12, 273–302. [CrossRef]

27. Nguyen, Q.H.; Ong, Y.S.; Lim, M.H. A probabilistic memetic framework. Evol. Comput. IEEE Trans. 2009,
13, 604–623. [CrossRef]

28. Noman, N.; Iba, H. Accelerating differential evolution using an adaptive local search. Evol. Comput.
IEEE Trans. 2008, 12, 107–125. [CrossRef]

29. Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Deb, S. Coupled eagle strategy and differential evolution for
unconstrained and constrained global optimization. Comput. Math. Appl. 2012, 63, 191–200. [CrossRef]

30. Brest, J.; Maučec, M.S. Population size reduction for the differential evolution algorithm. Appl. Intell. 2008,
29, 228–247. [CrossRef]

31. Das, S.; Abraham, A.; Chakraborty, U.K.; Konar, A. Differential evolution using a neighborhood-based
mutation operator. Evol. Comput. IEEE Trans. 2009, 13, 526–553. [CrossRef]

http://dx.doi.org/10.1111/j.1752-1688.2001.tb05517.x
http://dx.doi.org/10.1109/IEEM.2012.6837795
http://dx.doi.org/10.1016/j.asoc.2017.07.023
http://dx.doi.org/10.1016/j.ins.2018.03.042
http://dx.doi.org/10.1016/j.neucom.2017.04.053
http://dx.doi.org/10.1016/j.jclepro.2016.06.131
http://dx.doi.org/10.1080/921622054
http://dx.doi.org/10.1007/s10489-008-0146-7
http://dx.doi.org/10.1080/10556788.2010.491865
http://dx.doi.org/10.1109/TEVC.2003.816583
http://dx.doi.org/10.1016/j.ejor.2004.05.033
http://dx.doi.org/10.1162/1063656041774983
http://dx.doi.org/10.1109/TEVC.2008.2009460
http://dx.doi.org/10.1109/TEVC.2007.895272
http://dx.doi.org/10.1016/j.camwa.2011.11.010
http://dx.doi.org/10.1007/s10489-007-0091-x
http://dx.doi.org/10.1109/TEVC.2008.2009457

Algorithms 2020, 13, 230 24 of 26

32. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global
numerical optimization. Evol. Comput. IEEE Trans. 2009, 13, 398–417. [CrossRef]

33. Al-Tashi, Q.; Rais, H.; Abdulkadir, S.J. Hybrid swarm intelligence algorithms with ensemble machine
learning for medical diagnosis. In Proceedings of the 2018 4th International Conference on Computer
and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 13–14 August 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 1–6.

34. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. Evol. Comput. IEEE Trans. 2006, 10, 281–295. [CrossRef]

35. De Oca, M.A.M.; Stützle, T.; Birattari, M.; Dorigo, M. Frankenstein’s PSO: A composite particle swarm
optimization algorithm. Evol. Comput. IEEE Trans. 2009, 13, 1120–1132. [CrossRef]

36. Salahi, M.; Jamalian, A.; Taati, A. Global minimization of multi-funnel functions using particle swarm
optimization. Neural Comput. Appl. 2013, 23, 2101–2106. [CrossRef]

37. Vasumathi, B.; Moorthi, S. Implementation of hybrid ANN–PSO algorithm on FPGA for harmonic estimation.
Eng. Appl. Artif. Intell. 2012, 25, 476–483. [CrossRef]

38. Duarte, A.; Martí, R.; Glover, F.; Gortazar, F. Hybrid scatter tabu search for unconstrained global optimization.
Ann. Oper. Res. 2011, 183, 95–123. [CrossRef]

39. Hvattum, L.M.; Duarte, A.; Glover, F.; Martí, R. Designing effective improvement methods for scatter search:
An experimental study on global optimization. Soft Comput. 2013, 17, 49–62. [CrossRef]

40. Chen, Z.; Wang, R.L. Ant colony optimization with different crossover schemes for global optimization.
Clust. Comput. 2017, 20, 1247–1257. [CrossRef]

41. Ciornei, I.; Kyriakides, E. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization.
IEEE Trans. Syst. Man Cybern. Part B 2011, 42, 234–245. [CrossRef] [PubMed]

42. Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173.
[CrossRef]

43. Ghanem, W.A.; Jantan, A. Hybridizing artificial bee colony with monarch butterfly optimization for
numerical optimization problems. Neural Comput. Appl. 2017, 1–19. [CrossRef]

44. Zhang, B.; Liu, T.; Zhang, C.; Wang, P. Artificial bee colony algorithm with strategy and parameter adaptation
for global optimization. Neural Comput. Appl. 2016, 28, 1–16. [CrossRef]

45. Hansen, P.; Mladenović, N.; Pérez, J.A.M. Variable neighbourhood search: Methods and applications.
Ann. Oper. Res. 2010, 175, 367–407. [CrossRef]

46. Mladenović, N.; Dražić, M.; Kovačevic-Vujčić, V.; Čangalović, M. General variable neighborhood search for
the continuous optimization. Eur. J. Oper. Res. 2008, 191, 753–770. [CrossRef]

47. Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained
numerical and engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [CrossRef]

48. Vrugt, J.; Robinson, B.; Hyman, J.M. Self-adaptive multimethod search for global optimization in
real-parameter spaces. Evol. Comput. IEEE Trans. 2009, 13, 243–259. [CrossRef]

49. Li, S.; Tan, M.; Tsang, I.W.; Kwok, J.T.Y. A hybrid PSO-BFGS strategy for global optimization of multimodal
functions. IEEE Trans. Syst. Man Cybern. Part B 2011, 41, 1003–1014.

50. Sahnehsaraei, M.A.; Mahmoodabadi, M.J.; Taherkhorsandi, M.; Castillo-Villar, K.K.; Yazdi, S.M. A hybrid
global optimization algorithm: Particle swarm optimization in association with a genetic algorithm.
In Complex System Modelling and Control Through Intelligent Soft Computations; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 45–86.

51. Ting, T.; Yang, X.S.; Cheng, S.; Huang, K. Hybrid metaheuristic algorithms: Past, present, and future.
In Recent Advances in Swarm Intelligence and Evolutionary Computation; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 71–83.

52. Zhang, L.; Liu, L.; Yang, X.S.; Dai, Y. A novel hybrid firefly algorithm for global optimization. PLoS ONE
2016, 11, e0163230. [CrossRef] [PubMed]

53. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: a nature-inspired algorithm for global
optimization. Neural Comput. Appl. 2016, 27, 495–513. [CrossRef]

54. Cheng, M.Y.; Prayogo, D. Fuzzy adaptive teaching–learning-based optimization for global numerical
optimization. Neural Comput. Appl. 2016, 29, 309–327.

55. Strumberger, I.; Bacanin, N.; Tuba, M.; Tuba, E. Resource scheduling in cloud computing based on a
hybridized whale optimization algorithm. Appl. Sci. 2019, 9, 4893. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1109/TEVC.2009.2021465
http://dx.doi.org/10.1007/s00521-012-1158-0
http://dx.doi.org/10.1016/j.engappai.2011.12.005
http://dx.doi.org/10.1007/s10479-009-0596-2
http://dx.doi.org/10.1007/s00500-012-0902-9
http://dx.doi.org/10.1007/s10586-017-0793-8
http://dx.doi.org/10.1109/TSMCB.2011.2164245
http://www.ncbi.nlm.nih.gov/pubmed/21896393
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1007/s00521-016-2665-1
http://dx.doi.org/10.1007/s00521-016-2348-y
http://dx.doi.org/10.1007/s10479-009-0657-6
http://dx.doi.org/10.1016/j.ejor.2006.12.064
http://dx.doi.org/10.1016/j.asoc.2009.08.031
http://dx.doi.org/10.1109/TEVC.2008.924428
http://dx.doi.org/10.1371/journal.pone.0163230
http://www.ncbi.nlm.nih.gov/pubmed/27685869
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.3390/app9224893

Algorithms 2020, 13, 230 25 of 26

56. Fong, S.; Deb, S.; Yang, X.S. A heuristic optimization method inspired by wolf preying behavior.
Neural Comput. Appl. 2015, 26, 1725–1738. [CrossRef]

57. de Melo, V.V.; Banzhaf, W. Drone Squadron Optimization: A novel self-adaptive algorithm for global
numerical optimization. Neural Comput. Appl. 2017, 30, 1–28. [CrossRef]

58. Hedar, A.R.; Ong, B.T.; Fukushima, M. Genetic Algorithms with Automatic Accelerated Termination; Technical
Report; Department of Applied Mathematics and Physics, Kyoto University: Kyoto, Japan, 2007; Volume 2.

59. Hedar, A.R.; Deabes, W.; Amin, H.H.; Almaraashi, M.; Fukushima, M. Global Sensing Search for Nonlinear
Global Optimization. J. Glob. Optim. 2020, submitted.

60. Aarts, E.H.L.; Eikelder, H.M.M.T. Simulated Annealing. In Handbook of Applied Optimization; Pardalos, P.,
Resende, M., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 209–220.

61. Drack, L.; Zadeh, H. Soft computing in engineering design optimisation. J. Intell. Fuzzy Syst. 2006,
17, 353–365.

62. Aarts, E.; Lenstra, J. Local Search in Combinatorial Optimization; Princeton Univ Press: Princeton, NJ, USA, 2003.
63. Miki, M.; Hiroyasu, T.; Ono, K. Simulated annealing with advanced adaptive neighborhood. In Second

International Workshop on Intelligent Systems Design and Application; Dynamic Publishers, Inc.: Atlanta, GA,
USA, 2002; pp. 113–118.

64. Locatelli, M. Simulated annealing algorithms for continuous global optimization. Handb. Glob. Optim. 2002,
2, 179–229.

65. Nolle, L.; Goodyear, A.; Hopgood, A.; Picton, P.; Braithwaite, N. On Step Width Adaptation in Simulated
Annealing for Continuous Parameter Optimisation. In Computational Intelligence. Theory and Applications;
Reusch, B., Ed.; Springer: Berlin/Heidelberg, 2001; Volume 2206, pp. 589–598.

66. White, S.R. Concepts of scale in simulated annealing. In AIP Conference Proceedings; American Institute of
Physics: Melville, NY, USA, 1984; pp. 261–270.

67. Hedar, A.R.; Fukushima, M. Hybrid simulated annealing and direct search method for nonlinear
unconstrained global optimization. Optim. Methods Softw. 2002, 17, 891–912. [CrossRef]

68. Hedar, A.R.; Fukushima, M. Heuristic pattern search and its hybridization with simulated annealing for
nonlinear global optimization. Optim. Methods Softw. 2004, 19, 291–308. [CrossRef]

69. Henderson, D.; Jacobson, S.H.; Johnson, A.W. The theory and practice of simulated annealing. In Handbook
of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 287–319.

70. Garibaldi, J.; Ifeachor, E. Application of simulated annealing fuzzy model tuning to umbilical cord acid-base
interpretation. Fuzzy Syst. IEEE Trans. 1999, 7, 72–84. [CrossRef]

71. Hedar, A.R.; Ali, A.F. Tabu search with multi-level neighborhood structures for high dimensional problems.
Appl. Intell. 2012, 37, 189–206. [CrossRef]

72. Liang, J.; Suganthan, P.; Deb, K. Novel composition test functions for numerical global optimization.
In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, Pasadena, CA, USA,
8–10 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 68–75.

73. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem definitions
and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Kangal Rep. 2005,
2005005, 2005.

74. Hedar, A.R.; Ali, A.F. Genetic algorithm with population partitioning and space reduction for high
dimensional problems. In Proceedings of the 2009 International Conference on Computer Engineering &
Systems, Cairo, Egypt, 14–16 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 151–156.

75. Hedar, A.R.; Ali, A.F.; Abdel-Hamid, T.H. Genetic algorithm and tabu search based methods for molecular
3D-structure prediction. Numer. Algebr. Control. Optim. 2011, 1, 191. [CrossRef]

76. García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures
for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959. [CrossRef]

77. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; CRC Press: Boca Raton,
FL, USA, 2003.

78. Zar, J.H. Biostatistical Analysis; Pearson Higher Ed: San Francisco, CA, USA, 2013.
79. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

http://dx.doi.org/10.1007/s00521-015-1836-9
http://dx.doi.org/10.1007/s00521-017-2881-3
http://dx.doi.org/10.1080/1055678021000030084
http://dx.doi.org/10.1080/10556780310001645189
http://dx.doi.org/10.1109/91.746314
http://dx.doi.org/10.1007/s10489-011-0321-0
http://dx.doi.org/10.3934/naco.2011.1.191
http://dx.doi.org/10.1007/s00500-008-0392-y
http://dx.doi.org/10.1016/j.swevo.2011.02.002

Algorithms 2020, 13, 230 26 of 26

80. García-Martínez, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real
parameter optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]

81. García-Martínez, C.; Lozano, M. Hybrid real-coded genetic algorithms with female and male differentiation.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh,
Scotland, UK, 2–5 September 2005; Volume 1, pp. 896–903. [CrossRef]

82. Molina, D.; Herrera, F.; Lozano, M. Adaptive local search parameters for real-coded memetic algorithms.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh,
Scotland, UK, 2–5 September 2005; Volume 1, pp. 888–895.

83. Posik, P. Real-Parameter Optimization Using the Mutation Step Co-evolution. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh, Scotland, UK, 2–5 September 2005;
pp. 872–879. [CrossRef]

84. Ronkkonen, J.; Kukkonen, S.; Price, K.V. Real-parameter optimization with differential evolution.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, UK,
2–5 September 2005; Volume 1, pp. 506–513.

85. Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer with local search. In Proceedings
of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh, Scotland, UK,
2–5 September 2005; Volume 1, pp. 522–528.

86. Yuan, B.; Gallagher, M. Experimental results for the special session on real-parameter optimization at CEC
2005: A simple, continuous EDA. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
IEEE CEC 2005, Edinburgh, Scotland, UK, 2–5 September 2005; Volume 2, pp. 1792–1799. [CrossRef]

87. Auger, A.; Hansen, N. A restart CMA evolution strategy with increasing population size. In Proceedings
of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh, Scotland, UK,
2–5 September 2005; Volume 2, pp. 1769–1776.

88. Auger, A.; Hansen, N. Performance evaluation of an advanced local search evolutionary algorithm.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh,
Scotland, UK, 2–5 September 2005; Volume 2, pp. 1777–1784. [CrossRef]

89. Sinha, A.; Tiwari, S.; Deb, K. A population-based, steady-state procedure for real-parameter optimization.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh,
Scotland, UK, 2–5 September 2005; Volume 1, pp. 514–521.

90. Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh,
Scotland, UK, 2–5 September 2005; Volume 2, pp. 1785–1791. [CrossRef]

91. Ballester, P.J.; Stephenson, J.; Carter, J.N.; Gallagher, K. Real-parameter Optimization performance study
on the CEC-2005 benchmark with SPC-PNX. In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, IEEE CEC 2005, Edinburgh, Scotland, UK, 2–5 September 2005; Volume 1, pp. 498–505.
[CrossRef]

92. Al-Betar, M.A.; Khader, A.T.; Awadallah, M.A.; Alawan, M.H.; Zaqaibeh, B. Cellular harmony search for
optimization problems. J. Appl. Math. 2013, 2013. [CrossRef]

93. Al-Betar, M.A.; Khader, A.T.; Doush, I.A. Memetic techniques for examination timetabling. Ann. Oper. Res.
2014, 218, 23–50. [CrossRef]

94. Al-Betar, M.A. β-Hill climbing: An exploratory local search. Neural Comput. Appl. 2017, 28, 153–168.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1109/cec.2005.1554778
http://dx.doi.org/10.1109/cec.2005.1554775
http://dx.doi.org/10.1109/cec.2005.1554905
http://dx.doi.org/10.1109/cec.2005.1554903
http://dx.doi.org/10.1109/cec.2005.1554904
http://dx.doi.org/10.1109/cec.2005.1554724
http://dx.doi.org/10.1155/2013/139464
http://dx.doi.org/10.1007/s10479-013-1500-7
http://dx.doi.org/10.1007/s00521-016-2328-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Simulated Annealing and Sensing Memory
	Simulated Annealing Algorithm
	Sensing Search Memory
	Gene Matrix (GM)

	Simulated Annealing with Exploratory Sensing (SAES) Algorithm
	Neighborhood Representation
	Initial Solution
	Objective Function
	Initial Temperature Settings
	Cooling Schedule

	Markov Chains Configurations
	The Diversification and Intensification Settings
	Stopping Criterion
	The SAES Algorithm

	Numerical Simulation
	Test Functions
	Parameter Setting and Configuration
	Statistical Tests
	Results and Discussion

	Conclusions
	Classical Test Functions
	Sphere Function
	Schwefel Function
	Schwefel Function
	Schwefel Function
	Rosenbrock Function
	Step Function
	Quadratic Function with Noise
	Schwefel Functions
	Rastrigin Function
	Ackley Function
	Griewank Function
	Levy Functions
	Shekel Foxholes Function
	Kowalik Function
	Hump Function
	Branin RCOS Function
	Goldstein & Price Function
	Hartmann Function
	Hartmann Function
	Shekel Functions
	Function
	Function

	Hard Test Functions
	References

