
algorithms

Article

A Class of Spline Functions for Solving 2-Order
Linear Differential Equations with
Boundary Conditions

Chengzhi Liu 1,* , Xuli Han 2 and Juncheng Li 1

1 School of Mathematics and Finance, Hunan University of Humanities, Science and Technology,
Loudi 417000, China; lijuncheng@huhst.edu.cn

2 School of Mathematics and Statistics, Central South University, Changsha 410083, China; xlhan@csu.edu.cn
* Correspondence: 162101002@csu.edu.cn

Received: 9 August 2020; Accepted: 11 September 2020; Published: 15 September 2020
����������
�������

Abstract: In this paper, we exploit an numerical method for solving second order differential
equations with boundary conditions. Based on the theory of the analytic solution, a series of spline
functions are presented to find approximate solutions, and one of them is selected to approximate
the solution automatically. Compared with the other methods, we only need to solve a tri-diagonal
system, which is much easier to implement. This method has the advantages of high precision and
less computational cost. The analysis of local truncation error is also discussed in this paper. At the
end, some numerical examples are given to illustrate the effectiveness of the proposed method.

Keywords: spline function; truncation error; convergence; second order differential equations

1. Introduction

Ordinary differential equations (ODEs) of second order are used throughout engineering,
mathematics and science. It is well known that of all differential equations, only a little of them
have analytic solutions. Most of them, especially for these with variable coefficients are very difficult
to solve. Very often, the solving techniques are difficult to deal with complicated equations in practice.
In this paper, we consider the numerical solutions for second order linear differential equations of
the form

y′′(x) + P(x)y = Q(x), x ∈ [a, b], (1)

with the boundary conditions
y(a) = A, y(b) = B, (2)

where A, B are constants and P(x), Q(x) are sufficiently smooth functions. We remark that Equation (1)
doesn’t contain the first derivative term y′(x), because we can eliminate it by proper transformation.

How to solve the differential equations effectively has gain great attentions in recent years,
researchers have been putting forth effort on obtaining stable algorithms with less float operations and
higher accuracy. Numerical methods for differential equations are well developed and some of them
are widely used, such as Euler’s method, the linear multi-step method, Runge–Kutta Method and so
on. For more detailed researches on this topic, we refer the reader to read [1].

Recently, solving differential equations by spline functions have been investigated by more
and more researchers and a large of spline functions have been exploited to solve these equations.
Usmani [2] derived an uniform quartic polynomial spline at mid-knots. Ramadan et al. [3,4] presented
some quadratic, cubic polynomial and nonpolynomial spline functions to find the approximate
solutions. They also shown that the nonpolynomial splines could yield better approximations and

Algorithms 2020, 13, 231; doi:10.3390/a13090231 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-9998-3016
https://orcid.org/0000-0002-1904-4068
http://dx.doi.org/10.3390/a13090231
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/9/231?type=check_update&version=2

Algorithms 2020, 13, 231 2 of 11

have lower computational cost than the polynomial ones. By using the nonpolynomial quintic
splines, Srivastava et al. developed a numerical algorithm [5]. In [6], a quadratic non-polynomial
spline functions based method was proposed by Islam et al. Zahra and Mhlawy studied the singularly
perturbed semi-linear boundary value problem with exponential spline [7]. Lodhi and Mishra exploited
the numerical method to solve second order singularly perturbed two-point linear and nonlinear
boundary value problems [8]. In [9], Zahra proposed the exponential spline functions consisting
of a polynomial part of degree three and an exponential part to find approximation of linear and
nonlinear fourth order two-point boundary value problems. By solving a algebraic system, Said and
Noor proposed the optimized multigrid methods [10]. Ideon and Peeter investigated the collocation
method with linear/linear rational spline for the numerical solution of two-point boundary value
problems [11]. By using B-spline, Rashidinia and Ghasemi developed a numerical method which can
solve the general nonlinear two-point boundary value problems up to order 6 [12].

Despite the fact that there are a large number of spline functions to approximate the solutions
to the equations, most of them are not constructed based on the differential equations to be solved,
and can not achieve satisfying results. To the best of our knowledge, there is still no any research about
the construction of spline functions based on the differential equations. It is known to all that second
order linear differential equations with constant coefficients can be solved analytically. This leads us to
think that whether we can use the analytic solutions to solve these with variable coefficients. The spline
function based on analytic solutions can achieve better approximation performance. Therefore,
we put forth effort on constructing a spline function based on analytic solutions of equations with
constant coefficients.

2. Preliminary

We first review some conclusions on the theory of solutions to linear differential equations.
Equation (1) is said to be homogeneous if Q(x) ≡ 0, and nonhomogeneous if not. Moreover,

the equation y′′ + P(x)y = 0 is said to be the associated homogeneous equation of (1). Equation (1)
is said to have constant coefficients when P(x) is a constant, and have variable coefficients if not.
If Equation (1) has constant coefficients, it can be written as

y′′ + py = Q(x), (3)

where p is a constant. The associated homogeneous equation of (3) is y′′+ py = 0 and the characteristic
equation of (3) is λ2 + p = 0. Hence the characteristic roots of (3) are λ = ±√−p.

Let yp denote any particular solution of Equation (3) and yh represent the general solution of its
associated homogeneous equation, then the general solution of Equation (3) is y = yh + yp.

The following two lemmas are introduced for obtaining the general solution yh and particular
solution yp of Equation (3), which will be used in the next section.

Lemma 1 ([13]). If p < 0, then λ is real, and hence the general solution is yh = k1eλx + k2e−λx. If p = 0,
so is the value of λ, then the general solution is yh = k1e0x + k2xe0x = k1 + k2x. If p > 0, then λ is a pair of
conjugated imaginary numbers, and hence the general solution is yh = k1 sin(λx) + k2 cos(λx). Here k1, k2 are
arbitrary constants.

Lemma 2 ([13]). Suppose that Q(x) is a polynomial of degree n, then a particular solution of Equation (2) is

yp = eαx(knxn + kn−1xn−1 + · · ·+ k1x1 + k0),

where α is a known constant and ki(i = 0, 1, 2, · · · , n) are constants to be determined.
Specially, when the degree of Q(x) equals to 0, the particular solution yp = c if λ 6= 0; and yp = cx2 if

λ = 0, where c is a constant.

Algorithms 2020, 13, 231 3 of 11

3. Derivation of The Method

3.1. Definition of the Piecewise Spline Functions

In this subsection, we use the theory of the analytic solution to construct the spline functions.
Firstly, the interval [a, b] is equally divided into n subintervals [xi−1, xi](i = 1, 2, ..., n) such that

4 : a = x0 < x1 < · · · < xn = b with h = xi − xi−1 = (b− a)/n, and we denote xi±1/2 = xi ± 1
2 h.

If h is small, the value of x varies little at the interval [xi−1, xi], then P(x) and Q(x) can be seem
as constants at the interval [xi−1, xi], therefore Equation (1) can also be seem as a second order linear
differential equation with constant coefficients at the interval [xi−1, xi]. We assume that the value of x
at the interval [xi−1, xi] identically equals to the midpoint xi−1/2, hence Equation (1) can be seem as

y′′ + Pi−1/2y = Qi−1/2, (4)

where Pi−1/2 = P(xi−1/2), Qi−1/2 = Q(xi−1/2).
The roots of the characteristic equation of (4) is λi = ±

√
−Pi−1/2. Therefore, the solution of (4)

can be obtained in the following three cases.
case 1. If Pi−1/2 < 0, the characteristic roots λi are nonzero real numbers, it follows from

Lemma 1 that yh = aieλi(x−xi) + bie−λi(x−xi). Additionally, since the right side of Equation (4)
identically equals to the constant Qi−1/2, we can assume that yp = c according to Lemma 2.

By substituting yp into Equation (4), we have c =
Qi−1/2
Pi−1/2

. Therefore, the approximate function at
the interval [xi−1, xi] can be defined as

ỹi(x) = aieλi(x−xi−1) + bie−λi(x−xi−1) +
Qi−1/2

Pi−1/2
.

case 2. If Pi−1/2 > 0, then the characteristic roots λi are imaginary numbers, it follows from
Lemma 1 that yh = ci sin λi(x − xi−1) + di cos λi(x − xi−1). Similarly to that described in Case 1,
the particular solution is yp =

Qi−1/2
Pi−1/2

. Therefore, the approximate function at the interval [xi, xi+1] can
be defined as

ỹi(x) = ci sin λi(x− xi−1) + di cos λi(x− xi−1) +
Qi−1/2

Pi−1/2
.

case 3. If Pi−1/2 = 0, then λi = 0, the general solution of the homogeneous is yh = ei +

fi(x− xi−1). There are many particular solutions, here we take the simplest form yp = gi(x− xi−1)
2.

By substituting yp into Equation (4), we yield gi =
1
2 Qi−1/2. Therefore, the approximate function at

the interval [xi, xi+1] can be defined as

ỹi(x) =
1
2

Qi−1/2(x− xi−1)
2 + ei(x− xi−1) + fi,

To summarize, the approximate function at the interval [xi−1, xi] is defined as

ỹi(x) =


aieλi(x−xi−1) + bie−λi(x−xi−1) +

Qi−1/2
Pi−1/2

, if Pi−1/2 < 0;

ci sin λi(x− xi−1) + di cos λi(x− xi−1) +
Qi−1/2
Pi−1/2

, if Pi−1/2 > 0;
1
2 Qi−1/2(x− xi−1)

2 + ei(x− xi−1) + fi, if Pi−1/2 = 0,

(5)

where ai, bi, ci, di, ei and fi are the coefficients to be determined.
Let the spline Function (5) satisfy the interpolation conditions

ỹi(xi−1) = yi−1, ỹi(xi) = yi. (6)

Algorithms 2020, 13, 231 4 of 11

From (5) and (6), by a tedious but straightforward calculation, we can obtain the coefficients

ai =
(yi−1 −

Qi−1/2
Pi−1/2

)eλih − yi +
Qi−1/2
Pi−1/2

Ai
; bi =

(yi−1 −
Qi−1/2
Pi−1/2

)e−λih − yi +
Qi−1/2
Pi−1/2

Bi
;

ci = yi −
Qi−1/2

Pi−1/2
; di =

yi −
Qi−1/2
Pi−1/2

− (yi−1 −
Qi−1/2
Pi−1/2

) cos(λih)

sin(λih)
; ei =

yi − yi−1 − 1
2 Qi−1/2h2

h
; fi = yi−1,

where Ai = eλih − e−λih,Bi = eλih + e−λih.

3.2. Continuity Condition

Very often, the approximate function on adjacent subintervals is usually required to be C1

continuous, i.e.,
ỹ′i−1(x−i) = ỹ′i(x+i), i = 1, 2, · · · , n− 1. (7)

From (5), we have

ỹ′i(x) =


aiλieλi(x−xi−1) − λibie−λi(x−xi−1), if Pi−1/2 < 0;
ciλi cos λi(x− xi−1)− λidi sin λi(x− xi−1), if Pi−1/2 > 0;
Qi−1/2(x− xi−1) + fi, if Pi−1/2 = 0.

(8)

The derivative functions in (7) are selected according to the values of Pi−1/2 and Pi+1/2, and hence
the C1 continuity condition (7) can be arranged as one of the following situations:

1. If Pi−1/2 < 0 and Pi+1/2 < 0, then from (7) we have

α1
i ỹi−1 + β1

i ỹi + γ1
i ỹi+1 = δ1

i , (9)

where α1
i = −2λi−1 Ai, β1

i = λi−1 AiBi−1 + λi Ai−1Bi, γ1
i = −2λi Ai−1, δ1

i = λi−1 Ai
Qi−1/2
Pi−1/2

(Bi−1 −

2) + λi Ai−1
Qi+1/2
Pi+1/2

(Bi − 2).
2. If Pi−1/2 > 0 and Pi+1/2 > 0, then from (7) we have

α2
i ỹi−1 + β2

i ỹi + γ2
i ỹi+1 = δ2

i , (10)

where α2
i = −λi−1 sin(λih), β2

i = λi−1 sin(λih) cos(λi−1h) + λi sin(λi−1h) cos(λih), γ2
i =

−λi sin(λi−1h), δ2
i = λi−1 sin(λih)[cos(λi−1h)− 1]Qi−1/2

Pi−1/2
+ λi sin(λi−1h)[cos(λih)− 1]Qi+1/2

Pi+1/2
.

3. If Pi−1/2 = 0 and Pi+1/2 = 0, then from (7) we have

α3
i ỹi−1 + β3

i ỹi + γ3
i ỹi+1 = δ3

i , (11)

where α3
i = −1, β3

i = 2, γ3
i = −1, δ3

i = − 1
2 [Qi−1/2 + Qi+1/2]h2.

4. If Pi−1/2 < 0 and Pi+1/2 > 0, then from (7) we have

α4
i ỹi−1 + β4

i ỹi + γ4
i ỹi+1 = δ4

i , (12)

where α4
i = −2λi−1 sin(λih), β4

i = λi−1Bi−1 sin(λih) + λi Ai−1 cos(λih), γ4
i = −λi Ai−1, δ4

i =

λi−1 sin(λih)
Qi−1/2
Pi−1/2

(Bi−1 − 2) + λi Ai−1[cos(λih)− 1]Qi+1/2
Pi+1/2

.
5. If Pi−1/2 < 0 and Pi+1/2 = 0, then from (7) we have

α5
i ỹi−1 + β5

i ỹi + γ5
i ỹi+1 = δ5

i , (13)

where α5
i = −2λi−1h, β5

i = Ai−1 + λi−1Bi−1h, γ5
i = −Ai−1, δ5

i = λi−1h Qi−1/2
Pi−1/2

(Bi−1 − 2) −
1
2 Qi+1/2 Ai−1h2.

Algorithms 2020, 13, 231 5 of 11

6. If Pi−1/2 > 0 and Pi+1/2 < 0, then from (7) we have

α6
i ỹi−1 + β6

i ỹi + γ6
i ỹi+1 = δ6

i , (14)

where α6
i = −λi−1 Ai, β6

i = λi−1 Ai cos(λi−1h) + λi sin(λi−1h)Bi, γ6
i = −2λi sin(λi−1h), δ6

i =

λi sin(λi−1h)(Bi − 2)Qi+1/2
Pi+1/2

+ λi−1 Ai[cos(λi−1h)− 1]Qi−1/2
Pi−1/2

.
7. If Pi−1/2 > 0 and Pi+1/2 = 0, then from (7) we have

α7
i ỹi−1 + β7

i ỹi + γ7
i ỹi+1 = δ7

i , (15)

where α7
i = −λi−1h, β7

i = λi−1 cos(λi−1h)h + sin(λi−1h), γ7
i = − sin(λi−1h), δ7

i =

− 1
2 Qi+1/2 sin(λi−1h)h2 + λi−1h[cos(λi−1h)− 1]Qi−1/2

Pi−1/2
.

8. If Pi−1/2 = 0 and Pi+1/2 < 0, then from (7) we have

α8
i ỹi−1 + β8

i ỹi + γ8
i ỹi+1 = δ8

i , (16)

where α8
i = −Ai, β8

i = Ai + λiBih, γ8
i = −2λih, δ8

i = − 1
2 AiQi−1/2h2 + λih

Qi+1/2
Pi+1/2

(Bi − 2).
9. If Pi−1/2 = 0 and Pi+1/2 > 0, then from (7) we have

α9
i ỹi−1 + β9

i ỹi + γ9
i ỹi+1 = δ9

i , (17)

α9
i = − sin(λih), β9

i = sin(λih) + λi cos(λih)h, γ9
i = −λih, δ9

i = − 1
2 Qi−1/2 sin(λih)h2 +

λih[cos(λih)− 1]Qi+1/2
Pi+1/2

.

We remark that there are n− 1 linear equations including n + 1 unknowns. In order to solve
the system uniquely, we need two additional conditions, which can be obtained from the boundary
conditions (2). The continuity conditions (7) combined with the boundary conditions (2) form a system
of linear equations with n + 1 unknowns, which can be rewritten in the matrix form as

1 0
α

j1
1 β

j1
1 γ

j1
1

α
j2
2 β

j2
2 γ

j2
2

.

α
jn−2
n−2 β

jn−2
n−2 γ

jn−2
n−2

α
jn−1
n−1 β

jn−1
n−1 γ

jn−1
n−1

0 1





ỹ0

ỹ1

ỹ2
...

ỹn−2

ỹn−1

ỹn


=



A
δ

j1
1

δ
j2
2
...

δ
jn−2
n−2

δ
jn−1
n−1
B


(18)

Here the value of the superscript jk(k = 1, 2, ..., n− 1) may be one of 1–9, which is determined by
Pi−1/2 and Pi+1/2.

The coefficient matrix of the linear system (18) is tridiagonal, which can be solved easily by
Thomas algorithm.

4. Truncation Error Estimation

Suppose y(x) is sufficiently smooth at [a, b]. By substituting xi−1/2 into (1), we have

M′i−1/2 + Pi−1/2yi−1/2 = Qi−1/2, (19)

where M′i−1/2, yi−1/2 denote y′′(xi−1/2), y(xi−1/2) respectively.
To estimate the truncation error, we have to consider all these nine cases in Section 2, here we

only analysis parts of these cases due to space limitations. Without loss of generality, we discuss the
truncation errors of case 1 and 2 in detail, the results of the others are also listed. For convenience,
the local truncation error is denoted by tj

i(i = 1, 2, · · · , n− 1; j = 1, 2, · · · , 9).

Algorithms 2020, 13, 231 6 of 11

According to (9), the local truncation error can be written as

t1
i = α1

i ỹi−1 + β1
i ỹi + γ1

i ỹi+1 − δ1
i .

By using Taylor series, the terms yi−1, yi−1/2, yi+1, yi+1/2 and M′i−1/2, M′i+1/2 can be expanded
around the point xi, hence we have

t1
i =

6

∑
j=0

k1
j y(j)

i + O(h7),

where

k1
0 = 0; k1

1 = h(λi−1 Ai − λi Ai−1) +
h
2
(λi−1 AiBi−1 − λi Ai−1Bi);

k1
2 = −3h2

4
(λi−1 Ai + λi Ai−1)−

h2

8
(λi−1 AiBi−1 + λi Ai−1Bi) +

Ai(2− Bi−1)

λi−1
+

Ai−1(2− Bi)

λi
;

k1
3 =

7h3

24
(λi−1 Ai − λi Ai−1) +

h3

48
(λi−1 AiBi−1 − λi Ai−1Bi)−

hAi(2− Bi−1)

2λi−1
+

hAi−1(2− Bi)

2λi
;

k1
4 = −15h4

192
(λi−1 Ai + λi Ai−1)−

h4

384
(λi−1 AiBi−1 + λi Ai−1Bi) +

h2 Ai(2− Bi−1)

8λi−1
+

h2 Ai−1(2− Bi)

8λi
;

k1
5 =

31h5

1920
(λi−1 Ai − λi Ai−1) +

h5

3840
(λi−1 AiBi−1 − λi Ai−1Bi)−

h3 Ai(2− Bi−1)

48λi−1
+

h3 Ai−1(2− Bi)

48λi
;

k1
6 = − 63h6

23040
(λi−1 Ai + λi Ai−1)−

h6

46080
(λi−1 AiBi−1 + λi Ai−1Bi) +

h4 Ai(2− Bi−1)

384λi−1
+

h4 Ai−1(2− Bi)

384λi
.

Note that Ai = 2 sinh(λih), Bi = 2 cosh(λih), since the hyperbolic functions can be expanded in

sinh(x) =
∞

∑
n=0

x2n+1

(2n + 1)!
= x +

x3

3!
+

x5

5!
+ · · · ; cosh(x) =

∞

∑
n=0

x2n

(2n)!
= 1 +

x2

2!
+

x4

4!
+ · · · .

By expanding the terms Ai−1, Ai, Bi−1 and Bi in series, and by a tedious but straightforward
calculation, k1

j (j = 1, 2, 3, 4, 5, 6) can be written as

k1
1 =

h4

3
λi−1λi(λ

2
i−1 − λ2

i)−
h6

20
λi−1λi(λ

4
i − λ4

i−1) + O(h7); k1
2 = − h5

12
λi−1λi(λ

2
i−1 + λ2

i) + O(h7);

k1
3 = − h6

72
λi−1λi(λ

2
i − λ2

i−1) + O(h7); k1
4 =

h5

6
λi−1λi + O(h7); k1

5 = k1
6 = 0 + O(h7).

Similarly, the local truncation error of (10) can be written as

t2
i = α2

i ỹi−1 + β2
i ỹi + γ2

i ỹi+1 − δ2
i =

6

∑
j=0

k2
j y(j)

i + O(h7),

Algorithms 2020, 13, 231 7 of 11

where

k2
0 = 0; k2

1 =
h
2
(λi−1 sin(λih)[1 + cos(λi−1h)]− h

2
(λi sin(λi−1h)[1 + cos(λih)];

k2
2 = −3h2

8
[λi−1 sin(λih) + λi sin(λi−1h)]− h2

8
[λi−1 sin(λih) cos(λi−1h) + λi sin(λi−1h) cos(λih)]

+
sin(λih)[1− cos(λi−1h)]

λi−1
+

sin(λi−1h)[1− cos(λih)]
λi

;

k2
3 =

7h3

48
[λi−1 sin(λih)− λi sin(λi−1h)] +

h3

48
[λi−1 sin(λih) cos(λi−1h)− λi sin(λi−1h) cos(λih)]

− h sin(λih)[1− cos(λi−1h)]
2λi−1

+
h sin(λi−1h)[1− cos(λih)]

2λi
;

k2
4 = −15h4

384
[λi−1 sin(λih) + λi sin(λi−1h)]− h4

384
[λi−1 sin(λih) cos(λi−1h) + λi sin(λi−1h) cos(λih)]

+
h2 sin(λih)[1− cos(λi−1h)]

8λi−1
+

h2 sin(λi−1h)[1− cos(λih)]
8λi

;

k2
5 =

31h5

3840
[λi−1 sin(λih)− λi sin(λi−1h)] +

h5

3840
[λi−1 sin(λih) cos(λi−1h)− λi sin(λi−1h) cos(λih)]

− h3 sin(λih)[1− cos(λi−1h)]
48λi−1

+
h3 sin(λi−1h)[1− cos(λih)]

48λi
;

k2
6 = − 63h6

46080
[λi−1 sin(λih) + λi sin(λi−1h)]− h6

46080
[λi−1 sin(λih) cos(λi−1h) + λi sin(λi−1h) cos(λih)]

+
h4 sin(λih)[1− cos(λi−1h)]

384λi−1
+

h4 sin(λi−1h)[1− cos(λih)]
384λi

.

Since the trigonometric functions can be expressed in

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
+ · · · ; cos(x) =

∞

∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
+ · · · .

By expanding the trigonometric functions of k2
j (j = 1, 2, · · · , 6) in series, then k2

j (j = 1, 2, · · · , 6)
can be written as

k2
1 =

h4

12
λi−1λi(λ

2
i − λ2

i−1)−
h6

80
λi−1λi(λ

4
i − λ4

i−1) + O(h7); k2
2 =

h5

48
λi−1λi(λ

2
i−1 + λ2

i) + O(h7);

k2
3 =

h6

288
λi−1λi(λ

2
i − λ2

i−1) +
h6

720
λi−1λi(λ

4
i − λ4

i−1) + O(h7); k2
4 =

h5

24
λi−1λi + O(h7);

k2
5 = k2

6 = 0 + O(h7).

Then the local truncation error of (10) is O(h4).
Next, we only give conclusions of the other cases. The truncation error of (11) is

t3
i =

6

∑
j=0

k3
i y(j)

i + O(h7),

where k3
0 = k3

1 = k3
2 = k3

3 = 0; k3
4 = h4

24 ; k3
5 = 0; k3

6 = − h6

5760 .
The truncation error of (12) is

t4
i =

6

∑
j=0

k4
j y(j)

i + O(h7),

Algorithms 2020, 13, 231 8 of 11

where

k4
0 = 0; k4

1 =
h4

6
λi−1λi(λ

2
i−1 + λ2

i)−
h6

40
λi−1λi(λ

4
i − λ4

i−1) + O(h7); k4
2 =

h5

24
λi−1λi(λ

2
i − λ2

i−1) + O(h7);

k4
3 =

h6

144
λi−1λi(λ

2
i−1 + λ2

i) + O(h7); k4
4 =

h5

12
λi−1λi + O(h7); k4

5 = k4
6 = 0 + O(h7).

The truncation error of (13) is

t5
i =

6

∑
j=0

k5
j y(j)

i + O(h7),

where k5
0 = 0; k5

1 = h4

6 λ3
i−1 +

h6

40 λ5
i−1 + O(h7); k5

2 = − h5

24 λ3
i−1 + O(h7); k5

3 = − 11h6

144 λ3
i−1 + O(h7); k5

4 =
h5

12 λi−1 + O(h7); k5
5 = k5

6 = 0 + O(h7).
The truncation error of (14) is

t6
i =

6

∑
j=0

k6
6y(j)

i + O(h7),

where

k6
0 = 0; k6

1 = − h4

6
λi−1λi(λ

2
i−1 + λ2

i) +
h6

40
λi−1λi(λ

4
i−1 − λ4

i) + O(h7); k6
2 =

h5

24
λi−1λi(λ

2
i−1 − λ2

i) + O(h7);

k6
3 = − h6

6
λi−1λi(λ

2
i−1 + λ2

i) + O(h7); k6
4 =

h5

12
λi−1λi + O(h7); k6

5 = k6
6 = 0 + O(h7).

The truncation error of (15) is

t7
i =

6

∑
j=0

k7
j y(j)

i + O(h7),

where k7
0 = 0; k7

1 = − h4

12 λ3
i−1 +

h6

80 λ5
i−1 + O(h7); k7

2 = h5

48 λ3
i−1 + O(h7); k7

3 = h6

288 λ3
i−1 + O(h7); k7

4 =
h5

24 λi−1 + O(h7); k7
5 = k7

6 = 0 + O(h7).
The truncation error of (16) is

t8
i =

6

∑
j=0

k8
j y(j)

i + O(h7),

where k8
0 = 0; k8

1 = − h4

6 λ3
i −

h6

40 λ5
i + O(h7); k8

2 = − h5

24 λ3
i + O(h7); k8

3 = h4

18 λ3
i −

h6

16 λ3
i + h6

360 λ5
i +

O(h7); k8
4 = h5

12 λi + O(h7); k8
5 = k8

6 = 0 + O(h7).
The truncation error of (17) is

t9
i =

6

∑
j=0

k9
j y(j)

i + O(h7),

where k9
0 = 0; k9

1 = h4

12 λ3
i −

h6

80 λ5
i + O(h7); k9

2 = h5

48 λ3
i + O(h7); k9

3 = h6

288 λ3
i + O(h7); k9

4 = h5

24 λi +

O(h7); k9
5 = k9

6 = 0 + O(h7).
To summarize, the local truncation errors of the proposed method is O(h4).

5. Numerical Examples

In this section, some numerical examples are given to illustrate the effectiveness of the proposed
method. We begin with two definitions to measure the effectiveness of the proposed method.

The maximum absolute error [14] is computed by

e∞ = max
0≤i≤n

|ỹ(xi)− y(xi)|,

where ỹ(xi) and y(xi) represent the numerical and exact solution at the node xi, respectively.

Algorithms 2020, 13, 231 9 of 11

The rate of convergence [14,15] is computed by

ρ =
ln(e∞

1 /e∞
2)

ln(n2/n1)
,

where e∞
1 and e∞

2 are the maximum absolute errors estimated for two different grids with n1 + 1 and
n2 + 1 points.

Example 1. Consider the linear differential equation with variable coefficients:

y′′ + xy = (x2 + 1)ex,−2 ≤ x ≤ −1. (20)

with boundary conditions y(−2) = −3e−2, y(−1) = −2e−1.

Example 2. Consider the linear differential equation with variable coefficients:

y′′ + (sin x)y = 2 cos x− x sin x + x sin2 x,−π

6
≤ x ≤ π

6
. (21)

with boundary conditions y(−π
6) = y(π

6) =
π
12 .

Example 3. Consider the linear differential equation with constant coefficients:

y′′ + y = −1, 0 ≤ x ≤ 1. (22)

with boundary conditions y(0) = 0, y(1) = cos 1− 1.

The analytic solutions of (20)–(22) are y = (x− 1)ex, y = x sin x and y = cos x− 1, respectively.
In Table 1, we list the approximate and exact solutions to (20). In Table 2, we show the maximum
errors in Examples 1–3 and the rate of convergence in Examples 1 and 2. From Table 2, we can observe
that the order of convergence is 2. It is evident from Tables 1 and 2 that the proposed method produces
high precision numerical solutions. Especially in Example 3, the errors of numerical solutions are
close to the machine accuracy. This is because the approximate Function (5) is constructed based on
the analytic solutions to the linear differential equation with constant coefficients, and Equation (22)
happens to be the one with constant coefficients. It is not surprising that we can yield the nearly exact
solutions in Example 3.

Table 1. Comparison of the numerical solutions with the exact solutions in Example 1 (h = 2−3).

x ỹ(x) y(x) x ỹ(x) y(x) x ỹ(x) y(x)

−2.000 −0.406006 −0.406006 −1.625 −0.516883 −0.516893 −1.250 −0.644628 −0.644636
−1.875 −0.440891 −0.440896 −1.500 −0.557815 −0.557825 −1.125 −0.689882 −0.689886
−1.750 −0.477870 −0.477878 −1.375 −0.600484 −0.600494 −1.000 −0.735759 −0.735759

Table 2. Numerical results in Examples 1–3.

Example 1 Example 2 Example 3

h e∞ ρ n e∞ ρ n e∞

2−2 4.327× 10−5 – 8 3.785× 10−4 – 4 2.012× 10−16

2−4 2.673× 10−6 2.0084 32 2.390× 10−5 1.9926 16 2.317× 10−15

2−6 1.672× 10−7 2.0039 128 1.494× 10−6 1.9962 64 2.185× 10−13

2−8 1.045× 10−8 2.0026 512 9.343× 10−8 1.9974 256 4.247× 10−13

Algorithms 2020, 13, 231 10 of 11

In Figure 1a, we show the exact solution and the numerical results obtained by the proposed
method. The corresponding error curve are also shown in Figure 1b. These results coincide with the
results listed in Table 2.

−0.5 0 0.5

0

0.05

0.1

0.15

0.2

0.25

x

y

Exact solution
Numerical solution

(a) The numerical and the exact solution

−0.5 0 0.5
0

0.5

1

1.5

2

2.5
x 10

−5

x
E

rr
or

(b) Error plot

Figure 1. Numerical results in Example 2 (n = 32).

Example 4. Consider the linear differential equation with variable coefficients [3,5]:

y′′ + xy = (3− x− x2 + x3) sin x + 4x cos x, 0 ≤ x ≤ 1. (23)

with boundary conditions y′(0) = −1, y′(1) = 2 sin 1.

The analytic solution of (23) is y = (x2 − 1) sin x. In Table 3, we list the maximum errors and the
elapsed CPU time. The numerical results obtained by implementing the methods [3,5] are also listed
for comparison. Note that the elapsed CPU time for the same routine in Matlab may be different every
time. In order to count the time accurately, we took the average of all runtimes of 100 independent
runs as the elapsed CPU time.

On one hand, our method is more accurate than Ramadan’s method [3] and comparable to
Srivastava’s method [5]. On the other hand, the runtime of our method is less than that of Srivastava’s
method and comparable to Ramadan’s method. This indicates that Srivastava’s method can achieve
the best precision in our experiment, while our method is superior in the term of elapsed CPU time.
This is because we only need to solve a tridiagonal linear system instead of solving a penta-diagonal
system in [5], which is much easier to implement.

Table 3. Maximum errors and elapsed CPU times in Example 4.

n
Ramadan et al. [3] Srivastava et al. [5] Our Method

e∞ Time(s) e∞ Time(s) e∞ Time(s)

4 4.946× 10−2 1.78× 10−4 5.927× 10−3 5.33× 10−3 2.710× 10−3 2.48× 10−4

8 1.231× 10−2 1.89× 10−4 6.173× 10−4 5.34× 10−3 6.700× 10−4 2.62× 10−4

16 3.081× 10−3 2.61× 10−4 1.797× 10−4 5.54× 10−3 1.670× 10−4 3.68× 10−4

32 7.704× 10−4 3.43× 10−4 3.495× 10−5 5.72× 10−3 4.183× 10−5 5.94× 10−4

64 1.926× 10−4 5.75× 10−4 6.702× 10−6 6.28× 10−3 1.046× 10−5 1.10× 10−3

128 4.800× 10−5 1.62× 10−3 1.179× 10−6 7.36× 10−3 2.615× 10−6 2.25× 10−3

Clearly, the proposed method is efficient, therefore it provides a new approach to deal with second
order linear differential equations.

Algorithms 2020, 13, 231 11 of 11

6. Conclusions

Based on the analytic solutions to the linear differential equation with constant coefficients,
we propose an numerical method for second order differential equations in this paper. The analytic
solutions are used to construct the approximation function and the local truncation error is analyzed.
Numerical examples have shown the effectiveness of the proposed method. Compared with the other
methods, we only need to solve a tridiagonal system, which is much easier to implement.

Author Contributions: Methodology, X.H.; Resources, C.L.; Writing—original draft, C.L.; Writing—review and
editing, J.L. and C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number 11771453,
Natural Science Foundation of Hunan Province, grant number 2020JJ5267 and Scientific Research Funds of Hunan
Provincial Education Department, grant number 18C877.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Griffiths, D.F.; Higham, D.J. Numerical Methods for Ordinary Differential Equations; Springer: London, UK, 2010.
2. Usmani, R.A. The use of quartic splines in the numerical solution of a fourth-order boundary value problem.

J. Comput. Appl. Math. 1992, 44, 187–200. [CrossRef]
3. Ramadan, M.A.; Lashien, I.F.; Zahra, W.K. Polynomial and nonpolynomial spline approaches to the

numerical solution of second order boundary value problems. Appl. Math. Comput. 2007, 184, 476–484.
[CrossRef]

4. Ramadan, M.A.; Lashien, I.F.; Zahra, W.K. High order accuracy nonpolynomial spline solutions for 2µth
order two point boundary value problems. Appl. Math. Comput. 2008, 204, 920–927. [CrossRef]

5. Srivastava, P.K.; Kumar, M.; Mohapatra, R.N. Quintic nonpolynomial spline method for the solution
of a second order boundary-value problem with engineering applications. Comput. Math. Appl. 2011,
62, 1707–1714. [CrossRef]

6. Noor, M.A.; Tirmizi, I.A.; Khan, M.A. Quadratic non-polynomial spline approach to the solution of a system
of second order boundary-value problems. Appl. Math. Comput. 2007, 179, 153–160.

7. Zahra, W.K.; Mhlawy, A.M.E. Numerical solution of two-parameter singularly perturbed boundary value
problems via exponential spline. J. King Saud Univ. Sci. 2013, 25, 201–208. [CrossRef]

8. Lodhi, R.K.; Mishra, H.K. Quintic B-spline method for solving second order linear and nonlinear singularly
perturbed two-point boundary value problems. J. Comput. Appl. Math. 2017, 319, 170–187. [CrossRef]

9. Zahra, W.K. A smooth approximation based on exponential spline solutions for nonlinear fourth order two
point boundary value problems. Appl. Math. Comput. 2011, 217, 8447–8457. [CrossRef]

10. Al-Said, E.A.; Noor, M.A. Quartic spline method for solving fourth order obstacle boundary value problems.
J. Comput. Appl. Math. 2002, 143, 107–116. [CrossRef]

11. Ideon, E.; Oja, P. Linear/linear rational spline collocation for linear boundary value problems. J. Comput.
Appl. Math. 2014, 263, 32–44. [CrossRef]

12. Rashidinia, J.; Ghasemi, M. B-spline collocation for solution of two-point boundary value problems. J. Comput.
Appl. Math. 2011, 235, 2325–2342. [CrossRef]

13. Wanner, G. Solving Ordinary Differential Equations II; Springer: Berlin/Heidelberg, Germany, 1991.
14. Ahmad, G.I.; Shelly, A.; Kukreja, V.K. Cubic Hermite Collocation Method for Solving Boundary Value

Problems with Dirichlet, Neumann, and Robin Conditions. Int. J. Eng. Math. 2014, 2014, 365209.
15. Ge, Y.; Cao, F. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D

convection diffusion problems. J. Comput. Phys. 2011, 230, 4051–4070. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0377-0427(92)90010-U
http://dx.doi.org/10.1016/j.amc.2006.06.053
http://dx.doi.org/10.1016/j.amc.2008.07.038
http://dx.doi.org/10.1016/j.camwa.2011.06.012
http://dx.doi.org/10.1016/j.jksus.2013.01.003
http://dx.doi.org/10.1016/j.cam.2017.01.011
http://dx.doi.org/10.1016/j.amc.2011.03.043
http://dx.doi.org/10.1016/S0377-0427(01)00497-6
http://dx.doi.org/10.1016/j.cam.2013.11.028
http://dx.doi.org/10.1016/j.cam.2010.10.031
http://dx.doi.org/10.1016/j.jcp.2011.02.027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary
	Derivation of The Method
	Definition of the Piecewise Spline Functions
	Continuity Condition

	Truncation Error Estimation
	Numerical Examples
	Conclusions
	References

