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Abstract: Bootstrap resampling techniques, introduced by Efron and Rubin, can be presented in a
general Bayesian framework, approximating the statistical distribution of a statistical functional φ(F),
where F is a random distribution function. Efron’s and Rubin’s bootstrap procedures can be extended,
introducing an informative prior through the Proper Bayesian bootstrap. In this paper different
bootstrap techniques are used and compared in predictive classification and regression models based
on ensemble approaches, i.e., bagging models involving decision trees. Proper Bayesian bootstrap,
proposed by Muliere and Secchi, is used to sample the posterior distribution over trees, introducing
prior distributions on the covariates and the target variable. The results obtained are compared with
respect to other competitive procedures employing different bootstrap techniques. The empirical
analysis reports the results obtained on simulated and real data.

Keywords: bootstrap; Bayesian nonparametric learning; ensemble models

1. Introduction

Decision trees ([1]) are nonparametric predictive models used in regression and clas-
sification problems. Given a learning set {(yn, xn), n = 1, . . . , N} where the yn represents
the target variable, either categorical or numerical, and xn is a p dimensional vector of
input variables, predictive models aim to make inference about an unknown function f
that relates the target variable Y and the covariates vector X. Decision trees work dividing
the variables space into rectangles, making the final model easy interpretable. Despite their
advantages in terms of results interpretability and predictive performance, decision trees
are recognized to be an unstable procedure ([2,3]) and different ensemble techniques, based
on Efron’s bootstrap procedure ([4]), have been proposed to improve stability.

Bagging classification and regression Trees ([2]) work generating a single predictor
on different learning sets created by “bootstrapping” the original dataset and combining
all of them to obtain the final prediction. Random Forests algorithm ([5,6]) employs
bagging procedure coupled with a random selection of features, thus controlling the model
variance and improving its stability. On the other hand, in Boosting techniques ([7,8])
the distribution of each training set, on which single models are trained, is based on the
performance of previous predictors: the final prediction is obtained as a linear combination
of single models, weighted using their performance errors.

In the Bayesian framework, Bayesian CART model ([9]) computes the final prediction
using a linear combination of trees, in particular, the posterior distribution of a Bayesian
single tree model is obtained averaging the resulting predictions weighted according to
posterior probabilities. BART model ([10]) is the sum of M different tree models defined
assigning a prior on the tree structure. BART model is extended in [11] to reduce the
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computational cost and provide a Bayesian competitive prediction result with respect to
the Random Forests algorithm.

More recently, Bayesian nonparametric learning has been recognised as a good ap-
proach to solve predictive problems, overcoming the main weaknesses of parametric
Bayesian models which assume fixed-dimensional probabilistic distributions ([12]). In [13],
a Bayesian nonparametric procedure based on the Rubin’s bootstrap technique ([14]) is
proposed to obtain a new class of algorithms called by the authors Bayesian Forests, un-
der the idea that ensemble tree models can be represented as a sample from a posterior
distribution over trees. Rubin’s bootstrap has been discussed as bagging procedure for
different prediction models also in [15,16], proving that Bayesian bootstrap lead to more
stable prediction results in particular with small sample sized datasets.

We remark that ensemble tree models based on Efron’s and Rubin’s bootstraps ([4,14])
are both non informative procedures since they do not take into account apriori knowledge
(i.e., they build the prediction model just considering only observed values included in the
data at hand and giving zero probability to values not available in the sample data). In
addition these two procedures are proved to be asymptotically equivalent and first order
equivalent from the predictive point of view ([17,18]).

The element of novelty of this paper is to introduce Proper Bayesian Bootstrap pro-
posed by [19] in classification and regression ensemble trees models and compare the
results obtained on simulated and real datasets with respect to classical bootstrap ap-
proaches available in the literature as Efron’s and Rubin’s bootstraps. More precisely,
Proper Bayesian bootstrap is used to sample the posterior distribution over trees, introduc-
ing prior distributions on the covariates and the target variable.

The main aim of this paper is to employ Proper Bayesian bootstrap method in the
data generative process introducing an ensemble approach based on decision tree models.
In this work, bootstrap resampling techniques are applied to approximate the posterior
distribution of a statistical functional φ(F), where F is a random distribution function as
defined in the Proper Bayesian bootstrap ([19]) and φ(F) is a decision tree. Note that our
methodological proposal inherits the main advantages of Bayesian nonparametric learning
such as the flexibility and the computational strength, considering also prior opinions
and thus overcoming the main drawbacks of Efron’s and Rubin’s bootstrap procedures.
On the basis of the results achieved in simulated and real datasets, our approach provides
a reliable gain in predictive performance regarding the stability of the model, coupled with
a competitiveness in terms of prediction accuracy.

The paper is structured as follows: Section 2 describes the Bayesian nonparametric
learning framework, Section 3 shows the extension of bootstrap techniques in the Bayesian
nonparametric framework, Section 4 introduces our methodological proposal involving
Proper Bayesian bootstrap procedure, Section 5 presents empirical evaluations of our
method with respect to other ensemble learning models. Finally, conclusions and further
ideas of research are reported in Section 6.

2. Bayesian Nonparametric Learning Using the Dirichlet Process

The aim of the Bayesian nonparametric learning, introduced by [12,20], is to estimate
the data generative process without limiting the family of involved probability density
functions to the one with finite-dimensional parameters. Different prior distributions are
available in literature both parametrics and nonparametrics; in our approach the Dirichlet
process ([21]) is adopted.

A Dirichlet process prior with parameter α = kF0 is described by two quantities:
a baseline distribution function F0, which defines the “center” of the prior distribution,
and a non negative scaling precision parameter k, which determines how the prior is
concentrated around F0. It is well known that the Dirichlet process is conjugate ([21]):
given a random sample x1, . . . , xn from F ∼ DP(α), the posterior distribution is again a
Dirichlet process:

F|X ∼ DP((k + n)Gn) (1)
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with
Gn =

k
k + n

F0 +
n

k + n
Fn (2)

The parameter of the Dirichlet process, given the data, is then a convex combination
of the prior guess F0 and the empirical distribution function Fn. If k → 0 then a non
informative prior on F0 is considered. If k → ∞ the parameter of the posterior Dirichlet
Process is reduced to F0.

In this case it is easy to compute the posterior distribution, by simple updating the
parameters of the prior distribution. This important property allows to derive easily
Bayesian nonparametric estimation of different functional of F, such as the mean, median
and other quantiles.

It has to be noticed that infinite computational time is required to sample from the
posterior distribution. Since F0 is continuous, in order to approximate the posterior distri-
bution, bootstrap techniques can be applied as explained in the next Section.

3. Bootstrap Techniques in Nonparametric Learning

Let X1, . . . , Xn be i.i.d. realizations from a random variable X, and φ a functional
depending on the distribution of X. In order to generate the distribution of the estimator φ̂,
repeated bootstrap replications are drawn from the sample at hand.

From a Bayesian perspective, the aim is to estimate the posterior of the statistic under
interest. Ref [22,23] discuss the connection between Bayesian procedures and bootstrapping.
Given {Xn} exchangeable sequence of real random variables, defined on a probability
space (χ,F, P), De Finetti’s Representation theorem ensures the existence of a random
distribution F conditionally on which the variables are i.i.d with distribution F. The
bootstrap procedure approximates the unknown probability distribution F with a F∗. In
particular, we are interested in calculating the distribution of a statistic φ(F, X) conditionally
on the sequence X1, . . . , Xn

L(φ(F, X)|X1, . . . , Xn) (3)

where X refers to the sequence of random variables X1, . . . , Xn. Using bootstrap methods, (3)
can be approximated by

L(φ(F∗, X)|X1, . . . , Xn) (4)

where F∗ is obtained using different approaches of bootstraps as the Efron’s bootstrap ([4]),
Rubin’s bootstrap ([14]) and Proper Bayesian bootstrap ([19]).

3.1. Efron’s Bootstrap

The Efron’s bootstrap ([4]) can be considered as a generalization of the jackknife ([24])
and it consists in generating independently each bootstrap resample X∗1 , . . . , X∗n from
the empirical distribution Fn of X1, . . . , Xn. This procedure is equivalent to draw, for
each bootstrap replication, a weights vector w for the observations X1, . . . , Xn from a
Multinomial distribution with parameters (n, 1

n1n), where 1n is the identity matrix of
dimension nxn. In this way we obtain:

F∗(x) =
n

∑
i=1

wi
n
I[Xi≤x] (5)

where (w1, . . . , wn) ∼ Mult(n, 1
n1n) and I[Xi≤x] is the indicator function.

Efron’s procedure assumes that the sample cumulative distribution function is the
population cumulative distribution function and, under this assumption, it generates a
bootstrap replication X∗1 , . . . , X∗n with replacement from the original sample.
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3.2. Rubin’s Bootstrap

In [14] an alternative bootstrap procedure, called Bayesian bootstrap, is introduced. In
particular with this procedure the distribution F is approximated by:

F∗(x) =
n

∑
i=1

wiI[Xi≤x] (6)

where (w1, . . . , wn) and (X1, . . . , Xn) are two random independent vectors and (w1, . . . , wn)
∼ D(1n) and I[Xi≤x] is the indicator function.

Following the nonparametric approach explained in Section 2 the prior is assumed to
be a Dirichlet process, thus the obtained posterior is again a Dirichlet process. In this case
k is set equal to 0, such that the empirical cumulative density function Fn approximates
the distribution F, as in Efron’s bootstrap resampling. The main difference between the
two methods is that in Rubin procedure the vectors of the weights are drawn from a
Dirichlet distribution with parameters (1, . . . , 1). On the other hand, this approach, due
to its assumptions regarding the data generating process, has the great advantage of
characterizing the posterior distribution of F∗ given X1, . . . , Xn, as a Dirichlet process with
parameters nFn.

Rubin’s and Efron’s bootstraps are proved to be asymptotically and first order equiv-
alent from a predictive point of view (see [17,18]) in the sense that they estimate the
conditional probability of a new observation considering only the observed values at hand.

3.3. Proper Bayesian Bootstrap

A generalization of the Bayesian bootstrap introduced by Rubin is proposed in [19,25],
with the main advantage of introducing prior knowledge represented by a distribution
function F0. Following [21], the prior of F is defined as a Dirichlet process D(kF0) where F0
is a proper distribution function and k represents the level of confidence in the initial choice
F0. The resulting posterior distribution for F, given a sample x1, . . . , xn from F, is still a
Dirichlet process with parameter (kF0 + nFn). As a special case when k = 0 the procedure
is equivalent to the Rubin’s one. This bootstrap method allows to introduce explicitly prior
knowledge on the data through the choice of F0 and k. It is important to remark that, since
φ is a function of F, an informative prior on F is an informative prior on φ.

When k > 0 it is often difficult to derive analytically the distribution of φ(F). When
F0 is discrete with finite support one may produce a reasonable approximation on the
distribution of φ(F) by a Monte Carlo procedure obtaining i.i.d. samples from D(kF0). If F0
is not discrete, in order to compute the posterior distribution D(kF0 + nFn), a possible way
proposed by [19] is to first approximate the parameter kF0 + nFn through (n + k)F∗m, where
F∗m is the empirical distribution of an i.i.d. bootstrap resample of size m generated from:

G0 =
k

n + k
F0 +

n
b + k

Fn (7)

The bootstrap resample is generated from a mixture of the empirical distribution func-
tion of X1, . . . , Xn and F0. Let now define G∗m as a random distribution which, conditionally
on the empirical distribution F∗m of X∗m, is a Dirichlet process D((k + n)F∗m). Thus, since G∗m
is given by a mixture of Dirichlet processes, using [26], when m→ ∞ the law of G∗m weakly
converges to the Dirichlet process D(kF0 + nFn).

Algorithm 1 shows how to estimate (4).
The conditional distribution expressed in (3) is approximated deriving the empirical

distribution function generated by φ1, . . . , φB, where B is the number of bootstrap resamples.
The Bayesian nonparametric approach based on Proper Bayesian bootstrap can be

introduced in ensemble models as explained in Section 4.
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Algorithm 1:
Proper Bayesian bootstrap

Input: Observations x1, x2, . . . , xn
for b in 1:B do

Generate m observations x∗1 , . . . , x∗m from (k + n)−1(kF0 + nFn)

Draw wb
1, . . . , wb

m from D( n+k
m , . . . , n+k

m );
Get φb = φ(wb, x∗)

4. Our Proposal: Bayesian Nonparametric Learning Applied to Ensemble
Tree Modeling

In the context of ensemble tree models, the statistic of interest φ(F, X) is a decision
tree model. As explained in Section 3, an estimation of the posterior distribution of φ
can be derived through bootstrap procedures. In [13] Rubin’s bootstrap is applied to
estimate the posterior distribution for φ(F, X). Each tree is obtained fitting the model on
the weighted dataset (whose weights are drawn from a Dirichlet distribution) and the
obtained predictions are an approximation of the posterior mean.

This paper extends the contribution of [13] introducing the Proper Bayesian bootstrap
proposed in [19]. As described in Section 3, the Proper Bayesian bootstrap needs a definition
of a prior distribution D(kF0) for F. In our case F represents the distribution of the data
at hand and D(kF0) is a Dirichlet process with parameters k and F0. In order to explain
a response variable y given a vector of P covariates x1, . . . , xP, the parameter F0 of the
Dirichlet process is a joint distribution depending both on (x, y).

Following [19] we sample from the posterior of φ(F, X) using Algorithm 2.

Algorithm 2:
Input: Training set T
for b in 1:B do

Sample (x∗1 , y∗1), . . . , (x∗m, y∗m) from (k + n)−1(kF0 + nFn);
Draw wb from D( n+k

m , . . . , n+k
m );

Get φb = φ(wb, x∗) running weighted tree on the new sample x∗1 , . . . , x∗m

The bootstrap resample (x∗1 , y∗1) . . . , (x∗m, y∗m) is generated by a mixture of distributions
of the prior guess F0 and the empirical distribution Fn. When a new observation of bootstrap
resample is generated, a new vector of covariates x is generated from the prior distributions
F0 defined for the covariates, then the new value of the response variable is associated on
the basis of the prior distribution chosen to model the relation between the target variable
and the covariates. As in the other ensemble procedure based on tree models, the proposed
method can be applied both for regression and classification problems, just considering
different prior distribution based on the nature of the data at hand.

The main difference, with respect to classical ensemble procedure (i.e., Bagging trees
and Bayesian Forest), is that the prior F0 allows to generate new observations, not contained
in the training set, which can enrich our prediction model. The obtained bootstrap samples
are less dependent one to each other, thus obtaining a model which is less sensitive to
changes in the learning dataset reducing overfitting. For this reason the obtained model is
more stable and the error prediction benefits from a lower variance, as shown in Section 5.

5. Empirical Analysis

In this Section a sensitivity analysis on the parameters of the model introduced in
Section 4 is performed choosing different prior distributions and setting different values of k
(i.e., the level of confidence in our initial choice F0). Our contribution, described in Section 4,
is compared to Bagging algorithms based on Efron’s bootstrap and on Rubin’s bootstrap,
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respectively used in [2,13]. Empirical evidences and results about the prediction accuracy
of the methods under comparison are provided, with the aim of investigating the properties
of Proper Bayesian bootstrap in ensemble tree models. In details, each time a new dataset
is analysed, the model is build on a different training set and a validation set (containing
data not used in the model building phase) is used to evaluate their performance. The
three different methods are evaluated observing the resulting mean squared error (MSE),
the squared bias and the model variance. The squared bias evaluates the error in terms
of erroneous assumptions in the learning algorithm while the model variance evaluates
the stability of the model and is an estimation of the sensitivity of the model to small
fluctuations in the training set. These two quantities are estimated, respectively, as:

Bias2(ŷ) = (y− E(ŷ))2 (8)

Var(ŷ) = E((y− ŷ)2) (9)

where ŷ is the value of an observed y in the validation set estimated by the trained model.
The sum of these two values gives the MSE, that is a general measure of quality of an
estimator. The models are applied, first, on a simulated dataset to perform a bias-variance
analysis of our prediction output, and finally results on a real dataset are reported.

For sake of comparison the number of bootstrap resamples B, and as a consequence
the number of trees developed for each ensemble model under comparison, is fixed to 100.

5.1. Simulation Study

The Friedman function ([27]) allows to generate simulated datasets to perform per-
formance comparisons between different regression models. The Friedman function is
generated using the following equation

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (10)

where xj ∼ U[0, 1] ∀j and ε ∼ N (0, 1).
To evaluate the bias-variance trade-off 100 different datasets of size N, which represent

our training sets, have been simulated. A regression model has been developed for each
training set and each model has been evaluated on a common validation set generated
from Friedman example made up of 100 observations.

A sensitivity analysis is performed on the simulated dataset from three different
point of view: first, results are compared changing the prior distribution of the covariates,
secondly, the prior on the relation between covariates and response variable to generate
the pseudo-samples is changed, finally performances are shown based on different values
of k and different values of training set sample size N.

5.1.1. Empirical Evaluations Varying Prior on the Covariates

Figure 1 reports nonparametric confidence intervals evaluated on the 100 simulated
datasets for mean squared error, squared bias and models variance considering different
prior distributions for covariates. Table 1 describes the prior distributions chosen for the
sensitivity analysis on the covariates prior choice. In this scenario the prior weight k is set
to obtain k

k+n = n
k+n = 0.5 considering that the sample size of the training set is composed

of 100 observations. The prior relation between y and x is a k̂ nearest neighbour with
k̂ = 5. Figure 1 depicts, that MSE evaluated on the validation set is almost equal for all
the prior choices; differences are evident in model variance, more precisely with prior set
to F0(xj) ∼ Lognormal(0, 0.5) ∀j or F0(xj) ∼ U (0, 2) ∀j model results are less stable since
variance shows higher values.
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Table 1. Prior distribution for covariates.

Plot Name Prior Distribution

normal N (X j, S2
j )

uniform01 U (0, 1)
lognorm01 Lognormal(0, 0.5)
uniform02 U (0, 2)

uniformmm U (min(Xj), max(Xj))

(a) MSE (b) Squared bias (c) Model variance

Figure 1. Comparison of nonparametric confidence intervals for MSE, squared bias and model variance related to the
validation set for different prior choices on the covariates.

5.1.2. Empirical Evaluations Varying Prior on the Relation among x and y

The second approach on sensitivity analysis considers different prior models for the
generation of the pseudo-dataset (X∗, y∗). In order to obtain the response variable y∗,
different prior regression models have been implemented as reported in Table 2. In this
scenario we set the prior for each covariate as U (0, 1).

Figure 2 shows the results assuming the prior weight k as to obtain k
k+n = n

k+n = 0.5
and a number of observations in the dataset equal to 100. The best results in terms of
prediction accuracy come up using polinomial and spline regression. This is probably due
to the nature of the simulated dataset. We remark that these differences are not statistically
significant, thus we can say that the model is not sensitive to the prior choice.

(a) MSE (b) Squared bias (c) Model variance

Figure 2. Comparison of nonparametric confidence intervals for mean squared error (MSE), squared bias and model
variance related to the validation set for different prior choices on the relation among dependent and independent variables.
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Table 2. Prior relation between response variable and covariates.

Plot Name Prior Distribution

knn K-nearest neighbors with k̂ = 5
reglin Multiple linear regression
polreg Polynomial regression with degree = 2
spline Spline regression

5.1.3. Empirical Evaluations Varying k and Sample Size

The last exercise about sensitivity analysis considers different values of prior weights
and different sample sizes of the training set. Figures 3–5 show the results of the bootstrap
confidence intervals for total mean squared error, squared bias and variance obtained on
the validation set by the compared models: Efron’s bootstrap, Rubin’s bootstrap, Proper
Bayesian bootstrap with different values of prior weight k (i.e., k such that the weight
w = k

(k+n) is equal to respectively: 0, 0.25, 0.5 and 0.75) and different sample sizes of the
training set (i.e., N = 50, N = 100, N = 500). In this simulation study, the prior for each
covariate xj is set to U (0, 1) and the prior relation among y and x is a k̂ nearest neighbour
with k̂ = 5.

Figures 3 and 4 show that the ensemble tree models outperform the single decision
tree, as expected, even with different sample sizes of the training set. Values of the MSE
and squared bias for the considered ensemble tree models are comparable, however, results
obtained by the Proper Bayesian bootstrap present a slightly improvement especially for
low values of the parameter k and low sample sized training set.

(a) N = 50 (b) N = 100 (c) N = 500

Figure 3. Nonparametric confidence intervals for MSE on the validation set varying N, number of observations in the
training set.

(a) N = 50 (b) N = 100 (c) N = 500

Figure 4. Nonparametric confidence intervals for the squared bias on the validation set varying N, number of observations
in the training set.
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(a) N = 50 (b) N = 100 (c) N = 500

Figure 5. Nonparametric confidence intervals for the variance on the validation set varying N, number of observations in
the training set.

Figure 5 shows good results in terms of model stability. Ensemble tree models employ-
ing Proper Bayesian bootstrap seem to be the most stable models among the chosen ones, in
particular when the value of w increases. If the weight given to the prior distribution is high,
the bootstrap resamples include an higher number of new observations generated from the
prior F0 which enrich the original training set. As a consequence, the trees constructed for
each bootstrap resample are more independent one from each other and the variance of
the global ensemble model decreases. We can conclude that the proposed model is more
stable, compared to other models introduced by [2,13] which employ different bootstrap
techniques, while still remaining competitive in terms of prediction accuracy.

5.2. A Real Example: The Boston Housing Dataset

The Bayesian nonparametric algorithm introduced in this paper is also evaluated
and compared to other models on a well known real dataset: the Boston housing dataset
from the UCI repository [28]. The dataset is composed of 506 samples and 13 variables.
The objective of this regression problem is to predict the value of prices of houses using
variables at hand.

The training set is made up of the 70% of the observations (N) and the remaining part
is taken as validation set on which mean squared error, bias and variance are evaluated.
The model is built using a 10 fold cross validation.
The Uniform distribution U (minxj , maxxj) is chosen as prior distribution F0 for each co-
variate xj, and a k nearest neighbour with k̂ = 5 is used for the generation of the pseudo-
samples in the Proper Bayesian bootstrap, as explained in previous sections.

Results in terms of nonparametric confidence intervals evaluated on MSE, squared
bias and variance of the different models are shown in Figure 6.

Observing the mean squared error on the validation set and the cross validation error,
it can be noticed that the model involving Proper Bayesian bootstrap with low w performs
as well as other ensemble models. While when w is high, i.e., prior is over weighted,
the performances are influenced by the fact that in the dataset too many pseudo-samples
are introduced.

As expected, observing the models variance in Figure 6d, it can be noticed that
ensemble models are in general more stable than single decision tree and the models
involving Proper Bayesian bootstrap are the most stable ones, as obtained in the simulated
example. This is due to the higher independence among single trees given by the external
pseudo-data introduced thanks to the prior distribution. We can conclude that also on real
dataset the proposed model is more stable with respect to other ones employing different
bootstrap techniques, maintaining a competitive level of accuracy.
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(a) Cross-Validation error (b) MSE on validation set

(c) Squared bias on validation set (d) Model variance on validation set

Figure 6. Nonparametric confidence intervals on obtained results in real dataset.

6. Conclusions

In this paper a new approach in ensemble tree modelling using informative Bayesian
bootstrap is proposed. In ensemble methods based on bagging, each data resample is gen-
erated through Efron’s bootstrap. This procedure is equivalent to consider the multinomial
distribution as the prior distribution for the data generating process which assigns to each
observation equal probability of being sampled. Under the Bayesian framework the natural
extension is the bootstrap technique proposed by Rubin which considers the Dirichlet
distribution as a prior distribution for the data generating process. It is well known that
Efron’s and Rubin’s bootstraps are strongly dependent on the observed values and do not
take into consideration any prior opinions.

In this paper the Proper Bayesian Bootstrap procedure is proposed in ensemble tree
modelling. This procedure allows to introduce expert opinions through the definition of
the prior parameter, thus overcoming the main drawbacks of the classical ensemble models
which only consider the data without any prior opinion. However, if the prior distribution
is not properly chosen, giving high weight to the prior could introduce noise in the data,
thus loosing in model performance.

Obtained results suggest that, with the introduction of pseudo-samples in the data and
a proper choice of prior weight, the final model can gain in terms of stability without loosing
in model performance. These results are highlighted both in simulated and real datasets.
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