Algorithmic Aspects of Some Variations of Clique Transversal and Clique Independent Sets on Graphs

Chuan-Min Lee (D)
Department of Computer and Communication Engineering, Ming Chuan University, 5 De Ming Road, Guishan District, Taoyuan City 333, Taiwan; joneslee@mail.mcu.edu.tw; Tel.: +886-3-350-7001 (ext. 3432); Fax: +886-3-359-3876

Abstract

This paper studies the maximum-clique independence problem and some variations of the clique transversal problem such as the $\{k\}$-clique, maximum-clique, minus clique, signed clique, and k-fold clique transversal problems from algorithmic aspects for k-trees, suns, planar graphs, doubly chordal graphs, clique perfect graphs, total graphs, split graphs, line graphs, and dually chordal graphs. We give equations to compute the $\{k\}$-clique, minus clique, signed clique, and k-fold clique transversal numbers for suns, and show that the $\{k\}$-clique transversal problem is polynomial-time solvable for graphs whose clique transversal numbers equal their clique independence numbers. We also show the relationship between the signed and generalization clique problems and present NP-completeness results for the considered problems on k-trees with unbounded k, planar graphs, doubly chordal graphs, total graphs, split graphs, line graphs, and dually chordal graphs.

Keywords: clique independent set; clique transversal number; signed clique transversal function; minus clique transversal function; k-fold clique transversal set

1. Introduction

Every graph $G=(V, E)$ in this paper is finite, undirected, connected, and has at most one edge between any two vertices in G. We assume that the vertex set V and edge set E of G contain n vertices and m edges. They can also be denoted by $V(G)$ and $E(G)$. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is an induced subgraph of G denoted by $G\left[V^{\prime}\right]$ if $V^{\prime} \subseteq V$ and E^{\prime} contains all the edge $(x, y) \in E$ for $x, y \in V^{\prime}$. Two vertices $x, y \in V$ are adjacent or neighbors if $(x, y) \in E$. The sets $N_{G}(x)=\{y \mid(x, y) \in E\}$ and $N_{G}[x]=N_{G}(x) \cup\{x\}$ are the neighborhood and closed neighborhood of a vertex x in G, respectively. The number $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$ is the degree of x in G. If $\operatorname{deg}_{G}(x)=k$ for every $x \in V$, then G is k-regular. Particularly, cubic graphs are an alternative name for 3-regular graphs.

A subset S of V is a clique if $(x, y) \in E$ for $x, y \in S$. Let Q be a clique of G. If $Q \cap Q^{\prime} \neq Q$ for any other clique Q^{\prime} of G, then Q is a maximal clique. We use $C(G)$ to represent the set $\{C \mid C$ is a maximal clique of $G\}$. A clique $S \in C(G)$ is a maximum clique if $|S| \geq\left|S^{\prime}\right|$ for every $S^{\prime} \in C(G)$. The number $\omega(G)=\max \{|S| \mid S \in C(G)\}$ is the clique number of G. A set $D \subseteq V$ is a clique transversal set (abbreviated as CTS) of G if $|C \cap D| \geq 1$ for every $C \in C(G)$. The number $\tau_{C}(G)=\min \{|S| \mid S$ is a CTS of $G\}$ is the clique transversal number of G. The clique transversal problem (abbreviated as CTP) is to find a minimum CTS for a graph. A set $S \subseteq C(G)$ is a clique independent set (abbreviated as CIS) of G if $|S|=1$ or $|S| \geq 2$ and $C \cap C^{\prime}=\varnothing$ for $C, C^{\prime} \in S$. The number $\alpha_{C}(G)=\max \{|S| \mid S$ is a CIS of $G\}$ is the clique independence number of G. The clique independence problem (abbreviated as CIP) is to find a maximum CIS for a graph.

The CTP and the CIP have been widely studied. Some studies on the CTP and the CIP consider imposing some additional constraints on CTS or CIS, such as the maximum-clique independence problem (abbreviated as MCIP), the k-fold clique transversal problem (abbreviated as k-FCTP), and the maximum-clique transversal problem (abbreviated as MCTP).

Definition 1 ([1,2]). Suppose that $k \in \mathbb{N}$ is fixed and G is a graph. A set $D \subseteq V(G)$ is a k-fold clique transversal set (abbreviated as k-FCTS) of G if $|C \cap D| \geq k$ for $C \in C(G)$. The number $\tau_{C}^{k}(G)=\min \{|S| \mid S$ is a k-FCTS of $G\}$ is the k-fold clique transversal number of G. The k-FCTP is to find a minimum k-FCTS for a graph.

Definition $2([3,4])$. Suppose that G is a graph. A set $D \subseteq V(G)$ is a maximum-clique transversal set (abbreviated as MCTS) of G if $|C \cap D| \geq 1$ for $C \in C(G)$ with $|C|=\omega(G)$. The number $\tau_{M}(G)=\min \{|S| \mid S$ is an MCTS of $G\}$ is the maximum-clique transversal number of G. The MCTP is to find a minimum MCTS for a graph. A set $S \subseteq C(G)$ is a maximum-clique independent set (abbreviated as MCIS) of G if $|C|=\omega(G)$ for $C \in S$ and $C \cap C^{\prime}=\varnothing$ for $C, C^{\prime} \in S$. The number $\alpha_{M}(G)=\max \{|S| \mid S$ is an MCIS of $G\}$ is the maximum-clique independence number of G. The MCIP is to find a maximum MCIS for a graph.

The k-FCTP on balanced graphs can be solved in polynomial time [2]. The MCTP has been studied in [3] for several well-known graph classes and the MCIP is polynomial-time solvable for any graph H with $\tau_{M}(H)=\alpha_{M}(H)$ [4]. Assume that $Y \subseteq \mathbb{R}$ and $f: X \rightarrow Y$ is a function. Let $f\left(X^{\prime}\right)=\sum_{x \in X} f(x)$ for $X^{\prime} \subseteq X$, and let $f(X)$ be the weight of f. A CTS of G can be expressed as a function f whose domain is $V(G)$ and range is $\{0,1\}$, and $f(C) \geq 1$ for $C \in C(G)$. Then, f is a clique transversal function (abbreviated as CTF) of G and $\tau_{C}(G)=\min \{f(V(G)) \mid f$ is a CTF of $G\}$. Several types of CTF have been studied [4-7]. The following are examples of CTFs.

Definition 3. Suppose that $k \in \mathbb{N}$ is fixed and G is a graph. A function f is a $\{k\}$-clique transversal function (abbreviated as $\{k\}-C T F$) of G if the domain and range of f are $V(G)$ and $\{0,1,2, \ldots, k\}$, respectively, and $f(C) \geq k$ for $C \in C(G)$. The number $\tau_{C}^{\{k\}}(G)=\min \{f(V(G)) \mid$ f is a $\{k\}$-CTF of $G\}$ is the $\{k\}$-clique transversal number of G. The $\{k\}$-clique transversal problem (abbreviated as $\{k\}$-CTP) is to find a minimum-weight $\{k\}$-CTF for a graph.

Definition 4. Suppose that G is a graph. A function f is a signed clique transversal function (abbreviated as SCTF) of G if the domain and range of f are $V(G)$ and $\{-1,1\}$, respectively, and $f(C) \geq 1$ for $C \in C(G)$. If the domain and range of f are $V(G)$ and $\{-1,0,1\}$, respectively, and $f(C) \geq 1$ for $C \in C(G)$, then f is a minus clique transversal function (abbreviated as MCTF) of G. The number $\tau_{C}^{s}(G)=\min \{f(V(G)) \mid f$ is an SCTF of $G\}$ is the signed clique transversal number of G. The minus clique transversal number of G is $\tau_{C}^{-}(G)=\min \{f(V(G)) \mid f$ is an MCTF of $G\}$. The signed clique transversal problem (abbreviated as SCTP) is to find a minimum-weight SCTF for a graph. The minus clique transversal problem (abbreviated as MCTP) is to find a minimum-weight MCTF for a graph.

Lee [4] introduced some variations of the k-FCTP, the $\{k\}$-CTP, the SCTP, and the MCTP, but those variations are dedicated to maximum cliques in a graph. The MCTP on chordal graphs is NP-complete, while the MCTP on block graphs is linear-time solvable [7]. The MCTP and SCTP are linear-time solvable for any strongly chordal graph G if a strong elimination ordering of G is given [5]. The SCTP is NP-complete for doubly chordal graphs [6] and planar graphs [5].

According to what we have described above, there are very few algorithmic results regarding the k-FCTP, the $\{k\}$-CTP, the SCTP, and the MCTP on graphs. This motivates us to study the complexities of the k-FCTP, the $\{k\}$-CTP, the SCTP, and the MCTP. This paper also studies the MCTP and MCIP for some graphs and investigates the relationships between different dominating functions and CTFs.

Definition 5. Suppose that $k \in \mathbb{N}$ is fixed and G is a graph. A set $S \subseteq V(G)$ is a k-tuple dominating set (abbreviated as k-TDS) of G if $\left|S \cap N_{G}[x]\right| \geq 1$ for $x \in V(G)$. The number $\gamma_{\times k}(G)=\min \{|S| \mid S$ is a k-TDS of $G\}$ is the k-tuple domination number of G. The k-tuple domination problem (abbreviated as k-TDP) is to find a minimum k-TDS for a graph.

Notice that a dominating set of a graph G is a 1-TDS. The domination number $\gamma(G)$ of G is $\gamma_{\times 1}(G)$.

Definition 6. Suppose that $k \in \mathbb{N}$ is fixed and G is a graph. A function f is a $\{k\}$-dominating function (abbreviated as $\{k\}-D F$) of G if the domain and range of f are $V(G)$ and $\{0,1,2, \ldots, k\}$, respectively, and $f\left(N_{G}[x]\right) \geq k$ for $x \in V(G)$. The number $\gamma_{\{k\}}(G)=\min \{f(V(G)) \mid f$ is a $\{k\}$-DF of $G\}$ is the $\{k\}$-domination number of G. The $\{k\}$-domination problem (abbreviated as $\{k\}-D P)$ is to find a minimum-weight $\{k\}-D F$ for a graph.

Definition 7. Suppose that G is a graph. A function f is a signed dominating function (abbreviated as SDF) of G if the domain and range of f are $V(G)$ and $\{-1,1\}$, respectively, and $f\left(N_{G}[x]\right) \geq 1$ for $x \in V(G)$. If the domain and range of f are $V(G)$ and $\{-1,0,1\}$, respectively, and $f\left(N_{G}[x]\right) \geq$ 1 for $x \in V(G)$, then f is a minus dominating function (abbreviated as MDF) of G. The number $\gamma_{s}(G)=\min \{f(V(G)) \mid f$ is an SDF of $G\}$ is the signed domination number of G. The minus domination number of G is $\gamma^{-}(G)=\min \{f(V(G)) \mid f$ is an MDF of $G\}$. The signed domination problem (abbreviated as SDP) is to find a minimum-weight SDF for a graph. The minus domination problem (abbreviated as MDP) is to find a minimum-weight MDF for a graph.

Our main contributions are as follows.

1. We prove in Section 2 that $\gamma^{-}(G)=\tau_{C}^{-}(G)$ and $\gamma_{s}(G)=\tau_{C}^{s}(G)$ for any sun G. We also prove that $\gamma_{\times k}(G)=\tau_{C}^{k}(G)$ and $\gamma_{\{k\}}(G)=\tau_{C}^{\{k\}}(G)$ for any sun G if $k>1$.
2. We prove in Section 3 that $\tau_{C}^{\{k\}}(G)=k \tau_{C}(G)$ for any graph G with $\tau_{C}(G)=\alpha_{C}(G)$. Then, $\tau_{C}^{\{k\}}(G)$ is polynomial-time solvable if $\tau_{C}(G)$ can be computed in polynomial time. We also prove that the SCTP is a special case of the generalized clique transversal problem [8]. Therefore, the SCTP for a graph H can be solved in polynomial time if the generalized transversal problem for H is polynomial-time solvable.
3. We show in Section 4 that $\gamma_{\times k}(G)=\tau_{C}^{k}(G)$ and $\gamma_{\{k\}}(G)=\tau_{C}^{\{k\}}(G)$ for any split graph G. Furthermore, we introduce H_{1}-split graphs and prove that $\gamma^{-}(H)=\tau_{C}^{-}(H)$ and $\gamma_{s}(H)=\tau_{C}^{s}(H)$ for any H_{1}-split graph H. We prove the NP-completeness of SCTP for split graphs by showing that the SDP on H_{1}-split graphs is NP-complete.
4. We show in Section 5 that $\tau_{C}^{\{k\}}(G)$ for a doubly chordal graph G can be computed in linear time, but the k-FCTP is NP-complete for doubly chordal graphs as $k>1$. Notice that the CTP is a special case of the k-FCTP and the $\{k\}$-CTP when $k=1$, and thus $\tau_{C}(G)=\tau_{C}^{1}(G)=\tau_{C}^{\{1\}}(G)$ for any graph G.
5. We present other NP-completeness results in Sections 6 and 7 for k-trees with unbounded k and subclasses of total graphs, line graphs, and planar graphs. These results can refine the "borderline" between P and NP for the considered problems and graphs classes or their subclasses.

2. Suns

In this section, we give equations to compute $\tau_{C}^{\{k\}}(G), \tau_{C}^{k}(G), \tau_{C}^{s}(G)$, and $\tau_{C}^{-}(G)$ for any sun G and show that $\tau_{C}^{\{k\}}(G)=\gamma_{\{k\}}(G), \tau_{C}^{k}(G)=\gamma_{\times k}(G), \tau_{C}^{s}(G)=\gamma_{s}(G)$, and $\tau_{C}^{-}(G)=\gamma^{-}(G)$.

Let $p \in \mathbb{N}$ and G be a graph. An edge $e \in E(G)$ is a chord if e connects two nonconsecutive vertices of a cycle in G. If C has a chord for every cycle C consisting of more than three vertices, G is a chordal graph. A sun G is a chordal graph whose vertices can be partitioned into $W=\left\{w_{i} \mid 1 \leq i \leq p\right\}$ and $U=\left\{u_{i} \mid 1 \leq i \leq p\right\}$ such that (1) W is an independent set, (2) the vertices $u_{1}, u_{2}, \ldots, u_{p}$ of U form a cycle, and (3) every $w_{i} \in W$ is adjacent to precisely two vertices u_{i} and u_{j}, where $j \equiv i+1(\bmod p)$. We use $S_{p}=(W, U, E)$ to denote a sun. Then, $\left|V\left(S_{p}\right)\right|=2 p$. If p is odd, S_{p} is an odd sun; otherwise, it is an even sun. Figure 1 shows two suns.

Figure 1. (a) The sun S_{3}. (b) A sun S_{4}.
Lemma 1. For any sun $S_{p}=(W, U, E), \tau_{C}^{2}\left(S_{p}\right)=p$ and $\tau_{C}^{3}\left(S_{p}\right)=2 p$.
Proof. It is straightforward to see that U is a minimum 2-FCTS and $W \cup U$ is a minimum 3-FCTS of S_{p}. This lemma therefore holds.

Lemma 2. Suppose that $k \in \mathbb{N}$ and $k>1$. Then, $\tau_{C}^{\{k\}}\left(S_{p}\right)=\lceil p k / 2\rceil$ for any sun $S_{p}=$ (W, U, E).

Proof. Let $i, j \in\{1,2, \ldots p\}$ such that $j \equiv i+1(\bmod p)$. Since every $w_{i} \in W$ is adjacent to precisely two vertices $u_{i}, u_{j} \in U, N_{S_{p}}\left[w_{i}\right]=\left\{w_{i}, u_{i}, u_{j}\right\}$ is a maximal clique of S_{p}. By contradiction, we can prove that there exists a minimum $\{k\}$-CTF f of S_{p} such that $f\left(w_{i}\right)=0$ for $w_{i} \in W$. Since $f\left(N_{S_{p}}\left[w_{i}\right]\right) \geq k$ for $1 \leq i \leq p$, we have

$$
\tau_{C}^{\{k\}}\left(S_{p}\right)=\sum_{i=1}^{p} f\left(u_{i}\right)=\frac{\sum_{i=1}^{p} f\left(N_{S_{p}}\left[w_{i}\right]\right)}{2} \geq \frac{p k}{2}
$$

Since $\tau_{C}^{\{k\}}\left(S_{p}\right)$ is a nonnegative integer, $\tau_{C}^{\{k\}}\left(S_{p}\right) \geq\lceil p k / 2\rceil$.
We define a function $h: W \cup U \rightarrow\{0,1, \ldots, k\}$ by $h\left(w_{i}\right)=0$ for every $w_{i} \in W$, $h\left(u_{i}\right)=\lceil k / 2\rceil$ for $u_{i} \in U$ with odd index i and $h\left(u_{i}\right)=\lfloor k / 2\rfloor$ for every $u_{i} \in U$ with even index i. Clearly, a maximal clique Q of S_{n} is either the closed neighborhood of some vertex in W or a set of at least three vertices in U. If $Q=N_{S_{p}}\left[w_{i}\right]$ for some $w_{i} \in W$, then $h(Q)=\lceil k / 2\rceil+\lfloor k / 2\rfloor=k$. Suppose that Q is a set of at least three vertices in U. Since $k \geq 2, h(Q) \geq 3 \cdot\lfloor k / 2\rfloor \geq k$. Therefore, h is a $\{k\}$-CTF of S_{p}. We show the weight of h is $\lceil p k / 2\rceil$ by considering two cases as follows.

Case 1: p is even. We have

$$
h\left(V\left(S_{p}\right)\right)=\sum_{i=1}^{p} h\left(u_{i}\right)=\frac{p}{2} \cdot(\lceil k / 2\rceil+\lfloor k / 2\rfloor)=\frac{p k}{2} .
$$

Case 2: p is odd. We have

$$
h\left(V\left(S_{p}\right)\right)=\sum_{i=1}^{p} h\left(u_{i}\right)=\frac{(p-1)}{2} \cdot k+\lceil k / 2\rceil=\lceil p k / 2\rceil .
$$

Following what we have discussed above, we know that h is a minimum $\{k\}$-CTF of S_{n} and thus $\tau_{C}^{\{k\}}\left(S_{p}\right)=\lceil p k / 2\rceil$.

Lemma 3. For any sun $S_{p}=(W, U, E), \tau_{C}^{-}\left(S_{p}\right)=\tau_{C}^{s}\left(S_{p}\right)=0$.

Proof. For $1 \leq i \leq p, N_{S_{p}}\left[w_{i}\right]$ is a maximal clique of S_{p}. Let h be a minimum SCTF of S_{p}. Then, $\tau_{C}^{s}\left(S_{p}\right)=h\left(V\left(S_{p}\right)\right)$. Note that $h\left(N_{S_{p}}\left[w_{i}\right]\right) \geq 1$ for $1 \leq i \leq p$. We have

$$
h\left(V\left(S_{p}\right)\right)=\sum_{i=1}^{p} h\left(N_{S_{p}}\left[w_{i}\right]\right)-\sum_{i=1}^{p} h\left(u_{i}\right) \geq p-\sum_{i=1}^{p} h\left(u_{i}\right) .
$$

Since $\sum_{i=1}^{p} h\left(u_{i}\right) \leq p$, we have $\tau_{C}^{s}\left(S_{p}\right) \geq 0$. Let f be an SCTF of S_{p} such that $f\left(u_{i}\right)=1$ and $f\left(w_{i}\right)=-1$ for $1 \leq i \leq p$. The weight of f is 0 . Then f is a minimum SCTF of S_{p}. Hence, $\tau_{C}^{-}\left(S_{p}\right)=0$ and $\tau_{C}^{s}\left(S_{p}\right)=0$. The proof for $\tau_{C}^{-}(G)=0$ is analogous to that for $\tau_{C}^{s}(G)=0$.

Theorem 1 (Lee and Chang [9]). Let S_{p} be a sun. Then,
(1) $\gamma^{-}\left(S_{p}\right)=\gamma_{s}\left(S_{p}\right)=0$;
(2) $\gamma_{\{k\}}\left(S_{p}\right)=\lceil p k / 2\rceil$;
(3) $\quad \gamma_{\times 1}\left(S_{p}\right)=\lceil p / 2\rceil, \gamma_{\times 2}\left(S_{p}\right)=p$ and $\gamma_{\times 3}\left(S_{p}\right)=2 p$.

Corollary 1. Let S_{p} be a sun. Then,
(1) $\gamma^{-}\left(S_{p}\right)=\tau_{C}^{-}\left(S_{p}\right)=\gamma_{s}\left(S_{p}\right)=\tau_{C}^{s}\left(S_{p}\right)=0$;
(2) $\gamma_{\{k\}}\left(S_{p}\right)=\tau_{C}^{\{k\}}\left(S_{p}\right)=\lceil p k / 2\rceil$ for $k>1$;
(3) $\gamma_{\times 2}\left(S_{p}\right)=\tau_{C}^{2}\left(S_{p}\right)=p$ and $\gamma_{\times 3}\left(S_{p}\right)=\tau_{C}^{3}\left(S_{p}\right)=2 p$.

Proof. The corollary holds by Lemmas 1-3 and Corollary 1.

3. Clique Perfect Graphs

Let \mathcal{G} be the set of all induced subgraphs of G. If $\tau_{C}(H)=\alpha_{C}(H)$ for every $H \in \mathcal{G}$, then G is clique perfect. In this section, we study the $\{k\}$-CTP for clique perfect graphs and the SCTP for balanced graphs.

Lemma 4. Let G be such a graph that $\tau_{C}(G)=\alpha_{C}(G)$. Then, $\tau_{C}^{\{k\}}(G)=k \tau_{C}(G)$.
Proof. Assume that D is a minimum CTS of G. Then, $|D|=\tau_{C}(G)$. Let $x \in V(G)$ and let f be a function whose domain is $V(G)$ and range is $\{0,1, \ldots, k\}$, and $f(x)=k$ if $x \in D$; otherwise, $f(x)=0$. Clearly, f is a $\{k\}$-CTF of G. We have $\tau_{C}^{\{k\}}(G) \leq k \tau_{C}(G)$.

Assume that f is a minimum-weight $\{k\}$-CTF of G. Then, $f(V(G))=\tau_{C}^{\{k\}}(G)$ and $f(C) \geq k$ for every $C \in C(G)$. Let $S=\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$ be a maximum CIS of G. We know that $|\bar{S}|=\ell=\alpha_{C}(G)$ and $\sum_{i=1}^{\ell} f\left(C_{i}\right) \leq f(V(G))$. Therefore, $k \tau_{C}(G)=k \alpha_{C}(G)=k \ell \leq$ $\sum_{i=1}^{\ell} f\left(C_{i}\right) \leq f(V(G))=\tau_{C}^{\{k\}}(G)$. Following what we have discussed above, we know that $\tau_{C}^{\{k\}}(G)=k \tau_{C}(G)$.

Theorem 2. If a graph G is clique perfect, $\tau_{C}^{\{k\}}(G)=k \tau_{C}(G)$.
Proof. Since G is clique perfect, $\tau_{C}(G)=\alpha_{C}(G)$. Hence, the theorem holds by Lemma 4 .
Corollary 2. The $\{k\}$-CTP is polynomial-time solvable for distance-hereditary graphs, balanced graphs, strongly chordal graphs, comparability graphs, and chordal graphs without odd suns.

Proof. Distance-hereditary graphs, balanced graphs, strongly chordal graphs, comparability graphs, and chordal graphs without odd suns are clique perfect, and the CTP can be solved in polynomial time for them [10-14]. The corollary therefore holds.

Definition 8. Suppose that R is a function whose domain is $C(G)$ and range is $\{0,1, \ldots, \omega(G)\}$. If $R(C) \leq|C|$ for every $C \in C(G)$, then R is a clique-size restricted function (abbreviated as

CSRF) of G. A set $D \subseteq V(G)$ is an R-clique transversal set (abbreviated as R-CTS) of G if R is a CSRF of G and $|D \cap C| \geq R(C)$ for every $C \in C(G)$. Let $\tau_{R}(G)=\min \{|D| \mid D$ is an R-CTS of $G\}$. The generalized clique transversal problem (abbreviated as GCTP) is to find a minimum R-CTS for a graph G with a CSRF R.

Lemma 5. Let G be a graph with a CSRF R. If $R(C)=\lceil(|C|+1) / 2\rceil$ for every $C \in C(G)$, then $\tau_{C}^{s}(G)=2 \tau_{R}(G)-n$.

Proof. Assume that D is a minimum R-CTS of G. Then, $|D|=\tau_{R}(G)$. Let $x \in V(G)$ and let f be a function of G whose domain is $V(G)$ and range is $\{-1,1\}$, and $f(x)=1$ if $x \in D$; otherwise, $f(x)=-1$. Since $|D \cap C| \geq\lceil(|C|+1) / 2\rceil$ for every $C \in C(G)$, there are at least $\lceil(|C|+1) / 2\rceil$ vertices in C with the function value 1 . Therefore, $f(C) \geq 1$ for every $C \in C(G)$, and f is an SCTF of G. Then, $\tau_{C}^{s}(G) \leq 2 \tau_{R}(G)-n$.

Assume that h is a minimum-weight SCTF of G. Clearly, $h(V(G))=\tau_{C}^{s}(G)$. Since $h(C) \geq 1$ for every $C \in C(G), C$ contains at least $\lceil(|C|+1)\rceil / 2$ vertices with the function value 1. Let $D=\{x \mid h(x)=1, x \in V(G)\}$. The set D is an R-CTS of G. Therefore, $2 \tau_{R}(G)-n \leq 2|D|-n=\tau_{C}^{S}(G)$. Hence, we have $\tau_{C}^{S}(G)=2 \tau_{R}(G)-n$.

Theorem 3. The SCTP on balanced graphs can be solved in polynomial time.
Proof. Suppose that a graph G has n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and ℓ maximal cliques C_{1}, C_{2}, \ldots, C_{ℓ}. Let $i \in\{1,2, \ldots, \ell\}$ and $j \in\{1,2, \ldots, n\}$. Let M be an $\ell \times n$ matrix such that an element $M(i, j)$ of M is one if the maximal clique C_{i} contains the vertex v_{j}, and $M(i, j)=0$ otherwise. We call M the clique matrix of G. If the clique matrix M of G does not contain a square submatrix of odd order with exactly two ones per row and column, then M is a balanced matrix and G is a balanced graph. We formulae the GCTP on a balanced graph G with a CSRF R as the following integer programming problem:

$$
\left.\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \\
\text { subject to } & M X \geq \mathcal{C}
\end{array}\right\}
$$

where $\mathcal{C}=\left(R\left(C_{1}\right), R\left(C_{2}\right), \ldots, R\left(C_{\ell}\right)\right)$ is a column vector and $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a column vector such that x_{i} is either 0 or 1 . Since the matrix M is balanced, an optimal $0-1$ solution of the integer programming problem above can be found in polynomial time by the results in [15]. By Lemma 5, we know that the SCTP on balanced graphs can be solved in polynomial time.

4. Split Graphs

Let G be such a graph that $V(G)=I \cup C$ and $I \cap C=\varnothing$. If I is an independent set and C is a clique, G is a split graph. Then, every maximal of G is either C itself, or the closed neighborhood $N_{G}[x]$ of a vertex $x \in I$. We use $G=(I, C, E)$ to represent a split graph. The $\{k\}$-CTP, the k-FCTP, the SCTP, and the MCTP for split graphs are considered in this section. We also consider the $\{k\}$-DP, the k-TDP, the SDP, and the MDP for split graphs.

For split graphs, the $\{k\}$-DP, the k-TDP, and the MDP are NP-complete [16-18], but the complexity of the SDP is still unknown. In the following, we examine the relationships between the $\{k\}$-CTP and the $\{k\}$-DP, the k-FCTP and the k-TDP, the SCTP and the SDP, and the MCTP and the MDP. Then, by the relationships, we prove the NP-completeness of the SDP, the $\{k\}$-CTP, the k-FCTP, the SCTP, and the MCTP for split graphs. We first consider the $\{k\}$-CTP and the k-FCTP and show in Theorems 4 and 5 that $\tau_{C}^{k}(G)=\gamma_{\times k}(G)$ and $\tau_{C}^{\{k\}}(G)=\gamma_{\{k\}}(G)$ for any split graph G. Chordal graphs form a superclass of split graphs [19]. The cardinality of $C(G)$ is at most n for any chordal graph G [20]. The following lemma therefore holds trivially.

Lemma 6. The k-FCTP, the $\{k\}-C T P$, the SCTP, and the MCTP for chordal graphs are in $N P$.

Theorem 4. Suppose that $k \in \mathbb{N}$ and $G=(I, C, E)$ is a split graph. Then, $\tau_{C}^{k}(G)=\gamma_{\times k}(G)$.
Proof. Let S be a minimum k-FCTS of G. Consider a vertex $y \in I$. By the structure of G, $N_{G}[y]$ is a maximal clique of G. Then, $\left|S \cap N_{G}[y]\right| \geq k$. We now consider a vertex $x \in C$. If $C \notin C(G)$, then there exists a vertex $y \in I$ such that $N_{G}[y]=C \cup\{y\}$. Clearly, $N_{G}[y] \subseteq$ $N_{G}[x]$ and $\left|S \cap N_{G}[x]\right| \geq\left|S \cap N_{G}[y]\right| \geq k$. If $C \in C(G)$, then $\left|S \cap N_{G}[x]\right| \geq|S \cap C| \geq k$. Hence, S is a k-TDS of G. We have $\gamma_{\times k}(G) \leq \tau_{C}^{k}(G)$.

Let D be a minimum k-TDS of G. Recall that the closed neighborhood of every vertex in I is a maximal clique. Then, D contains at least k vertices in the maximal clique $N_{G}[y]$ for every vertex $y \in I$. If $C \notin C(G), D$ is clearly a k-FCTS of G. Suppose that $C \in C(G)$. We consider three cases as follows.

Case 1: $y \in I \backslash D$. Then, $|D \cap C| \geq\left|D \cap N_{G}(y)\right| \geq k$. The set D is a k-FCTS of G.
Case 2: $y \in I \cap D$ and $x \in N_{G}(y) \backslash D$. Then, the set $D^{\prime}=(D \backslash\{y\}) \cup\{x\}$ is still a minimum k-TDS and $\left|D^{\prime} \cap C\right| \geq\left|D^{\prime} \cap N_{G}(y)\right| \geq k$. The set D^{\prime} is a k-FCTS of G.

Case 3: $I \subseteq D$ and $N_{G}[y] \subseteq D$ for every $y \in I$. Then, $|D \cap C| \geq\left|D \cap N_{G}(y)\right| \geq k-1$. Since $C \in C(G)$, there exists $x \in C$ such that $y \notin N_{G}(x)$. If $N_{G}(x) \cap I=\varnothing$, then $N_{G}[x]=C$ and $|D \cap C|=\left|D \cap N_{G}[x]\right| \geq k$. Otherwise, let $y^{\prime} \in N_{G}(x) \cap I$. Then, $x \in D$ and $|D \cap C| \geq\left|D \cap N_{G}(y)\right|+1 \geq k$. The set D is a k-FCTS of G.

By the discussion of the three cases, we have $\tau_{C}^{k}(G) \leq \gamma_{\times k}(G)$. Hence, we obtain that $\gamma_{\times k}(G) \leq \tau_{C}^{k}(G)$ and $\tau_{C}^{k}(G) \leq \gamma_{\times k}(G)$. The theorem holds for split graphs.

Theorem 5. Suppose that $k \in \mathbb{N}$ and $G=(I, C, E)$ is a split graph. Then, $\tau_{C}^{\{k\}}(G)=\gamma_{\{k\}}(G)$.
Proof. We can verify by contradiction that G has a minimum-weight $\{k\}$-CTF f and a minimum-weight $\{k\}$-DF g of G such that $f(y)=0$ and $g(y)=0$ for every $y \in I$. By the structure of $G, N_{G}[y] \in C(G)$ for every $y \in I$. Then, $f\left(N_{G}[y]\right) \geq k$ and $g\left(N_{G}[y]\right) \geq k$. Since $f(y)=0$ and $g(y)=0, f\left(N_{G}(y)\right) \geq k$ and $g\left(N_{G}(y)\right) \geq k$.

For every $y \in I, N_{G}(y) \subseteq C$ and $f(C) \geq f\left(N_{G}(y)\right) \geq k$. For every $x \in C, f\left(N_{G}[x]\right) \geq$ $f(C) \geq k$. Therefore, the function f is also a $\{k\}$-DF of G. We have $\gamma_{\{k\}}(G) \leq \tau_{C}^{\{k\}}(G)$. We now consider $g(C)$ for the clique C. If $C \notin C(G)$, the function g is clearly a $\{k\}$-CTF of G. Suppose that $C \in C(G)$. Notice that g is a $\{k\}-D F$ and $g(y)=0$ for every $y \in I$. Then, $g(C)=g\left(N_{G}[x]\right) \geq k$ for any vertex $x \in C$. Therefore, g is also a $\{k\}$-CTF of G. We have $\tau_{C}^{\{k\}}(G) \leq \gamma_{\{k\}}(G)$. Following what we have discussed above, we know that $\tau_{C}^{\{k\}}(G)=\gamma_{\{k\}}(G)$.

Corollary 3. The $\{k\}$-CTP and the k-FCTP are NP-complete for split graphs.
Proof. The corollary holds by Theorems 4 and 5 and the NP-completeness of the $\{k\}$-DP and the k-TDP for split graphs $[16,18]$.

A graph G is a complete if $C(G)=\{V(G)\}$. Let G be a complete graph and let $x \in V(G)$. The vertex set $V(G)$ is the union of the sets $\{x\}$ and $V(G) \backslash\{x\}$. Clearly, $\{x\}$ is an independent set and $V(G) \backslash\{x\}$ is a clique of G. Therefore, complete graphs are split graphs. It is easy to verify the Lemma 7.

Lemma 7. If G is a complete graph and $k \in \mathbb{N}$, then

$$
\begin{align*}
& \text { (1) } \tau_{C}^{k}(G)=\gamma_{\times k}(G)=k \text { for } k \leq n ; \tag{1}\\
& \text { (2) } \tau_{C}^{\{k\}}(G)=\gamma_{\{k\}}(G)=k ; \\
& \text { (3) } \tau_{C}^{C}(G)=\gamma^{-}(G)=1 ; \\
& \text { (4) } \tau_{C}^{s}(G)=\gamma_{s}(G)= \begin{cases}1 & \text { if } n \text { is odd; } \\
2 & \text { otherwise. }\end{cases}
\end{align*}
$$

For split graphs, however, the signed and minus domination numbers are not necessarily equal to the signed and minus clique transversal numbers, respectively. Figure 2 shows a split graph G with $\tau_{C}^{s}(G)=\tau_{C}^{-}(G)=-3$. However, $\gamma_{s}(G)=\gamma^{-}(G)=1$. We therefore introduce H_{1}-split graphs and show in Theorem 6 that their signed and minus domination numbers are equal to the signed and minus clique transversal numbers, respectively. H_{1}-split graphs are motivated by the graphs in [17] for proving the NP-completeness of the MDP on split graphs. Figure 3 shows an H_{1}-split graph.

Figure 2. A split graph G with $\tau_{C}^{S}(G)=\tau_{C}^{-}(G)=-3$.
Definition 9. Suppose that $G=(I, C, E)$ is a split graph with $3 p+3 \ell+2$ vertices. Let U, S, X, and Y be pairwise disjoint subsets of $V(G)$ such that $U=\left\{u_{i} \mid 1 \leq i \leq p\right\}, S=\left\{s_{i} \mid 1 \leq i \leq \ell\right\}$, $X=\left\{x_{i} \mid 1 \leq i \leq p+\ell+1\right\}$, and $Y=\left\{y_{i} \mid 1 \leq i \leq p+\ell+1\right\}$. The graph G is an H_{1}-split graph if $V(G)=U \cup S \cup X \cup Y$ and G entirely satisfies the following three conditions.
(1) $I=S \cup Y$ and $C=U \cup X$.
(2) $N_{G}\left(y_{i}\right)=\left\{x_{i}\right\}$ for $1 \leq i \leq p+\ell+1$.
(3) $\left|N_{G}\left(s_{i}\right) \cap U\right|=3$ and $N_{G}\left(s_{i}\right) \cap X=\left\{x_{i}\right\}$ for $1 \leq i \leq \ell$.

Figure 3. A split graph G with one of its partitions indicated.
Theorem 6. For any H_{1}-split graph $G=(I, C, E), \tau_{C}^{s}(G)=\gamma_{s}(G)$ and $\tau_{C}^{-}(G)=\gamma^{-}(G)$.
Proof. We first prove $\tau_{C}^{s}(G)=\gamma_{s}(G)$. Let $G=(I, C, E)$ be an H_{1}-split graph. As stated in Definition 9, I can be partitioned into $S=\left\{s_{i} \mid 1 \leq i \leq \ell\right\}$ and $Y=\left\{y_{i} \mid 1 \leq i \leq p+\ell+1\right\}$, and C can be partitioned into $U=\left\{u_{i} \mid 1 \leq i \leq p\right\}$ and $X=\left\{x_{i} \mid 1 \leq i \leq p+\ell+1\right\}$. Assume that f is a minimum-weight SDF of G. For each $y_{i} \in Y,\left|N_{G}\left[y_{i}\right]\right|=2$ and y_{i} is adjacent to only the vertex $x_{i} \in X$. Then, $f\left(x_{i}\right)=f\left(y_{i}\right)=1$ for $1 \leq i \leq p+\ell+1$. Since $C=U \cup X$ and $|U|=p$, we know that $f(C)=f(U)+f(X) \geq(-p)+(p+\ell+1) \geq \ell+1$.

Notice that $f\left(N_{G}[y]\right) \geq 1$ and $N_{G}[y] \in C(G)$ for every $y \in I$. Therefore, f is also an SCTF of G. We have $\tau_{C}^{s}(G) \leq \gamma_{s}(G)$.

Assume that h is a minimum-weight SCTF of G. For each $y_{i} \in Y,\left|N_{G}\left[y_{i}\right]\right|=2$ and y_{i} is adjacent to only the vertex $x_{i} \in X$. Then, $h\left(x_{i}\right)=h\left(y_{i}\right)=1$ for $1 \leq i \leq p+\ell+1$. Consider the vertices in I. Since $N_{G}[y] \in C(G)$ for every $y \in I, h\left(N_{G}[y]\right) \geq 1$. We now consider the vertices in C. Recall that $C=U \cup X$. Let $u_{i} \in U$. Since $|U|=p$ and $|S|=\ell$, we know that $h\left(N_{G}\left[u_{i}\right]\right)=h(U)+h(X)+h\left(N_{G}\left[u_{i}\right] \cap S\right) \geq(-p)+(p+\ell+1)+(-\ell) \geq 1$. Let $x_{i} \in X$. Then, $h\left(N_{G}\left[x_{i}\right]\right)=h(U)+h(X)+h\left(y_{i}\right)+h\left(s_{i}\right) \geq(-p)+(p+\ell+1)+1-1 \geq \ell+1$. Therefore, h is also an SDF of G. We have $\gamma_{s}(G) \leq \tau_{C}^{s}(G)$.

Following what we have discussed above, we have $\tau_{C}^{s}(G)=\gamma_{s}(G)$. The proof for $\tau_{C}^{-}(G)=\gamma^{-}(G)$ is analogous to that for $\tau_{C}^{s}(G)=\gamma_{s}(G)$. Hence, the theorem holds for any H_{1}-split graphs.

Theorem 7. The SDP on H_{1}-split graphs is NP-complete.
Proof. We reduce the (3,2)-hitting set problem to the SDP on H_{1}-split graphs. Let $U=\left\{u_{i} \mid\right.$ $1 \leq i \leq p\}$ and let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$ such that $C_{i} \subseteq U$ and $\left|C_{i}\right|=3$ for $1 \leq i \leq \ell$. A (3,2)-hitting set for the instance (U, \mathcal{C}) is a subset U^{\prime} of U such that $\left|C_{i} \cap U^{\prime}\right| \geq 2$ for $1 \leq i \leq \ell$. The (3,2)-hitting set problem is to find a minimum (3,2)-hitting set for any instance (U, \mathcal{C}). The (3,2)-hitting set problem is NP-complete [17].

Consider an instance (U, \mathcal{C}) of the (3,2)-hitting set problem. Let $S=\left\{s_{i} \mid 1 \leq i \leq \ell\right\}$, $X=\left\{x_{i} \mid 1 \leq i \leq p+\ell+1\right\}$, and $Y=\left\{y_{i} \mid 1 \leq i \leq p+\ell+1\right\}$. We construct an H_{1}-split graph $G=(I, C, E)$ by the following steps.
(1) Let $I=S \cup Y$ be an independent set and let $C=U \cup X$ be a clique.
(2) For each vertex $s_{i} \in S$, a vertex $u \in U$ is connected to s_{i} if $u \in C_{i}$.
(3) For $1 \leq i \leq p+\ell+1$, the vertex y_{i} is connected to the vertex x_{i}.
(4) For $1 \leq i \leq \ell$, the vertex s_{i} is connected to the vertex x_{i}.

Let $\tau_{h}(3,2)$ be the minimum cardinality of a (3,2)-hitting set for the instance (U, \mathcal{C}). Assume that U^{\prime} is a minimum (3,2)-hitting set for the instance (U, \mathcal{C}). Then, $\left|U^{\prime}\right|=\tau_{h}(3,2)$. Let f be a function whose domain is $V(G)$ and range is $\{-1,1\}$, and $f(v)=1$ if $v \in$ $X \cup Y \cup U^{\prime}$ and $f(v)=-1$ if $v \in S \cup\left(U \backslash U^{\prime}\right)$. Clearly, f is an SDF of G. We have $\gamma_{s}(G) \leq 2(p+\ell+1)+\left|U^{\prime}\right|-\ell-\left(p-\left|U^{\prime}\right|\right)=p+\ell+2 \tau_{h}(3,2)+2$.

Assume that f is minimum-weight SDF of G. For each $y_{i} \in Y,\left|N_{G}\left[y_{i}\right]\right|=2$ and y_{i} is adjacent to only the vertex $x_{i} \in X$. Then, $f\left(x_{i}\right)=f\left(y_{i}\right)=1$ for $1 \leq i \leq p+\ell+1$. For any vertex $v \in X \cup Y \cup U, f\left(N_{G}[v]\right) \geq 1$ no matter what values the function f assigns to the vertices in U or in S. Consider the vertices in S. By the construction of $G, \operatorname{deg}_{G}\left(s_{i}\right)=4$ and $\left|N_{G}\left[s_{i}\right]\right|=5$ for $1 \leq i \leq \ell$. There are at least three vertices in $N_{G}\left[s_{i}\right]$ with the function value 1. If $f\left(N_{G}\left[s_{i}\right]\right)=5$, then there exists an SDF g of G such that $g\left(s_{i}\right)=-1$ and $g(v)=f(v)$ for every $v \in V(G) \backslash\left\{s_{i}\right\}$. Then, $g(V(G))<f(V(G))$. It contradicts the assumption that the weight of f is minimum. Therefore, there exists a minimum-weight SDF h of G such that $h\left(s_{i}\right)=-1$ for $1 \leq i \leq \ell$. Notice that $N_{G}\left(s_{i}\right)=C_{i} \cup\left\{x_{i}\right\}$ for $1 \leq i \leq \ell$. There are at least two vertices in C_{i} with the function value 1. Then, the set $U^{\prime}=\{u \in U \mid h(u)=1\}$ is a (3,2)-hitting set for the instance (U, \mathcal{C}). We have $p+\ell+2 \tau_{h}(3,2)+2 \leq p+\ell+2\left|U^{\prime}\right|+2=\gamma_{s}(G)$.

Following what we have discussed above, we know that $\gamma_{s}(G)=p+\ell+2 \tau_{h}(3,2)+2$. Hence, the SDP on H_{1}-split graphs is NP-complete.

Corollary 4. The SCTP and the MCTP on split graphs are NP-complete.
Proof. The corollary holds by Theorems 6 and 7 and the NP-completeness of the MDP on split graphs [17].

5. Doubly Chordal and Dually Chordal Graphs

Assume that G is a graph with n vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let $i \in\{1,2, \ldots, n\}$ and let G_{i} be the subgraph $G\left[V(G) \backslash\left\{x_{1}, x_{2}, \ldots x_{i-1}\right\}\right]$. For every $x \in V\left(G_{i}\right)$, let $N_{i}[x]=\{y \mid$ $\left.y \in\left(N_{G}[x] \backslash\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\}\right)\right\}$. In G_{i}, if there exists a vertex $x_{j} \in N_{i}\left[x_{i}\right]$ such that $N_{i}\left[x_{k}\right] \subseteq N_{i}\left[x_{j}\right]$ for every $x_{k} \in N_{i}\left[x_{i}\right]$, then the ordering $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a maximum neighborhood ordering (abbreviated as MNO) of G. A graph G is dually chordal [21] if and only if G has an MNO. It takes linear time to compute an MNO for any dually chordal graph [22]. A graph G is a doubly chordal graph if G is both chordal and dually chordal [23]. Lemma 8 shows that a dually chordal graph is not necessarily a chordal graph or a clique perfect graph. Notice that the number of maximal cliques in a chordal graph is at most n [20], but the number of maximal cliques in a dually chordal graph can be exponential [24].

Lemma 8. For any dually graph $G, \tau_{C}(G)=\alpha_{C}(G)$, but G is not necessarily clique perfect or chordal.

Proof. Brandstädt et al. [25] showed that the CTP is a particular case of the clique r domination problem and the CIP is a particular case of the clique r-packing problem. They also showed that the minimum cardinality of a clique r-dominating set of a dually chordal graph G is equal to the maximum cardinality of a clique r-packing set of G. Therefore, $\tau_{C}(G)=\alpha_{C}(G)$.

Assume that H is a graph obtained by connecting every vertex of a cycle C_{4} of four vertices $x_{1}, x_{2}, x_{3}, x_{4}$ to a vertex x_{5}. Clearly, the ordering $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an MNO and thus H is a dually chordal graph. The cycle C_{4} is an induced subgraph of H and does not have a chord. Moreover, $\tau_{C}(H)=\alpha_{C}(H)=1$, but $\tau_{C}\left(C_{4}\right)=2$ and $\alpha_{C}\left(C_{4}\right)=1$. Hence, a dually chordal graph is not necessarily clique perfect or chordal.

Theorem 8. Suppose that $k \in \mathbb{N}$ and $k>1$. The k-FCTP on doubly chordal graphs is $N P$-complete.
Proof. Suppose that G is a chordal graph. Let H be a graph such that $V(H)=V(G) \cup\{x\}$ and $E(H)=E(G) \cup\{(x, y) \mid y \in V(G)\}$. Clearly, H is a doubly chordal graph and we can construct H from G in linear time.

Assume that S is a minimum $(k-1)$-FCTS of G. By the construction of H, each maximal clique of H contains the vertex x. Therefore, $S \cup\{x\}$ is a k-FCTS of H. Then $\tau_{C}^{k}(H) \leq \tau_{C}^{k-1}(G)+1$.

By contradiction, we can verify that there exists a minimum k-FCTS D of H such that $x \in D$. Let $S=D \backslash\{x\}$. Clearly, S is a $(k-1)$-FCTS of G. Then $\tau_{C}^{k-1}(G) \leq \tau_{C}^{k}(H)-1$. Following what we have discussed above, we have $\tau_{C}^{k}(H)=\tau_{C}^{k-1}(G)+1$. Notice that $\tau_{C}(G)=\tau_{C}^{1}(G)$ and the CTP on chordal graphs is NP-complete [14]. Hence, the k-FCTP on doubly chordal graphs is NP-complete for doubly chordal graphs.

Theorem 9. For any doubly chordal graph $G, \tau_{C}^{\{k\}}(G)$ can be computed in linear time.
Proof. The clique r-dominating problem on doubly chordal graphs can be solved in linear time [25]. The CTP is a particular case of the clique r-domination problem. Therefore, the CTP on doubly chordal graphs can also be solved in linear time. By Lemmas 4 and 8 , the theorem holds.

6. k-Trees

Assume that G is a graph with n vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let $i \in\{1,2, \ldots, n\}$ and let G_{i} be the subgraph $G\left[V(G) \backslash\left\{x_{1}, x_{2}, \ldots x_{i-1}\right\}\right]$. For every $x \in V\left(G_{i}\right)$, let $N_{i}[x]=\{y \mid$ $\left.y \in\left(N_{G}[x] \backslash\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\}\right)\right\}$. If $N_{i}\left[x_{i}\right]$ is a clique for $1 \leq i \leq n$, then the ordering $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a perfect elimination ordering (abbreviated as PEO) of G. A graph G is chordal if and only if G has a PEO [26]. A chordal graph G is a k-tree if and only if either G is a complete graph of k vertices or G has more than k vertices and there exists a PEO
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $N_{i}\left[x_{i}\right]$ is a clique of k vertices if $i=n-k+1$; otherwise, $N_{i}\left[x_{i}\right]$ is a clique of $k+1$ vertices for $1 \leq i \leq n-k$. Figure 4 shows a 2 -tree with the PEO $\left(v_{1}, v_{2}, \ldots, v_{13}\right)$.

Figure 4. A 2-tree H.
In [3], Chang et al. showed that the MCTP is NP-complete for k-trees with unbounded k by proving $\gamma(G)=\tau_{M}(G)$ for any k-tree G. However, Figure 4 shows a counterexample that disproves $\gamma(G)=\tau_{M}(G)$ for any k-tree G. The graph H in Figure 4 is a 2-tree with the perfect elimination ordering $\left(v_{1}, v_{2}, \ldots, v_{13}\right)$. The set $\left\{v_{5}, v_{10}\right\}$ is the minimum dominating set of H and the set $\left\{v_{5}, v_{10}, v_{11}\right\}$ is a minimum MCTS of H. A modified NP-completeness proof is therefore desired for the MCTP on k-tree with unbounded k.

Theorem 10. The MCTP and the MCIP are NP-complete for k-trees with unbounded k.
Proof. The CTP and the CIP are NP-complete for k-trees with unbounded k [8]. Since every maximal clique in a k-tree is also a maximum clique [27], an MCTS is a CTS and an MCIS is a CIS. Hence, the MCTP and the MCIP are NP-complete for k-trees with unbounded k.

Theorem 11. The SCTP is NP-complete for k-trees with unbounded k.
Proof. Suppose that $k_{1} \in \mathbb{N}$ and G is a k_{1}-tree with $|V(G)|>k_{1}$. Let $C(G)=\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$. Since G is a k_{1}-tree, $\left|C_{i}\right|=k_{1}+1$ for $1 \leq i \leq \ell$.

Let Q be a clique with $k_{1}+1$ vertices. Let H be a graph such that $V(H)=V(G) \cup Q$ and $E(H)=E(G) \cup\{(x, y) \mid x, y \in Q\} \cup\{(x, y) \mid x \in Q, y \in V(G)\}$. Let $X_{i}=C_{i} \cup Q$ be a clique for $1 \leq i \leq \ell$. Clearly, $C(H)=\left\{X_{i} \mid 1 \leq i \leq \ell\right\}$. Let $k_{2}=2 k_{1}+1$. Then, H is a k_{2}-tree and $\left|X_{i}\right|=k_{2}+1=2 k_{1}+2$ for $1 \leq i \leq \ell$. Clearly, we can verify that there exists a minimum-weight SCTF h of H of such that $h(x)=1$ for every $x \in Q$. Then, $C_{i}=X_{i} \backslash Q$ contains at least one vertex x with $h(x)=1$ for $1 \leq i \leq \ell$. Let $S=\{x \mid x \in V(H) \backslash Q$ and $h(x)=1\}$. Then, S is a CTS of G. Since $\tau_{C}^{s}(H)=|Q|+2|S|-|V(G)|$, we have $|Q|+2 \tau_{C}(G)-|V(G)| \leq \tau_{C}^{s}(H)$.

Assume that D is a minimum CTS of G. Let f be a function of H whose domain is $V(H)$ and range is $\{-1,1\}$, and (1) $f(x)=1$ for every $x \in Q$, (2) $f(x)=1$ for every $x \in D$, and (3) $f(x)=-1$ for every $x \in V(G) \backslash D$. Each maximal clique of H has at least $k_{1}+2$ vertices with the function value 1 . Therefore, f is an SCTF. We have $\tau_{C}^{s}(H) \leq|Q|+2 \tau_{C}(G)-|V(G)|$. Following what we have discussed above, we know that $\tau_{C}^{S}(H)=|Q|+2 \tau_{C}(G)-|V(G)|$. The theorem therefore holds by the NP-completeness of the CTP for k-trees [8].

Theorem 12. Suppose that $\kappa \in \mathbb{N}$ the κ-FCTP is NP-complete on k-trees with unbounded k.
Proof. Assume that $k_{1} \in \mathbb{N}$ and G is a k_{1}-tree with $|V(G)|>k_{1}$. Let H be a graph such that $V(H)=V(G) \cup\{x\}$ and $E(H)=E(G) \cup\{(x, y) \mid y \in V(G)\}$. Clearly, H is a $\left(k_{1}+1\right)$ tree and we can construct H in linear time. Following the argument analogous to the proof of Theorem 8, we have $\tau_{C}^{\kappa}(H)=\tau_{C}^{\kappa-1}(G)+1$. The theorem therefore holds by the NP-completeness of the CTP for k-trees [8].

Theorem 13. The SCTP and κ-FCTP problems can be solved in linear-time for k-trees with fixed k.

Proof. Assume that $\kappa \in \mathbb{N}$ and G is a graph. The κ-FCTP is the GCTP with the CSRF R whose domain is $C(G)$ and range is $\{\kappa\}$. By Lemma $5, \tau_{C}^{s}(G)$ can be obtained from the solution to the GCTP on a graph G with a particular CSRF R. Since the GCTP is linear-time solvable for k-trees with fixed k [8], the SCTP and κ-FCTP are also linear-time solvable for k-trees with fixed k.

7. Planar, Total, and Line Graphs

In a graph, a vertex x and an edge e are incident to each other if e connects x to another vertex. Two edges are adjacent if they share a vertex in common. Let G and H be graphs such that each vertex $x \in V(H)$ corresponds to an edge $e_{x} \in E(G)$ and two vertices $x, y \in V(H)$ are adjacent in H if and only if their corresponding edges e_{x} and e_{y} are adjacent in G. Then, H is the line graph of G and denoted by $L(G)$. Let H^{\prime} be a graph such that $V\left(H^{\prime}\right)=V(G) \cup E(G)$ and two vertices $x, y \in V\left(H^{\prime}\right)$ are adjacent in H if and only if x and y are adjacent or incident to each other in G. Then, H^{\prime} is the total graph of G and denoted by $T(G)$.

Lemma 9 ([28]). The following statements hold for any triangle-free graph G.
(1) Every maximal clique of $L(G)$ is the set of edges of G incident to some vertex of G.
(2) Two maximal cliques in $L(G)$ intersect if and only if their corresponding vertices (in G) are adjacent in G.

Theorem 14. The MCIP is NP-complete for any 4-regular planar graph G with the clique number 3.

Proof. Since $|C(G)|=O(n)$ for any planar graph $G[29]$, the MCIP on planar graphs is in NP. Let \mathcal{G} be the class of triangle-free, 3-connected, cubic planar graphs. The independent set problem remains NP-complete even when restricted to the graph class \mathcal{G} [30]. We reduce this NP-complete problem to the MCIP for 4-regular planar graphs with the clique number 3 as follows.

Let $G \in \mathcal{G}$ and $H=L(G)$. Clearly, we can construct H in polynomial time. By Lemma 9, we know that H is a 4-regular planar graph with $\omega(H)=3$ and each maximal clique is a triangle in H.

Assume that $D=\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$ is an independent set of G of maximum cardinality. Since $G \in \mathcal{G}, \operatorname{deg}_{G}(x)=3$ for every $x \in V(G)$. Let $e_{i_{1}}, e_{i_{2}}, e_{i_{3}} \in E(G)$ have the vertex x_{i} in common for $1 \leq i \leq \ell$. Then, $e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ form a triangle in H. Let C_{i} be the triangle formed by $e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ in H for $1 \leq i \leq \ell$. For each pair of vertices $x_{j}, x_{k} \in D, x_{j}$ is not adjacent to x_{k} in G. Therefore, C_{j} and C_{k} in H do not intersect. The set $\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$ is an MCIS of H. We have $\alpha(G) \leq \alpha_{M}(H)$.

Assume that $S=\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$ is a maximum MCIS of H. Then, each $C_{i} \in S$ is a triangle in H. Let C_{i} be formed by $e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ in H for $1 \leq i \leq \ell$. Then, $e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ are incident to the same vertex in G. For $1 \leq i \leq \ell$, let $e_{i_{1}}, e_{i_{2}}, e_{i_{3}} \in E(G)$ have the vertex x_{i} in common. For each pair of $C_{j}, C_{k} \in S, C_{j}$ and C_{k} do not intersect. Therefore, x_{j} is not adjacent to x_{k} in G. The set $\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$ is an independent set of G. We have $\alpha_{M}(H) \leq \alpha(G)$.

Hence, $\alpha(G)=\alpha_{M}(H)$. For $k \in \mathbb{N}$, we know that $\alpha(G) \geq k$ if and only if $\alpha_{M}(G) \geq k$.
Corollary 5. The MCIP is NP-complete for line graphs of triangle-free, 3-connected, cubic planar graphs.

Proof. The corollary holds by the reduction of Theorem 14.
Theorem 15. The MCIP problem is NP-complete for total graphs of triangle-free, 3-connected, cubic planar graphs.

Proof. Since $|C(G)|=O(n)$ for a planar graph G, the MCIP on planar graphs is in NP. Let \mathcal{G} be the classes of traingle-free, 3-connected, cubic planar graphs. The independent set
problem remains NP-complete even when restricted to the graph class \mathcal{G} [30]. We reduce this NP-complete problem to MCIP for for total graphs of triangle-free, 3-connected, cubic planar graphs. as follows

Let $G \in \mathcal{G}$ and $H=T(G)$. Clearly, we can construct H in polynomial time. By Lemma 9, we can verify that H is a 6-regular graph with $\omega(H)=4$.

Assume that $D=\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$ is an independent set of G of maximum cardinality. Since $G \in \mathcal{G}, \operatorname{deg}_{G}(x)=3$ for every $x \in V(G)$. Let $e_{i_{1}}, e_{i_{2}}, e_{i_{3}} \in E(G)$ have the vertex x_{i} in common. Then, $x_{i}, e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ form a maximum clique in H. Let C_{i} be the maximum clique formed by $x_{i}, e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ in H for $1 \leq i \leq \ell$. For each pair of vertices $x_{j}, x_{k} \in D, x_{j}$ is not adjacent to x_{k} in G. Therefore, C_{j} and C_{k} in H do not intersect. The set $\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$ is an MCIS of H. We have $\alpha(G) \leq \alpha_{M}(H)$.

Assume that $S=\left\{C_{1}, C_{2}, \ldots, C_{\ell}\right\}$ is a maximum MCIS of H. By the construction of H, each $C_{i} \in S$ is formed by three edge-vertices in $E(G)$ and their common end vertex in $V(G)$. Let $x_{i} \in V$ and $e_{i_{1}}, e_{i_{2}}, e_{i_{3}} \in E(G)$ in H such that C_{i} is formed by $v_{i}, e_{i_{1}}, e_{i_{2}}, e_{i_{3}}$ for $1 \leq i \leq \ell$. For each pair of $C_{j}, C_{k} \in C, C_{j}$ and C_{k} do not intersect. Therefore, x_{j} is not adjacent to x_{k} in G. The set $\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$ is an independent set of G. We have $\alpha_{M}(H) \leq \alpha(G)$.

Hence, $\alpha(G)=\alpha_{M}(H)$. For $k \in \mathbb{N}$, we know that $\alpha(G) \geq k$ if and only if $\alpha_{M}(H) \geq$ k.

Funding: This research is supported by a Taiwanese grant under Grant No. NSC-97-2218-E-130-002-MY2.
Acknowledgments: We are grateful to the anonymous referees for their valuable comments and suggestions to improve the presentation of this paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Dahlhaus, E.; Kratochvíl, J.; Manuel, P.D.; Miller, M. Transversal partitioning in balanced hypergraphs. Discret. Math. 1997, 79, 75-89. [CrossRef]
2. Dahlhaus, E.; Manuel, P.D.; Miller, M. Maximum h-colourable subgraph problem in balanced graphs. Inf. Process. Lett. 1998, 65, 301-303. [CrossRef]
3. Chang, M.-S.; Kloks, T.; Lee, C.-M. Maximum clique transversals. In Proceedings of the 27th International Workshop on Graph-Theoretic Concepts in Computer Science, Boltenhagen, Germany, 14-16 June 2001; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2204, pp. 32-43.
4. Lee, C.-M. Variations of maximum-clique transversal sets on graphs. Ann. Oper. Res. 2010, 181, 21-66. [CrossRef]
5. Lee, C.-M.; Chang, M.-S. Signed and minus clique-transversal function on graphs. Inf. Process. Lett. 2009, 109, 414-417. [CrossRef]
6. Wang, H.; Kang, L.; Shan, E. Signed clique-transversal functions in graphs. Int. J. Comput. Math. 2010, 87, 2398-2407. [CrossRef]
7. $\mathrm{Xu}, \mathrm{G} . ;$ Shan, E.; Kang, L.; Chang, T.C.E. The algorithmic complexity of the minus clique-transversal problem. Appl. Math. Comput. 2007, 189, 1410-1418.
8. Chang, M.S.; Chen, Y.H.; Chang, G.J.; Yan, J.H. Algorithmic aspects of the generalized clique transversal problem on chordal graphs. Discret. Appl. Math. 1996, 66, 189-203.
9. Lee, C.-M.; Chang, M.-S. Variations of Y-dominating functions on graphs. Discret. Math. 2008, 308, 4185-4204. [CrossRef]
10. Balachandran, V.; Nagavamsi, P.; Rangan, C.P. Clique transversal and clique independence on comparability graphs. Inf. Process. Lett. 1996, 58, 181-184. [CrossRef]
11. Lee, C.-M.; Chang, M.-S. Distance-hereditary graphs are clique-perfect. Discret. Appl. Math. 2006, 154, 525-536. [CrossRef]
12. Bonomo, F.; Durán, G.; Lin, M.C.; Szwarcfiter, J.L. On balanced graphs. Math. Program. 2006, 105, 233-250. [CrossRef]
13. Lehel, J.; Tuza, Z. Neighborhood perfect graphs. Discret. Math. 1986, 61, 93-101. [CrossRef]
14. Chang, G.J.; Farber, M.; Tuza, Z. Algorithmic aspects of neighborhood numbers. SIAM J. Discret. Math. 1993, 6, 24-29. [CrossRef]
15. Fulkerson, D.R.; Hoffman, A.; Oppnheim, R. On balnaced matrices. Math. Program. Study 1974, 1, 120-132.
16. Argiroffo, G.; Leoni, V.; Torres, P. On the complexity of $\{k\}$-domination and k-tuple domination in graphs. Inf. Process. Lett. 2015, 115, 556-561. [CrossRef]
17. Faria, L.; Hon, W.-K.; Kloks, T.; Liu, H.-H.; Wang, T.-M.; Wang, Y.-L. On complexities of minus domination. Discret. Optim. 2016, 22, 6-19. [CrossRef]
18. Liao, C.-S.; Chang, G.J. k-tuple domination in graphs. Inf. Process. Lett. 2003, 87, 45-50. [CrossRef]
19. Brandstädt, A.; Le, V.B.; Spinrad, J.P. Graph Classes-A Survey, SIAM Monographs on Discrete Math and Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999.
20. Fulkerson, D.R.; Gross, O. Incidence matrices and interval graphs. Pac. J. Math. 1965, 15, 835-855. [CrossRef]
21. Brandstädt, A.; Dragan, F.F.; Chepoi, V.D.; Voloshin, V.I. Dually chordal graphs. SIAM J. Discret. Math. 1998, 11, 437-455. [CrossRef]
22. Dragan, F.F. HT-graphs: Centers, connected r-domination, and Steiner trees. Comput. Sci. J. Mold. 1993, 1, 64-83.
23. Moscarini, M. Doubly chordal graphs, Steiner trees, and connected domination. Networks 1993, 23, 59-69. [CrossRef]
24. Prisner, E.; Szwarcfiter, J.L. Recognizing clique graphs of directed and rooted path graphs. Discret. Appl. Math. 1999, 94, 321-328. [CrossRef]
25. Brandstädt, A.; Chepoi, V.D.; Dragan, F.F. Clique r-domination and clique r-packing problems on dually chordal graphs. SIAM J. Discret. Math. 1997, 10, 109-127. [CrossRef]
26. Rose, D.J. Triangulated graphs and the elimination process. J. Math. Anal. Appl. 1970, 32, 597-609. [CrossRef]
27. Patil, H.P. On the structure of k-trees. J. Comb. Inf. Syst. Sci. 1986, 11, 57-64.
28. Guruswami, V.; Rangan, C.P. Algorithmic aspects of clique-transversal and clique-independent sets. Discret. Appl. Math. 2000, 100, 183-202. [CrossRef]
29. Wood, D.R. On the maximum number of cliques in a graph. Graphs Comb. 2007, 23, 337-352. [CrossRef]
30. Uehara, R. NP-Complete Problems on a 3-Connected Cubic Planar Graph and Their Applications; Technical Report TWCU-M-0004; Tokyo Woman's Christian University: Tokyo, Japan, 1996.
