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Abstract: A method for the advanced construction of the dynamic matrix for Model Predictive
Control (MPC) algorithms with linearization is proposed in the paper. It extends numerically efficient
fuzzy algorithms utilizing skillful linearization. The algorithms combine the control performance
offered by the MPC algorithms with nonlinear optimization (NMPC algorithms) with the numerical
efficiency of the MPC algorithms based on linear models in which the optimization problem is a
standard, easy-to-solve, quadratic programming problem with linear constraints. In the researched
algorithms, the free response obtained using a nonlinear process model and the future trajectory
of the control signals is used to construct an advanced dynamic matrix utilizing the easy-to-obtain
fuzzy model. This leads to obtaining very good prediction and control quality very close to those
offered by NMPC algorithms. The proposed approach is tested in the control system of a nonlinear
chemical control plant—a CSTR reactor with the van de Vusse reaction.

Keywords: prediction; process control; model predictive control; fuzzy systems; fuzzy control;
nonlinear control

1. Introduction

The Model Predictive Control (MPC) algorithms use the model of the control plant
to predict the behavior of the process. Thanks to such an approach, the MPC algorithms
can be successfully applied in control systems of processes with delays, with the inverse
response, with constraints, and for MIMO (Multiple-Input Multiple-Output) processes;
see, e.g., [1–11]. This is because the future control signal trajectories are generated by the
MPC algorithms in such a way that the predicted, many sampling instants ahead, future
behavior of the control plant and the shape of control signals fulfill the assumed criteria.
Thus, the optimization problem, solved in each time step of the MPC algorithm to obtain
these control signal trajectories, has the following form [1,4,7,9,12]:

arg min
∆u

{
JMPC = (y− y)T · κ · (y− y) + ∆uT ·Λ · ∆u

}
(1)

subject to:

∆umin ≤ ∆u ≤ ∆umax , (2)

umin ≤ u ≤ umax , (3)

ymin ≤ y ≤ ymax , (4)

where:

y =

 y1

...
yny

, yj =


yj

k+1|k
...

yj
k+p|k

 , (5)
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y =

 y1

...
yny

, yj =


yj

k+1|k
...

yj
k+p|k

 , (6)

∆u =

 ∆u1

...
∆unu

, ∆um =


∆um

k+1|k
...

∆um
k+s−1|k

 , (7)

u =

 u1

...
unu

, um =


um

k+1|k
...

um
k+s−1|k

 , (8)

κ =
[
κ1, . . . , κny

]
· I, κi = [κi, . . . , κi] , (9)

Λ = [Λ1, . . . , Λnu ] · I, Λi = [λi, . . . , λi] , (10)

where yj
k+i|k denotes a value, predicted using a process model the MPC algorithm is based

on, of the jth output for the (k + i)th sampling instant from the prediction horizon, derived
at the kth sampling instant, and yj

k+i|k is an element of the reference trajectory for the jth
output and for the (k + i)th sampling instant from the prediction horizon; if reference
trajectories constant on the prediction horizon are used, then:

yj
k+i|k = yj

k (11)

where yj
k denotes a setpoint value for the jth output; ∆um

k+i|k are the decision variables of
the optimization problem, being future changes in manipulated variables; κi contains p
elements, and κj ≥ 0 denote the weighting coefficients for the predicted control errors of
the jth output; Λi contains s elements, and λm ≥ 0 denote the weighting coefficients for
the changes of the mth manipulated variable; p is the prediction horizon; s is the control
horizon; ny is the number of output variables; nu is the number of manipulated variables;
∆umin, ∆umax denote the vectors defining the lower and upper bounds of the changes of
the control signals; umin, umax denote vectors defining the lower and upper bounds of the
values of the control signals; and ymin, ymax denote the vectors defining the lower and
upper bounds of the values of the output variables.

The optimization problem (1)–(4) is formulated and solved in each sampling instant,
yielding the optimal vector of future control action. From the vector ∆u, the ∆um

k|k elements
are extracted and applied in the control system. Then, the described procedure is repeated
in the next time step.

1.1. MPC Algorithms Based on Linear Models

The simplest MPC algorithms are based on linear process models; see, e.g., [1,13]. In
such a case, the superposition principle holds; therefore, the vector of predicted output
values y can be decomposed into two parts:

y = ỹ + A · ∆u , (12)

ỹ =

 ỹ1

...
ỹny

, ỹj =


ỹj

k+1|k
...

ỹj
k+p|k

 , (13)

where ỹ is called the free response of the control plant describing the influence of the past
values of control signals on the process and A · ∆u is called the forced response, depending
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on the future changes of the control signals ∆u; the matrix A is called the dynamic matrix
and has the following form:

A =


A11 A12 . . . A1nu

A21 A22 . . . A2nu

...
...

. . .
...

Any1 Any2 . . . Anynu

, (14)

Ajm =


aj,m

1 0 . . . 0 0
aj,m

2 aj,m
1 . . . 0 0

...
...

. . .
...

...
aj,m

p aj,m
p−1 . . . aj,m

p−s+2 aj,m
p−s+1

, (15)

where aj,m
i denote the step response coefficients of the control plant, describing the influence

of the mth control on the jth output; for details, see, e.g., [9].
After applying the prediction based on a linear model (12), the performance function (1)

is transformed into a function that depends quadratically on the decision variables ∆u:

JLMPC = (y− ỹ− A · ∆u)T · κ · (y− ỹ− A · ∆u) + ∆uT ·Λ · ∆u . (16)

The prediction (12) depends linearly on the decision variables; therefore, after using it
in the constraints on the output values (4), the optimization problem (1)–(4) becomes an
easy-to-solve, standard quadratic optimization problem, with linear constraints. Unfor-
tunately, the control performance offered by an LMPC algorithm, applied to a nonlinear
process, may be unsatisfactory. In order to improve it, one can use an MPC algorithm based
on a nonlinear model.

1.2. MPC Algorithms Based on Nonlinear Models

Assume that we have a nonlinear process model:

ŷk = f (yk−1, yk−2, . . . , yk−na
, uk−1, uk−2, . . . , uk−nb

) , (17)

where yk−i =
[
y1

k−i, . . . , y
ny
k−i

]T
is a vector that contains output values measured at the

(k− i)th sampling instant and uk−i =
[
u1

k−i, . . . , unu
k−i

]T
is a vector that contains control

values applied at the (k− i)th sampling instant; denote the output values generated by the

model in the (k + i)th sampling instant as ŷk+i =
[
ŷ1

k+i, . . . , ŷ
ny
k+i

]T
; na, nb determine how

many past output and control values the model needs. If one wants to use the model (17)
directly in the optimization problem (1)–(4), then the prediction takes the form of the
following formulas, passed to the optimization problem as a set of equality constraints:

yk+i|k = f (ŷk+i−1, . . . , ŷk+1, yk, . . . , yk−na+i−1, (18)

uk+i−1|k, . . . , uk|k, uk−1, . . . , uk−nb+i−1) + dk ,

where uk+i|k =
[
u1

k+i|k, . . . , unu
k+i|k

]T
is a vector containing future control values, depending

on the decision variables from the vector ∆u and:

dk = yk − ŷk , (19)

where yk =
[
y1

k , . . . , y
ny
k

]T
is a vector of recently measured output values; it is assumed

that dk is the same for all instants in the prediction horizon—an approach proposed in the
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Dynamic Matrix Control (DMC) algorithm and therefore called the DMC-type disturbance
model; see, e.g., [9].

Unfortunately, the optimization problem (1)–(4) with the prediction (18), based on
a nonlinear model, is, in general, a non-convex nonlinear optimization problem; see,
e.g., [14–16]. Thus, it is a hard-to-solve, time-consuming computational task, and there is
no guarantee of finding a global solution, while the time needed to obtain the solution
cannot be foreseen in advance. One of the methods to overcome this problem is to use
so-called fast NMPC algorithms in which a suboptimal solution is generated faster than
in the standard approach; see, e.g., [17–19]. To this group of methods belongs also the
explicit approach in which most of the calculations are done off-line; see, e.g., [20–22] (it is
interesting that this approach is optimal if the linear model is used [23–25]). Unfortunately,
in this approach, the complexity of the controller grows significantly with the number of
constraints taken into consideration.

If the process behavior is described by means of a fuzzy model, then the standard
NMPC approach can be used, but also the structure of the model can be exploited to
formulate algorithms that are easier to solve. One group of such algorithms is based
on Linear Matrix Inequalities (LMIs); see, e.g., [26–30]. The other group is based on the
classical fuzzy Takagi–Sugeno approach in which a few algorithms in the form of control
laws, based on linear models, are used to obtain the fuzzy controller; see, e.g., [31,32].

In the other method, the linearization of the process model for the MPC algorithm
is obtained in each time step, and the linear prediction relative to control changes is
formulated; see, e.g., [9,33–39]. As a result, the optimization problem solved by the MPC
algorithm in each time step is formulated as the quadratic one (like in LMPC algorithms). In
the linearization-based algorithms, the prediction can be based on a classical linearization or
a method of prediction generation can exploit the structure of the nonlinear model on which
it is based. In the algorithms using the fuzzy Takagi–Sugeno model, described in [36,39],
both the free response and the dynamic matrix are obtained using the model obtained
after the linearization. In the algorithms detailed in [33,37], the (classical) free response
is calculated using the nonlinear model. In [12], the advanced free response, calculated
using the nonlinear model (which can have any form of the model generating outputs on
the basis of input signals), takes into consideration the previously calculated trajectory of
the future control signals (it can be improved iteratively if needed; the approach is similar,
though slightly different in details, to the iterative prediction improvement in the iterative
learning-based approaches to batch control described in [40–42]); the dynamic matrix is
generated using the easy-to-obtain fuzzy model.

The approach proposed in the article is an extension of the algorithms presented in [12].
It is done in such a way that the optimization problem solved by the MPC algorithm in each
time step is the quadratic one. The modification is introduced in the method of dynamic
matrix construction. In [12], elements in the dynamic matrix were obtained taking into
consideration the current operation point. Changes of the operating point on the prediction
horizon are taken into consideration in the proposed approach. This is done using the free
response, generated using the nonlinear control plant model. The obtained prediction is,
however, still linear with respect to control changes. Thus, the algorithms utilizing the
proposed approach combine the computational simplicity of the LMPC algorithms with
the control performance offered by the NMPC algorithms.

The next section details the formulation of the Fuzzy MPC (FMPC) algorithms based
on fuzzy and nonlinear models, with the advanced construction of the dynamic matrix.
In Section 3, the operation of the FMPC algorithms exploiting the proposed advanced
dynamic matrix is tested in a simulation example of the control system of a nonlinear
chemical reactor with the inverse response. Conclusions are presented in the last section.

2. Efficient Fuzzy MPC Algorithms with the Advanced Construction of the Dynamic
Matrix

The complications resulting from the need to solve a nonlinear optimization task by
the MPC algorithm in each time step can be avoided by using an approximation of the
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process model carried out in each time step. Then, a nonlinear model is used to obtain the
free response in such a way that the prediction is linear relative to decision variables, but
mimics the nonlinearity of the process very well. An easy-to-obtain fuzzy model is used to
get the dynamic matrix.

The dynamic matrix can be constructed in different ways. In Section 2.2, it is described
how to do it in such a way that it fits the nonlinearity of the process better than in the
standard approach. The method is based on a skillful utilization of the free response
(generated using the nonlinear process model). Then, using both elements needed to obtain
the prediction, the free response and the dynamic matrix, the optimization problem (1)–(4),
solved in each time step, is formulated as a quadratic optimization problem. Such a problem
is easy to solve using commonly available optimization routines. Moreover, the simplified
versions of the algorithms, in which a control law is obtained, are also discussed.

The proposed algorithms are the generalization of their counterparts proposed in [12].
They use the same free response generation (reminded in Section 2.1) and the same formu-
lation of the optimization problems solved at each time step (reminded in Section 2.3). The
difference is in the way the dynamic matrix is constructed (the topic detailed in Section
2.2.3).

2.1. Generation of the Free Response

The method of advanced free response generation, based on a nonlinear process
model, proposed in [12], is reminded in this subsection. Define the following vectors:

uk+i|k−1 =
[
u1

k+i|k−1, . . . , unu
k+i|k−1

]T
, (20)

where um
k+i|k−1 are elements of control signal trajectories obtained in the last (k − 1)st

time step.
First, the components of the free response are derived iteratively using the nonlinear

model (17) and the vectors (20):

ŷk+1 = f (yk, yk−1, . . . , yk−na+1, uk|k−1, uk−1, . . . , uk−nb+1) ;
ŷk+2 = f (ŷk+1, yk, . . . , yk−na+2, uk+1|k−1, uk|k−1, uk−1, . . . , uk−nb+2) ;

...
ŷk+i = f (ŷk+i−1, ŷk+i−2, . . . , yk−na+i, uk+i−1|k−1, uk+i−2|k−1, . . . , uk−nb+i) ;

...

(21)

Note that the values ŷk+1 are used when calculating the output values ŷk+2, and in
general, in the ith iteration, the values ŷk+1, . . . , ŷk+i−1 are used to obtain ŷk+i.

Next, the final form of the free response is obtained, after taking into account the
estimation of unmeasured disturbances dk = yk − ŷk|k−1:

ỹk+i|k = ŷk+i + dk . (22)

Note that the free response can be iteratively improved using the nonlinear model.
Moreover, it can be modified to include information about measured disturbances. These
topics are detailed in [12,43].

2.2. Generation of the Dynamic Matrix
2.2.1. Fuzzy Model Used to Obtain the Dynamic Matrix

The fuzzy Takagi–Sugeno model used to generate the dynamic matrix has the follow-
ing form:
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Rule f : (23)

if y
jy
k−1 is B

f ,jy
1 and . . . and y

jy
k−n is B

f ,jy
n and

uju
k−1 is C f ,ju

1 and . . . and uju
k−m is C f ,ju

m

then ŷj, f
k =

nu

∑
m=1

pd−1

∑
n=1

aj,m, f
n · ∆um

k−n + aj,m, f
pd · um

k−pd
,

where y
jy
k−i is the value of the jyth output variable at the (k− i)th sampling instant, uju

k−i

is the value of juth manipulated variable at the (k− i)th sampling instant, B
f ,jy
1 , . . . , B

f ,jy
n ,

C f ,ju
1 , . . . , C f ,ju

m are fuzzy sets, aj,m, f
n are the coefficients of step responses in the f th local

model, jy = 1, . . . , ny, ju = 1, . . . , nu, f = 1, . . . , l, and l is number of fuzzy rules. The model
is composed of local models in the form of step responses [39]; thus, it can be obtained
relatively easily, because it is sufficient to collect a few sets of step responses, near a few
operating points, e.g., using a nonlinear model of the process. Next, the premises of the
model should be formulated using expert knowledge and then tuned, e.g., by means of a
fuzzy neural network [9].

2.2.2. Standard Dynamic Matrix

In order to calculate the output values of the model (23), the normalized firing
strengths of the fuzzy rules should be calculated using fuzzy reasoning; see, e.g., [44,45].
These values are calculated using the previous values of the output and control signals. In
the kth sampling instant, the normalized firing strengths w̃ f

k are obtained, then the output
values of the model are as follows:

ŷj
k =

nu

∑
m=1

pd−1

∑
n=1

ãj,m
n · ∆um

k−n + ãj,m
pd · u

m
k−pd

, (24)

where:

ãj,m
n =

l

∑
f=1

w̃ f
k · a

j,m, f
n . (25)

In the standard approach to the dynamic matrix generation, exploited, e.g., in [12,46,
47], the parameters ãj,m

n are used in the construction of the dynamic matrix in the same way
as in the LMPC algorithm, i.e., they are used at each sampling instant from the prediction
horizon despite being calculated using the firing strengths w̃ f

k obtained in the current
(kth) sampling instant. Thus, they are obtained for the current operating point, which in
general, changes on the prediction horizon. Therefore, now the improved version of the
dynamic matrix, adopting the nonlinearity of the process on the prediction horizon, will be
proposed. It can be relatively easily obtained using the elements of the free response and of
the trajectory of future control signals. The method is detailed below.

2.2.3. Advanced Dynamic Matrix Generation

In the first time step from the prediction horizon, the fuzzy model (generating outputs
for the (k + 1)st time step) has the following form:
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Rule f : (26)

if y
jy
k is B

f ,jy
1 and y

jy
k−1 is B

f ,jy
2 and . . . and y

jy
k−n+1 is B

f ,jy
n and

uju
k is C f ,ju

1 and uju
k−1 is C f ,ju

2 and . . . and uju
k−m+1 is C f ,ju

m

then ŷj, f
k+1 =

nu

∑
m=1

pd−1

∑
n=1

aj,m, f
n · ∆um

k−n+1 + aj,m, f
pd · um

k−pd+1 ,

However, uju
k are not known yet, but the approach used in the free response generation

can be applied here, i.e., the appropriate element of the future trajectory of the control
signals can be used, namely: uju

k|k−1. Therefore, the premises used to obtain the firing
strengths of the fuzzy rules will be as follows:

Rule f : (27)

if y
jy
k is B

f ,jy
1 and y

jy
k−1 is B

f ,jy
2 and . . . and y

jy
k−n+1 is B

f ,jy
n and

uju
k|k−1 is C f ,ju

1 and uju
k−1 is C f ,ju

2 and . . . and uju
k−m+1 is C f ,ju

m

As a result, the normalized firing strengths of the fuzzy rules w̃ f
k+1|k will be obtained

for the (k + 1)st time step from the prediction horizon (calculated at the kth sampling
instant, using the fuzzy reasoning); the appropriate elements of the dynamic matrix will be
then calculated using the formula:

ãj,m
n,k+1 =

l

∑
f=1

w̃ f
k+1|k · a

j,m, f
n . (28)

In the second time step from the prediction horizon, the fuzzy model has the follow-
ing form:

Rule f : (29)

if y
jy
k+1 is B

f ,jy
1 and y

jy
k is B

f ,jy
2 and . . . and y

jy
k−n+2 is B

f ,jy
n and

uju
k+1 is C f ,ju

1 and uju
k is C f ,ju

2 and . . . and uju
k−m+2 is C f ,ju

m

then ŷj, f
k+2 =

nu

∑
m=1

pd−1

∑
n=1

aj,m, f
n · ∆um

k−n+2 + aj,m, f
pd · um

k−pd+2

This time, however, not only uju
k are not known yet, but also uju

k+1 and y
jy
k+1. One

can use the approach from the previous step, i.e., instead of uju
k+1, uju

k+1|k−1 is used. The

other problem is that also the values y
jy
k+1 are not known yet. However, one can use the

appropriate elements of the free response here, namely ỹ
jy
k+1|k. Therefore, the premises used

to obtain the firing strengths in the next (k + 2)nd time step from the prediction horizon
will have the following form:

Rule f : (30)

if ỹ
jy
k+1|k is B

f ,jy
1 and y

jy
k is B

f ,jy
2 and . . . and y

jy
k−n+2 is B

f ,jy
n and

uju
k+1|k−1 is C f ,ju

1 and uju
k|k−1 is C f ,ju

2 and . . . and uju
k−m+2 is C f ,ju

m

the normalized firing strengths w̃ f
k+2|k, obtained for the (k + 2)nd time step from the

prediction horizon, using (30), are then utilized to calculate the elements of the dynamic
matrix corresponding to the (k + 2)nd time step from the prediction horizon:
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ãj,m
n,k+2 =

l

∑
f=1

w̃ f
k+2|k · a

j,m, f
n . (31)

This procedure is repeated iteratively in the next time steps from the prediction
horizon, resulting in obtaining the normalized firing strengths of the fuzzy rules w̃ f

k+i|k
in each , (k + i)th, time step from the prediction horizon. Next, the appropriate elements
of the dynamic matrix, for each (k + i)th time step from the prediction horizon, will be
calculated using the formula:

ãj,m
n,k+i =

l

∑
f=1

w̃ f
k+i|k · a

j,m, f
n . (32)

Now, the dynamic matrix can be generated (and updated in each sampling instant):

Ak =


Ã

11
k Ã

12
k . . . Ã

1nu
k

Ã
21
k Ã

22
k . . . Ã

2nu
k

...
...

. . .
...

Ã
ny1
k Ã

ny2
k . . . Ã

nynu
k

, (33)

Ã
jm
k =


ãj,m

1,k+1 0 . . . 0 0

ãj,m
2,k+2 ãj,m

1,k+2 . . . 0 0
...

...
. . .

...
...

ãj,m
p,k+p ãj,m

p−1,k+p . . . ãj,m
p−s+2,k+p ãj,m

p−s+1,k+p

 . (34)

Note that in the ith row of each matrix Ã
jm
k , the elements calculated for the (k + i)th

time step from the prediction horizon are used.
Assume that the firing strengths for a given fuzzy rule are grouped in the following

vector:

w̃ f =
[
w̃ f

k+1|k, w̃ f
k+2|k, . . . , w̃ f

k+p|k

]
(35)

and define:

Ajm f =


aj,m, f

1 0 . . . 0 0
aj,m, f

2 aj,m, f
1 . . . 0 0

...
...

. . .
...

...
aj,m, f

p aj,m, f
p−1 . . . aj,m, f

p−s+2 aj,m, f
p−s+1

 . (36)

Then, the matrices Ã
jm
k can be calculated using the relatively simple formula:

Ã
jm
k =

l

∑
f=1

w̃ f · I · Ajm f , (37)

where I is the identity matrix of dimension p× p, and the matrices Ajm f remain the same
in each time step.

2.3. Optimization Problem in the Numerical and Analytical Versions of the Algorithms

Now, assume that future control values are decomposed as follows:

um
k+i|k = ǔm

k+i|k + um
k+i|k−1 , (38)
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where ǔm
k+i|k can be interpreted as the corrections of the control signal um

k+i|k−1 obtained in
the last (k− 1)st time step. Thus, future control increments are described by the following,
similar formula:

∆um
k+i|k = ∆ǔm

k+i|k + ∆um
k+i|k−1 . (39)

Note that the values um
k+i|k−1 and ∆um

k+i|k−1 are known, as they were calculated in the
last time step, and their influence on the output variables is contained in the free response (
22), described in Section 2.1. Therefore, now the dynamic matrix (33) will be used to predict
the influence of control corrections on the control plant outputs, and after using the free
response (22) and the dynamic matrix (33), one obtains the following prediction:

y = ỹ + Ak · ∆ǔ . (40)

where:

∆ǔ =

 ∆ǔ1

...
∆ǔnu

, ∆ǔm =


∆ǔm

k+1|k
...

∆ǔm
k+s−1|k

 . (41)

Note that the prediction depends linearly on corrections ∆ǔ.

2.3.1. Optimization with the Classical Performance Index

Optimization task (1)–(4), which is solved by the control algorithm in each time step,
changes now to the following form with corrections ∆ǔ being the decision variables:

arg min
∆ǔ

{
JMPC+ = (y− ỹ− Ak · ∆ǔ)T · κ · (y− ỹ− Ak · ∆ǔ) + ∆uT ·Λ · ∆u

}
(42)

subject to:

∆umin ≤ ∆u ≤ ∆umax , (43)

umin ≤ u ≤ umax , (44)

ymin ≤ ỹ + Ak · ∆ǔ ≤ ymax , (45)

where ∆u =
→
∆u +∆ǔ, u =

→
u +ǔ, and:

→
∆u=


→
∆u

1

...
→
∆u

nu

,
→
∆u

m
=


∆um

k+1|k−1
...

∆um
k+s−1|k−1

 ,
→
u=


→
u

1

...
→
u

nu

,
→
u

m
=


um

k+1|k−1
...

um
k+s−1|k−1


contain elements of the future control increments’ trajectory and of the future control
trajectory.

Note that the performance function in (42) depends quadratically on decision variables
∆ǔ, and all constraints depend linearly on decision variables. Thus, a standard, easy-to-
solve linear-quadratic optimization problem is obtained.

If in each time step, the optimization problem with performance function from (42)
is solved without constraints, then it has the following solution given by the analytical
formula:

∆ǔ =
(

AT
k · κ · Ak + Λ

)−1
·
(

AT
k · κ · (y− ỹ)+

→
∆u
)

. (46)
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2.3.2. Optimization with the Modified Performance Index

In the optimization task (42)–(45), a slightly modified performance index can be used:

JMPC+v2 = (y− ỹ− Ak · ∆ǔ)T · κ · (y− ỹ− Ak · ∆ǔ) + ∆ǔT ·Λ · ∆ǔ . (47)

The change consists of the modification of the second component of the performance
index, which now depends only on the corrections of the control signals ∆ǔ. This modifica-
tion leads to algorithms that generate faster responses, but the influence of the λ parameter
on system robustness becomes significantly limited.

If the performance index (47) is minimized without constraints, then the following
analytical solution is obtained:

∆ǔ =
(

AT
k · κ · Ak + Λ

)−1
· AT

k · κ · (y− ỹ). (48)

2.3.3. Utilization of Analytical Versions of the Algorithms

Due to the fact that the dynamic matrix Ak changes, in general, in every time step,
then in each time step, the formula (46) or (48) allowing calculating the control action
should be used by the algorithm. As a consequence, appropriate rows of the matrix(

AT
k · κ · Ak + Λ

)−1
(corresponding to the control increments for the current sampling

instant ∆um
k|k) should be calculated by the algorithm in each time step.

3. Example
3.1. Control Plant

The control plant is a nonlinear, isothermal CSTR in which the van de Vusse reaction
takes place. These CSTRs are a popular benchmark due to their nonlinearity and difficult
dynamics, willingly used to test newly developed control algorithms; see, e.g., [48–53].
The process model of the reactor is composed of two composition balance equations; see,
e.g., [54]:

dCA
dt = −k1 · CA − k3 · C2

A + F
V (CAf − CA) ,

dCB
dt = k1 · CA − k2 · CB − F

V CB ,
(49)

where CA, CB are the concentrations of Components A and B, respectively, F is the inlet
(and also outlet) flow rate, V is the volume in which the reaction takes place (assumed
constant and V = 1 L), and CAf is the concentration of Component A in the inlet flow
stream (if not declared otherwise, it is assumed that CAf = 10 mol/L). The values of the
parameters are: k1 = 50 1/h, k2 = 100 1/h, k3 = 10 l/(h ·mol). The output variable is the
concentration CB of Substance B. The manipulated variable is the inlet flow rate F. CAf is
the disturbance variable.

The described control plant was used during the tests also in [12]. Its nonlinear steady-
state characteristic is reminded in Figure 1. The control plant has the inverse response;
thus, it is natural to use an MPC algorithm in this case.

The fuzzy model used to generate the dynamic matrix, in the researched algorithms,
is the same as in [12]. It is composed of three step responses obtained near the following
operating points:

R1 CB0 = 0.91 mol/L, CA0 = 2.18 mol/L, F = 20 L/h;
R2 CB0 = 1.12 mol/L, CA0 = 3 mol/L, F = 34.3 L/h;
R3 CB0 = 1.22 mol/L, CA0 = 3.66 mol/L, F = 50 L/h.

The assumed membership functions are reminded in Figure 2.
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Figure 1. Steady-state characteristic of the control plant.

C

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

µ
(C

)

0

0.2

0.4

0.6

0.8

1

Figure 2. Membership functions of the fuzzy model used to obtain the dynamic matrix.

3.2. Experiments

For the considered control plant, a few MPC algorithms were designed:

- NMPC—based on the nonlinear model and nonlinear optimization and numerically
efficient FMPC algorithms with advanced free response generation, proposed in [12],
and:

- FMPC1 with the conventional dynamic matrix and the classical performance index,
- FMPC2 with the conventional dynamic matrix and the modified performance index,
- FMPC1a with the advanced dynamic matrix and the classical performance index,
- FMPC2a with the advanced dynamic matrix and the modified performance index.

The simulation experiments were done using MATLAB. During the experiments, the
operation of the control systems with the NMPC and FMPC algorithms was compared.
The FMPC algorithms use the nonlinear model in the form of state equations, to generate
the free response and the fuzzy model (23) to obtain the dynamic matrix. A sampling time
equal to Ts = 3.6 s was assumed; the values of tuning parameters were as follows (if not
declared otherwise): prediction horizon p = 70, control horizon s = 35, and weighting
coefficient λ = 0.001.

The responses of the control systems to changes in the setpoint and to the change of
the disturbance by 10% in the 6th minute of the experiment are shown in Figures 3 and 4. If
the setpoint was changed to CB1 = 1 mol/L, the responses obtained in the control system
with the FMPC1a algorithm (magenta lines in Figure 3) and with the FMPC1 algorithm
(blue lines in Figure 3) were very close to those obtained with the NMPC algorithm with
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nonlinear optimization (red lines in Figure 3). In all cases, there was almost no overshoot.
The FMPC algorithms were slightly faster than the NMPC algorithm.

In the case when the setpoint changed to CB2 = 1.25 mol/L, the response obtained
with the FMPC1 algorithm was the fastest one. The one generated with the NMPC algo-
rithm was the slowest, and the response obtained with the FMPC1a algorithm was between
these two responses; it was closer to the response generated with the NMPC algorithm
than the response obtained with the FMPC1 algorithm. This is because the prediction
used in the FMPC1a algorithm, thanks to using the advanced construction of the dynamic
matrix, is more accurate. In the case of all the algorithms, the setpoint was reached without
overshoot.

Disturbance responses obtained with the FMPC1 and the FMPC1a algorithms were
practically the same. Near CB = 1 mol/L, the response generated with the NMPC algorithm
was very close to the other responses. In all three cases, there was no overshoot. In the
case of operation near CB = 1.25 mol/L, the NMPC was faster in the compensation of the
disturbance change than the FMPC algorithms.

The FMPC2 and FMPC2a algorithms worked faster than FMPC1 and FMPC1a. How-
ever, the same relations between the algorithms could be observed when the responses
generated with FMPC2 and FMPC2a algorithms were compared with the ones obtained
with the NMPC algorithm (Figure 4). If the setpoint was changed to CB1 = 1 mol/L, the
responses obtained with all the algorithms (FMPC2, FMPC2a, and NMPC) were very close
to each other. There was almost no overshoot, and the FMPC2 algorithm was slightly
slower than the other algorithms.

In the case when the setpoint changed to CB2 = 1.25 mol/L, the response obtained
with the FMPC2 algorithm was the fastest one. The one generated with the NMPC algo-
rithm was the slowest, and the response obtained with the FMPC2a algorithm, for the same
reason as in the case of the FMPC1a algorithm, was between these two responses. In the
case of all the algorithms, the setpoint was reached almost without overshoot.

The disturbance responses obtained with the FMPC2 and FMPC2a algorithms were
practically the same (the same phenomenon was observed in the case of the FMPC1 and
FMPC1a algorithms). Near CB = 1 mol/L and CB = 1.25 mol/L, the NMPC algorithm
generated a bigger maximal error than the FMPC algorithms. In all three cases, there was
no overshoot.

It can be noticed that the FMPC1a and FMPC2a algorithms generated responses closer
to the ones generated by the NMPC algorithm than the FMPC1 and FMPC2 algorithms.
This is because in the algorithms with the advanced construction of the dynamic matrix,
the prediction was more accurate, thanks to using the proposed mechanism. It should be,
however, emphasized that all the FMPC algorithms used a reliable quadratic programming
routine to generate the control action instead of the non-convex, nonlinear optimization
utilized in the NMPC algorithm. When comparing the SSE (Sum of Squared Errors), one
can notice that the smallest value was obtained with the FMPC2 and FMPC2a algorithms.
This is because they used the modified performance index in the optimization problem
solved by the algorithm in each time step.

We also performed experiments with the changes of the parameters (λ coefficient and
the control horizon) of the algorithms, like the ones in [12]. First, the λ coefficient was
changed to 0.0001 (Figures 5 and 6). All the algorithms now worked faster than in the
previous case (for λ = 0.001); the control action was more aggressive, and the maximal
errors at the beginning of the experiment were now bigger. However, the relations between
the FMPC and NMPC algorithms remained unchanged. It can be also noticed that the
differences between the FMPC1a and FMPC2a (and also FMPC1 and FMPC2) algorithms
became much smaller compared to the previous experiments. The FMPC1a algorithm was
practically as fast as the FMPC2a one. This is because for λ = 0, both performance indexes
(42) and (47) were the same. Thus, the closer the value of the λ coefficient to zero is, the
closer the responses generated with the FMPC1a and FMPC2a algorithms should be. The
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SSE values obtained for all the algorithms were smaller than in the previous case, i.e., for
λ = 0.001.

Figure 3. Responses of the control system to changes in the setpoint to CB1 = 1 mol/L and
CB2 = 1.25 mol/L and to the change of the disturbance by 10% in the 6th minute of the experiment;
λ = 0.001; NMPC—red lines (SSE = 1.2900), FMPC1—blue lines (SSE = 1.2764), FMPC1a—magenta
lines (SSE = 1.2740).
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Figure 4. Responses of the control system to changes in the setpoint to CB1 = 1 mol/L and
CB2 = 1.25 mol/L and to the change of the disturbance by 10% in the 6th minute of the experiment;
λ = 0.001; NMPC—red lines (SSE = 1.2900), FMPC2—blue lines (SSE = 1.2230), FMPC2a—magenta
lines (SSE = 1.2183).



Algorithms 2021, 14, 25 15 of 21

Figure 5. Responses of the control system to changes in the setpoint to CB1 = 1 mol/L and
CB2 = 1.25 mol/L and to the change of the disturbance by 10% in the 6th minute of the experiment;
λ = 0.0001; NMPC—red lines (SSE = 1.1913), FMPC1—blue lines (SSE = 1.1679), FMPC1a—magenta
lines (SSE = 1.1629).
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Figure 6. Responses of the control system to changes in the setpoint to CB1 = 1 mol/L and
CB2 = 1.25 mol/L and to the change of the disturbance by 10% in the 6th minute of the experiment;
λ = 0.0001; NMPC—red lines (SSE = 1.1913), FMPC2—blue lines (SSE = 1.1502), FMPC2a—magenta
lines (SSE = 1.1450).

To simplify the optimization problem by reducing the number of decision variables,
one can decrease the control horizon s. The responses obtained for different values of the
control horizon are shown in Figures 7 and 8 for the FMPC1a and FMPC2a algorithms,
respectively. In the case of both algorithms, the control horizon can be shortened signifi-
cantly, because the obtained responses do not change too much when the control horizon
is between s = 10 and s = 35. However, reduction of the control horizon should be done
carefully, because for a too short control horizon, the control performance can get worse.

The FMPC1a algorithm, for s = 5, compensated the disturbance near CB = 1.25 mol/L
faster, but achieved the setpoint CB1 = 1 mol/L slightly more slowly. A further decrease
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of the control horizon to s = 1 brought faster disturbance compensation near CB =
1.25 mol/L, but worsened the compensation near CB = 1 mol/L. Reaching the setpoint
CB2 = 1.25 mol/L was also faster, but at the cost of a slower response to the setpoint change
to CB1 = 1 mol/L. The value of the SSE decreased with the decrease of the control horizon,
but the value of the SSE obtained for s = 1 was noticeably smaller than in the other cases.

Figure 7. Responses of the control system with FMPC1a algorithm and λ = 0.001 to changes in the
setpoint to CB1 = 1 mol/L and CB2 = 1.25 mol/L and to the change of the disturbance by 10% in the
6th minute of the experiment; s = 35—black lines (SSE = 1.2740), s = 10—green dashed lines (SSE =
1.2675), s = 5—magenta lines (SSE = 1.2631), s = 1—blue lines (SSE = 1.2218).

The FMPC2a algorithm, for s = 5 and s = 1, compensates the disturbance near
CB = 1.25 mol/L slightly faster, but unfortunately reaching the setpoint CB1 = 1 mol/L
took longer, especially for s = 1. Disturbance compensation near CB = 1 mol/L was also
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visibly slower for s = 1. The smallest value of the SSE was obtained for s = 10; however,
the differences in the SSE values in all cases were very small.

Figure 8. Responses of the control system with FMPC2a algorithm and λ = 0.001 to changes in the
setpoint to CB1 = 1 mol/L and CB2 = 1.25 mol/L and to the change of the disturbance by 10% in the
6th minute of the experiment; s = 35—black lines (SSE = 1.2183), s = 10—green dashed lines (SSE =
1.2142), s = 5—magenta lines (SSE = 1.2220), s = 1—blue lines (SSE = 1.2218).

4. Conclusions

The mechanism for the advanced construction of the dynamic matrix proposed in
the article uses the easy-to-obtain fuzzy model and advanced free response to generate
the dynamic matrix skillfully. Thanks to such an approach, the changes of the operating
point on the prediction horizon are taken into consideration during the construction of the
dynamic matrix. This leads to obtaining a very good prediction, which is, however, linear
with respect to the control changes. As a result, the FMPC algorithms can offer control
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performance very close to the one characteristic for the NMPC algorithms (based on the
nonlinear optimization) and, at the same time, numerical efficiency resulting from the fact
that the proposed mechanism is designed in such a way that the FMPC algorithms are
formulated as the easy-to-solve quadratic optimization problems.

The proposed mechanism can be applied by a control system designer also in the
case of simpler FMPC algorithms, e.g., with the classical free response. It should improve
the operation of such a controller, but a better prediction can be obtained in the case
considered in the article when the advanced free response is used. The quality of the
advanced dynamic matrix and of the prediction can be increased even more if iterative
improvement of the free response is applied.
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Abbreviations
The following abbreviations are used in this manuscript:

CSTR Continuous Stirred-Tank Reactor
DMC Dynamic Matrix Control
FMPC Fuzzy Model Predictive Control
LMPC Linear Model Predictive Control
LMIs Linear Matrix Inequalities
MPC Model Predictive Control
MIMO Multiple-Input Multiple-Output
NMPC Nonlinear Model Predictive Control
SSE Sum of Squared Errors
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