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Abstract: This study aims to compare the results of a memetic algorithm with those of the two-phase
decomposition heuristic on the external depot production routing problem in a supply chain. We
have modified the classical scheme of a genetic algorithm by replacing the mutation operator by
three local search algorithms. The first local search consists in exchanging two customers visited the
same day. The second consists in trying an exchange between two customers visited at consecutive
periods and the third consists in removing a customer from his current tour for a better insertion
in any tour of the same period. The tests that were carried out on 128 instances of the literature
have highlighted the effectiveness of the memetic algorithm developed in this work compared to
the two-phase decomposition heuristic. This is reflected by the fact that the results obtained by the
memetic algorithm lead to a reduction in the overall average cost of production, inventory, and
transport, ranging from 3.65% to 16.73% with an overall rate of 11.07% with regard to the results
obtained with the two-phase decomposition heuristic. The outcomes will be beneficial to researchers
and supply chain managers in the choice and development of heuristics and metaheuristics for the
resolution of production routing problem.

Keywords: supply chain; production; distribution; memetic algorithm; decomposition heuristic

1. Introduction

In the supply chain field, simultaneously planning production, inventories and distri-
bution while minimizing the overall cost of these operations is a complex exercise known
as the production routing problem (PRP) [1]. The PRP is a combination of two well-known
problems in the literature. On the one hand, we have the lot sizing problem (LSP) and
the vehicle routing problem (VRP) on the other hand. LSP determines the best trade-off
between production and storage operations. The aim is to simultaneously determine the
production schedule, quantities to be produced and quantities to be stored to minimize
the overall cost of production and inventory. See [2] for more detailed literature review on
the LSP.

VRP is a difficult NP-Hard problem as a particular case of the traveling salesman prob-
lem (TSP) which is itself a NP-Hard problem [3,4]. It consists of arranging routes between
customers who must be visited at the same time based on the number of vehicles available
and finding the best scheduling of visits to minimize the overall cost of transport over the
planning horizon. Readers are also invited to see [5–7] for a review of the mathematical
formulations of the problem and the methods or algorithms used to resolve it.

In the practice of industries, these two problems are disjointedly and sequentially
analyzed. However, the work of Chandra et al. [8,9] have shown that it is possible to make
gains of 3% to 20% on the overall cost of production and distribution by integrating and
coordinating the decisions of LSP and VRP. This integrated and coordinated PRP is a NP-
hard problem since it contains the VRP. In an integrated concept of supply chain planning,
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the customer no longer has exclusive control over decisions on his visit dates and quantities
to be received. The implementation of new practices such as vendor managed inventory
(VMI) and replenishment policies such as order-up-to-level (OU) and maximum level (ML)
are necessary to achieve the goal of satisfying customer demand. VMI is a practice in which
the supplier decides when and how much to deliver to the customer in a joint manner. He
must also ensure that there is no shortage of stock at the customer. In the OU replenishment
policy, all customers have maximum storage capacity and the amount delivered is such
that the maximum level of storage is reached at each delivery. Whereas in the ML policy,
all customers have maximum storage capacity and the quantity delivered is such that the
maximum storage level is not exceeded at each delivery (0 ≤ qit ≤ Li). See [10–13] for
more details on the practice of VMI and the use of OU and ML replenishment policies. A
detailed literature review of PRP was provided by [1].

Although PRP is an NP-hard problem, exact methods for its resolution have been
proposed. Among these exact approaches, the Lagrangian relaxation was one of the first
methods proposed for the resolution of the PRP [14]. A branch-and-price algorithm was
proposed to solve a PRP with the use of a homogeneous fleet of vehicles [15]. In a study
using a single vehicle [16], the authors used a branch-and-cut (B&C) algorithm to solve
the PRP problem. The B&C algorithm has also been proposed to solve the multivehicle
version of the PRP [17].

Given the complexity of the PRP, several heuristics and metaheuristics have been
developed for its resolution. In the first works on the PRP introduced by Chandra et al. [9],
an H1 type decomposition method was proposed. The authors decomposed the problem
into a capacitated LSP and VRP followed by some local search heuristics to solve the
problem. Test results have shown that the integrated approach allows gains on the overall
cost of operations ranging from 3% to 20%. Another two-phase decomposition method
was presented for solving a PRP with a heterogeneous fleet of vehicles [18]. The authors
used a mixed integer programming (MIP) to solve the first phase of the problem. This
first phase of the problem concerns a problem of LSP with direct shipment (DS). In the
second phase, an efficient algorithm was used to solve the VRP. It is a H2 type algorithm
because the DS decisions are incorporated into the LSP, which is not the case for the H1
type algorithm. The H2 type of two-phase decomposition heuristic (TPDH) has also been
used to solve a PRP with external depot (EDPRP) [19]. The authors used a MIP for solving
the LSP problem with DS in the first phase and then used a genetic algorithm to solve the
VRP in the second phase.

Metaheuristics are algorithms used to solve difficult combinatorial optimization prob-
lems. They are therefore master strategies that use other heuristics to find a better approxi-
mation of the best overall solution to an optimization problem. They are mostly used when
a more efficient classical method to solve a given combinatorial optimization problem is
not known. The high level of abstraction of metaheuristics makes them suitable for a wide
range of problems. Thus, they find their application in various fields of scientific research.

Swarm intelligence (SI) is a family of metaheuristics that relies on nature through the
interactions of agents (ants, bees, etc.) to solve complex optimization problems. SI has
been used in wind energy potential analysis and wind speed forecasting to reduce the
operating cost of wind farms [20]. The authors used a hybrid algorithm that combines the
advantages of the genetic and adaptive particle swarm optimization (PSO) algorithm to
optimize the weights and biases of the nonlinear network of extreme learning machines
(ELMs) to efficiently improve the accuracy of the ELMs.

Another SI based on particle swarm optimization has been proposed for the analysis
of handover in the field of spectrum sharing in mobile social networks [21]. With an
increase in the globally adaptive inertia to 75.66% and an increase in data transfer rate
of 47.29% compared to the IEEE802.16 protocol, the authors obtained a maximum mean
signal-to-noise ratio of 14.8 dB. This value is the overall optimum that is required during
handover for any mobile social network. Thus, the authors claim that their algorithm
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outperforms those in the mobile network literature by 75% by optimizing various aspects
of handover.

In the age of big data, analyzing data and extracting relevant information from it is
a challenge. A very important issue in this area is the selection of the most informative
features in a dataset. Given the success of SI in solving difficult NP problems, it is increas-
ingly used for selecting relevant characteristics in data analysis or in machine learning
algorithms. A detailed literature review on the use of SI in feature selection is provided
by [22]. The authors presented a unified SI Framework to explain the methods, techniques,
and parameter choice in a SI algorithm for feature selection. They also presented the
different datasets used to implement SI algorithms as well as the different SI algorithms.

Another literature review focusing on PSO algorithms and ACO algorithms as repre-
sentative of SI was presented by [23]. The authors presented a description of the PSO and
ACO algorithms as well as a state of the art on other SI algorithms. They also presented a
status report on the use of SI in solving real life problems.

Regarding the use of SI in solving PRPs, a PSO algorithm has recently been proposed to
solve the planning problem in an intelligent food logistics system model [24]. The authors
have formulated the problem in a mixed integer multi-objective linear programming. Four
objectives are addressed in this study. They are the minimization of total system expense,
the maximization of average food quality, the minimization of the amount of CO2 emissions
in transportation, and the production and minimization of total weighted delivery time.
Tests conducted on small, medium, and large data sets resulted in cost reductions of 15.51%
compared to a three-step decomposition method.

A self-adaptive evolutionary algorithm was proposed for berth planning in the opera-
tion of maritime container terminals [25]. The authors proposed a chromosome in which
the probabilities of crossover and mutation are encoded in the chromosome. They focused
their study on the comparison of several methods of parameter selection in evolutionary
algorithms. On the one hand, there are the parameter tuning strategy approaches in which
the values of the selected parameters remain unchanged throughout the execution of the
algorithm. On the other hand, we have the parameter control approaches in which the
parameters of the algorithm are adjusted throughout the execution of the algorithm accord-
ing to certain strategies. Parameter control can be deterministic, adaptive, or self-adaptive.
Test results show that the evolutionary algorithm of self-adaptive parameter control outper-
forms evolutionary algorithms using deterministic parameter control, adaptive parameter
control and parameter tuning strategy by 4.01%, 6.83%, and 11.84% respectively based on
the value of the objective function.

Another evolutionary algorithm was used to address a VRP in a “factory in box” [26].
This “factory in a box” concept involves assembling production modules into containers
and transporting the containers to different customer sites. The authors modeled the
problem as mixed integer programming to solve the problem and used CPLEX to solve
the mathematical model of the problem. In addition to the evolutionary algorithm, they
also proposed three metaheuristics including variable neighborhood search (VNS), taboo
search (TS), and simulated annealing (SA) to solve the problem. The results of the tests
carried out on large-sized instances show that the evolutionary algorithm provides better
results than the other metaheuristics (VNS, TS, SA) developed to solve the problem.

Genetic algorithm (GA) is a stochastic strategy for solving complex optimization
problems that takes better advantage of concepts from natural genetics and the theory of
evolution. It is used to solve a production, inventory and distribution planning problem
that takes into account several products. [27], the authors have solved the integrated
problem of LSP and VRP. They also proposed integer programming to minimize the total
cost of the system. Tests performed on small instances found an optimality deviation of
1.739% compared to the branch-and-bound (B&B) method. A multi-plant supply chain
model with multiple customers was proposed by [28]. In this supply chain, products are
delivered directly from the factory to the customers. The authors developed a hybrid AG
to address the minimization of the overall cost of production and distribution. They used a
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multi-point crossover operator. This number of cut-off points is equal to the length of the
chromosome divided by 4 with a 15% probability of crossover.

A greedy randomized adaptive search procedure (GRASP) has been proposed for
solving a PRP involving a single type of product over a multi-period planning horizon
with the use of a homogeneous fleet of vehicles [29]. The authors proposed three versions
of GRASP for the integrated resolution of the PRP These are a classical GRASP, an im-
proved version of GRASP with the incorporation of reactive mechanisms and a version of
GRASP with a path reconnection process. Test results on 90 randomly generated instances
with 50, 100 and 200 clients over 20 periods established the effectiveness of GRASP on
the traditional method of breaking down the problem into sub-problems. These results
also showed that GRASP with path re-connection and GRASP with reactive mechanisms
give better results than traditional GRASP (without improvement). A GRASP has also
been developed to solve a bi-objectives production and distribution problem [30]. These
objectives concern the minimization of total production and distribution costs and the
balancing of the total workload in the supply chain. They used a homogeneous fleet of
vehicles to transport products. The results of tests on literature instances show that the
GRASP developed allows a relatively small number of non-dominated solutions to be
obtained in a very short computing time. Although the approximation of the Pareto front
for each instance is discontinuous and not convex, it highlights the trade-off between the
two objective functions.

A reactive tabu search was presented for solving a PRP to satisfy a time varying
demand with a homogeneous fleet of vehicles over a finite planning horizon [31]. The
authors compared the test results with the results obtained with GRASP on instances of
up to 200 clients and 20 periods. This comparison revealed an improvement in results
ranging from 10% to 20% on the overall cost of operations with an increase in computing
time. A Tabu search (TS) with path relinking (TSPR) was used for PRP resolution with a
homogeneous fleet of vehicles [32]. Tests performed on datasets from the literature have
shown that TSPR gives better results than memetic algorithm with population management
(MA|PM) and an improvement in results ranging from 2.20% to 8.78% compared to RTS.

An adaptive large neighborhood search (ALNS) procedure was used for computing
the lower bound in the formulation of the multivehicle production and inventory routing
problem (MVPRP) [33]. The results of tests carried out on small, medium, and large size
instances established the effectiveness of ALNS on GRASP, MA|PM, RTS, and TSPR. The
same authors also used ALNS for the computing of upper bounds in a B&C procedure for
solving the MVPRP [17].

The variable neighborhood search (VNS) was developed for PRP resolution with a
homogeneous fleet of vehicles [34]. The test results for this algorithm show that it is as
competitive as the ALNS algorithm.

Introduced by Moscato [35], memetic algorithm (MA) is a powerful version of GA
based on the use of local search to intensify the search in order to increase its efficiency.
The preservation of diversity is crucial in evolutionary algorithms in general [36] and in
GA in particular. Crossover and mutation operators are the best means of guaranteeing the
diversity of the population from one generation to the next. A good strategy of combining
diversification and intensification is the key to success which gives the MA a definite
advantage over the GA.

In the area of chain supply planning, MA was used to resolve the LSP. In this problem
family, MA has been proposed for a problem of stochastic multi-product sequencing and
LSP [37]. It has also been used for LSP in soft drink plants [38] and for a multi-stage
capacitated LSP [39]. For the VRP family, MA has been proposed for a VRP with time
windows (VRPTW) [40,41]. See also [42,43] for the capacitated VRP as well as [44,45] for
the use of heterogeneous fleets of vehicles. The use of MA is also very present in the
optimization of integrated problems such as PRP. A MA with population management
(MA|PM) has been developed by Boudia and Prins [46] to solve the integrated production,
inventory, and distribution problem. The authors tackled a problem of simultaneous
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minimization of three costs consisting of the setup cost, the inventories cost and distribution
cost. Tests on 90 randomly generated instances showed the efficiency of MA|MP compared
to TPDH and GRAPS. The MA was also used in a study aimed at minimizing the overall
cost of setup, inventory, and distribution in a multi-plant supply chain. In this supply
chain, the information flow management system called “KANBAN” was implemented to
manage information [47]. A real case study concerning the minimization of the overall cost
of production and distribution was conducted in a large automotive company [48]. In this
study, the authors modeled the problem as a non-linear mixed integer programming and
used a custom MA for its resolution.

The MA used in this work is an adaptation of the one proposed by Boudia and
Prins [46] to solve an integrated production, inventory, and distribution problem.

The remainder of this work is organized as follows: Section 2 is a description of
the EDPRP. Section 3 shows the details of the MA used for EDPRP resolution. Section 4
highlights the conditions for experimentation and the comparison of the results obtained
by the MA and the TPDH of H2 type. Finally, Section 5 provides a conclusion on the
comparative study of MA and TPDH concerning EDPRP.

2. External Depot Production Routing Problem (EDPRP)

The EDPRP is an extension of the classic case of the PRP in which deterministic
demands are met by a homogeneous fleet of vehicles over a discrete (multi-period) and
finite planning horizon. In the EDPRP, the geographical position of a plant without storage
capacity is different from that of the depot. The depot is supplied by the plant and the
customer demand is only satisfied from the products stored at the depot. All vehicles start
and end their trips at the depot. The collection of products from the plant to supply the
depot is carried out either by vehicles that leave the depot and then collect a quantity of
products directly from the plant and return to the depot, or by vehicles after satisfying the
demand of one or more customers. In this extension of the PRP, products manufactured at
the plant are not delivered directly to customers. The products are first stored at the depot
before being delivered to customers. It is also important to note here that the quantities
of products received by the depot in period are not distributed in the same period. These
products must first be stored before distribution. Only the ML policy has been implemented
in this work as a replenishment policy.

To describe the problem, the following elements have been defined: G = (N, A) is a
complete graph in which N represents the set of nodes formed by the plant, the depot and
the customers with the index i ∈ {0 . . . n + 1} and A(N) = {(i, j): i, j ∈ N, i 6= j} all the arcs
in G. The plant is represented by n + 1, the depot is indexed by 0 and all customers are
represented by Nc = {1, . . . , n} is the set of customers. Ndc = {0, . . . , n} is the set made up
by the depot and the customers. Ncu = {1, . . . , n + 1} is the set made up by the customers
and the plant. N = {0, . . . , n + 1} is the set consisting of the depot, the customers, and the
plant. T = {1, . . . , l} is the set of periods (days) of the planning horizon and K = {1, . . . , m} is
the set of vehicles. See [19] for settings, variables and the MIP linking settings and variables.
The product collection and distribution network in the EDPRP can be summarized in
Figure 1. The authors. proposed a TPDH to solve the problem. In this work, we develop
an MA to compare its results with those of the TPDH in the resolution of the EDPRP. The
details of this MA are presented in the following section.
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3. Memetic Algorithm
3.1. Encoding and Evaluating the Solution
3.1.1. Encoding

We use the tuple (P, Y, X, R) to describe a complete solution to the problem. In
this tuple, P is a list of the quantity produced in each period t of the planning horizon.
Each quantity produced Pt or P[t] is an integer between 0 and the maximum production
capacity of the plant (C). Y is a list of binary numbers over each period t of the planning
horizon. Yt = 1 means that there is production at the plant on date t and 0 otherwise. X is a
(n + 1) × l matrix in which Xit represents the amount of product sent to the depot (i = 0)
or to a customer (i ∈ Nc. Xit is an integer between 0 and the maximum storage capacity
Li of the node i ∈ Ndc and can be made up of several demands for the customer i. R is a
list of integers with Rp ∈ {−1} ∪ N. It is a successive list of trips delimited by the symbol
(0) when the trips belong to the same day or the symbol (−1) when the trips belong to
different days. Thus 0 and −1 also refer to the depot in the modeling of the solution. As
the symbol (−1) is also the day delimiter, a succession of this symbol indicates a period
without a vehicle tour.

The knowledge of R, X and Ii0(i ∈ Nc) allows to compute Iit(i ∈ Nc) for all t ∈ T and
to verify the constraints related to the storage capacity of customers Li(t ∈ T), the vehicle
limit load (Q) as well as the limitation of the number of vehicles in the fleet (m). With the
knowledge of Y, X, and I00, it is also possible to compute Pt(t ∈ T), I0t(∀t ∈ T) and check
the constraints on the storage capacity of the depot (L0). The dataset of Table 1 allows
to build an example of a complete solution for n = 10, l = 3, m = 2, C = 304 and Q = 198.
This solution can be described by Table 2. In Table 2, R is a succession of trips that begin
at the depot (0 or −1) and end at the depot over a planning horizon of 3 days (or three
periods) delimited by the symbol −1. Xit is the amount sent to each customer or depot i at
the period t. The amount distributed to customers in the first period is 25 + 18 + 33 = 76.
This quantity means that the demand of the first period is met based on the initial stocks
of the depot (I00 = 76). No quantity is sent to the plant since it has no storage capacity.
Y1 = 1 means that there is production in the first period of T. This automatically leads to a
replenishment of the depot (0 or −1) with a quantity P1 = 137 units of products. P and Y
can therefore be represented by Y [0,0,1] and P [137,0,0]. Finally, with the knowledge of R,
X, Y, and P it is possible to evaluate a solution.
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Table 1. An example of a data for (n = 10, l = 3, m = 3).

i 0 1 2 3 4 5 6 7 8 9 10 11

di t - 10 15 15 7 13 16 22 13 19 22 -
Ii0 76 5 15 15 3 13 40 55 6 47 44 -
Li 152 30 60 60 21 52 112 154 39 133 132 -

Table 2. Example of Solution.

R 0 1 4 8 11 −1 2 5 3 6 −1 7 9 10 −1

X - 25 18 33 0 137 30 26 30 8 0 11 10 22 0
Y - - - - - 1 - - - - 0 - - - 0
P - - - - - 137 - - - - 0 - - - 0

3.1.2. Evaluation of the Solution

The cost (or fitness) of a solution Z can be determined by the following formula

Costz = ∑
t∈T

(uPt + f Yt) + ∑
t∈T

∑
i∈Ndc

hi Iit +
|R|

∑
p=2

calt(R[p−1]),alt(R[p])

In this three-part formula, ∑t∈T (uPt + f Yt) denotes the total cost of production. This
cost can be subdivided into two costs. Namely the variable cost of production defined
by the sum of the costs of productions per period (uPt) and the sum of setup costs
when there is production on the day t ( f Yt). Then we have the cost of the inventory
expressed by ∑t∈T ∑i∈Ndc

hi Iit and finally the cost of distribution (transport) represented by

∑
|R|
p=2 calt(R[p−1]),alt(R[p]). In this last part, The |R| represents the size or number of symbols

in R and alt( ) is a function such as alt(i) = i if i ∈ N and alt(i) = 0 if i = −1 (day delimiter).
The parameter cij refers to the Euclidian distance between the i node and the node j.

3.2. Construction of the Initial Population

Let Pop_size be the size or number of individuals (solutions) in the initial population
Pop0. This population consists of a Pop_size number of randomly generated solutions.
Everyone in the initial population is generated in three steps described as follows:

Step 1: Y construction.

The construction of Y consists in determining the days of production. Here, it is a question
of determining the days t for which Yt = 1. To achieve this goal, we will first determine the
total quantity produced over the planning horizon. Let NP be this quantity of products. It
can be obtained by the following relationship: NP = ∑t∈T Pt = (∑t∈T ∑i∈Nc dit −∑i∈Ndc

Ii0).
It is equal to the difference between the sum of the demands of all customers and the sum
of the initial inventory at the depot and at the customers. Once the total quantity to be
produced is calculated, we determine the number of days required to produce that quantity.
To avoid a problem of hard bin packing with the limited fleet, we will limit the capacity of
the fleet to 90%. Let c f be the capacity of the fleet and NY (NY = ∑

t∈T
Yt) the number of days

needed to produce NP. Then c f and NY are calculated as follows: c f = 0.9× m× Q and
NY =

⌈
(∑t∈T ∑i∈Nc dit −∑i∈Ndc

Ii0)/min(C, c f , L0)
⌉

. Once NY is determined, a NY number
of days are randomly drawn in T/{l}. It is not possible to produce on the last day of the
planning horizon (l) because this production cannot be distributed to customers. Here, P
can already be initialized by assigning NP to Pt for which t is the smallest value of T having
Yt = 1 without considering the violation of maximum production capacity (C).

Step 2: P and X construction day after day.

For any customer i, Xi1 is initialized with the necessary quantity so that Ii0 and Xi1 at
least constitute a demand (for each costumer i, dit). For example, if the demand dit = 10,
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for Ii0 = 5, we have on a Xi1 = 5. For Ii0 = 10, we have Xi1 = 0 and for Ii0 = 15 we have Xi1
= 0. For each period t, giving priority to customers who are out of stock, we aggregate
demands for each customer i without violating its storage limit capacity Li, and that of the
fleet c f in respect of the quantity of products available at the depot the day before I0,t−1.
The quantities produced are then adapted to the production capacity C and then to the
capacity of the fleet c f and those of the depot L0. This makes it possible to resolve the
production capacity overrun authorized in step 1. This approach is an adaptation of the
dynamic programming (DP) proposed by Wagner and Whitin [49] for the resolution of the
classic LSP.

Step 3: Construction of R day after day.

After determining P and X, the quantities sent to customers per period are successively
aggregated to reach the capacity of a vehicle This operation is repeated until the number of
vehicles necessary to deliver the products of each period is determined. This procedure
is an adaptation of Clarke and Wright’s economic algorithm [50] through the imposition
of a limited fleet. At this stage, R does not yet contain the plant represented by the node
i = n + 1. The plant is added to R only in the periods t for which Yt = 1. The number of
symbol n + 1 added is equal to the number of vehicles necessary to send all the production
of the period t to the depot (for Yt = 1 with t ∈ T/{l}, the number of vehicles needed
to transport Pt from the plant to the depot is dPt/Qe). Once the initial population has
been constituted, a selection and crossover procedure are carried out for the formation
of the child population CHILDS0. In this study, the population size of children is set at
POP_size/2. The following section describes the procedure of selection and crossover of
parents of the initial population for the constitution of CHILDS0.

3.3. Selection and Crossover Procedure

Each child from the initial generation CHILDS0 is the result of the crossover of two
parents selected by a binary tournament procedure. A selection by binary tournament
consists of selecting the best solution from two randomly drawn solutions in the population
Pop0. Let A be the parent selected at the first selection procedure and B the parent selected
at the second selection procedure. Then a two-point crossover procedure of parents A and
B is implemented for the determination of a single child E. The crossover procedure can
be described as follows: Let us note by (•) the membership operator. By this operator
writing A•R means that R belongs to A. Let us note Rp or R(p) the element of rank p
in R and Rp→q or R(p→q) the sub-list of R going from p to q. In this work, the cutting
points must correspond only to the day delimiter (−1). For the determination of cutting
points, a random draw of two dates t1, t2 ∈ T/{l} with t1 6= t2 is made. Then d1 and d2
are determined so that d1 = min(t1, t2) and d2 = max(t1, t2). Let pos(t) be the function
that at each date associates its position in A•R (p = pos(t)). A•R will be segmented into
three parts. The left part will be identified by A•RL = A•R(1→ pos(d1)) . The middle
of A•R is represented by A•RM = A•R(pos(d1) + 1→ pos(d2)) and the right part by
A•RR = A•R(pos(d2) + 1→ pos(l)) . Similarly, parent B will also be segmented accord-
ing to the values of d1 and d2 determined for the A•R segmentation. The construction
of child E from the crossover of A and B is done as follows: let E•RL, E•RM, and E•RR
be the three parts of E•R. These three parts will be initialized as follows: E•RL = B•RL,
E•RM = A•RM and E•RR = B•RR. After the initialization of E•R, a check is made to
correct any anomalies in its construction. Contrary to Boudia et Prins’ correction strategy
of browsing the symbols in E•R [28] we adopt a simplified correction strategy of browsing
the symbols in Nc. This strategy allows to quickly identify the missing customers in E•R
and make the appropriate corrections. The correction is as follows: Let i be the browsing
index of Nc, TXi the total quantity delivered to the customer i over T in E•X and TUi

the total quantity of product that was to be delivered to i over T. We have TXi = ∑t∈T Xit
and TUi = ∑t∈T dit − Ii0. Through a comparison between TXi and TUi , We group cus-
tomers into three subsets. The first subset is that of customers representing Case 1 such
as TXi = TUi . The second subset representing Case 2 concerns the customers i for whom
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TXi > TUi and Case 3 brings together the customers for whom TXi < TUi . In the process
of repairing the chromosome, all customers affected by Case 2 are treated first. Then come
the customers concerned by Case 3 and finally those concerned by Case 1. Each case is
treated as follows:

Case 1. If TXi = TUi , then there is nothing to do for the costumer i. All demands
(dit, ∀t ∈ T) are already met by the initial stock (Ii0) and the quantities delivered over
T (TXi).

Case 2. If TXi > TUi , then a reverse browsing of T is made (from i to 1). E•Xit is
successively reduced by a demand dit. For a given period t, if E•Xit falls to 0 then i is
removed from its trip at the date t in E•R. This correction stops at the period t at which
TXi = TUi .

Case 3. If TXi< TUi , let τ =
Ii0+∑

II0
dit

t=1 Xit
dit

+ 1 be the out-of-stock date at i if it is not sup-
plied from the last date on which its initial stock covers its demands and TCi = TUi − TXi
the quantity needed to complete TXi to TUi . Browsing T from τ to l, E•R is corrected
as follows:

(1) If E•Xit 6= 0, then add TCi to E•Xit
(2) If Q (vehicle limit capacity) is violated, then i is removed from its current tour.
(3) Try the best insertion of i in one of the existing trips of the date t. Making the best

insertion of a customer i in a trip is to compare the cost of all the trips obtained by
iteratively moving the costumer i from the beginning of the tour to its end. The best
insertion will designate the position of i offering the minimum transportation cost for
the trip.

(4) If the attempt at a better insertion fails and the number of vehicles used on the date t
is less than m (m is the number of vehicles in the fleet) then a new trip is created.

(5) If all the vehicles in the fleet are already in use, then we are fragmenting the quantity
TCi + E•Xit Fragmentation consists of determining the trip with the maximum resid-
ual capacity and inserting the maximum demand contained in TCi + E•Xit. The rest
of the quantities to be delivered (TCi after updating) are distributed at the following
days. The correction stops when TCi = 0.

NB: If τ = 1, then the quantity inserted is equal to the sum of the complement of the
initial stock to a demand and a maximum number of demands ((dit − Ii0) + (dit + . . . + dit)).

However, if E•Xit = 0, E•R is corrected by implementing steps (3), (4), and (5).

3.4. Example of Application of the Crossover and Repair Procedure

Consider the dataset (n = 10, l = 6, k = 2) described in Table 3. Let A and B be two
solutions got from the initial population. Chromosome A is represented by Table 4 and
Solution B is represented by Table 5. Let t1 = 3 and t2 = 5 be the cut points of chromosomes
A and B (t1 and t2 correspond to dates or periods on the planning horizon). Child C
represented in Table 6 will consist of three parties.

Table 3. Dataset (n = 10, l = 6, k = 2).

i 0 1 2 3 4 5 6 7 8 9 10 11

dit 10 15 15 7 13 16 22 13 19 22
Ii0 76 10 30 30 7 26 80 110 13 95 88
Li 152 30 60 60 21 52 112 154 39 133 132
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Table 4. Chromosome A.

R 0 1 3 4 8 −1 11 −1 1 2 3 5 11 −1 1 3 4 8 10 −1 11 −1 6 7 9 −1

X - 20 15 14 26 0 0 151 10 60 30 52 0 152 20 15 21 39 44 0 0 44 16 22 19 0
Y - - - - - 0 - 1 - - - - - 1 - - - - - 0 - 1 - - - 0
P 0 151 152 0 44 0

Table 5. Chromosome B.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 2 4 7 10 −1 11 −1 6 8 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 30 45 7 22 44 0 0 44 16 13 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

Table 6. Child C not repaired.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 3 4 8 10 −1 11 −1 6 8 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 20 15 21 39 44 0 0 44 16 13 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

The left side of C is noted C•RL = B•R = (1→ pos(t1) ). The middle of C is
C•RM = A•R(pos(t1) + 1→ pos(t2)) and the right part of C is
C•RR = B•R(pos(t2) + 1→ pos(l)) .

After the C chromosome is formed, abnormalities can be found. To repair the C
chromosome, we go through the customers list and make the following corrections:

TUi is the total amount of products that should have been received by customer i and
TXi the amount received by the customer i.

Customers for whom TXi> TUi : i ∈ {3;4;8}
For the customer i = 3, we have TXi = 60 + 15 = 75 and TUi = 15× 6− Ii,0 = 90 − 30 = 60.

By browsing T from t = 6 to t = 1, we subtract a demand to TXi on the date t = 4 and we get
TXi = 75 − 15 = 60. Thus, the amount sent to i at period 4 becomes X3,4= 15 − 15 = 0 and i
= 3 is removed from the tour of period 4. The result of this correction is shown in Table 7.

Table 7. Correction for i = 3 in C.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 4 8 10 −1 11 −1 6 8 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 20 21 39 44 0 0 44 16 13 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

For the customer i = 4, we have TXi = 49 and TUi = 7 × 6 − 7 = 35. By browsing T
from t = 6 to t = 1, we remove 2 demands in TXi to the period t = 4 to get TXi = 35 and
X3,4= 21 − 7 − 7 = 7. See Table 8 for C chromosome after correction for i = 4.

Table 8. Correction for i = 4 in C.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 4 8 10 −1 11 −1 6 8 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 20 7 39 44 0 0 44 16 13 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

For the customer i = 8, we have TXi = 104 and TUi = 13 × 6 − 13 = 65. The successive
subtraction of a demand in TXi to equalize TUi allows to obtain the following results.
Subtracting a demand from the period 6 allows to have TXi = 104 − 13 = 91 and X8,6 = 0.
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So, the customer 8 is removed from the tour of period 6. Subtracting two demands in TXi
in the period t = 4 allows to have TXi = 91 − 13 − 13 = 65 and X8,4 = 39 − 13 − 13 = 13.
The result of this correction is presented in Table 9.

Table 9. Correction for i = 8 in C.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 4 8 10 −1 11 −1 6 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 20 7 13 44 0 0 44 16 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

Customers for whom: TXi< TUi : i ∈ {1;2;7}
For the customer i = 1, TXi = 20 + 20 = 40 and TUi = 6 × 10 − 10 = 50.
We have TCi = TUi − TXi = 50 − 40 = 10. So, TXi must be completed (management

of a supplement) with a quantity of 10 products to reach TUi. We have τ = 10+20
10 + 1 = 4

and I0,1 = I0,0 + P1 − 75 = 76 + 0 − 75 = 1; I0,2 = I0,1 + P2 − 0 = 1 + 151 − 0 = 152; I0,3 = I0,2 +
P3 − 152 = 152 + 152 − 152 = 152. The quantity delivered to all customers in the period
t = 4 is 20 + 7 + 13 + 44 = 84. So I0,4 = I0,3 + P3 – 84 = 152 + 0 − 84 = 68 and I0,4 > TCi = 10.
The tour of period 4 contains i = 1, so we apply (1) by adding TCi to Xi,4. We have
TCi + Xi4 = 10 + 20 = 30. This changes the vehicle’s load from 84 to 94 in period 4 for a
maximum load of 198. The load of the vehicle is not violated, and the process stops for the
customer i = 1. Table 10 illustrates the correction for customer i = 1.

Table 10. Correction for i = 1 in C.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 4 8 10 −1 11 −1 6 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 30 7 13 44 0 0 44 16 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

For the customer i = 2, TXi = 15 and TUi = 60, hence TCi = 60 − 15 = 45.
We have τ = 30+15

15 + 1 = 4 and I0,4 = I0,3 + P3 − 94 = 152 + 0 − 94 = 58 > TCi. The tour
of the period t = 4 does not contain i = 2, hence we apply the step (3) by making a better
insertion of i = 2 in the tour of period t = 4. As a result of this insertion, the new load of
the vehicle will be 139 < 198. The procedure stops for i = 2. The resulting chromosome is
shown in Table 11.

Table 11. Correction for i = 2 in C.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 2 4 8 10 −1 11 −1 6 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 30 45 7 13 44 0 0 44 16 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

For the customer i = 7, TXi = 0 and TUi = 22, hence TCi = 22 − 0 = 22.
We have τ = 110+0

22 + 1 = 6 and I0,4 = I0,3 + 3 − 94 = 152 + 0 − 139 = 13; and I0,5 = I0,4 +
P5 − 0 = 13 + 44 = 57; I0,6 = I0,5 + P6 − (16 + 19)= 57 + 0 − 35 = 22 ≥ TCi. The tour of the
period t = 6 does not contain i = 7, hence we apply the stage (3) by also making a better
insertion of i = 7 in the tour of the period 6. As a result of this insertion, the new load of the
vehicle will be 16 + 19 + 22 = 57 < 198. The procedure stops for i = 2. It is noticeable here
that I0,6 = 0 after the delivery of the customer 7 (see Table 12).
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Table 12. Correction for i = 7 in C.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 2 4 8 10 −1 11 −1 7 6 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 30 45 7 13 44 0 0 44 22 16 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

Customers for whom TXi = TUi: i ∈ {5;6;8;9;10}.
For customers 5, 6, 8, 9, and 10 there is nothing to do because the theoretical amount to

be received is equal to the amount received. The result of this repair procedure is presented
in Table 13.

Table 13. Chromosome C repaired.

R 0 1 2 4 8 −1 11 −1 3 4 5 8 11 −1 1 2 4 8 10 −1 11 −1 7 6 9 −1

X - 20 15 14 26 0 0 151 60 14 52 26 0 152 30 45 7 13 44 0 0 44 22 16 19 0
Y 0 1 1 0 1 0
P 0 151 152 0 44 0

3.5. Local Search Procedures

Three local search algorithms have been developed for the intensification phases of
MA. ∀i, j ∈ Nc, these algorithms can be described as follows:

SWAP1 (S1): It is a local search algorithm which allows to exchange the position of two
customers i and j during the same period t (∀t ∈ T) in accordance with the capabilities of
the vehicles assigned to transport the products. This exchange is only possible if customer
i and j are visited on the same date t regardless they belong to the same trip.

BEST INSERTION (BI): The BI consists in removing customer i from its current trip
on the date t and searching in all existing trips on the date t the position that offers the
minimum cost of transport in accordance with the capacity of the vehicles (∀t ∈ T).

SWAP2 (S2): This algorithm consists of exchanging two customers i and j visited
respectively at consecutive periods t and t + 1. If that does not cause a stock outage and
meets the conditions of maximum capacity of production C, storage Li(i ∈ Nc), L0 and
vehicles Q, the resulting solution is compared to the best current solution (∀t ∈ T/{l}).

3.6. Global Description of the MA

Let Popg be the population of the generation g with g ∈ {0, 1, . . . , Max_gen} (Pop0 is
the initial population). Max_gen Max_gen the maximum number of generations, Childs
the population of children and Term_Crit the end criterion. The MA used in this work can
be described by the algorithm in Algorithm 1.
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Algorithm 1. Memetic Algorithm

1 

 

Algorithm 1. Memetic Algorithm  

 

1: g ← 0, Popg ← Ø , Childs ← ∅ and. 

2:  Max_gen: initialize Maximum generation.  

3: Term_Crit ← false. 

4: Popg ← random generation of Pop_Size solutions 

5: Repeat  

6:  Evaluate fitness of each solution of Popg 

7:  sort Popg in descending cost order 

8:    If g < Max_gen + 1 

9:   Repeat  

10:    Select two parents A and B in Popg by binary tournament 

11:    Childs ← Crossover (A,B)  and repair the solution (offspring) 

12:   Until Childs_Size = ⌊ Pop_Size / 2⌋  

13:   For c = 1 to   Childs_Size 

14:    Applies Local search to the element c of Childs 

15:   End For 

16:   Replace the Childs_Size first elements of Popg by elements of Childs 

17:   Childs ← ∅ . 

18:   g ← g +1. 

19:  Else  

20:   Term_Crit ← True. 

21:  End If  

22: Until Term_Crit ← True. 

23: Return the best solution of PopMax_gen (the last element of PopMax_gen) 

24: End  

 

4. Experimentations and Results
4.1. Experimentation

The MA described in Figure 2 is implemented in C++ on a 64-bit Intel Pentium Dual
Core 1.60 GHz personal computer with 4 GB RAM. Details of the instances used in the
various simulations can be found in [19].
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In this work, the mutation operator is replaced by a local search and the selection of
parents is done by a binary tournament procedure. Thus, the relevant parameters of the MA
developed are the size of the population (Pop_Size), the maximum number of generations
(max_gen) and the probability with which the local search (LS_search_prob) is applied to each
solution. A strategy of adjustment of the parameters based on experimental comparisons
(testing combinations of three values designating the size of the population, three values
each representing the maximum number of generation and three rates designating the
probability of local searches) was carried out on the four classes of instances with 20 clients,
six periods, and two vehicles. A total of 3 × 3 × 3 × 4 = 108 tests allowed to retain the
best parameters presented in the Table 14. This parameter tuning strategy is opposed
to other methods based on parameter control. For a better understanding of parameter
handling, see [25].

Table 14. Parameter tuning results for MA.

Parameters Description Candidate Values Best Values

Population size (Pop_Size) [10;20;30] 20
Maximum number of generations (Max_gen) [30;35;40] 35

Lacal search probability (LS_search_prob) [20%;30%;40%] 20%

The aim of this study is to compare the results of the MA with those obtained with
the two-phase decomposition heuristic (TPDH). To achieve this goal, several tests are
conducted to evaluate the effectiveness of each local search algorithm as well as the
combination of some of them.

4.2. Results

The tests performed on 128 instances have yielded the averages over the four classes
of instances represented by the rows in Table 15.

In this table, %Diff denote the percentage difference between the cost determined
with the MA and the cost determined with the TPDH. This rate of change determines the
relative evolution of the results of the MA compared to the TPDH. The column Instance
with the sub-columns n, l, m designates the instances used for tests with n clients, l periods
on the planning horizon and m vehicles. The columns SWAP1, BI, SWAP2, BI&SWAP2,
SWAP1& SWAP2, and ALL contain the sub-columns of the total cost percentage difference
and the CPU percentage difference of the corresponding local search algorithms.

In Table 15, the combination of local search SWAP1 and SWAP2 (SWAP1&SWAP2)
offers the best percentage difference with an overall average decrease of 10.50% in the
cost obtained with MA compared to TPDH. The second-best combination of local search
algorithms is the use of BI and SWAP2 (BI &SWAP2) with an overall reduction of 10.23%
on the total cost of production, storage, and vehicle rounds. In this experiment, it was
found that the combination of all local searches is less efficient than the combination of two
of them. In terms of calculation time, only the use of BI as a local search method offers a
reduction in calculation time of 36.85% (%Diff CPU = −36.85% in the Table 15). Although
it has produced the largest number of better solutions, MA with a combination of SWAP1
and SWAP2 local searches shows an overall relative increase of 1759.09% in computation
time compared to TPDH. Out of 192 (32 × 6) results obtained on all tests, TPDH obtained
better results on only three tests concerning instances (n = 40, l = 3, m = 3) with the use of
the local search methods BI, SWAP2 and the combination of SWAP1 and SWAP2 which
gives a very low rate of 1.56% (3/192). The best solution for each of the 32 instances is
obtained with the MA. Table 16 shows the distribution of the best solutions according to
the local search method or combination of local search methods used, considering both the
overall cost and the computation time.
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Table 15. Overall comparison of MA results with TPDH results.

Instances SWAP1 BI SWAP2 BI&SWAP2 SWAP1&SWAP2 TOUT

n l m %Diff
TCost

%Diff
cpu

%Diff
TCost

%Diff
cpu

%Diff
TCost

%Diff
cpu

%Diff
TCost

%Diff
cpu

%Diff
TCost

%Diff
cpu

%Diff
TCost

%Diff
cpu

10 3 2 −10.01 128.76 −10.01 −83.66 −7.86 96.08 −10.52 128.76 −10.56 357.52 −10.56 439.22
10 3 3 −12.10 76.35 −12.10 −89.63 −10.05 14.11 −12.58 45.23 −12.63 221.58 −12.63 356.43
10 6 2 −9.32 28.68 −9.40 −72.43 −9.51 21.78 −8.99 53.95 −11.15 175.74 −9.53 196.42
10 6 3 −10.22 3.34 −8.71 −72.81 −11.32 3.34 −8.77 21.46 −10.82 104.86 −9.72 168.31
15 3 2 −9.27 191.76 −9.50 −71.40 −11.65 157.44 −12.05 220.37 −12.05 615.10 −12.09 597.94
15 3 3 −13.34 375.41 −12.37 −67.21 −15.17 252.46 −15.56 318.03 −15.36 703.28 −15.56 1137.70
15 6 2 −6.29 321.12 −9.74 −48.75 −10.90 263.19 −8.84 354.55 −7.13 777.90 −7.83 960.61
15 6 3 −11.04 126.49 −12.34 −59.86 −10.25 79.19 −11.90 110.72 −15.02 354.42 −11.43 549.37
20 3 2 −9.04 994.72 −7.61 −14.60 −6.88 746.27 −10.05 730.75 −9.32 1654.66 −4.29 2291.30
20 3 3 −8.98 1150.00 −8.06 15.25 −7.66 919.50 −9.70 1150.00 −10.16 2151.77 −10.12 2346.81
20 6 2 −10.18 424.49 −9.23 −43.10 −10.04 276.05 −11.01 323.06 −10.42 845.08 −10.13 1292.87
20 6 3 −8.67 −95.50 −10.47 −99.52 −8.77 −95.71 −8.44 −95.83 −9.76 −91.39 −8.29 −90.56
25 3 2 −6.49 1347.37 −6.00 5.26 −6.07 963.16 −7.38 942.11 −8.38 2252.63 −8.46 2726.32
25 3 3 −6.85 1161.68 −5.89 −0.70 −7.55 986.45 −9.61 1535.51 −10.26 2674.53 −8.39 2417.52
25 6 2 −2.42 845.95 −2.00 −35.70 −0.85 529.90 −1.43 836.14 −3.65 1292.76 −2.59 1910.68
25 6 3 −3.35 283.79 −4.94 −54.78 −3.73 303.57 −4.95 347.09 −5.85 647.80 −4.14 940.02
30 3 3 −9.67 1004.77 −9.56 −37.76 −10.03 968.46 −11.20 1025.52 −11.54 1738.69 −11.40 4163.49
30 3 4 −12.14 602.96 −11.35 −55.95 −10.93 477.87 −13.56 692.81 −13.95 1293.59 −12.60 1744.61
30 6 3 −12.76 122.49 −12.00 −87.24 −11.98 71.46 −13.02 129.31 −13.57 369.10 −12.53 342.36
30 6 4 −11.31 −75.04 −12.58 −98.18 −12.02 −81.58 −12.46 −74.18 −15.06 −44.38 −12.78 −44.91
35 3 3 −5.65 2228.81 −5.60 29.20 −4.14 1598.97 −5.92 1602.20 −7.34 4325.06 −6.40 3895.48
35 3 4 −8.22 1714.37 −7.10 10.78 −7.27 1367.07 −9.51 1804.19 −9.36 3582.63 −8.71 3828.14
35 6 3 −16.28 −86.51 −16.43 −99.01 −14.23 −86.51 −16.16 −81.12 −16.09 −66.53 −15.32 −62.90
35 6 4 −16.73 −83.45 −16.25 −99.34 −15.05 −86.55 −15.28 −86.78 −16.67 −71.81 −14.98 −73.05
40 3 3 −2.68 2511.11 5.83 22.22 4.56 2313.89 −4.74 2397.22 4.20 5038.89 −2.72 4258.33
40 3 4 −8.32 2491.46 −7.84 69.07 −5.67 2330.71 −9.76 2691.02 −9.97 4079.60 −9.08 4511.97
40 6 3 −12.26 −60.22 −13.56 −97.05 −10.19 −56.30 −13.72 −50.26 −13.69 −20.29 −11.91 −20.79
40 6 4 −13.00 −69.79 −9.60 −98.41 −5.93 −78.51 −12.16 −72.18 −11.85 −40.76 −9.24 −31.78
45 3 3 −4.13 2998.53 −3.69 85.83 −1.48 2259.55 −4.56 2568.54 −4.87 4960.50 −4.68 6125.15
45 3 4 −8.04 2783.66 −7.24 46.45 −5.70 2057.59 −8.18 2282.43 −9.03 4999.01 −8.29 7692.90
50 3 3 −10.72 2953.81 −10.63 −9.85 −9.62 2095.19 −12.13 2181.05 −12.33 4822.72 −11.54 4821.29
50 3 4 −11.36 3142.59 −10.24 33.70 −10.39 2512.76 −13.19 2611.02 −12.51 6586.53 −11.75 6038.85

Averages −9.40 923.25 −8.94 −36.85 −8.39 724.40 −10.23 832.58 −10.50 1759.09 −9.68 2044.69

Table 16. Breakdown of the best solutions by LS.

RL BI SWAP1 SWAP2 BI & SWAP2 SWAP1 & SWAP2 ALL TOTAL

Nbr_BS 2 2 2 7 17 2 32
Percentage 6.25 6.25 6.25 21.875 53.125 6.25 100

In Table 16, Nbr_BS refers to the number of best solutions obtained with each local
search method in the implementation of MA. According to Tables 15 and 16, the local
search methods BI, SWAP1(S1) and SWAP2(S2) individually had the same number of best
solutions in the implementation of MA. Thus, each local search taken individually yielded
2 best results out of the 32 average results, i.e., a rate of 6.25% each. The combination of all
the local search methods (ALL) also resulted in two best results, which also corresponds
to a rate of 6.25% (100 × (2/32)). The highest number of best solutions was obtained
with the combination of the local search methods SWAP1 and SWAP2. This combination
alone represents the 17 best results out of the 32 in Table 16, a rate of 53.125%. The
second-best combination is the one using BI and SWAP2. This combination yielded 7
best solutions out of 32 with a rate of 21.875%. In Table 17, each row gives details of
the best solution for each instance in Table 15. The columns PROD, INV, and TRANS
indicate the average production, storage, and transport costs (vehicle trips) of the best
solution obtained with MA, respectively. COST is the average total cost of production,
storage, and distribution (transport). RL refers to the local search used to obtain this
result. Overall, Table 17 shows that the share of production cost in the overall cost is
72.87% (100 × (72,758.91/99,847.04)). The overall cost of storage accounts for 11.39%
(100 × (11,372.73/99,847.04)) of the overall cost and the cost of vehicle rounds (distribution)
accounts for 15.74% (100 × (15,715.41/99,847.04)) of the overall cost.
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Table 17. Details of the best solutions found in all tests.

Best Solutions from MA

n l m PROD INV TRANS COST CPU RL

10 3 2 23,107.50 2082.75 5417.00 30,607.25 7.00 S1 et S2
10 3 3 23,107.50 2082.75 6113.00 31,303.25 7.75 S1 and S2
10 6 2 57,457.50 8362.75 8919.25 74,739.50 30.00 S1 and S2
10 6 3 57,465.00 8323.50 11,418.25 77,206.75 14.25 S2
15 3 2 30,712.50 3093.00 7132.50 40,938.00 30.50 ALL
15 3 3 30,712.50 3127.50 7549.25 41,389.25 12.75 BI2
15 6 2 72,585.00 12,454.25 13,864.50 98,903.75 40.75 S2
15 6 3 70,912.50 12,483.25 14,806.75 98,202.50 79.25 S1 and S2
20 3 2 35,160.00 3619.00 8325.00 47,104.00 26.75 BI and S2
20 3 3 35,685.00 3605.25 10,120.50 49,410.75 63.50 S1 and S2
20 6 2 83,437.50 14,668.50 14,806.25 11,2912.25 85.50 BI and S2
20 6 3 83,302.50 13,913.75 20,575.25 117,791.50 10.50 BI
25 3 2 39,292.50 4639.50 10,289.50 54,221.50 188.50 ALL
25 3 3 39,292.50 4689.00 10,365.75 54,347.25 118.75 S1 and S2
25 6 2 98,797.50 21,055.25 17,562.50 137,415.25 319.50 S1 and S2
25 6 3 98,722.50 20,701.00 19,629.25 139,052.75 330.75 S1 and S2
30 3 3 45,240.00 4906.00 10,768.50 60,914.50 177.25 S1 and S2
30 3 4 43,890.00 4883.50 13,427.50 62,201.00 197.75 S1 and S2
30 6 3 104,550.00 19,301.25 22,086.50 145,937.75 671.00 S1 and S2
30 6 4 102,090.00 19,447.00 27,596.25 149,133.25 739.75 S1 and S2
35 3 3 66,592.50 6054.25 13,025.50 85,672.25 342.50 S1 and S2
35 3 4 66,592.50 6082.25 15,703.25 88,378.00 159.00 BI and 2
35 6 3 121,342.50 22,354.25 26,259.25 169,956.00 28.00 BI
35 6 4 122,962.50 22,402.75 30,497.50 175,862.75 597.50 S1
40 3 3 69,030.00 8387.00 16,724.25 94,141.25 224.75 BI2
40 3 4 69,030.00 8334.25 15,147.25 92,511.50 377.00 S1 and S2
40 6 3 153,645.00 34,040.25 25,635.50 213,320.75 776.75 BI and S2
40 6 4 153,630.00 31,440.50 33,765.75 218,836.25 831.25 S1
45 3 3 91,942.50 9505.00 16,615.25 118,062.75 585.50 S1 and S2
45 3 4 91,942.50 9492.50 17,831.75 119,266.75 618.00 S1 and S2
50 3 3 73,027.50 9213.00 14,287.50 96,528.00 860.00 S1 and S2
50 3 4 73,027.50 9182.50 16,627.00 98,837.00 420.75 BI and S2

Averages 72,758.91 11,372.73 15,715.41 99,847.04 280.84

rates 72.87 11.39 15.74

Tables 18–20 provide details of the comparison of production, storage, and distribution
costs, respectively. In Table 18, all production costs obtained with the MA are less than or
equal to the production costs of the TPDH.

Table 18. Comparison of total production costs.

Production Cost

Instances TPDH MA
%Diff

n l m PROD PROD

10 3 2 23,107.50 23,107.50 0.00
10 3 3 23,107.50 23,107.50 0.00
10 6 2 63,082.50 57,457.50 −8.92
10 6 3 63,082.50 57,465.00 −8.91
15 3 2 30,712.50 30,712.50 0.00
15 3 3 30,712.50 30,712.50 0.00
15 6 2 82,192.50 72,585.00 −11.69
15 6 3 82,192.50 70,912.50 −13.72
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Table 18. Cont.

Production Cost

Instances TPDH MA
%Diff

n l m PROD PROD

20 3 2 35,685.00 35,160.00 −1.47
20 3 3 35,685.00 35,685.00 0.00
20 6 2 93,502.50 83,437.50 −10.76
20 6 3 94,252.50 83,302.50 −11.62
25 3 2 39,292.50 39,292.50 0.00
25 3 3 39,292.50 39,292.50 0.00
25 6 2 104,422.50 98,797.50 −5.39
25 6 3 104,422.50 98,722.50 −5.46
30 3 3 45,240.00 45,240.00 0.00
30 3 4 45,240.00 43,890.00 −2.98
30 6 3 118,267.50 104,550.00 −11.60
30 6 4 118,267.50 102,090.00 −13.68
35 3 3 66,592.50 66,592.50 0.00
35 3 4 66,592.50 66,592.50 0.00
35 6 3 145,567.50 121,342.50 −16.64
35 6 4 145,567.50 122,962.50 −15.53
40 3 3 69,030.00 69,030.00 0.00
40 3 4 69,030.00 69,030.00 0.00
40 6 3 177,937.50 153,645.00 −13.65
40 6 4 177,937.50 153,630.00 −13.66
45 3 3 91,942.50 91,942.50 0.00
45 3 4 91,942.50 91,942.50 0.00
50 3 3 73,027.50 73,027.50 0.00
50 3 4 73,027.50 73,027.50 0.00

Averages 78,748.59 72,758.91 −5.18

Table 19. Comparison of total inventory costs.

Inventory Cost

Instances TPDH MA
%Diff

n l m INV INV

10 3 2 1827.75 2082.75 13.95
10 3 3 1827.75 2082.75 13.95
10 6 2 7430.00 8362.75 12.55
10 6 3 7451.00 8323.50 11.71
15 3 2 2693.25 3093.00 14.84
15 3 3 2693.25 3127.50 16.12
15 6 2 10,974.75 12,454.25 13.48
15 6 3 11,055.75 12,483.25 12.91
20 3 2 3321.75 3619.00 8.95
20 3 3 3321.75 3605.25 8.53
20 6 2 12,653.25 14,668.50 15.93
20 6 3 12,502.00 13,913.75 11.29
25 3 2 4389.75 4639.50 5.69
25 3 3 4389.75 4689.00 6.82
25 6 2 16,560.25 21,055.25 27.14
25 6 3 16,281.25 20,701.00 27.15
30 3 3 4209.00 4906.00 16.56
30 3 4 4209.00 4883.50 16.03
30 6 3 16,857.75 19,301.25 14.49
30 6 4 16,728.00 19,447.00 16.25
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Table 19. Cont.

Inventory Cost

Instances TPDH MA
%Diff

n l m INV INV

35 3 3 4662.75 6054.25 29.84
35 3 4 4604.25 6082.25 32.10
35 6 3 21,020.50 22,354.25 6.34
35 6 4 20,479.50 22,402.75 9.39
40 3 3 7533.50 8387.00 11.33
40 3 4 7533.50 8334.25 10.63
40 6 3 29,374.25 34,040.25 15.88
40 6 4 28,849.25 31,440.50 8.98
45 3 3 7550.00 9505.00 25.89
45 3 4 7874.75 9492.50 20.54
50 3 3 7767.75 9213.00 18.61
50 3 4 7767.75 9182.50 18.21

Averages 98,87.34 11,372.73 15.38

Table 20. Comparison of total transportation costs.

Distribution Cost

Instances TPDH(H2) MA
%Diff

n l m TRANS TRANS

10 3 2 9286.00 5417.00 −41.66
10 3 3 10,891.25 6113.00 −43.87
10 6 2 13,604.00 8919.25 −34.44
10 6 3 16,531.75 11,418.25 −30.93
15 3 2 13,162.00 7132.50 −45.81
15 3 3 15,608.75 7549.25 −51.63
15 6 2 17,837.00 138,64.50 −22.27
15 6 3 22,312.25 14,806.75 −33.64
20 3 2 13,362.75 8325.00 −37.70
20 3 3 15,991.50 10,120.50 −36.71
20 6 2 20,722.50 14,806.25 −28.55
20 6 3 24,813.00 20,575.25 −17.08
25 3 2 15,547.25 10,289.50 −33.82
25 3 3 16,880.50 10,365.75 −38.59
25 6 2 21,631.00 17,562.50 −18.81
25 6 3 26,986.75 19,629.25 −27.26
30 3 3 19,411.00 10,768.50 −44.52
30 3 4 22,833.00 13,427.50 −41.19
30 6 3 33,729.75 22,086.50 −34.52
30 6 4 40,578.00 27,596.25 −31.99
35 3 3 21,205.00 13,025.50 −38.57
35 3 4 26,470.75 15,703.25 −40.68
35 6 3 36,776.00 26,259.25 −28.60
35 6 4 45,154.75 30,497.50 −32.46
40 3 3 22,267.00 16,724.25 −24.89
40 3 4 26,193.75 15,147.25 −42.17
40 6 3 39,935.00 25,635.50 −35.81
40 6 4 44,744.75 33,765.75 −24.54
45 3 3 24,608.25 16,615.25 −32.48
45 3 4 31,284.50 17,831.75 −43.00
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Table 20. Cont.

Distribution Cost

Instances TPDH(H2) MA
%Diff

n l m TRANS TRANS

50 3 3 29,310.75 14,287.50 −51.26
50 3 4 33,060.00 16,627.00 −49.71

Averages 24,147.83 15,715.41 −35.60

The costs of production for 16 cases resolved with MA are invariant to the costs of
production for TPDH, which corresponds to 50% of the relative results in Table 18. Overall,
there is an average decrease of 5.18% in the cost of production obtained with the MA
method compared to TPDH.

Regarding inventory (storage) cost, there is an increase in the average inventory costs
on all instances with an overall average of 9887.34 for the cost obtained with the TPDH
method against and a cost of 11,372.73 for the MA. The overall average increase in inventory
costs from tests with MA is 15.38% relative to the cost obtained with the TPDH method.

Contrary to the inventory costs, a decrease in distribution cost is observed on all
results obtained with the MA compared to the costs calculated with the TPDH. We have an
overall average of 24,147.83 of the costs with TPDH against an overall average of 15,715.41
of the costs obtained with the MA. The overall average of percentage difference in the
distribution cost calculated with the MA compared to the distribution cost calculated with
the TPDH is −35.60%. This reflects an overall average decrease of 35% in the distribution
cost obtained with the MA compared to the TPDH. Table 21 shows a comparison of the total
cost constituted by the production, inventory and distribution cost obtained with the MA
compared to the cost calculated with the TPDH. With an average overall cost of 112,783.76
for TPDH compared to 99,847.04 for MA, there is a decrease ranging from 3.65% to 16.73%
on all total costs calculated with MA compared to TPDH with an average overall decrease
of 11.07%. With an overall average computation time of 459.51 for TPDH compared to
280.98 for MA, there is an overall average increase of 1485.59% in the computation time for
MA compared to TPDH. This is since the average does not consider the relative dispersion
of computation times.

Table 21. Overall cost comparison.

Total Cost

Instances TPDH MA
%Diff %Diff

N0 n l m Total Cost CPU Total Cost CPU

1 10 3 2 34,221.25 1.53 30,607.25 7.00 −10.56 357.52
2 10 3 3 35,826.50 2.41 31,303.25 7.75 −12.63 221.58
3 10 6 2 84,116.50 10.88 74,739.50 30.00 −11.15 175.74
4 10 6 3 87,065.25 13.79 77,206.75 14.25 −11.32 3.34
5 15 3 2 46,567.75 4.37 40,938.00 44.75 −12.09 924.03
6 15 3 3 49,014.50 3.05 41,389.25 12.75 −15.56 318.03
7 15 6 2 111,004.25 11.22 98,903.75 40.75 −10.90 263.19
8 15 6 3 115,560.50 17.44 98,202.50 79.25 −15.02 354.42
9 20 3 2 52,369.50 3.22 47,104.00 26.75 −10.05 730.75

10 20 3 3 54,998.25 2.82 49,410.75 63.50 −10.16 2151.77
11 20 6 2 126,878.25 20.21 112,912.25 85.50 −11.01 323.06
12 20 6 3 131,567.50 2186.80 117,791.50 10.50 −10.47 −99.52
13 25 3 2 59,229.50 4.75 54,221.50 188.50 −8.46 3868.42
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Table 21. Cont.

Total Cost

Instances TPDH MA
%Diff %Diff

N0 n l m Total Cost CPU Total Cost CPU

14 25 3 3 60,562.75 4.28 54,347.25 118.75 −10.26 2674.53
15 25 6 2 142,613.75 22.94 137,415.25 319.50 −3.65 1292.76
16 25 6 3 147,690.50 44.23 139,052.75 330.75 −5.85 647.80
17 30 3 3 68,860.00 9.64 60,914.50 177.25 −11.54 1738.69
18 30 3 4 72,282.00 14.19 62,201.00 197.75 −13.95 1293.59
19 30 6 3 168,855.00 143.04 145,937.75 671.00 −13.57 369.10
20 30 6 4 175,573.50 1330.12 149,133.25 739.75 −15.06 −44.38
21 35 3 3 92,460.25 7.74 85,672.25 342.50 −7.34 4325.06
22 35 3 4 97,667.50 8.35 88,378.00 159.00 −9.51 1804.19
23 35 6 3 203,364.00 2839.81 169,956.00 28.00 −16.43 −99.01
24 35 6 4 211,201.75 3609.94 175,862.75 597.50 −16.73 −83.45
25 40 3 3 98,830.50 9.00 94,141.25 224.75 −4.74 2397.22
26 40 3 4 102,757.25 9.02 92,511.50 377.00 −9.97 4079.60
27 40 6 3 247,246.75 1561.64 213,320.75 776.75 −13.72 −50.26
28 40 6 4 251,531.50 2751.36 218,836.25 831.25 −13.00 −69.79
29 45 3 3 124,100.75 11.57 118,062.75 585.50 −4.87 4960.50
30 45 3 4 131,101.75 12.12 119,266.75 618.00 −9.03 4999.01
31 50 3 3 110,106.00 17.47 96,528.00 860.00 −12.33 4822.72
32 50 3 4 113,855.25 15.52 98,837.00 420.75 −13.19 2611.02

Averages 112,783.76 459.51 99,847.04 280.84 −11.07 1476.91

Figure 2 highlights the effectiveness of MA in reducing the overall cost of production,
inventory, and distribution compared to TPDH. In this figure, we can see that the use of
MA reduces the overall cost of operations. This reduction varies between 3614 and 35,339.

Figure 3 shows an increase in the calculation time with MA on all instances except
instances 12, 20, 23, 24, and 28. For these instances, 95% of the computation time is
consumed by the first phase with the use of CPLEX to solve an LSP problem with direct
delivery.
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Figure 4 shows a general evolution of the MA algorithm for EDPRP like the one
presented by [34,51]. In this figure, instances (1), (2), (3), and (4) are representative of the
four classes of instances used to conduct tests on the dataset. These instances consisting of
40 clients (n = 40), six periods (l = 6), and three vehicles highlight the general behavior of
the MA. The figure shows that the memetic algorithm proposed for the EDPRP converges
rapidly from relatively bad solutions to good solutions.
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5. Conclusions

This paper focuses on the comparative study of the results obtained with a memetic
algorithm (MA) and a two-phase decomposition heuristic (TPDH) for the management
of an external depot in a production routing problem (EDPRP). In the MA developed in
this work, three local search algorithms (LS) were used to intensify the search for the best
solution on each instance adapted from the work of Adulyasak and al. [17]. The results
have shown an improvement in the production cost computed with MA compared to
TPDH ranging from 0% to 16.64% with an overall average rate of 5.18%. Similarly, there
has been an improvement in the cost of transport ranging from 17.08% to 51.26% with
an overall average rate of 35.60%. However, the inventory cost increased from 5.69% to
32.10% with an overall average increase rate of 15.38%. As regards the overall cost of
production, inventory and distribution, there was a reduction ranging from 3.65 to 16.73%
with an overall rate of 11.07%. Such a finding highlights the effectiveness of MA in relation
to TPDH.

Beyond the contributions developed in this work, many avenues of research remain
to be examined. MA using the local search method BI is the only one that provides a
reduction (36.85%) in MA computation time compared to TPDH with an overall average
time of 12.87 s. This implementation of the MA allowed to obtain two better results with a
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decrease of 8.94% of the total global average cost compared to the TPDH. The use of MA
with local search BI thus appears as a very good algorithm in the search for a good initial
solution in the global scheme of a branch-and-cut algorithm.

In the model studied in this paper, the supply chain consists of a factory and a depot.
Studies of versions with several factories and/or depots will help to reflect certain realities
in supply chain practice and management. Similarly, considering certain characteristics
such as the use of heterogeneous vehicles, dynamic (stochastic) demands or delivery from
the plant during production days would also make it possible to highlight other aspects of
realities in supply chain management.

A comparative study on the management of MA parameters could reveal other
potentials of this algorithm. For example, this study would allow to compare the strategy
of parameter tuning by the three methods of parameter control which are: deterministic
parameter control, adaptive parameter control, and self-adaptive parameter control.
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